CN117555369B - Temperature control system and method and electronic equipment - Google Patents
Temperature control system and method and electronic equipment Download PDFInfo
- Publication number
- CN117555369B CN117555369B CN202311858831.8A CN202311858831A CN117555369B CN 117555369 B CN117555369 B CN 117555369B CN 202311858831 A CN202311858831 A CN 202311858831A CN 117555369 B CN117555369 B CN 117555369B
- Authority
- CN
- China
- Prior art keywords
- temperature
- electrical signal
- space
- control
- absolute value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- 230000007613 environmental effect Effects 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 230000008569 process Effects 0.000 description 12
- 230000008859 change Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 4
- 238000004590 computer program Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D23/00—Control of temperature
- G05D23/19—Control of temperature characterised by the use of electric means
- G05D23/20—Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
- G05D23/24—Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element having a resistance varying with temperature, e.g. a thermistor
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Control Of Temperature (AREA)
Abstract
Description
技术领域Technical Field
本申请涉及电子电路技术领域,特别是涉及一种温度控制系统、方法及电子设备。The present application relates to the field of electronic circuit technology, and in particular to a temperature control system, method and electronic equipment.
背景技术Background Art
直流电源模块以其体积小巧、性能良好、使用方便的特点,在通信、网络、工控、铁路、军事等领域得到广泛的应用。直流电源模块的功率一般大于5瓦。在使用过程中,直流电源模块会发热导致外壳温度升高,外壳温度将影响直流电源模块的电性能。DC power modules are widely used in communication, network, industrial control, railway, military and other fields due to their small size, good performance and convenient use. The power of DC power modules is generally greater than 5 watts. During use, the DC power module will generate heat, causing the shell temperature to rise, and the shell temperature will affect the electrical performance of the DC power module.
现阶段常用的测量直流电源模块的温度曲线的方法是通过热流罩或温箱对直流电源模块进行加热,保持一定时间后测量其电参数。由于直流电源模块工作时会发热,直流电源模块的壳温实际上会高于环境温度。这导致在描绘温度曲线的过程中,实际测试的温度点与需要测试的温度点之间存在一定的误差。At present, the commonly used method for measuring the temperature curve of a DC power module is to heat the DC power module through a heat flow hood or a temperature chamber, and measure its electrical parameters after keeping it for a certain period of time. Since the DC power module generates heat when working, the shell temperature of the DC power module is actually higher than the ambient temperature. This results in a certain error between the actual tested temperature point and the required tested temperature point in the process of drawing the temperature curve.
通常情况下,研究者可以利用直流电源模块的热组特性来计算直流电源模块的温升情况,并根据计算结果适当降低环境温度以抵消直流电源模块工作带来的温升。但此类计算过程比较复杂,而且实际的温升不一定等于计算得到的理论数值。Normally, researchers can use the thermal characteristics of DC power modules to calculate the temperature rise of DC power modules, and appropriately reduce the ambient temperature based on the calculation results to offset the temperature rise caused by the operation of the DC power modules. However, this type of calculation process is relatively complicated, and the actual temperature rise is not necessarily equal to the calculated theoretical value.
因此,亟需一种能够精准控制直流电源模块壳体温度的温度控制方案。Therefore, there is an urgent need for a temperature control solution that can accurately control the temperature of the DC power module housing.
发明内容Summary of the invention
基于此,有必要针对上述技术问题,提供一种能够精准控制直流电源模块壳体温度的温度控制系统、方法及电子设备。Based on this, it is necessary to provide a temperature control system, method and electronic device that can accurately control the temperature of the DC power module housing in order to solve the above technical problems.
第一方面,本申请提供了一种温度控制系统,包括:直流电源模块、第一温控组件、第二温控组件、第一反馈组件、第二反馈组件、运算放大器及控制模块;In a first aspect, the present application provides a temperature control system, including: a DC power supply module, a first temperature control component, a second temperature control component, a first feedback component, a second feedback component, an operational amplifier, and a control module;
所述直流电源模块的外壳贴附设置于所述第一反馈组件的表面,所述第一反馈组件和所述直流电源模块设置于第一空间内,所述第二反馈组件设置于第二空间内;所述第一温控组件用于调节所述第一空间的环境温度,所述第二温控组件用于调节所述第二空间的环境温度;所述控制模块的输出端通过所述第二反馈组件连接所述运算放大器的第一输入端,所述运算放大器的第一输入端还通过所述第一反馈组件连接所述运算放大器的输出端,所述运算放大器的输出端连接所述控制模块的输入端,所述运算放大器的第二输入端接地,所述控制模块的输出端还连接所述第一温控组件;The housing of the DC power supply module is attached to the surface of the first feedback component, the first feedback component and the DC power supply module are arranged in a first space, and the second feedback component is arranged in a second space; the first temperature control component is used to adjust the ambient temperature of the first space, and the second temperature control component is used to adjust the ambient temperature of the second space; the output end of the control module is connected to the first input end of the operational amplifier through the second feedback component, the first input end of the operational amplifier is also connected to the output end of the operational amplifier through the first feedback component, the output end of the operational amplifier is connected to the input end of the control module, the second input end of the operational amplifier is grounded, and the output end of the control module is also connected to the first temperature control component;
所述控制模块用于控制所述第一空间的环境温度和所述第二空间的环境温度调节至目标温度;The control module is used to control the ambient temperature of the first space and the ambient temperature of the second space to be adjusted to a target temperature;
在所述直流电源模块启动预设时间后,获取第一电信号和第二电信号,其中,所述第一电信号为所述控制模块的输出信号,所述第二电信号为所述运算放大器的输出信号;After the DC power supply module is started for a preset time, a first electrical signal and a second electrical signal are acquired, wherein the first electrical signal is an output signal of the control module, and the second electrical signal is an output signal of the operational amplifier;
判断所述第一电信号和所述第二电信号是否满足预设条件;Determining whether the first electrical signal and the second electrical signal meet a preset condition;
若所述第一电信号和所述第二电信号满足预设条件,确定所述直流电源模块的外壳温度为目标控制温度;If the first electrical signal and the second electrical signal meet a preset condition, determining that the housing temperature of the DC power supply module is a target control temperature;
若所述第一电信号和所述第二电信号不满足预设条件,按照预设温度数值幅度调节所述第一空间的环境温度,直至所述第一电信号和所述第二电信号满足预设条件。If the first electrical signal and the second electrical signal do not meet the preset conditions, the ambient temperature of the first space is adjusted according to a preset temperature value amplitude until the first electrical signal and the second electrical signal meet the preset conditions.
在其中一个实施例中,所述第一反馈组件包括第一热敏电阻,所述直流电源模块的外壳贴附设置于所述第一热敏电阻的表面。In one embodiment, the first feedback component includes a first thermistor, and the housing of the DC power module is attached to a surface of the first thermistor.
在其中一个实施例中,所述第二反馈组件包括第二热敏电阻,其中,所述第二热敏电阻与所述第一热敏电阻的温度系数相同。In one embodiment, the second feedback component includes a second thermistor, wherein the second thermistor has the same temperature coefficient as the first thermistor.
在其中一个实施例中,所述第一热敏电阻和所述第二热敏电阻均为正温度系数的热敏电阻。In one embodiment, the first thermistor and the second thermistor are both positive temperature coefficient thermistors.
在其中一个实施例中,所述控制模块具体用于通过所述第一温控组件将所述第一空间的环境温度调节至第一温度;通过所述第二温控组件将所述第二空间的环境温度调节至第二温度。In one embodiment, the control module is specifically configured to adjust the ambient temperature of the first space to a first temperature through the first temperature control component; and adjust the ambient temperature of the second space to a second temperature through the second temperature control component.
在其中一个实施例中,所述控制模块用于判断所述第一电信号的绝对值和所述第二电信号的绝对值是否相等;In one embodiment, the control module is used to determine whether the absolute value of the first electrical signal is equal to the absolute value of the second electrical signal;
若所述第一电信号的绝对值和所述第二电信号的绝对值相等,确定所述直流电源模块的外壳温度为目标控制温度;If the absolute value of the first electrical signal is equal to the absolute value of the second electrical signal, determining that the housing temperature of the DC power supply module is the target control temperature;
若所述第一电信号的绝对值和所述第二电信号的绝对值不同,按照预设温度数值幅度调节所述第一空间的环境温度,并在预设时间后重新判断所述第一电信号的绝对值和所述第二电信号的绝对值是否相等。If the absolute value of the first electrical signal is different from the absolute value of the second electrical signal, the ambient temperature of the first space is adjusted according to a preset temperature value amplitude, and after a preset time, it is re-determined whether the absolute value of the first electrical signal is equal to the absolute value of the second electrical signal.
第二方面,本申请还提供了一种温度控制方法,应用于第一方面所述的温度控制系统的控制模块,包括:In a second aspect, the present application further provides a temperature control method, which is applied to the control module of the temperature control system described in the first aspect, comprising:
控制所述第一空间的环境温度和所述第二空间的环境温度调节至目标温度;Controlling the ambient temperature of the first space and the ambient temperature of the second space to target temperatures;
在所述直流电源模块启动预设时间后,获取第一电信号和第二电信号,其中,所述第一电信号为所述控制模块的输出信号,所述第二电信号为所述运算放大器的输出信号;After the DC power supply module is started for a preset time, a first electrical signal and a second electrical signal are acquired, wherein the first electrical signal is an output signal of the control module, and the second electrical signal is an output signal of the operational amplifier;
判断所述第一电信号和所述第二电信号是否满足预设条件;Determining whether the first electrical signal and the second electrical signal meet a preset condition;
若所述第一电信号和所述第二电信号满足预设条件,确定所述直流电源模块的外壳温度为目标控制温度;If the first electrical signal and the second electrical signal meet a preset condition, determining that the housing temperature of the DC power supply module is a target control temperature;
若所述第一电信号和所述第二电信号不满足预设条件,按照预设温度数值幅度调节所述第一空间的环境温度,直至所述第一电信号和所述第二电信号满足预设条件。If the first electrical signal and the second electrical signal do not meet the preset conditions, the ambient temperature of the first space is adjusted according to a preset temperature value amplitude until the first electrical signal and the second electrical signal meet the preset conditions.
在其中一个实施例中,所述控制第一空间的环境温度和第二空间的环境温度调节至目标温度,包括:In one embodiment, controlling the ambient temperature of the first space and the ambient temperature of the second space to be adjusted to a target temperature comprises:
通过所述第一温控组件将所述第一空间的环境温度调节至第一温度;adjusting the ambient temperature of the first space to a first temperature through the first temperature control component;
通过所述第二温控组件将所述第二空间的环境温度调节至第二温度。The ambient temperature of the second space is adjusted to a second temperature by the second temperature control component.
在其中一个实施例中,还包括:In one embodiment, it also includes:
判断所述第一电信号的绝对值和所述第二电信号的绝对值是否相等;Determining whether the absolute value of the first electrical signal is equal to the absolute value of the second electrical signal;
若所述第一电信号的绝对值和所述第二电信号的绝对值相等,确定所述直流电源模块的外壳温度为目标控制温度;If the absolute value of the first electrical signal is equal to the absolute value of the second electrical signal, determining that the housing temperature of the DC power supply module is the target control temperature;
若所述第一电信号的绝对值和所述第二电信号的绝对值不同,按照预设温度数值幅度调节所述第一空间的环境温度,并在预设时间后重新判断所述第一电信号的绝对值和所述第二电信号的绝对值是否相等。If the absolute value of the first electrical signal is different from the absolute value of the second electrical signal, the ambient temperature of the first space is adjusted according to a preset temperature value amplitude, and after a preset time, it is re-determined whether the absolute value of the first electrical signal is equal to the absolute value of the second electrical signal.
第三方面,本申请还提供了一种电子设备,包括第一方面所述的温度控制系统。In a third aspect, the present application further provides an electronic device, comprising the temperature control system described in the first aspect.
综上,本申请提出一种温度控制系统、方法及电子设备,包括:直流电源模块、第一温控组件、第二温控组件、第一反馈组件、第二反馈组件、运算放大器及控制模块;控制模块用于在直流电源模块启动预设时间后,获取第一电信号和第二电信号;根据第一电信号和第二电信号确定直流电源模块的外壳温度是否为目标控制温度;若第一电信号和第二电信号不满足预设条件,按照预设温度数值幅度调节第二空间的环境温度,直至第一电信号和第二电信号满足预设条件。本申请通过负反馈电路实时监测直流电源模块外壳温度的控制情况,并通过温控设备对第一空间的环境温度进行实时调节,能够精准控制直流电源模块外壳温度。In summary, the present application proposes a temperature control system, method and electronic device, including: a DC power supply module, a first temperature control component, a second temperature control component, a first feedback component, a second feedback component, an operational amplifier and a control module; the control module is used to obtain a first electrical signal and a second electrical signal after the DC power supply module starts for a preset time; determine whether the shell temperature of the DC power supply module is the target control temperature according to the first electrical signal and the second electrical signal; if the first electrical signal and the second electrical signal do not meet the preset conditions, adjust the ambient temperature of the second space according to the preset temperature value amplitude until the first electrical signal and the second electrical signal meet the preset conditions. The present application monitors the control status of the shell temperature of the DC power supply module in real time through a negative feedback circuit, and adjusts the ambient temperature of the first space in real time through a temperature control device, so as to accurately control the shell temperature of the DC power supply module.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为一个实施例中温度控制系统的结构框图;FIG1 is a block diagram of a temperature control system in one embodiment;
图2为一个实施例中温度控制系统的电路示意图;FIG2 is a circuit diagram of a temperature control system in one embodiment;
图3为一个实施例中温度控制方法的流程示意图;FIG3 is a schematic flow chart of a temperature control method in one embodiment;
图4为另一个实施例中温度控制方法的流程示意图;FIG4 is a schematic flow chart of a temperature control method in another embodiment;
图5为一个实施例中温度控制模块的结构框图。FIG. 5 is a structural block diagram of a temperature control module in one embodiment.
附图标记汇总:Summary of reference numerals:
直流电源模块-110;第一温控组件-120;第二温控组件-130;第一反馈组件-140;第二反馈组件-150;运算放大器-160;控制模块-170;第一空间-200;第二空间-300。DC power supply module-110; first temperature control component-120; second temperature control component-130; first feedback component-140; second feedback component-150; operational amplifier-160; control module-170; first space-200; second space-300.
具体实施方式DETAILED DESCRIPTION
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。In order to make the purpose, technical solution and advantages of the present application more clearly understood, the present application is further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present application and are not used to limit the present application.
本申请实施例提供的温度控制系统,如图1所示,包括:直流电源模块110、第一温控组件120、第二温控组件130、第一反馈组件140、第二反馈组件150、运算放大器160及控制模块170。The temperature control system provided in the embodiment of the present application, as shown in FIG. 1 , includes: a DC power supply module 110 , a first temperature control component 120 , a second temperature control component 130 , a first feedback component 140 , a second feedback component 150 , an operational amplifier 160 and a control module 170 .
具体的,直流电源模块110可以为DC/DC直流电源模块,需知的,本实施例不对直流电源模块110的具体类型进行限定,可以根据实际应用场景的需要被配置为同样可以采用本实施例提供的温度控制系统实现温度控制的直流电源模块。Specifically, the DC power supply module 110 can be a DC/DC direct current power supply module. It should be noted that this embodiment does not limit the specific type of the DC power supply module 110, and can be configured as a DC power supply module that can also use the temperature control system provided in this embodiment to achieve temperature control according to the needs of actual application scenarios.
第一反馈组件140和直流电源模块110设置于第一空间200内,第二反馈组件150设置于第二空间300内。第一反馈组件140的外表面的温度和直流电源模块110的壳体温度受第一空间200内的环境温度影响,第二反馈组件150的外表面的温度受的第二空间300内的环境温度影响。需知的,第一空间200和第二空间300均为密闭的物理空间,第一空间200和第二空间300均可以为由导热材料形成的容纳空间,本实施例不对第一空间200和第二空间300的组成结构或形状进行限定,可以根据实际应用场景的需要进行自适应配置。举例来说,如图1所示,第一空间200和第二空间300均被配置为球形空间。The first feedback component 140 and the DC power module 110 are arranged in the first space 200, and the second feedback component 150 is arranged in the second space 300. The temperature of the outer surface of the first feedback component 140 and the shell temperature of the DC power module 110 are affected by the ambient temperature in the first space 200, and the temperature of the outer surface of the second feedback component 150 is affected by the ambient temperature in the second space 300. It should be noted that the first space 200 and the second space 300 are both closed physical spaces, and the first space 200 and the second space 300 can both be a receiving space formed by a heat-conducting material. This embodiment does not limit the composition structure or shape of the first space 200 and the second space 300, and can be adaptively configured according to the needs of the actual application scenario. For example, as shown in Figure 1, the first space 200 and the second space 300 are both configured as spherical spaces.
本实施例中的直流电源模块110的外壳贴附设置于第一反馈组件140的表面。在具体实施例中,直流电源模块110的外壳紧贴第一反馈组件140的外表面,直流电源模块110的外壳和第一反馈组件140的外表面可以相互导热,使得直流电源模块110的外壳温度等于第一反馈组件140的外表面温度。需知的,本实施例在进行温度控制的过程中,均会间隔一段时间便于第一反馈组件140和直流电源模块110的外壳相互导热,以便于更加准确的控制第一空间200内的环境温度。The housing of the DC power module 110 in this embodiment is attached to the surface of the first feedback component 140. In a specific embodiment, the housing of the DC power module 110 is in close contact with the outer surface of the first feedback component 140, and the housing of the DC power module 110 and the outer surface of the first feedback component 140 can conduct heat to each other, so that the housing temperature of the DC power module 110 is equal to the outer surface temperature of the first feedback component 140. It should be noted that in the process of temperature control in this embodiment, a period of time will be allowed to facilitate mutual heat conduction between the housings of the first feedback component 140 and the DC power module 110, so as to more accurately control the ambient temperature in the first space 200.
具体的,第一温控组件120与第一空间200连接,第一温控组件120用于调节第一空间200的环境温度。第二温控组件130与第二空间300连接,第二温控组件130用于调节第二空间300的环境温度。在实际应用场景中,第一温控组件120和第二温控组件130均可以为加热设备,能够对于密闭空间内的环境温度进行准确调节。需知的,本实施例不对第一温控组件120和第二温控组件130的具体设备类型进行限定,可以根据实际应用场景的需要进行自适应配置。举例来说,第一温控组件120和第二温控组件130可以为加热丝、热流罩或者控温箱,在第一温控组件120和第二温控组件130启动时,升高第一空间200和第二空间300的环境温度。第一空间200和第二空间300均可以为热流罩或者控温箱的内部容置空间。Specifically, the first temperature control component 120 is connected to the first space 200, and the first temperature control component 120 is used to adjust the ambient temperature of the first space 200. The second temperature control component 130 is connected to the second space 300, and the second temperature control component 130 is used to adjust the ambient temperature of the second space 300. In actual application scenarios, both the first temperature control component 120 and the second temperature control component 130 can be heating devices, which can accurately adjust the ambient temperature in the enclosed space. It should be noted that this embodiment does not limit the specific device type of the first temperature control component 120 and the second temperature control component 130, and can be adaptively configured according to the needs of the actual application scenario. For example, the first temperature control component 120 and the second temperature control component 130 can be a heating wire, a heat flow cover or a temperature control box. When the first temperature control component 120 and the second temperature control component 130 are started, the ambient temperature of the first space 200 and the second space 300 is increased. Both the first space 200 and the second space 300 can be the internal accommodation space of the heat flow cover or the temperature control box.
在具体实施例中,第一温控组件120和第二温控组件130为相同类型且具有相同性能的温控设备,从而保证在第一温控组件120和第二温控组件130启动时,对第一空间200的环境温度和对第二空间300的环境温度的控制效果相同,从而减少控制模块170在获取电信号时的误差。In a specific embodiment, the first temperature control component 120 and the second temperature control component 130 are temperature control devices of the same type and with the same performance, thereby ensuring that when the first temperature control component 120 and the second temperature control component 130 are started, the control effect on the ambient temperature of the first space 200 and the ambient temperature of the second space 300 is the same, thereby reducing the error of the control module 170 when acquiring electrical signals.
具体的,控制模块170的输出端通过第二反馈组件150连接运算放大器160的第一输入端,运算放大器160的第一输入端还通过第一反馈组件140连接运算放大器160的输出端,运算放大器160的输出端连接控制模块170的输入端,运算放大器160的第二输入端接地,控制模块170的输出端还连接第一温控组件。Specifically, the output end of the control module 170 is connected to the first input end of the operational amplifier 160 through the second feedback component 150, and the first input end of the operational amplifier 160 is also connected to the output end of the operational amplifier 160 through the first feedback component 140. The output end of the operational amplifier 160 is connected to the input end of the control module 170, the second input end of the operational amplifier 160 is grounded, and the output end of the control module 170 is also connected to the first temperature control component.
在实际应用过程中,第一反馈组件140、第二反馈组件150和运算放大器160组成负反馈电路。根据基尔霍夫定律,可以得到运算放大器160负反馈电路的输出电压和输入电压的关系为|Vout/Vin|=|-R1/R2|,其中,Vout为运算放大器160的输出电压,Vin为运算放大器160的输入电压,R1为第一反馈组件140的阻值,R2为第二反馈组件150的阻值。In actual application, the first feedback component 140, the second feedback component 150 and the operational amplifier 160 form a negative feedback circuit. According to Kirchhoff's law, the relationship between the output voltage and the input voltage of the negative feedback circuit of the operational amplifier 160 is |Vout/Vin|=|-R1/R2|, where Vout is the output voltage of the operational amplifier 160, Vin is the input voltage of the operational amplifier 160, R1 is the resistance of the first feedback component 140, and R2 is the resistance of the second feedback component 150.
在实际应用场景中,可以通过判断|Vout/Vin|是否为1,实现判断|-R1/R2|是否为1。当|-R1/R2|为1时,表示第一反馈组件140的阻值和第二反馈组件150的阻值相等,即第一反馈组件140的外表面温度与第二反馈组件150的外表面温度相等,即直流电源模块110的壳体温度与第二反馈组件150的外表面温度相等。In actual application scenarios, whether |-R1/R2| is 1 can be determined by determining whether |Vout/Vin| is 1. When |-R1/R2| is 1, it means that the resistance of the first feedback component 140 is equal to the resistance of the second feedback component 150, that is, the outer surface temperature of the first feedback component 140 is equal to the outer surface temperature of the second feedback component 150, that is, the shell temperature of the DC power module 110 is equal to the outer surface temperature of the second feedback component 150.
具体的,第二反馈组件150与第二空间300为本实施例进行温度控制的参照物。Specifically, the second feedback component 150 and the second space 300 are reference objects for temperature control in this embodiment.
在本实施例的具体温度控制过程中,控制模块170先控制第一空间200的环境温度和第二空间300的环境温度调节至目标温度,从而保证作为参照物的第二空间300内的第二反馈组件150的外表面升高至需要控制实现的目标温度。In the specific temperature control process of this embodiment, the control module 170 first controls the ambient temperature of the first space 200 and the ambient temperature of the second space 300 to be adjusted to the target temperature, thereby ensuring that the outer surface of the second feedback component 150 in the second space 300 serving as a reference object rises to the target temperature that needs to be controlled to achieve.
在直流电源模块110启动预设时间后,获取第一电信号和第二电信号,其中,第一电信号为控制模块170的输出信号,第二电信号为运算放大器160的输出信号。在具体实施例中,由于直流电源模块110启动后会提升直流电源模块110的壳体温度,进而影响第一反馈组件140外表面的实际温度。本实施例需要通过电信号判断出直流电源模块110启动后对壳体温度的影响,因此,本实施例在直流电源模块110启动并稳定运行预设时间后,再开始获取第一电信号和第二电信号。需知的,预设时间可以根据实际应用场景进行确定,此处不对预设时间的具体时间作限定。After the DC power module 110 is started for a preset time, the first electrical signal and the second electrical signal are obtained, wherein the first electrical signal is the output signal of the control module 170, and the second electrical signal is the output signal of the operational amplifier 160. In a specific embodiment, the shell temperature of the DC power module 110 will be increased after the DC power module 110 is started, thereby affecting the actual temperature of the outer surface of the first feedback component 140. This embodiment needs to determine the impact of the DC power module 110 on the shell temperature after it is started through electrical signals. Therefore, this embodiment starts to obtain the first electrical signal and the second electrical signal after the DC power module 110 is started and runs stably for a preset time. It should be noted that the preset time can be determined according to the actual application scenario, and the specific time of the preset time is not limited here.
具体的,第一电信号为控制模块170的输出信号,即Vin,控制模块170可以通过记录输出信号值的方式进行获取。第二电信号为运算放大器160的输出信号,即Vout,控制模块170通过输入端接收运算放大器160的输出信号。需知的,控制模块170获取第一电信号和第二电信号的方式可以根据实际应用场景进行自适应变更。Specifically, the first electrical signal is the output signal of the control module 170, that is, Vin, and the control module 170 can obtain it by recording the output signal value. The second electrical signal is the output signal of the operational amplifier 160, that is, Vout, and the control module 170 receives the output signal of the operational amplifier 160 through the input terminal. It should be noted that the way in which the control module 170 obtains the first electrical signal and the second electrical signal can be adaptively changed according to the actual application scenario.
控制模块170在获取第一电信号和第二电信号后,进一步判断第一电信号和第二电信号是否满足预设条件。其中,预设条件可以为判断第一电信号和第二电信号是否相等。第一电信号和第二电信号相等时,表示第一反馈组件140的外表面温度和第二反馈组件150的外表面温度相等,即直流电源模块110的壳体温度与参照物的目标温度相等。After acquiring the first electrical signal and the second electrical signal, the control module 170 further determines whether the first electrical signal and the second electrical signal meet a preset condition. The preset condition may be determining whether the first electrical signal and the second electrical signal are equal. When the first electrical signal and the second electrical signal are equal, it indicates that the outer surface temperature of the first feedback component 140 is equal to the outer surface temperature of the second feedback component 150, that is, the housing temperature of the DC power module 110 is equal to the target temperature of the reference object.
若第一电信号和第二电信号满足预设条件,确定直流电源模块110的外壳温度为目标控制温度。If the first electrical signal and the second electrical signal meet the preset conditions, it is determined that the housing temperature of the DC power module 110 is the target control temperature.
具体的,控制模块170在确定第一电信号和第二电信号相等时,确定直流电源模块110的外壳温度为目标控制温度。其中,目标控制温度为用户需要通过控制模块170控制直流电源模块110的外壳达到的温度值。Specifically, when the control module 170 determines that the first electrical signal and the second electrical signal are equal, the shell temperature of the DC power module 110 is determined to be the target control temperature. The target control temperature is the temperature value that the user needs to control the shell of the DC power module 110 to reach through the control module 170.
若第一电信号和第二电信号不满足预设条件,按照预设温度数值幅度调节第一空间200的环境温度,直至第一电信号和第二电信号满足预设条件。If the first electrical signal and the second electrical signal do not satisfy the preset conditions, the ambient temperature of the first space 200 is adjusted according to a preset temperature value range until the first electrical signal and the second electrical signal satisfy the preset conditions.
具体的,控制模块170在确定第一电信号和第二电信号不相等时,可以确定第一反馈组件140的外表面温度和第二反馈组件150的外表面温度不相等,即直流电源模块110的壳体温度与参照物的目标温度不相等。Specifically, when the control module 170 determines that the first electrical signal and the second electrical signal are not equal, it can determine that the outer surface temperature of the first feedback component 140 and the outer surface temperature of the second feedback component 150 are not equal, that is, the shell temperature of the DC power supply module 110 is not equal to the target temperature of the reference object.
此时,需要按照一定温度数值调节第一空间200的环境温度,使直流电源模块110的壳体温度与参照物的目标温度相等。在具体实施例中,预设温度数值幅度可以根据实际应用场景的需要进行具体数值的配置,举例来说,预设温度数值幅度可以被配置为1℃。在控制模块170确定第一电信号和第二电信号不相等时,则通过控制第一温控模块的输出功率,实现第一空间200内环境温度的下降,每下降1℃,重新判断第一电信号和第二电信号是否满足预设条件。At this time, it is necessary to adjust the ambient temperature of the first space 200 according to a certain temperature value so that the shell temperature of the DC power supply module 110 is equal to the target temperature of the reference object. In a specific embodiment, the preset temperature value amplitude can be configured with a specific value according to the needs of the actual application scenario. For example, the preset temperature value amplitude can be configured to 1°C. When the control module 170 determines that the first electrical signal and the second electrical signal are not equal, the output power of the first temperature control module is controlled to achieve a decrease in the ambient temperature in the first space 200. Every time the temperature drops by 1°C, it is re-determined whether the first electrical signal and the second electrical signal meet the preset conditions.
具体的,本实施例通过一次或多次温度调节过程,调节第一空间200内的环境温度,使得第一空间200内的直流电源模块110的壳体温度与参照物的目标温度相等。Specifically, this embodiment adjusts the ambient temperature in the first space 200 through one or more temperature adjustment processes, so that the shell temperature of the DC power module 110 in the first space 200 is equal to the target temperature of the reference object.
综上所述,本实施例公开了一种温度控制系统,能够综合考虑第一温控组件控制环境温度对直流电源模块的壳体温度的影响以及直流电源模块工作状态对壳体温度的影响,并通过配置第二空间和第二反馈组件的方式,形成控制直流电源模块的壳体温度控制过程中的温度控制参照物,从而实现对直流电源模块的壳体温度的实时监控和精准控制,通过控制模块的自动采集、自动判断以及自动调整,实现直流电源模块壳体温度的精确控制,有效提升了温度控制的效率的准确度。In summary, the present embodiment discloses a temperature control system, which can comprehensively consider the influence of the ambient temperature controlled by the first temperature control component on the shell temperature of the DC power supply module and the influence of the working state of the DC power supply module on the shell temperature, and form a temperature control reference in the process of controlling the shell temperature of the DC power supply module by configuring the second space and the second feedback component, thereby realizing real-time monitoring and precise control of the shell temperature of the DC power supply module, and realizing precise control of the shell temperature of the DC power supply module through automatic collection, automatic judgment and automatic adjustment of the control module, thereby effectively improving the efficiency and accuracy of temperature control.
在其中一个实施例中,如图2所示,第一反馈组件140包括第一热敏电阻,直流电源模块110的外壳贴附设置于第一热敏电阻的表面。In one embodiment, as shown in FIG. 2 , the first feedback component 140 includes a first thermistor, and the housing of the DC power module 110 is attached to the surface of the first thermistor.
具体的,第一热敏电阻可以为电阻R1。在实际应用场景中,电阻R1与直流电源模块110的外壳紧贴,电阻R1表面的温度可以等同于直流电源模块110的外壳的温度。Specifically, the first thermistor may be a resistor R1. In an actual application scenario, the resistor R1 is in close contact with the housing of the DC power module 110, and the surface temperature of the resistor R1 may be equal to the housing temperature of the DC power module 110.
在具体实施例中,第一热敏电阻和直流电源模块110一起被设置于第一空间200内,第一热敏电阻的外表面温度和直流电源模块110的外壳温度均随第一空间200内的环境温度的变化而变化。直流电源模块110的外壳温度还随直流电源模块110工作状态时的内部发热状态的变化而变化。In a specific embodiment, the first thermistor and the DC power module 110 are disposed together in the first space 200, and the outer surface temperature of the first thermistor and the shell temperature of the DC power module 110 both change with the change of the ambient temperature in the first space 200. The shell temperature of the DC power module 110 also changes with the change of the internal heating state of the DC power module 110 when the DC power module 110 is in the working state.
需知的,直流电源模块110可以贴附设置在电阻R1的外表面,本实施例对直流电源模块110相对第一热敏电阻的设置方向不作限定,可以根据实际应用场景进行确定。It should be noted that the DC power module 110 can be attached to the outer surface of the resistor R1. This embodiment does not limit the setting direction of the DC power module 110 relative to the first thermistor, which can be determined according to the actual application scenario.
在其中一个实施例中,第二反馈组件150包括第二热敏电阻,其中,第二热敏电阻与第一热敏电阻的温度系数相同。In one embodiment, the second feedback component 150 includes a second thermistor, wherein the second thermistor has the same temperature coefficient as the first thermistor.
具体的,如图2所示,第二热敏电阻可以为电阻R2。在实际应用场景中,第二热敏电阻被单独设置在第二空间300内,第二热敏电阻外表面的温度随着第二空间300内的温度变化而变化。Specifically, as shown in Fig. 2, the second thermistor may be a resistor R2. In an actual application scenario, the second thermistor is separately disposed in the second space 300, and the temperature of the outer surface of the second thermistor changes with the temperature in the second space 300.
需知的,第二热敏电阻和第一热敏电阻需为完全相同规格的热敏电阻,具有同样的温度系数。本实施例通过采用完全相同规格的第一热敏电阻和第二热敏电阻,能够更加简单的实现直流电源模块110壳体温度控制的参照物,从而通过更低的成本以及更少的控制资源实现直流电源模块110壳体温度的精准控制。It should be noted that the second thermistor and the first thermistor must be thermistors of exactly the same specifications and have the same temperature coefficient. By using the first thermistor and the second thermistor of exactly the same specifications, this embodiment can more simply realize the reference object for the temperature control of the housing of the DC power module 110, thereby realizing the precise control of the housing temperature of the DC power module 110 with lower cost and fewer control resources.
在一种可行的实施例中,第二热敏电阻和第一热敏电阻也可以为不同规格的热敏电阻,相应的第二温控组件130和第一温控组件120的控制参数也要适应性调整,本实施例对此不作限定。In a feasible embodiment, the second thermistor and the first thermistor may also be thermistors of different specifications, and the control parameters of the corresponding second temperature control component 130 and the first temperature control component 120 should also be adaptively adjusted, which is not limited in this embodiment.
在其中一个实施例中,第一热敏电阻和第二热敏电阻均为正温度系数的热敏电阻。In one embodiment, the first thermistor and the second thermistor are both positive temperature coefficient thermistors.
在具体实施例中,第一热敏电阻和第二热敏电阻均被配置为具有正温度系数的热敏电阻,从而能够更加直观的通过负反馈电路判断第一反馈组件140和第二反馈组件150的阻值变化,比较运算放大器160输出端和输入端处电压信号的电压值变化。控制模块170能够更精准的实现第一温度组件加热温度的控制。In a specific embodiment, the first thermistor and the second thermistor are both configured as thermistors with positive temperature coefficients, so that the resistance change of the first feedback component 140 and the second feedback component 150 can be more intuitively determined through the negative feedback circuit, and the voltage value change of the voltage signal at the output and input of the operational amplifier 160 can be compared. The control module 170 can more accurately control the heating temperature of the first temperature component.
在其中一个实施例中,控制模块170具体用于通过第一温控组件120将第一空间200的环境温度调节至第一温度;通过第二温控组件130将第二空间300的环境温度调节至第二温度。In one embodiment, the control module 170 is specifically configured to adjust the ambient temperature of the first space 200 to a first temperature through the first temperature control component 120 ; and adjust the ambient temperature of the second space 300 to a second temperature through the second temperature control component 130 .
在具体实施例中,第一温度和第二温度的温度值相等。本实施例通过第一温控组件120和第二温控组件130控制第一空间200和第二空间300的环境温度达到相同温度,可以实现更加简单的控制逻辑。控制模块170可以仅通过第一温控组件120降低第一空间200内的环境温度,就可以使直流电源模块110的壳体温度达到参照物的目标温度。In a specific embodiment, the temperature values of the first temperature and the second temperature are equal. In this embodiment, the first temperature control component 120 and the second temperature control component 130 control the ambient temperature of the first space 200 and the second space 300 to reach the same temperature, which can achieve a simpler control logic. The control module 170 can make the housing temperature of the DC power supply module 110 reach the target temperature of the reference object by only lowering the ambient temperature in the first space 200 through the first temperature control component 120.
需知的,第一温度和第二温度也可以被控制为不等,此时第一温度应略小于第二温度,以便于实现更快速的控制第一空间200内的直流电源模块110的壳体温度至目标温度。其中,第一温度小于第二温度的具体范围可以根据实际应用场景中的经验进行自适应配置,本实施例对此不作限定。It should be noted that the first temperature and the second temperature can also be controlled to be unequal, in which case the first temperature should be slightly lower than the second temperature, so as to more quickly control the shell temperature of the DC power module 110 in the first space 200 to the target temperature. The specific range in which the first temperature is lower than the second temperature can be adaptively configured based on experience in actual application scenarios, and this embodiment does not limit this.
在其中一个实施例中,控制模块170用于判断第一电信号的绝对值和第二电信号的绝对值是否相等;In one embodiment, the control module 170 is used to determine whether the absolute value of the first electrical signal and the absolute value of the second electrical signal are equal;
若第一电信号的绝对值和第二电信号的绝对值相等,确定直流电源模块110的外壳温度为目标控制温度;If the absolute value of the first electrical signal is equal to the absolute value of the second electrical signal, it is determined that the housing temperature of the DC power module 110 is the target control temperature;
若第一电信号的绝对值和第二电信号的绝对值不同,按照预设温度数值幅度调节第一空间200的环境温度,并在预设时间后重新判断第一电信号的绝对值和第二电信号的绝对值是否相等。If the absolute value of the first electrical signal is different from the absolute value of the second electrical signal, the ambient temperature of the first space 200 is adjusted according to the preset temperature value range, and after a preset time, it is re-determined whether the absolute value of the first electrical signal is equal to the absolute value of the second electrical signal.
具体的,控制模块170在进行具体判断过程中,可以通过判断|Vout|/|Vin|是否为1来确定直流电源模块110的外壳温度是否为目标控制温度。在具体实施例中,根据预设温度数值幅度调节第一空间200的环境温度后,需要等待预设时间以使第一反馈组件140与直流电源模块110的外壳进行热量交换,以便于通过采集第二电信号,即运算放大器160的输出信号,来确定第一反馈组件140的外表面温度,即直流电源模块110的外壳温度。Specifically, during the specific judgment process, the control module 170 can determine whether the shell temperature of the DC power module 110 is the target control temperature by judging whether |Vout|/|Vin| is 1. In a specific embodiment, after adjusting the ambient temperature of the first space 200 according to the preset temperature value amplitude, it is necessary to wait for a preset time to allow the first feedback component 140 to exchange heat with the shell of the DC power module 110, so as to determine the outer surface temperature of the first feedback component 140, that is, the shell temperature of the DC power module 110, by collecting the second electrical signal, that is, the output signal of the operational amplifier 160.
需知的,若重新判断第一电信号的绝对值和第二电信号的绝对值仍然不相等,则需要继续调节第一空间200的环境温度,直至第一电信号的绝对值和第二电信号的绝对值相等。It should be noted that if the absolute value of the first electrical signal and the absolute value of the second electrical signal are still not equal after re-determination, the ambient temperature of the first space 200 needs to be further adjusted until the absolute value of the first electrical signal and the absolute value of the second electrical signal are equal.
在具体实施例中,第一电信号和第二电信号的大小关系可以确定第一反馈组件140的外表面温度和第二反馈组件150的外表面温度的大小关系,即可以确定直流电源模块110的壳体温度和参照物的目标温度的大小关系。In a specific embodiment, the magnitude relationship between the first electrical signal and the second electrical signal can determine the magnitude relationship between the outer surface temperature of the first feedback component 140 and the outer surface temperature of the second feedback component 150, that is, the magnitude relationship between the shell temperature of the DC power supply module 110 and the target temperature of the reference object can be determined.
当第一电信号大于第二电信号时,即|Vout|/|Vin|小于1时,说明此时第一反馈组件140的外表面温度小于第二反馈组件150的外表面温度,需通过升高第一空间200内的环境温度,使第一反馈组件140的外表面温度等于第二反馈组件150的外表面温度。When the first electrical signal is greater than the second electrical signal, that is, |Vout|/|Vin| is less than 1, it means that the outer surface temperature of the first feedback component 140 is lower than the outer surface temperature of the second feedback component 150. It is necessary to increase the ambient temperature in the first space 200 so that the outer surface temperature of the first feedback component 140 is equal to the outer surface temperature of the second feedback component 150.
当第一电信号小于第二电信号时,即|Vout|/|Vin|大于1时,说明此时第一反馈组件140的外表面温度大于第二反馈组件150的外表面温度,需通过降低第一空间200内的环境温度,使第一反馈组件140的外表面温度等于第二反馈组件150的外表面温度。When the first electrical signal is smaller than the second electrical signal, that is, |Vout|/|Vin| is greater than 1, it means that the outer surface temperature of the first feedback component 140 is greater than the outer surface temperature of the second feedback component 150. It is necessary to lower the ambient temperature in the first space 200 so that the outer surface temperature of the first feedback component 140 is equal to the outer surface temperature of the second feedback component 150.
具体的,本实施例对第一空间200的调节过程可以基于第一电信号与第二电信号的大小关系进行确定。Specifically, in this embodiment, the adjustment process of the first space 200 can be determined based on the magnitude relationship between the first electrical signal and the second electrical signal.
综上所述,本实施例提供了一种温度控制系统,通过对直流电源模块的壳温进行实时控制,在描绘温度曲线时,基于负反馈电路实现的预设条件判断过程可以有效抵消直流电源模块本身发热带来的壳温上升影响,本实施例的温度控制系统实现的温度控制显著降低了温度曲线绘制时的测量误差,有利于判断直流电源模块在特定温度点下的真实性能。与此同时,本申请中的温度控制系统的组成结构简单,使用范围广,能够用于自动控制各种负载条件下、各种温度范围下、各种类型的直流电源模块的壳温。In summary, this embodiment provides a temperature control system, which controls the shell temperature of the DC power module in real time. When drawing the temperature curve, the preset condition judgment process based on the negative feedback circuit can effectively offset the shell temperature rise caused by the heat of the DC power module itself. The temperature control implemented by the temperature control system of this embodiment significantly reduces the measurement error when drawing the temperature curve, which is conducive to judging the real performance of the DC power module at a specific temperature point. At the same time, the temperature control system in this application has a simple structure and a wide range of uses. It can be used to automatically control the shell temperature of various types of DC power modules under various load conditions and temperature ranges.
在一个实施例中,如图3所示,提供了一种温度控制方法,以该方法应用于图1中的温度控制系统的控制模块为例进行说明,包括以下步骤:In one embodiment, as shown in FIG3 , a temperature control method is provided, which is described by taking the method applied to the control module of the temperature control system in FIG1 as an example, including the following steps:
S301,控制第一空间的环境温度和第二空间的环境温度调节至目标温度;S301, controlling the ambient temperature of the first space and the ambient temperature of the second space to be adjusted to target temperatures;
S302,在直流电源模块启动预设时间后,获取第一电信号和第二电信号,其中,第一电信号为控制模块的输出信号,第二电信号为运算放大器的输出信号;S302, acquiring a first electrical signal and a second electrical signal after the DC power supply module is started for a preset time, wherein the first electrical signal is an output signal of the control module, and the second electrical signal is an output signal of the operational amplifier;
S303,判断第一电信号和第二电信号是否满足预设条件;S303, determining whether the first electrical signal and the second electrical signal meet a preset condition;
S304,若第一电信号和第二电信号满足预设条件,确定直流电源模块的外壳温度为目标控制温度;S304, if the first electrical signal and the second electrical signal meet the preset conditions, determining that the housing temperature of the DC power supply module is the target control temperature;
S305,若第一电信号和第二电信号不满足预设条件,按照预设温度数值幅度调节第二空间的环境温度,直至第一电信号和第二电信号满足预设条件。S305: If the first electrical signal and the second electrical signal do not meet the preset conditions, adjust the ambient temperature of the second space according to the preset temperature value range until the first electrical signal and the second electrical signal meet the preset conditions.
具体的,本实施例提出的温度控制方法的具体实施方式均可以参考前述系统实施例中的具体实施方式,本实施例不一一赘述。Specifically, the specific implementation methods of the temperature control method proposed in this embodiment can all refer to the specific implementation methods in the aforementioned system embodiments, and this embodiment will not elaborate on them one by one.
在其中一个实施例中,控制第一空间的环境温度和第二空间的环境温度调节至目标温度,包括:In one embodiment, controlling the ambient temperature of the first space and the ambient temperature of the second space to be adjusted to a target temperature includes:
通过第一温控组件将第一空间的环境温度调节至第一温度;Adjusting the ambient temperature of the first space to a first temperature through a first temperature control component;
通过第二温控组件将第二空间的环境温度调节至第二温度。The ambient temperature of the second space is adjusted to a second temperature by the second temperature control component.
在其中一个实施例中,如图4所示,温度控制方法还包括:In one embodiment, as shown in FIG4 , the temperature control method further includes:
S401,判断第一电信号的绝对值和第二电信号的绝对值是否相等;S401, determining whether the absolute value of the first electrical signal is equal to the absolute value of the second electrical signal;
S402,若第一电信号的绝对值和第二电信号的绝对值相等,确定直流电源模块的外壳温度为目标控制温度;S402: if the absolute value of the first electrical signal is equal to the absolute value of the second electrical signal, determining that the housing temperature of the DC power supply module is the target control temperature;
S403,若第一电信号的绝对值和第二电信号的绝对值不同,按照预设温度数值幅度调节第二空间的环境温度,并在预设时间后重新判断第一电信号的绝对值和第二电信号的绝对值是否相等。S403, if the absolute value of the first electrical signal is different from the absolute value of the second electrical signal, adjust the ambient temperature of the second space according to the preset temperature value amplitude, and re-determine whether the absolute value of the first electrical signal is equal to the absolute value of the second electrical signal after a preset time.
综上所述,本实施例通过提供一种温度控制方法,通过对直流电源模块的壳温进行实时控制,在描绘温度曲线时,基于负反馈电路实现的预设条件判断过程可以有效抵消直流电源模块本身发热带来的壳温上升影响,本实施例的温度控制系统实现的温度控制显著降低了温度曲线绘制时的测量误差,有利于判断直流电源模块在特定温度点下的真实性能。与此同时,本申请中的温度控制系统的组成结构简单,使用范围广,能够用于自动控制各种负载条件下、各种温度范围下、各种类型的直流电源模块的壳温。In summary, this embodiment provides a temperature control method, and controls the shell temperature of the DC power module in real time. When drawing the temperature curve, the preset condition judgment process based on the negative feedback circuit can effectively offset the shell temperature rise caused by the heat of the DC power module itself. The temperature control implemented by the temperature control system of this embodiment significantly reduces the measurement error when drawing the temperature curve, which is conducive to judging the real performance of the DC power module at a specific temperature point. At the same time, the temperature control system in this application has a simple structure and a wide range of uses. It can be used to automatically control the shell temperature of various types of DC power modules under various load conditions and temperature ranges.
应该理解的是,虽然如上的各实施例所涉及的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,如上的各实施例所涉及的流程图中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。It should be understood that, although the steps in the flowcharts involved in the above embodiments are displayed in sequence according to the indication of the arrows, these steps are not necessarily executed in sequence according to the order indicated by the arrows. Unless there is a clear explanation in this article, the execution of these steps is not strictly limited in order, and these steps can be executed in other orders. Moreover, at least a part of the steps in the flowcharts involved in the above embodiments may include multiple steps or multiple stages, and these steps or stages are not necessarily executed at the same time, but can be executed at different times, and the execution order of these steps or stages is not necessarily to be carried out in sequence, but can be executed in turn or alternately with other steps or at least a part of the steps or stages in other steps.
基于同样的发明构思,本申请实施例还提供了一种用于实现上述所涉及的温度控制方法的温度控制装置。该装置所提供的解决问题的实现方案与上述方法中所记载的实现方案相似,故下面所提供的一个或多个温度控制装置实施例中的具体限定可以参见上文中对于温度控制方法的限定,在此不再赘述。Based on the same inventive concept, the embodiment of the present application also provides a temperature control device for implementing the temperature control method involved above. The implementation scheme for solving the problem provided by the device is similar to the implementation scheme recorded in the above method, so the specific limitations in one or more temperature control device embodiments provided below can refer to the limitations on the temperature control method above, and will not be repeated here.
在一个实施例中,如图5所示,提供了一种温度控制装置500,包括:控制模块510、获取模块520、判断模块530、第一执行模块540和第二执行模块550,其中:In one embodiment, as shown in FIG. 5 , a temperature control device 500 is provided, comprising: a control module 510, an acquisition module 520, a determination module 530, a first execution module 540 and a second execution module 550, wherein:
控制模块510,用于控制第一空间的环境温度和第二空间的环境温度调节至目标温度;The control module 510 is used to control the ambient temperature of the first space and the ambient temperature of the second space to be adjusted to a target temperature;
获取模块520,用于在直流电源模块启动预设时间后,获取第一电信号和第二电信号,其中,第一电信号为控制模块的输出信号,第二电信号为运算放大器的输出信号;An acquisition module 520, configured to acquire a first electrical signal and a second electrical signal after the DC power supply module is started for a preset time, wherein the first electrical signal is an output signal of the control module, and the second electrical signal is an output signal of the operational amplifier;
判断模块530,用于判断第一电信号和第二电信号是否满足预设条件;A determination module 530, configured to determine whether the first electrical signal and the second electrical signal meet a preset condition;
第一执行模块540,用于若第一电信号和第二电信号满足预设条件,确定直流电源模块的外壳温度为目标控制温度;A first execution module 540, configured to determine that the housing temperature of the DC power supply module is a target control temperature if the first electrical signal and the second electrical signal meet a preset condition;
第二执行模块550,用于若第一电信号和第二电信号不满足预设条件,按照预设温度数值幅度调节第二空间的环境温度,直至第一电信号和第二电信号满足预设条件。The second execution module 550 is used to adjust the ambient temperature of the second space according to a preset temperature value range if the first electrical signal and the second electrical signal do not meet the preset conditions, until the first electrical signal and the second electrical signal meet the preset conditions.
上述温度控制装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。Each module in the above-mentioned temperature control device can be implemented in whole or in part by software, hardware and a combination thereof. Each of the above-mentioned modules can be embedded in or independent of a processor in a computer device in the form of hardware, or can be stored in a memory in a computer device in the form of software, so that the processor can call and execute the operations corresponding to each of the above modules.
在一个实施例中,提供了一种电子设备,包括前述系统实施例中的温度控制系统。In one embodiment, an electronic device is provided, comprising the temperature control system in the aforementioned system embodiment.
具体的,电子设备可以由温度控制系统中的直流电源模块提供驱动信号,以使电子设备可以正常运行。需知的,本实施例不对电子设备的具体类型进行限定,可以为搭载本实施例提供的温度控制系统的任意设备,电子设备的具体类型可根据实际应用场景的需要进行确定。Specifically, the electronic device can be provided with a driving signal by the DC power module in the temperature control system so that the electronic device can operate normally. It should be noted that this embodiment does not limit the specific type of the electronic device, and it can be any device equipped with the temperature control system provided by this embodiment. The specific type of the electronic device can be determined according to the needs of the actual application scenario.
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-OnlyMemory,ROM)、磁带、软盘、闪存、光存储器、高密度嵌入式非易失性存储器、阻变存储器(ReRAM)、磁变存储器(Magnetoresistive Random Access Memory,MRAM)、铁电存储器(Ferroelectric Random Access Memory,FRAM)、相变存储器(Phase Change Memory,PCM)、石墨烯存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器等。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory,SRAM)或动态随机存取存储器(Dynamic RandomAccess Memory,DRAM)等。本申请所提供的各实施例中所涉及的数据库可包括关系型数据库和非关系型数据库中至少一种。非关系型数据库可包括基于区块链的分布式数据库等,不限于此。本申请所提供的各实施例中所涉及的处理器可为通用处理器、中央处理器、图形处理器、数字信号处理器、可编程逻辑器、基于量子计算的数据处理逻辑器等,不限于此。Those of ordinary skill in the art can understand that all or part of the processes in the above-mentioned embodiments can be completed by instructing the relevant hardware through a computer program, and the computer program can be stored in a non-volatile computer-readable storage medium. When the computer program is executed, it can include the processes of the embodiments of the above-mentioned methods. Among them, any reference to the memory, database or other medium used in the embodiments provided in the present application can include at least one of non-volatile and volatile memory. Non-volatile memory can include read-only memory (ROM), magnetic tape, floppy disk, flash memory, optical memory, high-density embedded non-volatile memory, resistive random access memory (ReRAM), magnetoresistive random access memory (MRAM), ferroelectric random access memory (FRAM), phase change memory (PCM), graphene memory, etc. Volatile memory can include random access memory (RAM) or external cache memory, etc. As an illustration and not limitation, RAM can be in various forms, such as static random access memory (SRAM) or dynamic random access memory (DRAM). The database involved in each embodiment provided in this application may include at least one of a relational database and a non-relational database. Non-relational databases may include distributed databases based on blockchains, etc., but are not limited to this. The processor involved in each embodiment provided in this application may be a general-purpose processor, a central processing unit, a graphics processor, a digital signal processor, a programmable logic device, a data processing logic device based on quantum computing, etc., but are not limited to this.
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above embodiments may be arbitrarily combined. To make the description concise, not all possible combinations of the technical features in the above embodiments are described. However, as long as there is no contradiction in the combination of these technical features, they should be considered to be within the scope of this specification.
以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。The above embodiments only express several implementation methods of the present application, and the descriptions thereof are relatively specific and detailed, but they cannot be understood as limiting the scope of the present application. It should be pointed out that, for a person of ordinary skill in the art, several modifications and improvements can be made without departing from the concept of the present application, and these all belong to the protection scope of the present application. Therefore, the protection scope of the present application shall be subject to the attached claims.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311858831.8A CN117555369B (en) | 2023-12-30 | 2023-12-30 | Temperature control system and method and electronic equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311858831.8A CN117555369B (en) | 2023-12-30 | 2023-12-30 | Temperature control system and method and electronic equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117555369A CN117555369A (en) | 2024-02-13 |
CN117555369B true CN117555369B (en) | 2024-09-13 |
Family
ID=89813009
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311858831.8A Active CN117555369B (en) | 2023-12-30 | 2023-12-30 | Temperature control system and method and electronic equipment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117555369B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202502423U (en) * | 2012-01-20 | 2012-10-24 | 张家港市华为电子有限公司 | Temperature control circuit used in DC-DC direct current converter |
CN115200191A (en) * | 2022-07-20 | 2022-10-18 | 广东万颗子智控科技有限公司 | Air conditioner control method, device, storage medium, and electronic device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2042214U (en) * | 1988-08-06 | 1989-08-02 | 刘永康 | Temperature controller |
KR100304795B1 (en) * | 1998-10-01 | 2001-09-24 | 손성택 | Semiconductor cooler temperature controller |
CN2724069Y (en) * | 2004-08-23 | 2005-09-07 | 北京集天众合科技开发有限公司 | Electronic temperature controller |
CN113037255B (en) * | 2021-03-12 | 2025-03-25 | 维沃移动通信有限公司 | Laser sensor control circuit, method and electronic device |
-
2023
- 2023-12-30 CN CN202311858831.8A patent/CN117555369B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202502423U (en) * | 2012-01-20 | 2012-10-24 | 张家港市华为电子有限公司 | Temperature control circuit used in DC-DC direct current converter |
CN115200191A (en) * | 2022-07-20 | 2022-10-18 | 广东万颗子智控科技有限公司 | Air conditioner control method, device, storage medium, and electronic device |
Also Published As
Publication number | Publication date |
---|---|
CN117555369A (en) | 2024-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7266587B2 (en) | Method and system for controlling rechargeable batteries | |
WO2020259096A1 (en) | Method, device and system for estimating state of power of battery, and storage medium | |
CN106154171A (en) | Set up the method for damping function in battery DC | |
JP2019114437A (en) | Semiconductor device | |
CN113748438A (en) | Electric quantity prediction method and device | |
CN112287510B (en) | System and method for modeling thermal circuits | |
WO2024169905A1 (en) | Ambient temperature measurement method and apparatus for electronic device | |
WO2024109404A1 (en) | Method and apparatus for adjusting parameters of temperature control mechanism, and computer device | |
CN114491909B (en) | Modeling, simulation methods, devices, equipment, and storage media of battery energy storage systems | |
JP2024012116A (en) | Heating control method, device, circuit, medium, and program product for atomization device | |
CN108304023B (en) | High-load stability compensation circuit of switching power supply | |
CN117555369B (en) | Temperature control system and method and electronic equipment | |
CN116247337A (en) | Intelligent thermal management method for power battery and related equipment | |
CN110190349B (en) | Multi-stage temperature control discharging method, device and system for battery | |
CN119447612A (en) | Battery temperature control method, device, medium and electronic device | |
CN119044793A (en) | Battery temperature prediction method, device, electronic equipment and program product | |
CN114441848A (en) | Power consumption determination method and device, electronic equipment and storage medium | |
CN112224088A (en) | Charging control method, system and equipment | |
CN111132389B (en) | Power regulation method, device and storage medium | |
CN115332649B (en) | Battery temperature control management method, device, equipment and readable storage medium | |
CN115503553B (en) | Power battery charging control method and device | |
CN115064808A (en) | Current control method, device, equipment and storage medium | |
CN114792857A (en) | Thermal management method, device, electronic device and storage medium for power battery | |
CN112467243A (en) | Battery pack cooling control method and device | |
CN118603361B (en) | Cell temperature prediction method, device, computer equipment, storage medium and product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |