CN117540489A - Airfoil pneumatic data calculation method and system based on multitask learning - Google Patents
Airfoil pneumatic data calculation method and system based on multitask learning Download PDFInfo
- Publication number
- CN117540489A CN117540489A CN202311506032.4A CN202311506032A CN117540489A CN 117540489 A CN117540489 A CN 117540489A CN 202311506032 A CN202311506032 A CN 202311506032A CN 117540489 A CN117540489 A CN 117540489A
- Authority
- CN
- China
- Prior art keywords
- airfoil
- network
- pressure coefficient
- vector
- input
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004364 calculation method Methods 0.000 title claims abstract description 21
- 238000000034 method Methods 0.000 claims abstract description 25
- 238000012549 training Methods 0.000 claims abstract description 8
- 239000013598 vector Substances 0.000 claims description 39
- 230000006870 function Effects 0.000 claims description 31
- 238000013527 convolutional neural network Methods 0.000 claims description 23
- 230000004927 fusion Effects 0.000 claims description 16
- 230000007246 mechanism Effects 0.000 claims description 16
- 238000013528 artificial neural network Methods 0.000 claims description 12
- 230000007613 environmental effect Effects 0.000 claims description 10
- 239000011159 matrix material Substances 0.000 claims description 8
- 238000000605 extraction Methods 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 7
- 238000005452 bending Methods 0.000 claims description 3
- 238000007781 pre-processing Methods 0.000 claims description 3
- 238000013135 deep learning Methods 0.000 abstract description 11
- 239000012530 fluid Substances 0.000 abstract description 4
- 238000013136 deep learning model Methods 0.000 abstract description 3
- 238000001994 activation Methods 0.000 description 7
- 230000004913 activation Effects 0.000 description 6
- 238000013461 design Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 230000007547 defect Effects 0.000 description 4
- 238000005457 optimization Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 238000013256 Gubra-Amylin NASH model Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000003709 image segmentation Methods 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000011176 pooling Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/15—Vehicle, aircraft or watercraft design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/27—Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/28—Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2113/00—Details relating to the application field
- G06F2113/08—Fluids
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/14—Force analysis or force optimisation, e.g. static or dynamic forces
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Geometry (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Artificial Intelligence (AREA)
- Software Systems (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Mathematical Physics (AREA)
- Computing Systems (AREA)
- Pure & Applied Mathematics (AREA)
- Automation & Control Theory (AREA)
- Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Algebra (AREA)
- Aviation & Aerospace Engineering (AREA)
- Fluid Mechanics (AREA)
- Computational Mathematics (AREA)
- Medical Informatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311506032.4A CN117540489B (en) | 2023-11-13 | 2023-11-13 | Airfoil pneumatic data calculation method and system based on multitask learning |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311506032.4A CN117540489B (en) | 2023-11-13 | 2023-11-13 | Airfoil pneumatic data calculation method and system based on multitask learning |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117540489A true CN117540489A (en) | 2024-02-09 |
CN117540489B CN117540489B (en) | 2024-06-21 |
Family
ID=89795154
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311506032.4A Active CN117540489B (en) | 2023-11-13 | 2023-11-13 | Airfoil pneumatic data calculation method and system based on multitask learning |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117540489B (en) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021022752A1 (en) * | 2019-08-07 | 2021-02-11 | 深圳先进技术研究院 | Multimodal three-dimensional medical image fusion method and system, and electronic device |
CN112668696A (en) * | 2020-12-25 | 2021-04-16 | 杭州中科先进技术研究院有限公司 | Unmanned aerial vehicle power grid inspection method and system based on embedded deep learning |
CN113160375A (en) * | 2021-05-26 | 2021-07-23 | 郑健青 | Three-dimensional reconstruction and camera pose estimation method based on multi-task learning algorithm |
CN114118405A (en) * | 2021-10-26 | 2022-03-01 | 中国人民解放军军事科学院国防科技创新研究院 | Loss function self-adaptive balancing method of neural network embedded with physical knowledge |
WO2022120737A1 (en) * | 2020-12-10 | 2022-06-16 | 深圳先进技术研究院 | Multi-task learning type generative adversarial network generation method and system for low-dose pet reconstruction |
CN115438584A (en) * | 2022-09-16 | 2022-12-06 | 西北工业大学 | Wing profile aerodynamic force prediction method based on deep learning |
WO2023036164A1 (en) * | 2021-09-13 | 2023-03-16 | 华为技术有限公司 | Model training method based on physical informed neural networks and related apparatus |
CN115859781A (en) * | 2022-11-15 | 2023-03-28 | 重庆大学 | Flow field prediction method based on attention and convolutional neural network codec |
CN116030078A (en) * | 2023-03-29 | 2023-04-28 | 之江实验室 | Attention-combined lung lobe segmentation method and system under multitask learning framework |
CN116227364A (en) * | 2023-04-25 | 2023-06-06 | 重庆大学 | Airfoil flow field prediction method based on improved generation of countermeasure network and model compression |
CN116522769A (en) * | 2023-04-20 | 2023-08-01 | 重庆大学 | Pressure coefficient prediction method based on VAE-GAN and self-attention mechanism |
CN116628854A (en) * | 2023-05-26 | 2023-08-22 | 上海大学 | Wing section aerodynamic characteristic prediction method, system, electronic equipment and storage medium |
-
2023
- 2023-11-13 CN CN202311506032.4A patent/CN117540489B/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021022752A1 (en) * | 2019-08-07 | 2021-02-11 | 深圳先进技术研究院 | Multimodal three-dimensional medical image fusion method and system, and electronic device |
WO2022120737A1 (en) * | 2020-12-10 | 2022-06-16 | 深圳先进技术研究院 | Multi-task learning type generative adversarial network generation method and system for low-dose pet reconstruction |
CN112668696A (en) * | 2020-12-25 | 2021-04-16 | 杭州中科先进技术研究院有限公司 | Unmanned aerial vehicle power grid inspection method and system based on embedded deep learning |
CN113160375A (en) * | 2021-05-26 | 2021-07-23 | 郑健青 | Three-dimensional reconstruction and camera pose estimation method based on multi-task learning algorithm |
WO2023036164A1 (en) * | 2021-09-13 | 2023-03-16 | 华为技术有限公司 | Model training method based on physical informed neural networks and related apparatus |
CN114118405A (en) * | 2021-10-26 | 2022-03-01 | 中国人民解放军军事科学院国防科技创新研究院 | Loss function self-adaptive balancing method of neural network embedded with physical knowledge |
CN115438584A (en) * | 2022-09-16 | 2022-12-06 | 西北工业大学 | Wing profile aerodynamic force prediction method based on deep learning |
CN115859781A (en) * | 2022-11-15 | 2023-03-28 | 重庆大学 | Flow field prediction method based on attention and convolutional neural network codec |
CN116030078A (en) * | 2023-03-29 | 2023-04-28 | 之江实验室 | Attention-combined lung lobe segmentation method and system under multitask learning framework |
CN116522769A (en) * | 2023-04-20 | 2023-08-01 | 重庆大学 | Pressure coefficient prediction method based on VAE-GAN and self-attention mechanism |
CN116227364A (en) * | 2023-04-25 | 2023-06-06 | 重庆大学 | Airfoil flow field prediction method based on improved generation of countermeasure network and model compression |
CN116628854A (en) * | 2023-05-26 | 2023-08-22 | 上海大学 | Wing section aerodynamic characteristic prediction method, system, electronic equipment and storage medium |
Non-Patent Citations (6)
Title |
---|
KUIJUN ZUO 等: "Fast aerodynamics prediction of laminar airfoils based on deep attention network", 《PHYSICS OF FLUIDS》, 31 March 2023 (2023-03-31), pages 1 - 21 * |
ZHIPENG WANG 等: "A general deep transfer learning framework for predicting the flow field of airfoils with small data", 《ELSEVIER》, 24 November 2022 (2022-11-24), pages 1 - 24 * |
岑仕杰;何元烈;陈小聪;: "结合注意力与无监督深度学习的单目深度估计", 广东工业大学学报, no. 04, 14 July 2020 (2020-07-14), pages 35 - 41 * |
张骏 等: "一种气动大差异性数据多任务学习方法", 《空气动力学学报》, 31 December 2022 (2022-12-31), pages 64 - 72 * |
汪华登: "基于深度学习的医学图像分割方法研究", 《中国博士学位论文全文数据库 信息科技辑》, 15 February 2023 (2023-02-15), pages 060 - 5 * |
陈海;钱炜祺;何磊;: "基于深度学习的翼型气动系数预测", 空气动力学学报, no. 02, 15 April 2018 (2018-04-15), pages 294 - 299 * |
Also Published As
Publication number | Publication date |
---|---|
CN117540489B (en) | 2024-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mahajan et al. | Categorical image classification based on representational deep network (RESNET) | |
Yang et al. | Extracting and composing robust features with broad learning system | |
CN111127146B (en) | Information recommendation method and system based on convolutional neural network and noise reduction self-encoder | |
Wu et al. | Optimized deep learning framework for water distribution data-driven modeling | |
CN113157919B (en) | Sentence text aspect-level emotion classification method and sentence text aspect-level emotion classification system | |
CN108805157A (en) | Classifying Method in Remote Sensing Image based on the random supervision discrete type Hash in part | |
CN109376763A (en) | Sample classification method, system and medium based on multisample reasoning neural network | |
CN115661550A (en) | Graph data class imbalance classification method and device based on generation countermeasure network | |
Zeng et al. | Dual swin-transformer based mutual interactive network for RGB-D salient object detection | |
Xue et al. | Self-distribution binary neural networks | |
Li et al. | Diversified text-to-image generation via deep mutual information estimation | |
CN118038032A (en) | Point cloud semantic segmentation model based on super point embedding and clustering and training method thereof | |
CN117540489B (en) | Airfoil pneumatic data calculation method and system based on multitask learning | |
Guo et al. | Efficient convolutional networks learning through irregular convolutional kernels | |
CN112487231B (en) | Automatic image labeling method based on double-image regularization constraint and dictionary learning | |
Qian et al. | A Novel Sequence Discriminative Feature Extraction Network and Its Application in Offline Industrial Fault Pattern Clustering | |
CN113342982B (en) | Enterprise industry classification method integrating Roberta and external knowledge base | |
CN113065336B (en) | Text automatic generation method and device based on deep learning and content planning | |
Nandal et al. | A Synergistic Framework Leveraging Autoencoders and Generative Adversarial Networks for the Synthesis of Computational Fluid Dynamics Results in Aerofoil Aerodynamics | |
Li et al. | Gat-assisted deep hashing for multi-label image retrieval | |
Bleker et al. | Logic-Informed Graph Neural Networks for Structural Form-Finding | |
Bu et al. | Deep Self-supervised Subspace Clustering with Triple Loss | |
Li et al. | Reducing carbon emissions in the architectural design process via transformer with cross-attention mechanism | |
Liu | Hardware-friendly model compression technique of DNN for edge computing | |
Yang et al. | Instance-level image synthesis method based on multi-scale style transformation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CB03 | Change of inventor or designer information |
Inventor after: Meng Fei Inventor after: Chen Chao Inventor after: Huang Hongyu Inventor after: Xie Zhijiang Inventor after: Yang Chuan Inventor before: Meng Fei Inventor before: Yang Haiyong Inventor before: Chen Chao Inventor before: Huang Hongyu Inventor before: Xie Zhijiang Inventor before: Yang Chuan Inventor before: Yang Chaoxu Inventor before: Wang Chengliang Inventor before: Xie Lei Inventor before: Meng Dehong |
|
CB03 | Change of inventor or designer information |