CN117392124B - Medical ultrasonic image grading method, system, server, medium and device - Google Patents
Medical ultrasonic image grading method, system, server, medium and device Download PDFInfo
- Publication number
- CN117392124B CN117392124B CN202311674642.5A CN202311674642A CN117392124B CN 117392124 B CN117392124 B CN 117392124B CN 202311674642 A CN202311674642 A CN 202311674642A CN 117392124 B CN117392124 B CN 117392124B
- Authority
- CN
- China
- Prior art keywords
- layer
- model
- classification
- grading
- medical ultrasound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 42
- 238000002604 ultrasonography Methods 0.000 claims abstract description 62
- 238000012549 training Methods 0.000 claims abstract description 30
- 230000007246 mechanism Effects 0.000 claims abstract description 13
- 208000037170 Delayed Emergence from Anesthesia Diseases 0.000 claims description 42
- 238000012545 processing Methods 0.000 claims description 25
- 238000012795 verification Methods 0.000 claims description 13
- 238000013145 classification model Methods 0.000 claims description 12
- 238000012360 testing method Methods 0.000 claims description 11
- 238000011176 pooling Methods 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 7
- 238000000137 annealing Methods 0.000 claims description 6
- 238000004590 computer program Methods 0.000 claims description 6
- 238000002790 cross-validation Methods 0.000 claims description 6
- 238000010276 construction Methods 0.000 claims description 5
- 230000003044 adaptive effect Effects 0.000 claims description 4
- 239000000284 extract Substances 0.000 claims description 4
- 238000007781 pre-processing Methods 0.000 claims description 4
- 238000000638 solvent extraction Methods 0.000 claims description 2
- 238000013473 artificial intelligence Methods 0.000 abstract description 5
- 238000003759 clinical diagnosis Methods 0.000 abstract description 2
- 238000013135 deep learning Methods 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 description 11
- 208000004930 Fatty Liver Diseases 0.000 description 9
- 206010019708 Hepatic steatosis Diseases 0.000 description 9
- 208000010706 fatty liver disease Diseases 0.000 description 9
- 231100000240 steatosis hepatitis Toxicity 0.000 description 9
- 230000006870 function Effects 0.000 description 8
- 239000013598 vector Substances 0.000 description 7
- 230000004913 activation Effects 0.000 description 5
- 238000003745 diagnosis Methods 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 210000004185 liver Anatomy 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000013527 convolutional neural network Methods 0.000 description 2
- 238000002059 diagnostic imaging Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000001575 pathological effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000013526 transfer learning Methods 0.000 description 2
- 206010016654 Fibrosis Diseases 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 230000003187 abdominal effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 208000016097 disease of metabolism Diseases 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 230000004761 fibrosis Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 210000005228 liver tissue Anatomy 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007723 transport mechanism Effects 0.000 description 1
- 238000012285 ultrasound imaging Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/096—Transfer learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/40—Image enhancement or restoration using histogram techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/774—Generating sets of training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10132—Ultrasound image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Evolutionary Computation (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Medical Informatics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Mathematical Physics (AREA)
- General Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Databases & Information Systems (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Quality & Reliability (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
Description
技术领域Technical field
本发明属于人工智能的深度学习领域,尤其涉及一种医学超声图像分级方法、系统、服务器、介质及设备。The invention belongs to the field of deep learning of artificial intelligence, and in particular relates to a medical ultrasound image classification method, system, server, medium and equipment.
背景技术Background technique
本部分的陈述仅仅是提供了与本发明相关的背景技术信息,不必然构成在先技术。The statements in this section merely provide background technical information related to the present invention and do not necessarily constitute prior art.
基于医学影像的人工智能分类是指利用计算机视觉技术和人工智能算法对医学影像进行分析和诊断的方法。医学影像包括X光、CT、MRI、超声等多种类型,医学影像的分析和诊断对于疾病的早期发现和治疗起着重要作用。在医学影像分类中,人工智能技术可以大大提高诊断的准确性和效率,缩短了诊断时间,有助于医生做出更精确的诊断和治疗决策。同时,医学影像分类技术也面临着一些问题和挑战,例如:数据量不足、数据不平衡、缺乏标注信息等,需要进一步完善和改进。Artificial intelligence classification based on medical images refers to the method of analyzing and diagnosing medical images using computer vision technology and artificial intelligence algorithms. Medical images include X-ray, CT, MRI, ultrasound and other types. The analysis and diagnosis of medical images play an important role in the early detection and treatment of diseases. In medical image classification, artificial intelligence technology can greatly improve the accuracy and efficiency of diagnosis, shorten diagnosis time, and help doctors make more accurate diagnosis and treatment decisions. At the same time, medical image classification technology also faces some problems and challenges, such as insufficient data volume, data imbalance, lack of annotation information, etc., and needs further improvement and improvement.
发明人发现,目前的病理学的检查需要手术或穿刺取样等操作,例如,脂肪肝是一种常见的代谢性疾病。目前,脂肪肝分级的金标准是肝组织病理学检查。病理学检查是通过取得肝脏组织标本,通过显微镜下的观察和评价,确定肝脏的脂肪含量、纤维化程度和炎症反应等方面的信息,该侵入性诊断方法对患者有一定的创伤性和风险性,且费用昂贵,不适用于大规模筛查或动态监测。因此,开发基于医学影像的非侵入性诊断技术,成为当前研究的热点和难点。The inventor found that current pathological examination requires operations such as surgery or puncture sampling. For example, fatty liver is a common metabolic disease. Currently, the gold standard for grading fatty liver is liver histopathological examination. Pathological examination is to obtain liver tissue specimens and determine the fat content, fibrosis degree, inflammatory response and other aspects of the liver through observation and evaluation under a microscope. This invasive diagnostic method is invasive and risky for patients. , and it is expensive and not suitable for large-scale screening or dynamic monitoring. Therefore, the development of non-invasive diagnostic technology based on medical imaging has become a hot and difficult topic in current research.
临床上用于病理学的检查的主要技术是超声影像、CT和MRI等医学影像技术,但这些技术存在操作者的主观性强、操作流程繁琐、诊断成本高、分级结果不够精准且不规范等问题。The main technologies used for clinical pathology examination are medical imaging technologies such as ultrasound imaging, CT and MRI. However, these technologies suffer from strong operator subjectivity, cumbersome operating procedures, high diagnostic costs, and inaccurate and non-standard grading results. question.
发明内容Contents of the invention
为了解决上述背景技术中存在的至少一项技术问题,本发明提供一种医学超声图像分级方法、系统、服务器、介质及设备,其使用深度卷积神经网络模型实现了医学超声图像的自动分级,提高医生的诊断效率。In order to solve at least one technical problem existing in the above background technology, the present invention provides a medical ultrasound image grading method, system, server, medium and equipment, which uses a deep convolutional neural network model to realize automatic grading of medical ultrasound images. Improve doctors’ diagnostic efficiency.
根据本公开的第一方面,提供了一种医学超声图像分级方法,该方法包括:According to a first aspect of the present disclosure, a medical ultrasound image classification method is provided, which method includes:
获取医学超声图像和RGB图像数据集;Obtain medical ultrasound image and RGB image data sets;
基于RGB图像数据集对构建好的分级模型进行预训练得到第一分级模型,将第一分级模型迁移至医学超声图像进行微调训练,得到第二分级模型;Pre-train the constructed grading model based on the RGB image data set to obtain the first grading model, and migrate the first grading model to medical ultrasound images for fine-tuning training to obtain the second grading model;
其中,所述分级模型的构建过程包括:在ResNeAt网络结构的基础上,引入残差块和注意力机制,在第一个残差块之前和最后一个残差块之后加入通道注意力模块和空间注意力模块,经过通道注意力模块得到第一特征图,第一特征图通过空间注意力模块,经过水平方向和竖直方向特征提取得到第二特征图,将第一特征图和第二特征图加权处理后,经过分类层输出分类结果;Among them, the construction process of the hierarchical model includes: based on the ResNeAt network structure, introducing the residual block and attention mechanism, adding the channel attention module and space before the first residual block and after the last residual block. The attention module obtains the first feature map through the channel attention module. The first feature map passes through the spatial attention module and extracts horizontal and vertical features to obtain the second feature map. The first feature map and the second feature map are After weighting processing, the classification results are output through the classification layer;
基于待分级的医学超声图像和二分级模型得到分级结果。The classification result is obtained based on the medical ultrasound image to be classified and the two-classification model.
在一些实施例中,在获取医学超声图像后,对医学超声图像的预处理,包括黑框的去除、图像灰度化处理、局部直方图自适应均衡化、图像增强处理和数据划分处理。In some embodiments, after the medical ultrasound image is acquired, the preprocessing of the medical ultrasound image includes black frame removal, image grayscale processing, local histogram adaptive equalization, image enhancement processing, and data partitioning processing.
在一些实施例中,将医学超声图像划分为训练集、验证集和测试集,将保存的第一分级模型迁移到训练集和验证集上进行再训练和验证,得到第二分级模型,基于测试集对第二分级模型测试,直至达到使用标准。In some embodiments, the medical ultrasound images are divided into a training set, a verification set and a test set, and the saved first hierarchical model is migrated to the training set and the verification set for retraining and verification to obtain a second hierarchical model based on the test The second graded model is tested together until it meets the usage standards.
在一些实施例中,在对分级模型进行预训练时,采用余弦退火学习率调节算法调整学习率。In some embodiments, when pre-training the hierarchical model, a cosine annealing learning rate adjustment algorithm is used to adjust the learning rate.
在一些实施例中,得到第二分级模型后,对第二分级模型进行交叉验证,并计算交叉验证得到的准确率的平均值及方差。In some embodiments, after obtaining the second hierarchical model, cross-validation is performed on the second hierarchical model, and the average and variance of the accuracy obtained by cross-validation are calculated.
在一些实施例中,所述ResNeAt网络包括四个不同数量的残差块、三个下采样层、注意力模块和分类层,每个残差块由一个深度可分离卷积层、两个普通卷积和一个LayerNormalization (Layer Norm)层组成,下采样层由一个Layer Norm层和一个普通卷积层组成,分类层由一个全局平均池化层、一个Layer Norm层和一个全连接层组成。In some embodiments, the ResNeAt network includes four different numbers of residual blocks, three downsampling layers, attention modules, and classification layers. Each residual block consists of one depthwise separable convolutional layer, two ordinary The convolution consists of a LayerNormalization (Layer Norm) layer, the downsampling layer consists of a Layer Norm layer and a normal convolution layer, and the classification layer consists of a global average pooling layer, a Layer Norm layer and a fully connected layer.
根据本发明的第二方面,提供一种服务器,该服务器包括获取模块、训练模块和分级模块,获取模块,被配置为获取医学超声图像和RGB图像数据集;训练模块,被配置为基于RGB图像数据集对构建好的分级模型进行预训练得到第一分级模型,将第一分级模型迁移至医学超声图像进行微调训练,得到第二分级模型;分级模块,被配置为基于待分级的医学超声图像和二分级模型得到分级结果。According to a second aspect of the present invention, a server is provided. The server includes an acquisition module, a training module and a grading module. The acquisition module is configured to acquire medical ultrasound images and RGB image data sets; the training module is configured to acquire a data set based on RGB images. The data set pre-trains the constructed classification model to obtain the first classification model, and migrates the first classification model to medical ultrasound images for fine-tuning training to obtain the second classification model; the classification module is configured to be based on the medical ultrasound images to be classified. and two-level models to obtain hierarchical results.
根据本发明的第三方面,提供一种基于深度模型的医学超声图像分级系统,包括图像获取设备和图像处理设备;所述图像获取设备用于采集医学超声图像和RGB图像数据集,并向所述医学处理设备发送所述医学超声图像和RGB图像数据集;所述图像处理设备用于执行如上述方面中的任一种的方法。According to a third aspect of the present invention, a medical ultrasound image grading system based on a depth model is provided, including an image acquisition device and an image processing device; the image acquisition device is used to collect medical ultrasound images and RGB image data sets, and provide the The medical processing device sends the medical ultrasound image and the RGB image data set; the image processing device is used to perform the method in any one of the above aspects.
根据本发明的第四方面,提供一种计算机程序指令的非瞬时性计算机可读介质,当由处理器执行所述计算机程序指令使所述处理器执行如上述方面中的任一种的方法。According to a fourth aspect of the present invention, there is provided a non-transitory computer-readable medium of computer program instructions, which when executed by a processor cause the processor to perform a method according to any one of the above aspects.
根据本发明的第五方面,提供一种计算机设备,包括处理器和其上存储计算机程序的存储器,所述计算机程序被配置成当在所述处理器上执行如上述方面中的任一种的方法。According to a fifth aspect of the present invention, there is provided a computer device, comprising a processor and a memory storing a computer program thereon, the computer program being configured to execute any one of the above aspects on the processor. method.
与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
1、本发明提供一种基于深度模型的超声图像智能分级方法及系统,基于使用深度卷积神经网络模型实现了超声图像的自动分级,构建的ResNeAt网络含有残差块(residualblock)和convolutional block attention module (CBAM)注意力机制,第一个残差块之前和最后一个残差块之后加入CBAM注意力模块,将每个通道的特征乘以对应的权重,经过通道注意力模块的特征图输入到空间注意力模块中进行两次处理,分别是水平方向的GAP和竖直方向的GAP,以及对应的权重系数,将经过通道注意力机制和空间注意力机制处理过的特征图相乘,得到最终的特征图,实现了自适应地对不同通道和空间位置进行加权,使网络能够在通道和空间上聚焦于最重要的特征,从而提高了网络对图像中重要特征的关注度,提升了模型的性能;有效解决网络梯度爆炸和数据不平衡的问题。最终实现基于超声图像的疾病例如脂肪肝的高效、准确、低成本、可重复性高的分级诊断,具有广泛的应用前景。1. The present invention provides an intelligent grading method and system for ultrasonic images based on a deep model. The automatic grading of ultrasonic images is realized based on the use of a deep convolutional neural network model. The constructed ResNeAt network contains residual blocks and convolutional block attention. module (CBAM) attention mechanism. The CBAM attention module is added before the first residual block and after the last residual block. The features of each channel are multiplied by the corresponding weight, and the feature map of the channel attention module is input to The spatial attention module performs two processes, namely the horizontal GAP and the vertical GAP, as well as the corresponding weight coefficients. The feature maps processed by the channel attention mechanism and the spatial attention mechanism are multiplied to obtain the final The feature map realizes adaptive weighting of different channels and spatial positions, allowing the network to focus on the most important features in channels and space, thereby increasing the network's attention to important features in the image and improving the model's performance. Performance; effectively solves the problems of network gradient explosion and data imbalance. Ultimately, efficient, accurate, low-cost, and highly reproducible hierarchical diagnosis of diseases such as fatty liver based on ultrasound images will be achieved, which has broad application prospects.
2、本发明的分级模型采用了Layer Normalization (Layer Norm),相比 BatchNormalization,Layer Norm在小样本上的表现更稳定,且Layer Norm 对每个样本的每个特征进行归一化,而不是整个批次,这使得它对于训练深度网络时抑制梯度消失问题非常有效;同时分级模型使用余弦退火学习率(CosineAnnealingLR)调节算法来降低学习率,并且使用改进的Focal Loss作为损失函数,降低数据不平衡带来的影响。2. The hierarchical model of the present invention adopts Layer Normalization (Layer Norm). Compared with BatchNormalization, Layer Norm performs more stably on small samples, and Layer Norm normalizes each feature of each sample instead of the entire batches, which makes it very effective for suppressing the vanishing gradient problem when training deep networks; at the same time, the hierarchical model uses the Cosine Annealing LR adjustment algorithm to reduce the learning rate, and uses improved Focal Loss as the loss function to reduce data imbalance impact.
3、本发明采用了多种设备采集的图像,图像差异性大,建立了一种普适高效的分级模型。3. The present invention uses images collected by a variety of devices, the images are very different, and establishes a universal and efficient classification model.
4、本发明的分级模型采用了深度可分离卷积,首先应用深度空间卷积,然后应用逐点卷积,这样可以大幅减少参数数量,提升了模型的速度。4. The hierarchical model of the present invention uses depth-separable convolution. First, depth spatial convolution is applied, and then point-wise convolution is applied. This can significantly reduce the number of parameters and improve the speed of the model.
根据下文描述的实施例,本公开的这些和其他优点将变得清楚,并且参考下文描述的实施例来阐明本公开的这些和其他优点。These and other advantages of the present disclosure will be apparent from and elucidated with reference to the embodiments described hereinafter.
附图说明Description of the drawings
现在将更详细地并且参考附图来描述本公开的实施例,其中:Embodiments of the present disclosure will now be described in greater detail and with reference to the accompanying drawings, in which:
图1是本发明实施例提供的基于深度模型的医学超声图像分级方法流程图;Figure 1 is a flow chart of a deep model-based medical ultrasound image classification method provided by an embodiment of the present invention;
图2是本发明实施例提供的ResNeAt网络结构示意图;Figure 2 is a schematic structural diagram of the ResNeAt network provided by an embodiment of the present invention;
图3是本发明实施例提供的对医学超声图像进行分级的服务器的示意图;Figure 3 is a schematic diagram of a server for grading medical ultrasound images provided by an embodiment of the present invention;
图4是本发明实施例提供的基于深度模型的医学超声图像分级系统示意图;Figure 4 is a schematic diagram of a deep model-based medical ultrasound image classification system provided by an embodiment of the present invention;
图5是一个示例系统,其包括代表可以实现本文描述的各种技术的一个或多个系统和/或设备的示例计算设备。Figure 5 is an example system that includes an example computing device representative of one or more systems and/or devices that may implement various techniques described herein.
具体实施方式Detailed ways
下面的说明提供用于充分理解和实施本公开的各种实施例的特定细节。本领域的技术人员应当理解,本公开的技术方案可以在没有这些细节中的一些的情况下被实施。在某些情况下,并没有示出或详细描述一些熟知的结构和功能,以避免不必要地使对本公开的实施例的描述模糊不清。在本公开中使用的术语以其最宽泛的合理方式来理解,即使其是结合本公开的特定实施例被使用的。The following description provides specific details for fully understanding and practicing various embodiments of the disclosure. It will be understood by those skilled in the art that the technical solutions of the present disclosure may be practiced without some of these details. In some instances, well-known structures and functions are not shown or described in detail to avoid unnecessarily obscuring the description of the embodiments of the present disclosure. The terms used in this disclosure are to be understood in their broadest reasonable manner, even if used in connection with specific embodiments of the disclosure.
本发明针对小样本问题使用数据增强RandAugment方法增加数据的多样性和数量;使用迁移学习方法提高分类性能并通过五折交叉验证得到更加可靠的模型评估结果,本发明通过注意力机制的使用,能够自适应地对不同通道和空间位置加权,解决类不平衡问题,提高了分类准确率,最终系统输出病变等级,可为医生提供辅助参考意见,提高临床诊断准确率与效率。The present invention uses the data enhancement RandAugment method to increase the diversity and quantity of data for small sample problems; uses the transfer learning method to improve classification performance and obtains more reliable model evaluation results through five-fold cross-validation. Through the use of the attention mechanism, the present invention can Adaptively weight different channels and spatial positions to solve the class imbalance problem and improve the classification accuracy. The final system outputs the lesion level, which can provide auxiliary reference opinions for doctors and improve the accuracy and efficiency of clinical diagnosis.
图1示意性示出了一种基于深度模型的超声图像智能分级方法100,包括如下步骤:Figure 1 schematically shows a depth model-based intelligent classification method 100 for ultrasound images, which includes the following steps:
步骤101:数据获取,获取超声图像;Step 101: Data acquisition, obtain ultrasound images;
步骤102:数据预处理,对超声图像进行预处理并且划分为训练集、验证集和测试集三个部分;Step 102: Data preprocessing, preprocess the ultrasound images and divide them into three parts: training set, verification set and test set;
步骤103:分级模型构建,基于ResNeAt网络模型,加入了残差块(residual block)和convolutional block attention module(CBAM)注意力机制,使用余弦退火学习率(CosineAnnealingLR)调节算法来降低学习率,并且使用改进的Focal Loss作为损失函数,降低数据不平衡带来的影响;Step 103: Hierarchical model construction, based on the ResNeAt network model, adding the residual block (residual block) and convolutional block attention module (CBAM) attention mechanism, using the Cosine Annealing Learning Rate (CosineAnnealingLR) adjustment algorithm to reduce the learning rate, and using Improved Focal Loss is used as the loss function to reduce the impact of data imbalance;
步骤104:迁移学习,采用ImageNet数据集对构建的ResNeAt网络进行预训练,将得到的模型迁移到预处理后的数据集上进行微调训练,从而得到最终的超声图像分级模型;Step 104: Transfer learning, use the ImageNet data set to pre-train the built ResNeAt network, and migrate the resulting model to the pre-processed data set for fine-tuning training to obtain the final ultrasound image classification model;
步骤105:将训练集和验证集的图像平均分成五份,其中每一份当作验证集,剩下四份当作训练集,通过步骤104得到的分级模型进行五次交叉验证,从而证明模型的泛化能力;Step 105: Divide the images of the training set and the verification set into five equal parts, each of which is used as a verification set, and the remaining four parts are used as a training set. Perform five cross-validations through the hierarchical model obtained in step 104 to prove the model. generalization ability;
步骤106:将测试集图像输入到训练好的ResNeAt网络中得到分级结果,测试网络是否达到临床使用的标准。Step 106: Input the test set images into the trained ResNeAt network to obtain the grading results, and test whether the network meets the standards for clinical use.
本实施例中,以肝组织病理学检查的脂肪肝分级为例;In this embodiment, the fatty liver classification of liver histopathological examination is taken as an example;
数据获取模块中,所述超声图像为腹部超声图像,通过GE Healthcare、SAMSUNG、TOSHIBA和HITACHI四种不同的设备采集获取的;In the data acquisition module, the ultrasound image is an abdominal ultrasound image, acquired through four different devices: GE Healthcare, SAMSUNG, TOSHIBA and HITACHI;
获取图像分辨率为720ⅹ576~1920ⅹ1080不等,通过影像医生对其进行标注,最终获得包括正常、轻度脂肪肝、中度脂肪肝各2000张图像,重度脂肪肝500张图像。The acquired image resolutions range from 720ⅹ576 to 1920ⅹ1080. The imaging doctor annotates them, and finally obtains 2000 images each of normal, mild fatty liver, moderate fatty liver, and 500 images of severe fatty liver.
所述数据预处理的过程包括如下步骤:The data preprocessing process includes the following steps:
步骤201:去除收集的超声图像中存在大量黑色区域的质量不佳的图像;Step 201: Remove poor quality images with a large number of black areas in the collected ultrasound images;
步骤202:裁剪掉每张超声图像中的黑色边框,只保留中间的扇形区域;Step 202: Crop the black border in each ultrasound image, leaving only the middle fan-shaped area;
步骤203:对所有图像进行灰度化处理;Step 203: Grayscale all images;
步骤204:对所有图像使用局部直方图自适应均衡化,增强对比度;Step 204: Use local histogram adaptive equalization on all images to enhance contrast;
步骤205:使用开源数据增强算法RandAugment得到增强后的重度脂肪肝图像2000张,具体为:将重度脂肪肝超声图像旋转90°/180°/270°,垂直和水平方向做镜像等;Step 205: Use the open source data enhancement algorithm RandAugment to obtain 2,000 enhanced images of severe fatty liver, specifically: rotate the ultrasound image of severe fatty liver 90°/180°/270°, mirror in vertical and horizontal directions, etc.;
步骤206:将处理好的所有图像按照8:1:1的比例划分为训练集、验证集和测试集三个部分。Step 206: Divide all the processed images into three parts: training set, verification set and test set according to the ratio of 8:1:1.
步骤103中,所述步骤103中构建的ResNeAt网络结构如图2所示,由四个不同数量的残差块、三个下采样层、注意力模块和最后的分类层组成。每个残差块由一个深度可分离卷积层、两个普通卷积和一个Layer Norm层组成,卷积核大小分别为,/>,/>,步长都为1,四个残差块的数量分别为3、3、9、3;下采样层由一个Layer Norm层和一个普通卷积层组成,卷积核大小为2/>2,步长为2;分类层由一个全局平均池化层、一个Layer Norm层和一个全连接层组成;在第一个残差块之前和最后一个残差块之后加入ConvolutionalBlock Attention Module(CBAM)注意力模块,包括一个通道注意力模块和一个空间注意力模块,使用余弦退火学习率(CosineAnnealingLR)调节算法来降低学习率,并且使用改进的Focal Loss作为损失函数,降低数据不平衡带来的影响。In step 103, the ResNeAt network structure constructed in step 103 is shown in Figure 2 and consists of four different numbers of residual blocks, three downsampling layers, an attention module and a final classification layer. Each residual block consists of a depth-separable convolution layer, two ordinary convolutions and a Layer Norm layer. The convolution kernel sizes are respectively ,/> ,/> , the step size is all 1, and the numbers of the four residual blocks are 3, 3, 9, and 3 respectively; the downsampling layer consists of a Layer Norm layer and an ordinary convolution layer, and the convolution kernel size is 2/> 2. The step size is 2; the classification layer consists of a global average pooling layer, a Layer Norm layer and a fully connected layer; ConvolutionalBlock Attention Module (CBAM) is added before the first residual block and after the last residual block. The attention module, including a channel attention module and a spatial attention module, uses the Cosine Annealing LR adjustment algorithm to reduce the learning rate, and uses improved Focal Loss as the loss function to reduce the impact of data imbalance. .
具体通过该模型处理超声图像数据如下:Specifically, the ultrasound image data is processed through this model as follows:
首先将步骤102中得到的图像(大小为HⅹWⅹC,H为高度,W为宽度,C为通道数)输入到第一个CBAM注意力模块的通道注意力模块,通过全局平均池化(Global AveragePooling,GAP)对每个通道进行池化操作得到一个大小为C的向量(每个元素代表一个通道的平均激活值),然后将得到的向量通过一个全连接(fully connected,FC)层映射成两个向量,分别表示通道的最大激活值和平均激活值,然后将两个向量分别进行 Softmax 激活,得到对应的权重系数,再将这两个权重系数分别应用到原始特征图上,即将这两个权重系数分别与对应通道的特征相乘。First, input the image obtained in step 102 (size HⅹWⅹC, H is height, W is width, C is the number of channels) into the channel attention module of the first CBAM attention module, and through global average pooling (Global Average Pooling, GAP) performs a pooling operation on each channel to obtain a vector of size C (each element represents the average activation value of a channel), and then maps the obtained vector into two through a fully connected (FC) layer. Vectors, respectively representing the maximum activation value and average activation value of the channel, then perform Softmax activation on the two vectors respectively to obtain the corresponding weight coefficients, and then apply these two weight coefficients to the original feature map respectively, that is, these two weights The coefficients are multiplied respectively by the features of the corresponding channels.
经过通道注意力模块的特征图输入到空间注意力模块中进行两次处理,分别是水平方向的GAP和竖直方向的GAP,得到两个大小为Hⅹ1ⅹ1和1ⅹWⅹ1的向量,将得到的两个向量分别通过两个全连接层进行映射。然后将两个向量进行 Softmax 激活,得到对应的权重系数,表示在水平和竖直方向的重要性。将这两个权重系数分别应用到原始特征图上,即将这两个权重系数与对应像素的特征相乘。最终,将经过通道注意力机制和空间注意力机制处理过的特征图相乘,得到最终的特征图,使网络能够在通道和空间上聚焦于最重要的特征。The feature map after the channel attention module is input to the spatial attention module for two processings, namely the horizontal GAP and the vertical GAP. Two vectors of size Hⅹ1ⅹ1 and 1ⅹWⅹ1 are obtained. The two vectors obtained are Mapping is performed through two fully connected layers respectively. Then perform Softmax activation on the two vectors to obtain the corresponding weight coefficients, which represent the importance in the horizontal and vertical directions. Apply these two weight coefficients to the original feature map respectively, that is, multiply these two weight coefficients with the characteristics of the corresponding pixels. Finally, the feature maps processed by the channel attention mechanism and the spatial attention mechanism are multiplied to obtain the final feature map, allowing the network to focus on the most important features in channel and space.
将经过第一个CBAM注意力模块所得特征图输入到残差块1,残差块1由一个深度可分离卷积层、两个普通卷积和一个Layer Norm层组成,卷积核大小分别为,/>,/>,步长都为1,残差块1重复3次。然后输入到下采样层,下采样层由一个Layer Norm层和一个普通卷积层组成,卷积核大小为2/>2,步长为2。然后输入到残差块2,残差块2与残差块1的结构相同,同样重复3次后经过下采样层输入到残差块3,残差块3与残差块1结构相同,重复9次后经过下采样层输入到残差块4,残差块4与残差块1结构相同,重复3次后输入到第二个CBAM注意力模块,进行与第一个CBAM注意力模块相同的操作,最终输入分类层。分类层由一个全局平均池化层、一个Layer Norm层和一个全连接层组成,输出最终的分类概率。所述使用余弦退火学习率(CosineAnnealingLR)调节算法来降低学习率,具体包括:The feature map obtained through the first CBAM attention module is input to the residual block 1. The residual block 1 consists of a depth-separable convolution layer, two ordinary convolutions and a Layer Norm layer. The convolution kernel sizes are respectively ,/> ,/> , the step size is all 1, and the residual block 1 is repeated 3 times. Then it is input to the downsampling layer. The downsampling layer consists of a Layer Norm layer and an ordinary convolution layer. The convolution kernel size is 2/> 2, the step size is 2. Then it is input to residual block 2. Residual block 2 has the same structure as residual block 1. It is repeated three times and then input to residual block 3 through the downsampling layer. Residual block 3 has the same structure as residual block 1. Repeat After 9 times, it is input to residual block 4 through the downsampling layer. Residual block 4 has the same structure as residual block 1. After repeated 3 times, it is input to the second CBAM attention module, and the process is the same as the first CBAM attention module. operation, and finally input into the classification layer. The classification layer consists of a global average pooling layer, a Layer Norm layer and a fully connected layer, and outputs the final classification probability. The use of the Cosine Annealing LR adjustment algorithm to reduce the learning rate specifically includes:
让学习率从一个较大的值开始,然后以余弦函数的形式逐渐减小的算法,能够在训练期间自动调整学习率,改善模型泛化能力,原理如下:,其中,i表示第几次运行,/>和/>分别表示学习率的最大值和最小值,定义了学习率的范围,/>则表示当前执行了多少个epoch,但是/>是在每个batch运行之后就会更新,而此时一个epoch还没有执行完,所以/>的值可以为小数,/>表示第i次重启,一共需要训练多少个epoch。这样在一个周期内,学习率将会按照余弦衰减的趋势从/>减小到/>,然后进入下一个周期。An algorithm that starts the learning rate from a larger value and then gradually decreases in the form of a cosine function can automatically adjust the learning rate during training and improve the model's generalization ability. The principle is as follows: , where i represents the number of runs, /> and/> Represents the maximum and minimum values of the learning rate respectively, defining the range of the learning rate, /> It indicates how many epochs are currently executed, but/> It will be updated after each batch is run, and at this time an epoch has not been executed yet, so/> The value of can be a decimal,/> Indicates how many epochs are needed for the i-th restart. In this way, within a cycle, the learning rate will follow the cosine decay trend from/> Reduce to/> , and then enter the next cycle.
所述采用ImageNet数据集对构建的ResNeAt网络进行预训练,包括:The ImageNet data set is used to pre-train the constructed ResNeAt network, including:
步骤401:首先采用ImageNet数据集对搭建好的ResNeAt网络进行预先训练,并将经过n次训练迭代后的模型进行保存;本实施例中,n优选10000。Step 401: First, use the ImageNet data set to pre-train the built ResNeAt network, and save the model after n training iterations; in this embodiment, n is preferably 10,000.
步骤402:将步骤401保存的模型迁移到经过步骤2预处理后的训练集和验证集上进行再训练和验证,从而得到最终的超声图像分级模型。Step 402: Migrate the model saved in step 401 to the training set and verification set preprocessed in step 2 for retraining and verification, thereby obtaining the final ultrasound image classification model.
所述步骤5中,将训练集和验证集的图像平均分成五份,其中每一份当作验证集,剩下四份当作训练集,通过步骤4得到的分级模型进行五次交叉验证;计算五次准确率及方差的平均值,从而证明模型的泛化能力。In the step 5, the images of the training set and the verification set are divided into five parts equally, each part is used as the verification set, and the remaining four parts are used as the training set, and five cross-validations are performed through the hierarchical model obtained in step 4; Calculate the average of the accuracy and variance five times to prove the generalization ability of the model.
所述步骤106中,将步骤2预处理后的测试集图像作为输入,得到ResNeAt网络分级结果;In step 106, the test set image preprocessed in step 2 is used as input to obtain the ResNeAt network classification result;
计算每个分级评价指标,包括准确率(Accuracy)、精确度(Precision)、召回率(Recall)、特异性(Specificity)、F1-score,测试网络是否达到临床使用的标准。Calculate each graded evaluation index, including Accuracy, Precision, Recall, Specificity, and F1-score, to test whether the network meets the standards for clinical use.
所述步骤106中的分级评价指标,具体为,评价公式为 其中,TP表示预测为正例,实际为正例;TN表示预测为负例,实际为负例;FP表示预测为正例,实际为负例;FN表示预测为正例,实际为负例。The grading evaluation index in step 106 is specifically, the evaluation formula is Among them, TP means that the predicted positive example is actually a positive example; TN means that the predicted negative example is actually a negative example; FP means that the predicted positive example is actually a negative example; FN means that the predicted positive example is actually a negative example.
图3示意性示出了根据本公开一个实施例对医学超声图像进行分级的服务器500的示意图。服务器500包括获取模块501、训练模块502和分级模块503。获取模块501被配置为获取医学超声图像和RGB图像数据集。训练模块502被配置为基于RGB图像数据集对构建好的分级模型进行预训练得到第一分级模型,将第一分级模型迁移至医学超声图像进行微调训练,得到第二分级模型。分级模块503被配置为基于待分级的医学超声图像和二分级模型得到分级结果图4示意性示出了根据本公开一个实施例对基于深度模型的医学超声图像分级系统600的示意图。FIG. 3 schematically illustrates a server 500 for classifying medical ultrasound images according to one embodiment of the present disclosure. The server 500 includes an acquisition module 501, a training module 502 and a grading module 503. The acquisition module 501 is configured to acquire medical ultrasound images and RGB image data sets. The training module 502 is configured to pre-train the constructed hierarchical model based on the RGB image data set to obtain a first hierarchical model, and migrate the first hierarchical model to medical ultrasound images for fine-tuning training to obtain a second hierarchical model. The classification module 503 is configured to obtain a classification result based on the medical ultrasound image to be classified and the two-classification model. FIG. 4 schematically illustrates a schematic diagram of a depth model-based medical ultrasound image classification system 600 according to an embodiment of the present disclosure.
图5图示了示例系统700,其包括代表可以实现本文描述的各种技术的一个或多个系统和/或设备的示例计算设备710。计算设备710可以是例如服务提供商的服务器、与客户端(例如,客户端设备)相关联的设备、片上系统、和/或任何其他合适的计算设备或计算系统。上面关于图4用于对医学图像进行分类的服务器500可以采取计算设备710的形式。替换地,用于对医学图像进行分类的服务器500可以以医学超声图像分级应用716的形式被实现为计算机程序。Figure 5 illustrates an example system 700 that includes an example computing device 710 representative of one or more systems and/or devices that may implement various techniques described herein. Computing device 710 may be, for example, a service provider's server, a device associated with a client (eg, a client device), a system on a chip, and/or any other suitable computing device or computing system. The server 500 described above with respect to FIG. 4 for classifying medical images may take the form of a computing device 710. Alternatively, the server 500 for classifying medical images may be implemented as a computer program in the form of a medical ultrasound image classification application 716 .
如图示的示例计算设备710包括彼此通信耦合的处理系统711、一个或多个计算机可读介质712以及一个或多个I/O接口713。尽管未示出,但是计算设备710还可以包括系统总线或其他数据和命令传送系统,其将各种组件彼此耦合。系统总线可以包括不同总线结构的任何一个或组合,所述总线结构诸如存储器总线或存储器控制器、外围总线、通用串行总线、和/或利用各种总线架构中的任何一种的处理器或局部总线。还构思了各种其他示例,诸如控制和数据线。The example computing device 710 as illustrated includes a processing system 711 , one or more computer-readable media 712 , and one or more I/O interfaces 713 communicatively coupled with each other. Although not shown, computing device 710 may also include a system bus or other data and command transfer system that couples various components to one another. The system bus may include any one or combination of different bus structures, such as a memory bus or memory controller, a peripheral bus, a universal serial bus, and/or a processor or processor utilizing any of the various bus architectures. local bus. Various other examples are also contemplated, such as control and data lines.
处理系统711代表使用硬件执行一个或多个操作的功能。因此,处理系统711被图示为包括可被配置为处理器、功能块等的硬件元件714。这可以包括在硬件中实现为专用集成电路或使用一个或多个半导体形成的其他逻辑器件。硬件元件714不受其形成的材料或其中采用的处理机构的限制。例如,处理器可以由(多个)半导体和/或晶体管(例如,电子集成电路(IC))组成。在这样的上下文中,处理器可执行指令可以是电子可执行指令。Processing system 711 represents functionality that uses hardware to perform one or more operations. Accordingly, processing system 711 is illustrated as including hardware elements 714 that may be configured as processors, functional blocks, and the like. This may include implementation in hardware as an application specific integrated circuit or other logic device formed using one or more semiconductors. Hardware element 714 is not limited by the materials from which it is formed or the processing mechanisms employed therein. For example, a processor may be composed of semiconductor(s) and/or transistors (eg, electronic integrated circuits (ICs)). In such context, processor-executable instructions may be electronically executable instructions.
计算机可读介质712被图示为包括存储器/存储装置715。存储器/存储装置715表示与一个或多个计算机可读介质相关联的存储器/存储容量。存储器/存储装置315可以包括易失性介质(诸如随机存取存储器(RAM))和/或非易失性介质(诸如只读存储器(ROM)、闪存、光盘、磁盘等)。存储器/存储装置715可以包括固定介质(例如,RAM、ROM、固定硬盘驱动器等)以及可移动介质(例如,闪存、可移动硬盘驱动器、光盘等)。计算机可读介质712可以以下面进一步描述的各种其他方式进行配置。Computer-readable medium 712 is illustrated as including memory/storage device 715 . Memory/storage 715 represents the memory/storage capacity associated with one or more computer-readable media. Memory/storage 315 may include volatile media (such as random access memory (RAM)) and/or non-volatile media (such as read only memory (ROM), flash memory, optical disks, magnetic disks, etc.). Memory/storage 715 may include fixed media (eg, RAM, ROM, fixed hard drive, etc.) as well as removable media (eg, flash memory, removable hard drive, optical disk, etc.). Computer-readable medium 712 may be configured in various other ways as described further below.
一个或多个I/O接口713代表允许用户向计算设备710输入命令和信息并且可选地还允许使用各种输入/输出设备将信息呈现给用户和/或其他组件或设备的功能。输入设备的示例包括键盘、光标控制设备(例如,鼠标)、麦克风(例如,用于语音输入)、扫描仪、触摸功能(例如,被配置为检测物理触摸的容性或其他传感器)、相机(例如,可以采用可见或不可见的波长(诸如红外频率)将不涉及触摸的运动检测为手势)等等。输出设备的示例包括显示设备(例如,监视器或投影仪)、扬声器、打印机、网卡、触觉响应设备等。因此,计算设备One or more I/O interfaces 713 represent functionality that allows a user to enter commands and information into computing device 710 and optionally also allows information to be presented to the user and/or other components or devices using various input/output devices. Examples of input devices include keyboards, cursor control devices (e.g., mice), microphones (e.g., for voice input), scanners, touch capabilities (e.g., capacitive or other sensors configured to detect physical touch), cameras ( For example, motion that does not involve touch can be detected as gestures using visible or invisible wavelengths (such as infrared frequencies), and so on. Examples of output devices include display devices (e.g., monitors or projectors), speakers, printers, network cards, haptic-responsive devices, and so on. Therefore, computing devices
710可以以下面进一步描述的各种方式进行配置以支持用户交互。710 may be configured in various ways to support user interaction as described further below.
计算设备710还包括医学超声图像分级716。医学超声图像分级716可以例如是关于图5描述的用于对医学图像进行分类的服务器500的软件实例,并且与计算设备710中的其他元件相组合地实现本文描述的技术。Computing device 710 also includes medical ultrasound image classification 716 . Medical ultrasound image classification 716 may, for example, be a software instance of server 500 for classifying medical images described with respect to FIG. 5 , and in combination with other elements in computing device 710 implement the techniques described herein.
本文可以在软件硬件元件或程序模块的一般上下文中描述各种技术。一般地,这些模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、元素、组件、数据结构等。本文所使用的术语“模块”,“功能”和“组件”一般表示软件、固件、硬件或其组合。本文描述的技术的特征是与平台无关的,意味着这些技术可以在具有各种处理器的各种计算平台上实现。Various techniques may be described herein in the general context of software, hardware elements, or program modules. Generally, these modules include routines, programs, objects, elements, components, data structures, etc. that perform specific tasks or implement specific abstract data types. As used herein, the terms "module," "function," and "component" generally mean software, firmware, hardware, or a combination thereof. The techniques described in this article are characterized by being platform-independent, meaning that they can be implemented on a variety of computing platforms with a variety of processors.
所描述的模块和技术的实现可以存储在某种形式的计算机可读介质上或者跨某种形式的计算机可读介质传输。计算机可读介质可以包括可由计算设备710访问的各种介质。作为示例而非限制,计算机可读介质可以包括“计算机可读存储介质”和“计算机可读信号介质”。与单纯的信号传输、载波或信号本身相反,“计算机可读存储介质”是指能够持久存储信息的介质和/或设备,和/或有形的存储装置。因此,计算机可读存储介质是指非信号承载介质。计算机可读存储介质包括诸如易失性和非易失性、可移动和不可移动介质和/或以适用于存储信息(诸如计算机可读指令、数据结构、程序模块、逻辑元件/电路或其他数Implementations of the described modules and techniques may be stored on or transmitted across some form of computer-readable media. Computer-readable media may include a variety of media that can be accessed by computing device 710 . By way of example, and not limitation, computer-readable media may include "computer-readable storage media" and "computer-readable signal media." As opposed to a mere transmission of a signal, a carrier wave, or the signal itself, "computer-readable storage medium" refers to a medium and/or device capable of persistent storage of information, and/or a tangible storage device. Therefore, computer-readable storage media refers to non-signal bearing media. Computer-readable storage media includes volatile and nonvolatile, removable and non-removable media and/or media suitable for storage of information such as computer-readable instructions, data structures, program modules, logic elements/circuits or other data.
据)的方法或技术实现的存储设备之类的硬件。计算机可读存储介质的示例可以包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字通用盘(DVD)或其他光学存储装置、硬盘、盒式磁带、磁带,磁盘存储装置或其他磁存储设备,或其他存储设备、有形介质或适于存储期望信息并可以由计算机访问的制品。Hardware such as storage devices implemented according to) methods or technologies. Examples of computer-readable storage media may include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical storage devices, hard drives, cassettes, magnetic tape, magnetic disk storage A device or other magnetic storage device, or other storage device, tangible medium, or article of manufacture suitable for storing the desired information and accessible by a computer.
“计算机可读信号介质”是指被配置为诸如经由网络将指令发送到计算设备710的硬件的信号承载介质。信号介质典型地可以将计算机可读指令、数据结构、程序模块或其他数据体现在诸如载波、数据信号或其他传输机制的调制数据信号中。信号介质还包括任何信息传递介质。术语“调制数据信号”是指以这样的方式对信号中的信息进行编码来设置或改变其特征中的一个或多个的信号。作为示例而非限制,通信介质包括诸如有线网络或直接连线的有线介质以及诸如声、RF、红外和其他无线介质的无线介质。"Computer-readable signal medium" refers to signal bearing medium configured as hardware to transmit instructions to computing device 710, such as via a network. Signal media typically may embody computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave, data signal, or other transport mechanism. Signal media also includes any information delivery media. The term "modulated data signal" refers to a signal that encodes information in the signal in such a way that it sets or changes one or more of its characteristics. By way of example, and not limitation, communication media include wired media, such as a wired network or direct wire, and wireless media, such as acoustic, RF, infrared, and other wireless media.
如前所述,硬件元件714和计算机可读介质712代表以硬件形式实现的指令、模块、可编程器件逻辑和/或固定器件逻辑,其在一些实施例中可以用于实现本文描述的技术的至少一些方面。硬件元件可以包括集成电路或片上系统、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、复杂可编程逻辑器件(CPLD)以及硅中的其他实现或其他硬件设备的组件。As previously described, hardware elements 714 and computer-readable media 712 represent instructions, modules, programmable device logic, and/or fixed device logic implemented in hardware that, in some embodiments, may be used to implement the techniques described herein. At least some aspects. Hardware elements may include integrated circuits or systems on a chip, application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), complex programmable logic devices (CPLDs), and other implementations in silicon or components of other hardware devices.
在这种上下文中,硬件元件可以作为执行由硬件元件所体现的指令、模块和/或逻辑所定义的程序任务的处理设备,以及用于存储用于执行的指令的硬件设备,例如,先前描述的计算机可读存储介质。In this context, a hardware element may serve as a processing device for performing program tasks defined by the instructions, modules, and/or logic embodied by the hardware element, as well as a hardware device for storing instructions for execution, e.g., previously described computer-readable storage media.
前述的组合也可以用于实现本文所述的各种技术和模块。因此,可以将软件、硬件或程序模块和其他程序模块实现为在某种形式的计算机可读存储介质上和/或由一个或多个硬件元件714体现的一个或多个指令和/或逻辑。计算设备710可以被配置为实现与软件和/或硬件模块相对应的特定指令和/或功能。因此,例如通过使用处理系统的计算机可读存储介质和/或硬件元件714,可以至少部分地以硬件来实现将模块实现为可由计算设备710作为软件执行的模块。指令和/或功能可以由一个或多个制品(例如,一个或多个计算设备710和/或处理系统711)可执行/可操作以实现本文所述的技术、模块和示例。Combinations of the foregoing may also be used to implement the various technologies and modules described herein. Thus, software, hardware, or program modules and other program modules may be implemented as one or more instructions and/or logic embodied on some form of computer-readable storage medium and/or embodied by one or more hardware elements 714 . Computing device 710 may be configured to implement specific instructions and/or functions corresponding to software and/or hardware modules. Thus, modules may be implemented, at least in part, in hardware, as modules executable by computing device 710 as software, such as by using computer-readable storage media and/or hardware elements 714 of the processing system. Instructions and/or functions may be executable/operable by one or more articles of manufacture (eg, one or more computing devices 710 and/or processing systems 711 ) to implement the techniques, modules, and examples described herein.
在各种实施方式中,计算设备710可以采用各种不同的配置。例如,计算设备710可以被实现为包括个人计算机、台式计算机、多屏幕计算机、膝上型计算机、上网本等的计算机类设备。计算设备710还可以被实现为包括诸如移动电话、便携式音乐播放器、便携式游戏设备、平板计算机、多屏幕计算机等移动设备的移动装置类设备。计算设备710还可以实现为电视类设备,其包括具有或连接到休闲观看环境中的一般地较大屏幕的设备。这些设备包括电视、机顶盒、游戏机等。In various implementations, computing device 710 may employ a variety of different configurations. For example, computing device 710 may be implemented as a computer-type device including a personal computer, a desktop computer, a multi-screen computer, a laptop computer, a netbook, and the like. Computing device 710 may also be implemented as a mobile device-type device including mobile devices such as mobile phones, portable music players, portable gaming devices, tablet computers, multi-screen computers, and the like. Computing device 710 may also be implemented as a television-type device, which includes devices having or being connected to generally larger screens in casual viewing environments. These devices include televisions, set-top boxes, game consoles, and more.
本文描述的技术可以由计算设备710的这些各种配置来支持,并且不限于本文所描述的技术的具体示例。功能还可以通过使用分布式系统、诸如通过如下所述的平台722而在“云”720上全部或部分地实现。The techniques described herein may be supported by these various configurations of computing device 710 and are not limited to the specific examples of the techniques described herein. Functionality may also be implemented in whole or in part on the "cloud" 720 through the use of distributed systems, such as through platform 722 as described below.
云720包括和/或代表用于资源724的平台722。平台722抽象云720的硬件(例如,服务器)和软件资源的底层功能。资源724可以包括在远离计算设备710的服务器上执行计算机处理时可以使用的应用和/或数据。资源724还可以包括通过因特网和/或通过诸如蜂窝或Wi-Fi网络的订户网络提供的服务。Cloud 720 includes and/or represents a platform 722 for resources 724 . Platform 722 abstracts the underlying functionality of cloud 720's hardware (eg, servers) and software resources. Resources 724 may include applications and/or data that may be used while performing computer processing on a server remote from computing device 710 . Resources 724 may also include services provided over the Internet and/or through subscriber networks, such as cellular or Wi-Fi networks.
平台722可以抽象资源和功能以将计算设备710与其他计算设备连接。平台722还可以用于抽象资源的分级以提供遇到的对于经由平台722实现的资源324的需求的相应水平的分级。因此,在互连设备实施例中,本文描述的功能的实现可以分布在整个系统700内。Platform 722 may abstract resources and functionality to connect computing device 710 with other computing devices. Platform 722 may also be used to abstract the hierarchy of resources to provide a corresponding level of hierarchy of requirements encountered for resources 324 implemented via platform 722 . Thus, in interconnected device embodiments, implementation of the functionality described herein may be distributed throughout system 700.
例如,功能可以部分地在计算设备710上以及通过抽象云720的功能的平台722来实现。For example, functionality may be implemented in part on computing device 710 and through platform 722 that abstracts the functionality of cloud 720 .
应当理解,为清楚起见,参考不同的功能模块对本公开的实施例进行了描述。然而,将明显的是,在不偏离本公开的情况下,每个功能模块的功能性可以被实施在单个模块中、实施在多个模块中或作为其他功能模块的一部分被实施。例如,被说明成由单个模块执行的功能性可以由多个不同的模块来执行。因此,对特定功能模块的参考仅被视为对用于提供所描述的功能性的适当模块的参考,而不是表明严格的逻辑或物理结构或组织。因此,本公开可以被实施在单个模块中,或者可以在物理上和功能上被分布在不同的模块和电路之间。It should be understood that, for clarity, embodiments of the present disclosure have been described with reference to different functional modules. However, it will be apparent that the functionality of each functional module may be implemented in a single module, in multiple modules, or as part of other functional modules without departing from the present disclosure. For example, functionality described as performed by a single module may be performed by multiple different modules. Therefore, references to specific functional modules are to be considered merely as references to the appropriate module for providing the described functionality and are not intended to indicate a strict logical or physical structure or organization. Thus, the present disclosure may be implemented in a single module, or may be physically and functionally distributed between different modules and circuits.
将理解的是,尽管第一、第二、第三等术语在本文中可以用来描述各种设备、元件、或部件,但是这些设备、元件、或部件不应当由这些术语限制。这些术语仅用来将一个设备、元件、或部件与另一个设备、元件、或部件相区分。It will be understood that, although the terms first, second, third, etc. may be used herein to describe various devices, elements, or components, these devices, elements, or components should not be limited by these terms. These terms are only used to distinguish one device, element, or section from another device, element, or section.
尽管已经结合一些实施例描述了本公开,但是其不旨在被限于在本文中所阐述的特定形式。相反,本公开的范围仅由所附权利要求来限制。附加地,尽管单独的特征可以被包括在不同的权利要求中,但是这些可以可能地被有利地组合,并且包括在不同权利要求中不暗示特征的组合不是可行的和/或有利的。特征在权利要求中的次序不暗示特征必须以其工作的任何特定次序。此外,在权利要求中,词“包括”不排除其他元件,并且不定冠词“一”或“一个”不排除多个。权利要求中的附图标记仅作为明确的例子被提供,不应该被解释为以任何方式限制权利要求的范围。Although the present disclosure has been described in connection with some embodiments, it is not intended to be limited to the specific forms set forth herein. Rather, the scope of the disclosure is limited only by the appended claims. Additionally, although individual features may be included in different claims, these may possibly be advantageously combined, and the inclusion in different claims does not imply that a combination of features is not feasible and/or advantageous. The order of features in the claims does not imply any specific order in which the features must be worked. Furthermore, in the claims, the word "comprising" does not exclude other elements, and the indefinite article "a" or "an" does not exclude a plurality. Reference signs in the claims are provided merely as a clear example and shall not be construed as limiting the scope of the claims in any way.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311674642.5A CN117392124B (en) | 2023-12-08 | 2023-12-08 | Medical ultrasonic image grading method, system, server, medium and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311674642.5A CN117392124B (en) | 2023-12-08 | 2023-12-08 | Medical ultrasonic image grading method, system, server, medium and device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117392124A CN117392124A (en) | 2024-01-12 |
CN117392124B true CN117392124B (en) | 2024-02-13 |
Family
ID=89470510
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311674642.5A Active CN117392124B (en) | 2023-12-08 | 2023-12-08 | Medical ultrasonic image grading method, system, server, medium and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117392124B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112381164A (en) * | 2020-11-20 | 2021-02-19 | 北京航空航天大学杭州创新研究院 | Ultrasound image classification method and device based on multi-branch attention mechanism |
CN112700434A (en) * | 2021-01-12 | 2021-04-23 | 苏州斯玛维科技有限公司 | Medical image classification method and classification device thereof |
CN114298234A (en) * | 2021-12-31 | 2022-04-08 | 深圳市铱硙医疗科技有限公司 | Brain medical image classification method and device, computer equipment and storage medium |
WO2023151199A1 (en) * | 2022-02-10 | 2023-08-17 | 华中科技大学同济医学院附属协和医院 | Method for constructing cross-attention mechanism-based fracture image fine recognition network |
CN117115452A (en) * | 2023-09-12 | 2023-11-24 | 澳门理工大学 | Controllable medical ultrasonic image denoising method, system and computer storage medium |
-
2023
- 2023-12-08 CN CN202311674642.5A patent/CN117392124B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112381164A (en) * | 2020-11-20 | 2021-02-19 | 北京航空航天大学杭州创新研究院 | Ultrasound image classification method and device based on multi-branch attention mechanism |
CN112700434A (en) * | 2021-01-12 | 2021-04-23 | 苏州斯玛维科技有限公司 | Medical image classification method and classification device thereof |
CN114298234A (en) * | 2021-12-31 | 2022-04-08 | 深圳市铱硙医疗科技有限公司 | Brain medical image classification method and device, computer equipment and storage medium |
WO2023151199A1 (en) * | 2022-02-10 | 2023-08-17 | 华中科技大学同济医学院附属协和医院 | Method for constructing cross-attention mechanism-based fracture image fine recognition network |
CN117115452A (en) * | 2023-09-12 | 2023-11-24 | 澳门理工大学 | Controllable medical ultrasonic image denoising method, system and computer storage medium |
Non-Patent Citations (1)
Title |
---|
柏志安 ; 朱铁兵 ; .基于影像云的智能辅助诊断在分级诊疗中的应用实践.中国数字医学.2020,(第07期),114-116. * |
Also Published As
Publication number | Publication date |
---|---|
CN117392124A (en) | 2024-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Horry et al. | COVID-19 detection through transfer learning using multimodal imaging data | |
Jifara et al. | Medical image denoising using convolutional neural network: a residual learning approach | |
WO2021159742A1 (en) | Image segmentation method and apparatus, and storage medium | |
WO2020215984A1 (en) | Medical image detection method based on deep learning, and related device | |
CN110009640B (en) | Methods, devices and readable media for processing cardiac videos | |
WO2020228570A1 (en) | Mammogram image processing method, apparatus and system, and medium | |
Chen et al. | General deep learning model for detecting diabetic retinopathy | |
CN110399929A (en) | Fundus image classification method, device, and computer-readable storage medium | |
CN113688862B (en) | Brain image classification method based on semi-supervised federal learning and terminal equipment | |
CN113705595B (en) | Method, device and storage medium for predicting the degree of abnormal cell metastasis | |
WO2022178997A1 (en) | Medical image registration method and apparatus, computer device, and storage medium | |
WO2021159811A1 (en) | Auxiliary diagnostic apparatus and method for glaucoma, and storage medium | |
CN111275686A (en) | Method and device for generating medical image data for artificial neural network training | |
Byra et al. | Impact of ultrasound image reconstruction method on breast lesion classification with deep learning | |
CN105023023B (en) | A kind of breast sonography characteristics of image self study extracting method for computer-aided diagnosis | |
CN110517249A (en) | Imaging method, device, equipment and medium of ultrasonic elasticity image | |
CN116309806A (en) | A CSAI-Grid RCNN-based method for locating regions of interest in thyroid ultrasound images | |
Lin et al. | Blu-gan: Bi-directional convlstm u-net with generative adversarial training for retinal vessel segmentation | |
WO2023202285A1 (en) | Image processing method and apparatus, computer device, and storage medium | |
CN113077440A (en) | Pathological image processing method and device, computer equipment and storage medium | |
CN114926482A (en) | DCE-MRI breast tumor segmentation method and device based on full convolution network | |
CN117392124B (en) | Medical ultrasonic image grading method, system, server, medium and device | |
CN113610177A (en) | A thyroid SPECT image classification method | |
WO2024062839A1 (en) | Identification device, identification method, and program | |
WO2023280221A1 (en) | Multi-scale 3d convolutional classification model for cross-sectional volumetric image recognition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |