CN117572379B - 一种基于cnn-cbam收缩二分类网络的雷达信号处理方法 - Google Patents
一种基于cnn-cbam收缩二分类网络的雷达信号处理方法 Download PDFInfo
- Publication number
- CN117572379B CN117572379B CN202410063831.7A CN202410063831A CN117572379B CN 117572379 B CN117572379 B CN 117572379B CN 202410063831 A CN202410063831 A CN 202410063831A CN 117572379 B CN117572379 B CN 117572379B
- Authority
- CN
- China
- Prior art keywords
- module
- cbam
- radar signal
- convolution
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003672 processing method Methods 0.000 title claims abstract description 10
- 238000012549 training Methods 0.000 claims abstract description 25
- 238000012360 testing method Methods 0.000 claims abstract description 11
- 208000037170 Delayed Emergence from Anesthesia Diseases 0.000 claims abstract description 7
- 238000010200 validation analysis Methods 0.000 claims abstract 3
- 230000007246 mechanism Effects 0.000 claims description 32
- 238000010606 normalization Methods 0.000 claims description 31
- 230000006870 function Effects 0.000 claims description 28
- 230000004913 activation Effects 0.000 claims description 24
- 238000011176 pooling Methods 0.000 claims description 20
- 238000000605 extraction Methods 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 11
- 238000013145 classification model Methods 0.000 claims description 10
- 238000001228 spectrum Methods 0.000 claims description 8
- 238000013527 convolutional neural network Methods 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 4
- 238000005191 phase separation Methods 0.000 claims description 4
- 239000007787 solid Substances 0.000 claims description 2
- 230000008602 contraction Effects 0.000 claims 4
- 238000012545 processing Methods 0.000 abstract description 9
- 238000009826 distribution Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 7
- 238000012795 verification Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 238000012706 support-vector machine Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007635 classification algorithm Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/41—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/41—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
- G01S7/417—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section involving the use of neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/213—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/048—Activation functions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
- G06F2218/08—Feature extraction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
- G06F2218/12—Classification; Matching
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Software Systems (AREA)
- Mathematical Physics (AREA)
- Computing Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Molecular Biology (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Radar, Positioning & Navigation (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410063831.7A CN117572379B (zh) | 2024-01-17 | 2024-01-17 | 一种基于cnn-cbam收缩二分类网络的雷达信号处理方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410063831.7A CN117572379B (zh) | 2024-01-17 | 2024-01-17 | 一种基于cnn-cbam收缩二分类网络的雷达信号处理方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117572379A CN117572379A (zh) | 2024-02-20 |
CN117572379B true CN117572379B (zh) | 2024-04-12 |
Family
ID=89886677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410063831.7A Active CN117572379B (zh) | 2024-01-17 | 2024-01-17 | 一种基于cnn-cbam收缩二分类网络的雷达信号处理方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117572379B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118673386B (zh) * | 2024-08-13 | 2024-11-05 | 中国计量大学 | 基于深度学习的抗干扰毫米波雷达活体检测方法及系统 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109407067A (zh) * | 2018-10-13 | 2019-03-01 | 中国人民解放军海军航空大学 | 基于时频图卷积神经网络的雷达动目标检测与分类一体化方法 |
CN113126050A (zh) * | 2021-03-05 | 2021-07-16 | 沃尔夫曼消防装备有限公司 | 一种基于神经网络的生命探测方法 |
CN114564982A (zh) * | 2022-01-19 | 2022-05-31 | 中国电子科技集团公司第十研究所 | 雷达信号调制类型的自动识别方法 |
CN114646649A (zh) * | 2022-03-28 | 2022-06-21 | 浙江大学 | 一种基于毫米波雷达的粮库粮食在线水分监测方法 |
KR20220091713A (ko) * | 2020-12-24 | 2022-07-01 | 포항공과대학교 산학협력단 | 도메인 적응을 이용한 레이다 기반 탐지 시스템 및 그 방법 |
CN114814775A (zh) * | 2022-05-24 | 2022-07-29 | 哈尔滨工业大学 | 基于ResNet网络的雷达跌倒检测方法及设备 |
CN115204211A (zh) * | 2022-05-24 | 2022-10-18 | 中国地质大学(武汉) | 基于深度残差收缩注意力网络的认知侦察识别方法及装置 |
CN115546908A (zh) * | 2022-09-28 | 2022-12-30 | 支付宝(杭州)信息技术有限公司 | 一种活体检测方法、装置及设备 |
WO2023063874A1 (en) * | 2021-10-14 | 2023-04-20 | Exo Imaging, Inc. | Method and system for image processing based on convolutional neural network |
CN116008982A (zh) * | 2022-12-14 | 2023-04-25 | 西安电子科技大学 | 基于跨尺度特征聚合网络的雷达目标辨识方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114450751A (zh) * | 2019-06-07 | 2022-05-06 | 徕卡显微系统Cms有限公司 | 用于训练机器学习算法以处理生物学相关数据的系统和方法、显微镜及经训练的机器学习算法 |
US20230334911A1 (en) * | 2022-04-13 | 2023-10-19 | Nec Corporation | Face liveness detection |
-
2024
- 2024-01-17 CN CN202410063831.7A patent/CN117572379B/zh active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109407067A (zh) * | 2018-10-13 | 2019-03-01 | 中国人民解放军海军航空大学 | 基于时频图卷积神经网络的雷达动目标检测与分类一体化方法 |
KR20220091713A (ko) * | 2020-12-24 | 2022-07-01 | 포항공과대학교 산학협력단 | 도메인 적응을 이용한 레이다 기반 탐지 시스템 및 그 방법 |
CN113126050A (zh) * | 2021-03-05 | 2021-07-16 | 沃尔夫曼消防装备有限公司 | 一种基于神经网络的生命探测方法 |
WO2023063874A1 (en) * | 2021-10-14 | 2023-04-20 | Exo Imaging, Inc. | Method and system for image processing based on convolutional neural network |
CN114564982A (zh) * | 2022-01-19 | 2022-05-31 | 中国电子科技集团公司第十研究所 | 雷达信号调制类型的自动识别方法 |
CN114646649A (zh) * | 2022-03-28 | 2022-06-21 | 浙江大学 | 一种基于毫米波雷达的粮库粮食在线水分监测方法 |
CN114814775A (zh) * | 2022-05-24 | 2022-07-29 | 哈尔滨工业大学 | 基于ResNet网络的雷达跌倒检测方法及设备 |
CN115204211A (zh) * | 2022-05-24 | 2022-10-18 | 中国地质大学(武汉) | 基于深度残差收缩注意力网络的认知侦察识别方法及装置 |
CN115546908A (zh) * | 2022-09-28 | 2022-12-30 | 支付宝(杭州)信息技术有限公司 | 一种活体检测方法、装置及设备 |
CN116008982A (zh) * | 2022-12-14 | 2023-04-25 | 西安电子科技大学 | 基于跨尺度特征聚合网络的雷达目标辨识方法 |
Non-Patent Citations (2)
Title |
---|
Autonomous Human and Animal Classification Using Synthetic 2D Tensor Data Based on Dual-Receiver mmWave Radar System;Arsyad R. Darlis 等;IEEE Access;20230727(第11期);第80284 - 80296页 * |
嵌入CBAM结构的改进YOLOV3超宽带雷达生命信号检测算法;王生霄;侯兴松;黑夏萌;;国外电子测量技术;20200315(第03期);第9-14页 * |
Also Published As
Publication number | Publication date |
---|---|
CN117572379A (zh) | 2024-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Karagiorgi et al. | Machine learning in the search for new fundamental physics | |
Akhtar et al. | Interpretation of intelligence in CNN-pooling processes: a methodological survey | |
Abdar et al. | A review of uncertainty quantification in deep learning: Techniques, applications and challenges | |
Saponara et al. | Impact of image resizing on deep learning detectors for training time and model performance | |
Kong et al. | YOLOv3-DPFIN: A dual-path feature fusion neural network for robust real-time sonar target detection | |
Koutini et al. | Receptive field regularization techniques for audio classification and tagging with deep convolutional neural networks | |
Keriven et al. | NEWMA: a new method for scalable model-free online change-point detection | |
Tang et al. | Deepchart: Combining deep convolutional networks and deep belief networks in chart classification | |
Mohindru et al. | Different hybrid machine intelligence techniques for handling IoT‐based imbalanced data | |
CN117572379B (zh) | 一种基于cnn-cbam收缩二分类网络的雷达信号处理方法 | |
Morán et al. | Reservoir computing hardware with cellular automata | |
Wang et al. | A pseudoinverse incremental algorithm for fast training deep neural networks with application to spectra pattern recognition | |
Arshad et al. | Object detection in last decade-a survey | |
Li et al. | Accelerating the design and development of polymeric materials via deep learning: Current status and future challenges | |
Pravin et al. | Piper plant classification using deep cnn feature extraction and hyperparameter tuned random forest classification | |
Ahmad et al. | Content based image retrieval system based on deep convolution neural network model by integrating three-fold geometric augmentation | |
Jayswal et al. | Study and develop a convolutional neural network for MNIST handwritten digit classification | |
Zeng et al. | Few-shot SAR target recognition through meta-adaptive hyperparameters learning for fast adaptation | |
Manzo et al. | FastGCN+ ARSRGemb: a novel framework for object recognition | |
Choudhuri et al. | MNIST image classification using convolutional neural networks | |
Jayasree et al. | A deep insight into deep learning architectures, algorithms and applications | |
Molina et al. | A preliminary study on deep transfer learning applied to image classification for small datasets | |
Dani et al. | Survey on the use of CNN and Deep Learning in Image Classification | |
Nithya | Training the Image Classifier with and without Data Augmentation | |
Zhao et al. | Boundary U-Net: A segmentation method to improve salt bodies identification accuracy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20241231 Address after: No. 9 Kangleli, Nanshan Road, Huli District, Xiamen City, Fujian Province 361000 Patentee after: Yang Mingrui Country or region after: China Address before: Unit 803, 8th Floor, South Building, Wanxiang International Business Center, No. 1694 Gangzhong Road, Xiamen Area, China (Fujian) Pilot Free Trade Zone, Xiamen City, Fujian Province 361000 Patentee before: Xiamen Zhongwei Scientific Instrument Co.,Ltd. Country or region before: China |