CN117411033B - An inertia damping control method and system based on radial neural network - Google Patents
An inertia damping control method and system based on radial neural network Download PDFInfo
- Publication number
- CN117411033B CN117411033B CN202311688232.6A CN202311688232A CN117411033B CN 117411033 B CN117411033 B CN 117411033B CN 202311688232 A CN202311688232 A CN 202311688232A CN 117411033 B CN117411033 B CN 117411033B
- Authority
- CN
- China
- Prior art keywords
- output
- error
- inertia
- damping
- training set
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000013016 damping Methods 0.000 title claims abstract description 83
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 52
- 238000000034 method Methods 0.000 title claims abstract description 15
- 238000012549 training Methods 0.000 claims abstract description 91
- 238000012360 testing method Methods 0.000 claims abstract description 25
- 238000011156 evaluation Methods 0.000 claims abstract description 18
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 10
- 230000001360 synchronised effect Effects 0.000 claims abstract description 10
- 238000004088 simulation Methods 0.000 claims abstract description 6
- 210000002569 neuron Anatomy 0.000 claims description 23
- 230000003044 adaptive effect Effects 0.000 claims description 9
- 238000004364 calculation method Methods 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 3
- 238000005070 sampling Methods 0.000 claims description 3
- 238000013461 design Methods 0.000 abstract description 5
- 230000001629 suppression Effects 0.000 abstract description 3
- 238000012216 screening Methods 0.000 abstract 1
- 238000005516 engineering process Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- 239000000243 solution Substances 0.000 description 4
- 230000035515 penetration Effects 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/24—Arrangements for preventing or reducing oscillations of power in networks
- H02J3/241—The oscillation concerning frequency
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/0265—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
- G05B13/027—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using neural networks only
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/048—Activation functions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P9/00—Arrangements for controlling electric generators for the purpose of obtaining a desired output
- H02P9/10—Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
- H02P9/105—Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load for increasing the stability
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2203/00—Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
- H02J2203/20—Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P2103/00—Controlling arrangements characterised by the type of generator
- H02P2103/20—Controlling arrangements characterised by the type of generator of the synchronous type
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Artificial Intelligence (AREA)
- Theoretical Computer Science (AREA)
- Evolutionary Computation (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Software Systems (AREA)
- Computing Systems (AREA)
- Data Mining & Analysis (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Mathematical Physics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
- Control Of Electric Motors In General (AREA)
Abstract
Description
技术领域Technical field
本发明涉及电网控制技术领域,尤其涉及一种基于径向神经网络的惯量阻尼控制方法。The invention relates to the technical field of power grid control, and in particular to an inertia damping control method based on a radial neural network.
背景技术Background technique
随着可再生能源发电占比越来越大,惯性和阻尼将越来越少,严重威胁到电网运行的稳定和可靠性。可再生能源发电具有波动性和不确定性,使得电网中的惯量和阻尼减少,从而导致电网频率波动过大,甚至引发大规模断电。As the proportion of renewable energy power generation increases, there will be less and less inertia and damping, seriously threatening the stability and reliability of power grid operations. Renewable energy power generation has volatility and uncertainty, which reduces the inertia and damping in the power grid, leading to excessive fluctuations in grid frequency and even large-scale power outages.
电网频率是反映电网供需平衡的重要指标,其稳定性取决于电网中的惯量和阻尼。惯量可以缓冲电网中的功率波动,阻尼可以抑制电网中的振荡。Grid frequency is an important indicator reflecting the balance of supply and demand in the grid, and its stability depends on the inertia and damping in the grid. Inertia can buffer power fluctuations in the power grid, and damping can suppress oscillations in the power grid.
文献“Self-adaptive virtual inertia control-based fuzzy logic toimprove frequency stability of microgrid with high renewable penetration [J].IEEE Access,2019,7:76071-83.(基于模糊逻辑的自适应虚拟惯量控制提高高可再生渗透率微电网频率稳定性[J]. IEEE Access杂志, 2019, 7:76071-83.)”公开了一种使用模糊逻辑的自适应虚拟惯性控制系统,利用实功率注入的输入信号和系统频率偏差,自动调整虚拟惯量常数,以确保频率的稳定。该方案也是利用智能控制技术来优化虚拟同步机的参数,实现快速惯性响应和频率稳定。但是该方案的不足之处是,模糊控制算法的设计完全是基于经验的,没有明确的理论依据,存在参数设计粗略问题,而且没有考虑阻尼的影响。Document "Self-adaptive virtual inertia control-based fuzzy logic to improve frequency stability of microgrid with high renewable penetration [J]. IEEE Access, 2019,7:76071-83. Penetration Microgrid Frequency Stability [J]. IEEE Access Magazine, 2019, 7:76071-83.)" discloses an adaptive virtual inertial control system using fuzzy logic, utilizing the input signal of real power injection and the system frequency Deviation, the virtual inertia constant is automatically adjusted to ensure frequency stability. This solution also uses intelligent control technology to optimize the parameters of the virtual synchronous machine to achieve fast inertial response and frequency stability. However, the shortcomings of this solution are that the design of the fuzzy control algorithm is entirely based on experience, without a clear theoretical basis, there are problems with rough parameter design, and the influence of damping is not considered.
发明内容Contents of the invention
本发明提供一种基于径向神经网络的惯量阻尼控制方法,包括:The present invention provides an inertial damping control method based on radial neural network, including:
采用改进型自适应算法仿真,获得同步电机的初始化参数;Use the improved adaptive algorithm simulation to obtain the initialization parameters of the synchronous motor;
所述初始化参数包括角速度、角速度偏移率、输出惯量以及输出阻尼;The initialization parameters include angular velocity, angular velocity deviation rate, output inertia and output damping;
将所述初始化参数筛选,分类为训练集参数和测试集参数;Filter the initialization parameters and classify them into training set parameters and test set parameters;
对所述训练集参数和所述测试集参数进行人工径向神经网络训练,得到所述输出惯量以及输出阻尼的数值;Perform artificial radial neural network training on the training set parameters and the test set parameters to obtain the values of the output inertia and output damping;
对所述输出惯量以及所述输出阻尼的数值进行误差评估。An error evaluation is performed on the values of the output inertia and the output damping.
需要说明的是,所述人工径向神经网络为径向基函数网络(RBF),具有以下结构和连接方式:It should be noted that the artificial radial neural network is a radial basis function network (RBF), which has the following structure and connection method:
(1)输入层由两个神经元组成,分别接收电网频率偏差和功率波动作为输入信号;(1) The input layer consists of two neurons, which receive power grid frequency deviation and power fluctuation as input signals respectively;
(2)隐含层由若干个神经元组成,每个神经元对应一个高斯基底函数,根据输入信号的特征点自适应调整基底函数的中心值、标准偏差和权重;(2) The hidden layer is composed of several neurons, each neuron corresponds to a Gaussian basis function, and the center value, standard deviation and weight of the basis function are adaptively adjusted according to the feature points of the input signal;
(3)输出层由两个神经元组成,分别输出虚拟惯量和阻尼系数作为控制信号。(3) The output layer consists of two neurons, which respectively output virtual inertia and damping coefficient as control signals.
需要说明的是,对所述训练集参数和所述测试集参数进行人工径向神经网络训练的步骤包括:It should be noted that the steps of training the artificial radial neural network on the training set parameters and the test set parameters include:
; ;
其中,表示的是第i个的所述输出惯量;/>表示的是第i个的所述输出阻尼,i表示序列号,m表示当前隐含层神经元的个数;in, Represents the i-th output inertia;/> represents the i-th output damping, i represents the sequence number, and m represents the number of neurons in the current hidden layer;
其中,是第i个的角速度,/>是第i个的角速度偏移率,/>是第i个的标准偏差,/>是第i个的基底函数中心值。in, is the angular velocity of the i-th,/> is the angular velocity deviation rate of the i-th,/> is the standard deviation of the i-th,/> is the central value of the i-th basis function.
需要说明的是,所述的计算公式为:/>;It should be noted that the The calculation formula is:/> ;
其中,所述表示最近的聚类基点,/>表示距离,/>表示重叠系数。Among them, the Represents the nearest clustering base point, /> Represents distance,/> represents the overlap coefficient.
需要说明的是,所述重叠系数为一个正实数,用于控制高斯基底函数的宽度,其取值范围为(0,1),其确定方法为:/>,其中,/>为聚类基点之间的最大距离。It should be noted that the overlap coefficient is a positive real number, used to control the width of the Gaussian basis function. Its value range is (0,1), and its determination method is:/> ,wherein,/> is the maximum distance between clustering base points.
需要说明的是,对所述训练集参数和所述测试集参数进行人工径向神经网络训练的步骤还包括:It should be noted that the step of training the artificial radial neural network on the training set parameters and the test set parameters also includes:
判断k个和k-1个的训练集参数的误差;Determine the error of k and k-1 training set parameters;
将所述训练集参数的误差和设定好的参数数值大小进行比较;Compare the error of the training set parameters with the set parameter values;
所述训练集参数的误差小于设定好的参数数值,则进行:If the error of the training set parameters is less than the set parameter value, proceed:
; ;
其中,表示的是第i个的所述输出惯量;/>表示的是第i个的所述输出阻尼,i表示序列号,m表示当前隐含层神经元的个数;in, Represents the i-th output inertia;/> represents the i-th output damping, i represents the sequence number, and m represents the number of neurons in the current hidden layer;
其中,是第i个的角速度,/>是第i个的角速度偏移率,/>是第i个的标准偏差,/>是第i个的基底函数中心值。in, is the angular velocity of the i-th,/> is the angular velocity deviation rate of the i-th,/> is the standard deviation of the i-th,/> is the central value of the i-th basis function.
需要说明的是,对所述训练集参数和所述测试集参数进行人工径向神经网络训练的步骤还包括:It should be noted that the step of training the artificial radial neural network on the training set parameters and the test set parameters also includes:
判断k个和k-1个的训练集参数的误差;Determine the error of k and k-1 training set parameters;
需要进一步说明的是,所述k的含义是当前训练集参数个数,所述k-1的含义是上一个训练集参数个数。因此该步骤也可以表示为:判断当前训练集参数个数k与上一次训练集参数个数k-1之间的误差。It should be further explained that k means the number of parameters in the current training set, and k-1 means the number of parameters in the previous training set. Therefore, this step can also be expressed as: judging the error between the number of parameters k in the current training set and the number of parameters k-1 in the previous training set.
将所述训练集参数的误差和设定好的参数数值大小进行比较;Compare the error of the training set parameters with the set parameter values;
所述训练集参数的误差大于设定好的参数数值,则调整第i个聚类基点和权重的数值大小;If the error of the training set parameters is greater than the set parameter value, adjust the values of the i-th clustering base point and weight;
进一步的,所述“调整第i个聚类基点和权重的数值大小”的步骤包括:Further, the step of "adjusting the numerical size of the i-th clustering base point and weight" includes:
计算误差函数,其中,/>为输出层神经元个数,/>为期望输出值,/>为实际输出值;Calculate error function ,wherein,/> is the number of neurons in the output layer,/> is the expected output value,/> is the actual output value;
计算权重和第i个聚类基点对误差函数的偏导数;Calculate the weight and error function of the i-th clustering base point pair partial derivative of ;
根据偏导数更新权重和第i个聚类基点;Update the weight and i-th clustering base point according to the partial derivative;
重复以上步骤直到误差函数达到最小值或满足停止条件;Repeat the above steps until the error function reaches the minimum value or meets the stopping condition;
当所述训练集参数的误差小于设定好的参数数值,调整到所述训练集参数的误差小于设定好的参数数值,则进行:When the error of the training set parameters is less than the set parameter value, and the error of the training set parameter is less than the set parameter value, proceed:
; ;
其中,表示的是第i个的所述输出惯量;/>表示的是第i个的所述输出阻尼,i表示序列号,m表示当前隐含层神经元的个数;in, Represents the i-th output inertia;/> represents the i-th output damping, i represents the sequence number, and m represents the number of neurons in the current hidden layer;
其中,是第i个的角速度,/>是第i个的角速度偏移率,/>是第i个的标准偏差,/>是第i个的基底函数中心值。in, is the angular velocity of the i-th,/> is the angular velocity deviation rate of the i-th,/> is the standard deviation of the i-th,/> is the central value of the i-th basis function.
需要说明的是,对所述输出惯量以及所述输出阻尼的数值进行误差评估的步骤包括:It should be noted that the steps of error evaluation of the values of the output inertia and the output damping include:
对所述输出惯量的误差值进行统计;Perform statistics on the error value of the output inertia;
对所述输出阻尼的误差值进行统计;Perform statistics on the error value of the output damping;
判断所述输出惯量的误差率是否小于千分之一;Determine whether the error rate of the output inertia is less than one thousandth;
判断所述输出阻尼的误差率是否小于千分之一。Determine whether the error rate of the output damping is less than one thousandth.
一种基于径向神经网络的惯量阻尼控制系统,包括:An inertial damping control system based on radial neural network, including:
采样模块,用于采用改进型自适应算法仿真,获得同步电机的初始化参数;The sampling module is used to simulate using the improved adaptive algorithm to obtain the initialization parameters of the synchronous motor;
所述初始化参数包括角速度、角速度偏移率、输出惯量以及输出阻尼;The initialization parameters include angular velocity, angular velocity deviation rate, output inertia and output damping;
信号处理模块,用于将所述初始化参数筛选,分类为训练集参数和测试集参数;A signal processing module, used to filter the initialization parameters and classify them into training set parameters and test set parameters;
径向神经网络控制模块,用于对所述训练集参数和所述测试集参数进行人工径向神经网络训练,得到所述输出惯量以及输出阻尼的数值;A radial neural network control module, used to perform artificial radial neural network training on the training set parameters and the test set parameters to obtain the values of the output inertia and output damping;
误差评估模块,用于对所述输出惯量以及所述输出阻尼的数值进行误差评估。An error evaluation module is used to perform error evaluation on the values of the output inertia and the output damping.
需要说明的是,所述径向神经网络控制模块包括:It should be noted that the radial neural network control module includes:
判断单元,用于判断k个和k-1个的训练集参数的误差;The judgment unit is used to judge the error of k and k-1 training set parameters;
比较单元,用于将所述训练集参数的误差和设定好的参数数值大小进行比较;A comparison unit, used to compare the error of the training set parameter with the set parameter value;
运算单元,用于所述训练集参数的误差小于设定好的参数数值,则进行:The operation unit is used to perform the following steps if the error of the training set parameters is less than the set parameter value:
; ;
其中,表示的是第i个的所述输出惯量;/>表示的是第i个的所述输出阻尼,i表示序列号,m表示当前隐含层神经元的个数;in, Represents the i-th output inertia;/> represents the i-th output damping, i represents the sequence number, and m represents the number of neurons in the current hidden layer;
其中,是第i个的角速度,/>是第i个的角速度偏移率,/>是第i个的标准偏差,/>是第i个的基底函数中心值。in, is the angular velocity of the i-th,/> is the angular velocity deviation rate of the i-th,/> is the standard deviation of the i-th,/> is the central value of the i-th basis function.
需要说明的是,所述径向神经网络控制模块包括:It should be noted that the radial neural network control module includes:
判断单元,将所述训练集参数的误差和设定好的参数数值大小进行比较;The judgment unit compares the error of the training set parameter with the set parameter value;
比较单元,所述训练集参数的误差大于设定好的参数数值,则调整第i个聚类基点和权重的数值大小;Comparing unit, if the error of the training set parameter is greater than the set parameter value, the value of the i-th clustering base point and weight is adjusted;
调整单元,调整到所述训练集参数的误差小于设定好的参数数值;The adjustment unit adjusts the error of the training set parameters to be less than the set parameter value;
运算单元,运行如下公式:The computing unit runs the following formula:
; ;
其中,表示的是第i个的所述输出惯量;/>表示的是第i个的所述输出阻尼,i表示序列号,m表示当前隐含层神经元的个数;in, Represents the i-th output inertia;/> represents the i-th output damping, i represents the sequence number, and m represents the number of neurons in the current hidden layer;
其中,是第i个的角速度,/>是第i个的角速度偏移率,/>是第i个的标准偏差,/>是第i个的基底函数中心值。in, is the angular velocity of the i-th,/> is the angular velocity deviation rate of the i-th,/> is the standard deviation of the i-th,/> is the central value of the i-th basis function.
需要说明的是,所述误差评估模块包括:It should be noted that the error evaluation module includes:
统计单元,用于对所述输出惯量的误差值进行统计;用于对所述输出阻尼的误差值进行统计;A statistical unit, used to make statistics on the error value of the output inertia; used to make statistics on the error value of the output damping;
误差判断单元,用于判断所述输出惯量的误差率是否小于千分之一;判断所述输出阻尼的误差率是否小于千分之一。An error judgment unit is used to judge whether the error rate of the output inertia is less than one thousandth; and to judge whether the error rate of the output damping is less than one thousandth.
与现有技术相比,本发明所选用的基于径向神经网络的惯量阻尼控制方法,采用改进型自适应算法仿真,获得同步电机的初始化参数;所述初始化参数包括角速度、角速度偏移率、输出惯量以及输出阻尼;将所述初始化参数筛选,分类为训练集参数和测试集参数;对所述训练集参数和所述测试集参数进行人工径向神经网络训练,得到所述输出惯量以及输出阻尼的数值;对所述输出惯量以及所述输出阻尼的数值进行误差评估。本发明利用径向神经网络控制技术可以同时考虑惯性和阻尼的作用,优化外特性,增强电网的稳定性和可靠性,而现有技术没有考虑阻尼的影响;可以提高控制精度和响应速度,优化参数设计和调整,而现有技术的超调量和调节时间较大,控制效果不佳。本发明利用径向神经网络控制技术可以实现功率输出更加平滑、超调量更小、频率偏差更小、功率波动抑制更好等优异的动态性能;还可以实现快速收敛、高精度、低复杂度、强泛化能力等特点,并通过调整聚类基点和权重来优化网络结构和参数。Compared with the existing technology, the inertia damping control method based on the radial neural network selected by the present invention uses an improved adaptive algorithm simulation to obtain the initialization parameters of the synchronous motor; the initialization parameters include angular velocity, angular velocity deviation rate, Output inertia and output damping; filter the initialization parameters and classify them into training set parameters and test set parameters; perform artificial radial neural network training on the training set parameters and test set parameters to obtain the output inertia and output The value of damping; perform error evaluation on the output inertia and the value of output damping. The present invention uses radial neural network control technology to simultaneously consider the effects of inertia and damping, optimize external characteristics, and enhance the stability and reliability of the power grid. However, the existing technology does not consider the impact of damping; it can improve control accuracy and response speed, and optimize Parameter design and adjustment, while the existing technology has large overshoot and adjustment time, and poor control effect. The present invention uses radial neural network control technology to achieve smoother power output, smaller overshoot, smaller frequency deviation, better power fluctuation suppression and other excellent dynamic performances; it can also achieve rapid convergence, high precision and low complexity. , strong generalization ability and other characteristics, and optimize the network structure and parameters by adjusting the clustering base points and weights.
附图说明Description of drawings
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the drawings needed to be used in the description of the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained based on these drawings without exerting creative efforts, among which:
图1为本发明提供的一种基于径向神经网络的惯量阻尼控制方法的流程示意图;Figure 1 is a schematic flow chart of an inertia damping control method based on radial neural networks provided by the present invention;
图2为图1所示的步骤S3的一个实施例的流程示意图;Figure 2 is a schematic flow chart of an embodiment of step S3 shown in Figure 1;
图3为图1所示的步骤S3的另一个实施例的流程示意图;Figure 3 is a schematic flow chart of another embodiment of step S3 shown in Figure 1;
图4为图1所示的步骤S4的流程示意图;Figure 4 is a schematic flow chart of step S4 shown in Figure 1;
图5为本发明提供的一种基于径向神经网络的惯量阻尼控制系统的示意图;Figure 5 is a schematic diagram of an inertia damping control system based on a radial neural network provided by the present invention;
图6为图5提供的径向神经网络控制模块的一个实施例的示意图;Figure 6 is a schematic diagram of an embodiment of the radial neural network control module provided in Figure 5;
图7为图5提供的径向神经网络控制模块的另一个实施例的示意图;Figure 7 is a schematic diagram of another embodiment of the radial neural network control module provided in Figure 5;
图8为图5提供的误差评估模块的示意图。FIG. 8 is a schematic diagram of the error evaluation module provided in FIG. 5 .
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, of the embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts fall within the scope of protection of the present invention.
请参阅图1,图1为本发明提供的一种基于径向神经网络的惯量阻尼控制方法的流程示意图;包括:Please refer to Figure 1, which is a schematic flow chart of an inertia damping control method based on a radial neural network provided by the present invention; including:
S1、采用改进型自适应算法仿真,获得同步电机的初始化参数;S1. Use the improved adaptive algorithm simulation to obtain the initialization parameters of the synchronous motor;
S2、将所述初始化参数筛选,分类为训练集参数和测试集参数;S2. Filter the initialization parameters and classify them into training set parameters and test set parameters;
S3、对所述训练集参数和所述测试集参数进行人工径向神经网络训练,得到所述输出惯量以及输出阻尼的数值;S3. Perform artificial radial neural network training on the training set parameters and the test set parameters to obtain the values of the output inertia and output damping;
S4、对所述输出惯量以及所述输出阻尼的数值进行误差评估。S4. Perform error evaluation on the values of the output inertia and the output damping.
需要说明的是,对所述训练集参数和所述测试集参数进行人工径向神经网络训练的步骤包括:It should be noted that the steps of training the artificial radial neural network on the training set parameters and the test set parameters include:
; ;
其中,表示的是第i个的所述输出惯量;/>表示的是第i个的所述输出阻尼,i表示序列号,m表示当前隐含层神经元的个数;in, Represents the i-th output inertia;/> represents the i-th output damping, i represents the sequence number, and m represents the number of neurons in the current hidden layer;
其中,是第i个的角速度,/>是第i个的角速度偏移率,/>是第i个的标准偏差,/>是第i个的基底函数中心值。in, is the angular velocity of the i-th,/> is the angular velocity deviation rate of the i-th,/> is the standard deviation of the i-th,/> is the central value of the i-th basis function.
需要说明的是,所述的计算公式为:/>;It should be noted that the The calculation formula is:/> ;
其中,所述表示最近的聚类基点,/>表示距离,/>表示重叠系数。Among them, the Represents the nearest clustering base point, /> Represents distance,/> represents the overlap coefficient.
需要说明的是,所述重叠系数为一个正实数,用于控制高斯基底函数的宽度,其取值范围为(0,1),其确定方法为:/>,其中,/>为聚类基点之间的最大距离。It should be noted that the overlap coefficient is a positive real number, used to control the width of the Gaussian basis function. Its value range is (0,1), and its determination method is:/> , where,/> is the maximum distance between clustering base points.
请参阅图2,图2为图1所示的步骤S3的一个实施例的流程示意图;包括:Please refer to Figure 2, which is a schematic flow chart of an embodiment of step S3 shown in Figure 1; including:
S31、判断k个和k-1个的训练集参数的误差;S31. Determine the error of k and k-1 training set parameters;
S32、将所述训练集参数的误差和设定好的参数数值大小进行比较;S32. Compare the error of the training set parameter with the set parameter value;
S33、所述训练集参数的误差小于设定好的参数数值;S33. The error of the training set parameters is less than the set parameter value;
S34、进行如下公式的运算:S34. Perform the calculation of the following formula:
; ;
其中,表示的是第i个的所述输出惯量;/>表示的是第i个的所述输出阻尼,i表示序列号,m表示当前隐含层神经元的个数;in, Represents the i-th output inertia;/> represents the i-th output damping, i represents the sequence number, and m represents the number of neurons in the current hidden layer;
其中,是第i个的角速度,/>是第i个的角速度偏移率,/>是第i个的标准偏差,/>是第i个的基底函数中心值。in, is the angular velocity of the i-th,/> is the angular velocity deviation rate of the i-th,/> is the standard deviation of the i-th,/> is the central value of the i-th basis function.
需要进一步说明的是,所述k的含义是当前训练集参数个数,所述k-1的含义是上一个训练集参数个数。因此该步骤也可以表示为:判断当前训练集参数个数k与上一次训练集参数个数k-1之间的误差。It should be further explained that k means the number of parameters in the current training set, and k-1 means the number of parameters in the previous training set. Therefore, this step can also be expressed as: judging the error between the number of parameters k in the current training set and the number of parameters k-1 in the previous training set.
请参阅图3,图3为图1所示的步骤S3的另一个实施例的流程示意图;包括:Please refer to Figure 3, which is a schematic flow chart of another embodiment of step S3 shown in Figure 1; including:
S31、判断k个和k-1个的训练集参数的误差;S31. Determine the error of k and k-1 training set parameters;
S32、将所述训练集参数的误差和设定好的参数数值大小进行比较;S32. Compare the error of the training set parameter with the set parameter value;
S303、所述训练集参数的误差大于设定好的参数数值,则调整第i个聚类基点和权重的数值大小;S303. If the error of the training set parameter is greater than the set parameter value, adjust the value of the i-th clustering base point and weight;
S304、调整到所述训练集参数的误差小于设定好的参数数值;S304. Adjust the error of the training set parameters until the error is less than the set parameter value;
S34、进行如下公式的运算:S34. Perform the calculation of the following formula:
; ;
其中,表示的是第i个的所述输出惯量;/>表示的是第i个的所述输出阻尼,i表示序列号,m表示当前隐含层神经元的个数;in, Represents the i-th output inertia;/> represents the i-th output damping, i represents the sequence number, and m represents the number of neurons in the current hidden layer;
其中,是第i个的角速度,/>是第i个的角速度偏移率,/>是第i个的标准偏差,/>是第i个的基底函数中心值。in, is the angular velocity of the i-th,/> is the angular velocity deviation rate of the i-th,/> is the standard deviation of the i-th,/> is the central value of the i-th basis function.
进一步的,所述S33包括:Further, the S33 includes:
S331、计算误差函数;S331. Calculate error function ;
其中,为输出层神经元个数,/>为期望输出值,/>为实际输出值;in, is the number of neurons in the output layer,/> is the expected output value,/> is the actual output value;
S332、计算权重和第i个聚类基点对误差函数的偏导数;S332. Calculate the weight and error function of the i-th clustering base point pair partial derivative of ;
S333、根据偏导数更新权重和第i个聚类基点;S333. Update the weight and the i-th clustering base point according to the partial derivative;
S334、重复以上步骤直到误差函数达到最小值或满足停止条件。S334. Repeat the above steps until the error function The minimum value is reached or the stopping condition is met.
如图4所示,图4为图1所示的步骤S4的流程示意图;As shown in Figure 4, Figure 4 is a schematic flow chart of step S4 shown in Figure 1;
包括:include:
S41、对所述输出惯量的误差值进行统计;S41. Calculate the error value of the output inertia;
S42、对所述输出阻尼的误差值进行统计;S42. Calculate the error value of the output damping;
S43、判断所述输出惯量的误差率是否小于千分之一;S43. Determine whether the error rate of the output inertia is less than one thousandth;
S44、判断所述输出阻尼的误差率是否小于千分之一。S44. Determine whether the error rate of the output damping is less than one thousandth.
请参阅图5,图5为本发明提供的一种基于径向神经网络的惯量阻尼控制系统的示意图;包括:Please refer to Figure 5, which is a schematic diagram of an inertia damping control system based on a radial neural network provided by the present invention; including:
采样模块1,用于采用改进型自适应算法仿真,获得同步电机的初始化参数;Sampling module 1 is used to simulate using the improved adaptive algorithm to obtain the initialization parameters of the synchronous motor;
所述初始化参数包括角速度、角速度偏移率、输出惯量以及输出阻尼;The initialization parameters include angular velocity, angular velocity deviation rate, output inertia and output damping;
信号处理模块2,用于将所述初始化参数筛选,分类为训练集参数和测试集参数;Signal processing module 2, used to filter the initialization parameters and classify them into training set parameters and test set parameters;
径向神经网络控制模块3,用于对所述训练集参数和所述测试集参数进行人工径向神经网络训练,得到所述输出惯量以及输出阻尼的数值;Radial neural network control module 3 is used to perform artificial radial neural network training on the training set parameters and the test set parameters to obtain the values of the output inertia and output damping;
误差评估模块4,用于对所述输出惯量以及所述输出阻尼的数值进行误差评估。Error evaluation module 4 is used to perform error evaluation on the values of the output inertia and the output damping.
请参阅图6,图6为图5提供的径向神经网络控制模块的一个实施例的示意图;所述径向神经网络控制模块包括:Please refer to Figure 6, which is a schematic diagram of an embodiment of the radial neural network control module provided in Figure 5; the radial neural network control module includes:
判断单元31,用于判断k个和k-1个的训练集参数的误差;The judgment unit 31 is used to judge the errors of k and k-1 training set parameters;
比较单元32,用于将所述训练集参数的误差和设定好的参数数值大小进行比较;The comparison unit 32 is used to compare the error of the training set parameter with the set parameter value;
运算单元33,用于当所述训练集参数的误差小于设定好的参数数值,则进行:The computing unit 33 is used to perform: when the error of the training set parameters is less than the set parameter value:
; ;
其中,表示的是第i个的所述输出惯量;/>表示的是第i个的所述输出阻尼,i表示序列号,m表示当前隐含层神经元的个数;in, Represents the i-th output inertia;/> represents the i-th output damping, i represents the sequence number, and m represents the number of neurons in the current hidden layer;
其中,是第i个的角速度,/>是第i个的角速度偏移率,/>是第i个的标准偏差,/>是第i个的基底函数中心值。in, is the angular velocity of the i-th,/> is the angular velocity deviation rate of the i-th,/> is the standard deviation of the i-th,/> is the central value of the i-th basis function.
请参阅图7,图7为图5提供的径向神经网络控制模块的另一个实施例的示意图;Please refer to Figure 7, which is a schematic diagram of another embodiment of the radial neural network control module provided in Figure 5;
所述径向神经网络控制模块包括:The radial neural network control module includes:
判断单元31,将所述训练集参数的误差和设定好的参数数值大小进行比较;The judgment unit 31 compares the error of the training set parameter with the set parameter value;
比较单元32,所述训练集参数的误差大于设定好的参数数值,则调整第i个聚类基点和权重的数值大小;Comparing unit 32, if the error of the training set parameter is greater than the set parameter value, adjust the value of the i-th clustering base point and weight;
调整单元302,调整到所述训练集参数的误差小于设定好的参数数值;The adjustment unit 302 adjusts until the error of the training set parameters is less than the set parameter value;
运算单元33,运行如下公式:The computing unit 33 runs the following formula:
; ;
其中,表示的是第i个的所述输出惯量;/>表示的是第i个的所述输出阻尼,i表示序列号,m表示当前隐含层神经元的个数;in, Represents the i-th output inertia;/> represents the i-th output damping, i represents the sequence number, and m represents the number of neurons in the current hidden layer;
其中,是第i个的角速度,/>是第i个的角速度偏移率,/>是第i个的标准偏差,/>是第i个的基底函数中心值。in, is the angular velocity of the i-th,/> is the angular velocity deviation rate of the i-th,/> is the standard deviation of the i-th,/> is the central value of the i-th basis function.
需要说明的是,所述误差评估模块包括:It should be noted that the error evaluation module includes:
统计单元41,用于对所述输出惯量的误差值进行统计;用于对所述输出阻尼的误差值进行统计;The statistics unit 41 is used to make statistics on the error value of the output inertia; used to make statistics on the error value of the output damping;
误差判断单元42,用于判断所述输出惯量的误差率是否小于千分之一;判断所述输出阻尼的误差率是否小于千分之一。The error judgment unit 42 is used to judge whether the error rate of the output inertia is less than one thousandth; and to judge whether the error rate of the output damping is less than one thousandth.
与现有技术相比,本发明所选用的基于径向神经网络的惯量阻尼控制方法,采用改进型自适应算法仿真,获得同步电机的初始化参数;所述初始化参数包括角速度、角速度偏移率、输出惯量以及输出阻尼;将所述初始化参数筛选,分类为训练集参数和测试集参数;对所述训练集参数和所述测试集参数进行人工径向神经网络训练,得到所述输出惯量以及输出阻尼的数值;对所述输出惯量以及所述输出阻尼的数值进行误差评估。本发明利用径向神经网络控制技术可以同时考虑惯性和阻尼的作用,优化外特性,增强电网的稳定性和可靠性,而现有技术没有考虑阻尼的影响。可以提高控制精度和响应速度,优化参数设计和调整,而现有技术的超调量和调节时间较大,控制效果不佳。本发明利用径向神经网络控制技术可以实现功率输出更加平滑、超调量更小、频率偏差更小、功率波动抑制更好等优异的动态性能。Compared with the existing technology, the inertia damping control method based on the radial neural network selected by the present invention uses an improved adaptive algorithm simulation to obtain the initialization parameters of the synchronous motor; the initialization parameters include angular velocity, angular velocity deviation rate, Output inertia and output damping; filter the initialization parameters and classify them into training set parameters and test set parameters; perform artificial radial neural network training on the training set parameters and test set parameters to obtain the output inertia and output The value of damping; perform error evaluation on the output inertia and the value of output damping. The present invention uses radial neural network control technology to simultaneously consider the effects of inertia and damping, optimize external characteristics, and enhance the stability and reliability of the power grid, while the existing technology does not consider the effects of damping. It can improve control accuracy and response speed, and optimize parameter design and adjustment. However, the existing technology has large overshoot and adjustment time and poor control effect. The present invention uses radial neural network control technology to achieve smoother power output, smaller overshoot, smaller frequency deviation, better power fluctuation suppression and other excellent dynamic performances.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311688232.6A CN117411033B (en) | 2023-12-11 | 2023-12-11 | An inertia damping control method and system based on radial neural network |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311688232.6A CN117411033B (en) | 2023-12-11 | 2023-12-11 | An inertia damping control method and system based on radial neural network |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117411033A CN117411033A (en) | 2024-01-16 |
CN117411033B true CN117411033B (en) | 2024-03-01 |
Family
ID=89491108
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311688232.6A Active CN117411033B (en) | 2023-12-11 | 2023-12-11 | An inertia damping control method and system based on radial neural network |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117411033B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113469332A (en) * | 2021-06-28 | 2021-10-01 | 上海电机学院 | Virtual synchronous generator inertia damping self-adaptive control method based on fuzzy nerves |
CN115102188A (en) * | 2022-06-27 | 2022-09-23 | 湖南工学院 | VSG inertia and damping adaptive control method, system and computer readable medium |
CN115912393A (en) * | 2022-10-18 | 2023-04-04 | 上海电力大学 | Multi-machine parallel VSG system stability improving method based on RBF neural network |
-
2023
- 2023-12-11 CN CN202311688232.6A patent/CN117411033B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113469332A (en) * | 2021-06-28 | 2021-10-01 | 上海电机学院 | Virtual synchronous generator inertia damping self-adaptive control method based on fuzzy nerves |
CN115102188A (en) * | 2022-06-27 | 2022-09-23 | 湖南工学院 | VSG inertia and damping adaptive control method, system and computer readable medium |
CN115912393A (en) * | 2022-10-18 | 2023-04-04 | 上海电力大学 | Multi-machine parallel VSG system stability improving method based on RBF neural network |
Also Published As
Publication number | Publication date |
---|---|
CN117411033A (en) | 2024-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112183641B (en) | Transient frequency stability assessment method and system integrating prediction-correction deep learning | |
CN113392972B (en) | Photovoltaic short-term power prediction model training method, prediction method and device | |
CN116681144A (en) | Federal learning model aggregation method based on dynamic self-adaptive knowledge distillation | |
CN108336739A (en) | A kind of Probabilistic Load Flow on-line calculation method based on RBF neural | |
CN114977939B (en) | Doubly-fed wind turbine control parameter identification method based on improved multi-objective particle swarm optimization algorithm | |
CN116702629B (en) | A transferable power system transient stability assessment method | |
CN111224404A (en) | Power flow rapid control method for electric power system with controllable phase shifter | |
CN114611676A (en) | New energy power generation system impedance model identification method and system based on neural network | |
CN112821424A (en) | Power system frequency response analysis method based on data-model fusion drive | |
CN116026325A (en) | Navigation method and related device based on neural process and Kalman filtering | |
CN110163540A (en) | Electric power system transient stability prevention and control method and system | |
CN117411033B (en) | An inertia damping control method and system based on radial neural network | |
CN108199391B (en) | A kind of control method for coordinating of generator UEL and PSS | |
Chen et al. | Fuzzy PID Controller Optimized by Improved Gravitational Search Algorithm for Load Frequency Control in Multi-area Power System. | |
CN111969624A (en) | Damping control method and system of wind power grid-connected system containing virtual synchronous generator | |
CN108223274A (en) | Large Scale Variable Pitch Wind Turbine System discrimination method based on optimization RBF neural | |
CN111125880A (en) | A method for generating power system simulation data from the perspective of transient stability | |
CN114865658A (en) | Centralized inertia frequency modulation control method and device of energy storage cluster | |
CN115640748A (en) | A Method for Predicting Dynamic Frequency Response of Generators After Power System Disturbance | |
CN115688535A (en) | Power data combined interpolation method and system based on waveform similarity analysis | |
CN114839873A (en) | A robust control method for variable cycle engine full envelope based on fuzzy gain scheduling | |
CN118297473A (en) | Method, system, equipment and medium for evaluating and optimizing voltage safety of power system | |
CN117394313A (en) | Power system transient stability evaluation method, system, chip and equipment | |
CN117691689A (en) | Photovoltaic inverter parameter identification method based on multi-strategy improved bald eagle search algorithm | |
CN117390418A (en) | A method, system and equipment for transient stability assessment of wind power grid-connected system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |