CN117390381A - Method and device for predicting joint leakage of underground diaphragm walls based on deep learning - Google Patents

Method and device for predicting joint leakage of underground diaphragm walls based on deep learning Download PDF

Info

Publication number
CN117390381A
CN117390381A CN202311166997.3A CN202311166997A CN117390381A CN 117390381 A CN117390381 A CN 117390381A CN 202311166997 A CN202311166997 A CN 202311166997A CN 117390381 A CN117390381 A CN 117390381A
Authority
CN
China
Prior art keywords
leakage
data
information
construction
underground diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202311166997.3A
Other languages
Chinese (zh)
Other versions
CN117390381B (en
Inventor
郭彩霞
郭飞
王文正
何华飞
高前峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Beijing Municipal Construction Co Ltd
Beijing High Tech Municipal Engineering Technology Co Ltd
Original Assignee
Beijing University of Technology
Beijing Municipal Construction Co Ltd
Beijing High Tech Municipal Engineering Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology, Beijing Municipal Construction Co Ltd, Beijing High Tech Municipal Engineering Technology Co Ltd filed Critical Beijing University of Technology
Priority to CN202311166997.3A priority Critical patent/CN117390381B/en
Publication of CN117390381A publication Critical patent/CN117390381A/en
Application granted granted Critical
Publication of CN117390381B publication Critical patent/CN117390381B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/213Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/08Construction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Software Systems (AREA)
  • Business, Economics & Management (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Mathematical Physics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computing Systems (AREA)
  • Computational Linguistics (AREA)
  • Biophysics (AREA)
  • Evolutionary Biology (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Strategic Management (AREA)
  • Primary Health Care (AREA)
  • Marketing (AREA)
  • Computer Hardware Design (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Geometry (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

The invention provides a method and a device for predicting joint seam leakage of a underground diaphragm wall based on deep learning, and relates to the technical field of foundation pit support waterproofing, wherein the method comprises the steps of obtaining first information and second information; preprocessing and converting the first information to obtain underground continuous wall engineering space-time data; establishing a leakage quantity prediction model according to the underground continuous wall engineering space-time data and a preset deep learning algorithm; and obtaining a recommended scheme according to the second information and the leakage quantity prediction model. According to the invention, a leakage prediction model of the joint seam of the underground continuous wall is established based on a deep learning algorithm, and the leakage of the joint seam of the underground continuous wall is predicted by acquiring a stratum distribution map of a history project, a reinforcing scheme of the joint seam of the underground continuous wall and leakage monitoring data and a stratum distribution map of a current construction area, so that recommended construction parameters and corresponding leakage prediction values are obtained, and reliable leakage prediction and guidance of optimizing a construction scheme are provided for underground continuous wall construction.

Description

基于深度学习的地下连续墙接头缝渗漏预测方法及装置Method and device for predicting underground continuous wall joint joint leakage based on deep learning

技术领域Technical field

本发明涉及基坑支护防水技术领域,具体而言,涉及基于深度学习的地下连续墙接头缝渗漏预测方法及装置。The present invention relates to the technical field of foundation pit support and waterproofing, and specifically to a deep learning-based method and device for predicting joint leakage of underground diaphragm wall joints.

背景技术Background technique

近年来,随着我国城市化建设的全面展开,地下工程的建设施工技术也愈发成熟,对建设工程施工降水的限制要求日益严格。地下连续墙工程中的渗漏问题一直是工程质量和安全的重要隐患,需要对施工参数进行优化以降低渗漏风险,传统的方法通常是基于经验和专家知识,缺乏科学性和可靠性,且没有考虑多因素交互作用。In recent years, with the comprehensive development of urbanization in our country, the construction technology of underground engineering has become more and more mature, and the requirements for limiting precipitation in construction projects have become increasingly strict. The leakage problem in underground diaphragm wall projects has always been an important hidden danger for project quality and safety. Construction parameters need to be optimized to reduce the risk of leakage. Traditional methods are usually based on experience and expert knowledge, lacking scientificity and reliability, and Multi-factor interactions were not considered.

本发明提出一种基于深度学习的地下连续墙接头缝渗漏预测方法,通过历史项目的数据建立预测模型和决策规则,对施工参数进行优化和推荐。The present invention proposes a method for predicting underground continuous wall joint joint leakage based on deep learning. It establishes prediction models and decision rules based on historical project data to optimize and recommend construction parameters.

发明内容Contents of the invention

本发明的目的在于提供一种基于深度学习的地下连续墙接头缝渗漏预测方法及装置,以改善上述问题。为了实现上述目的,本发明采取的技术方案如下:The purpose of the present invention is to provide a method and device for predicting underground continuous wall joint joint leakage based on deep learning to improve the above problems. In order to achieve the above objects, the technical solutions adopted by the present invention are as follows:

第一方面,本申请提供了一种基于深度学习的地下连续墙接头缝渗漏预测方法,包括:In the first aspect, this application provides a method for predicting joint leakage of underground diaphragm wall joints based on deep learning, including:

获取第一信息和第二信息,所述第一信息包括历史项目的地层分布图、地下连续墙接缝加固方案和渗漏量监测数据,所述地下连续墙接缝加固方案包括采用高压旋喷注浆加固法施工的参数,所述第二信息包括当前施工区域的地层分布图;Obtain first information and second information. The first information includes stratigraphic distribution maps of historical projects, underground diaphragm wall joint reinforcement plans and leakage monitoring data. The underground diaphragm wall joint reinforcement plan includes the use of high-pressure jet spraying. Parameters for grouting reinforcement method construction, the second information includes the stratigraphic distribution map of the current construction area;

将所述第一信息进行预处理和转化得到地下连续墙工程时空数据,所述地下连续墙工程时空数据包括第一地层分布空间数据、渗漏信息时序数据和施工方案模型数据;Preprocess and convert the first information to obtain spatio-temporal data of the underground diaphragm wall project. The spatio-temporal data of the underground diaphragm wall project includes first stratum distribution spatial data, leakage information time series data and construction plan model data;

根据所述地下连续墙工程时空数据和预设的深度学习算法建立渗漏量预测模型;Establish a leakage prediction model based on the spatiotemporal data of the underground diaphragm wall project and the preset deep learning algorithm;

根据所述第二信息和所述渗漏量预测模型得到推荐方案,所述推荐方案包括至少一种建议施工参数和对应的渗漏量预测值。A recommended solution is obtained based on the second information and the leakage amount prediction model, and the recommended solution includes at least one recommended construction parameter and a corresponding leakage amount prediction value.

第二方面,本申请还提供了一种基于深度学习的地下连续墙接头缝渗漏预测装置,包括:In the second aspect, this application also provides a device for predicting joint leakage of underground diaphragm wall joints based on deep learning, including:

获取模块,用于获取第一信息和第二信息,所述第一信息包括历史项目的地层分布图、地下连续墙接缝加固方案和渗漏量监测数据,所述地下连续墙接缝加固方案包括采用高压旋喷注浆加固法施工的参数,所述第二信息包括当前施工区域的地层分布图;Acquisition module, used to acquire first information and second information. The first information includes stratigraphic distribution maps of historical projects, underground diaphragm wall joint reinforcement plans and leakage monitoring data. The underground diaphragm wall joint reinforcement plan Including parameters for construction using high-pressure jet grouting reinforcement method, and the second information includes a stratigraphic distribution map of the current construction area;

转化模块,用于将所述第一信息进行预处理和转化得到地下连续墙工程时空数据,所述地下连续墙工程时空数据包括第一地层分布空间数据、渗漏信息时序数据和施工方案模型数据;A conversion module for preprocessing and converting the first information to obtain spatiotemporal data of the underground diaphragm wall project. The spatiotemporal data of the underground diaphragm wall project includes first stratum distribution spatial data, leakage information time series data and construction plan model data. ;

构建模块,用于根据所述地下连续墙工程时空数据和预设的深度学习算法建立渗漏量预测模型;A building module for establishing a leakage prediction model based on the spatiotemporal data of the underground diaphragm wall project and the preset deep learning algorithm;

输出模块,用于根据所述第二信息和所述渗漏量预测模型得到推荐方案,所述推荐方案包括至少一种建议施工参数和对应的渗漏量预测值。An output module is configured to obtain a recommended solution based on the second information and the leakage amount prediction model, where the recommended solution includes at least one recommended construction parameter and a corresponding leakage amount prediction value.

本发明的有益效果为:The beneficial effects of the present invention are:

本发明基于深度学习算法建立地下连续墙接头缝渗漏预测模型,通过获取历史项目的地层分布图、地下连续墙接缝加固方案和渗漏量监测数据,以及当前施工区域的地层分布图,预测地下连续墙接头缝的渗漏量,从而得出建议的施工参数和对应的渗漏量预测值,为地下连续墙施工提供可靠的渗漏量预测和优化施工方案的指导,提高施工质量和安全性,节省施工成本和时间。This invention establishes an underground diaphragm wall joint joint leakage prediction model based on a deep learning algorithm. By obtaining the stratigraphic distribution map of historical projects, the underground diaphragm wall joint reinforcement plan and leakage monitoring data, as well as the stratigraphic distribution map of the current construction area, the prediction The leakage amount of underground diaphragm wall joints can be used to obtain recommended construction parameters and corresponding leakage amount prediction values, providing reliable leakage amount prediction and guidance for optimizing construction plans for underground diaphragm wall construction, and improving construction quality and safety. properties, saving construction costs and time.

本发明的其他特征和优点将在随后的说明书阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明实施例了解。本发明的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of embodiments of the invention. The objectives and other advantages of the invention may be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.

附图说明Description of the drawings

为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。In order to explain the technical solutions of the embodiments of the present invention more clearly, the drawings required to be used in the embodiments will be briefly introduced below. It should be understood that the following drawings only show some embodiments of the present invention and therefore do not It should be regarded as a limitation of the scope. For those of ordinary skill in the art, other relevant drawings can be obtained based on these drawings without exerting creative efforts.

图1为本发明实施例中所述的基于深度学习的地下连续墙接头缝渗漏预测方法流程示意图;Figure 1 is a schematic flow chart of the underground continuous wall joint joint leakage prediction method based on deep learning described in the embodiment of the present invention;

图2为本发明实施例中所述的基于深度学习的地下连续墙接头缝渗漏预测装置结构示意图。Figure 2 is a schematic structural diagram of the underground diaphragm wall joint joint leakage prediction device based on deep learning described in the embodiment of the present invention.

图中标记:1、获取模块;2、转化模块;21、第一处理单元;22、第二处理单元;23、第三处理单元;24、第一整合单元;241、第一赋值单元;242、第二赋值单元;243、第一计算单元;244、第一匹配单元;3、构建模块;31、第一提取单元;32、第四处理单元;33、第一建模单元;34、第二建模单元;4、输出模块;41、第五处理单元;42、第二计算单元;43、第六处理单元;431、第一构建单元;432、第七处理单元;433、第八处理单元;434、第九处理单元;44、第二整合单元。Labels in the figure: 1. Acquisition module; 2. Transformation module; 21. First processing unit; 22. Second processing unit; 23. Third processing unit; 24. First integration unit; 241. First assignment unit; 242 , the second assignment unit; 243. the first calculation unit; 244. the first matching unit; 3. building module; 31. the first extraction unit; 32. the fourth processing unit; 33. the first modeling unit; 34. 2. Modeling unit; 4. Output module; 41. Fifth processing unit; 42. Second calculation unit; 43. Sixth processing unit; 431. First construction unit; 432. Seventh processing unit; 433. Eighth processing Unit; 434, ninth processing unit; 44, second integration unit.

具体实施方式Detailed ways

为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments These are some embodiments of the present invention, rather than all embodiments. The components of the embodiments of the invention generally described and illustrated in the figures herein may be arranged and designed in a variety of different configurations. Therefore, the following detailed description of the embodiments of the invention provided in the appended drawings is not intended to limit the scope of the claimed invention, but rather to represent selected embodiments of the invention. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without making creative efforts fall within the scope of protection of the present invention.

应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。同时,在本发明的描述中,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。It should be noted that similar reference numerals and letters represent similar items in the following figures, therefore, once an item is defined in one figure, it does not need further definition and explanation in subsequent figures. Meanwhile, in the description of the present invention, the terms "first", "second", etc. are only used to differentiate the description and cannot be understood as indicating or implying relative importance.

实施例1:Example 1:

本实施例提供了一种基于深度学习的地下连续墙接头缝渗漏预测方法。This embodiment provides a method for predicting joint leakage of underground diaphragm wall joints based on deep learning.

参见图1,图中示出了本方法包括步骤S100、步骤S200、步骤S300和步骤S400。Referring to Figure 1, the figure shows that the method includes step S100, step S200, step S300 and step S400.

步骤S100、获取第一信息和第二信息,第一信息包括历史项目的地层分布图、地下连续墙接缝加固方案和渗漏量监测数据,地下连续墙接缝加固方案包括采用高压旋喷注浆加固法施工的参数,第二信息包括当前施工区域的地层分布图。Step S100, obtain the first information and the second information. The first information includes the stratigraphic distribution map of the historical project, the underground diaphragm wall joint reinforcement plan and the leakage monitoring data. The underground diaphragm wall joint reinforcement plan includes the use of high-pressure jet injection. The parameters of the slurry reinforcement method construction, and the second information includes the stratigraphic distribution map of the current construction area.

可以理解的是,在本步骤中,从历史项目中选取多个地下连续墙工程,获取它们的地层分布图、渗漏量监测数据和加固方案,然后通过分析和处理这些数据得到所需的第一信息。同时,通过现场勘测和数据采集获取当前施工区域的地层分布图作为第二信息。It can be understood that in this step, multiple underground diaphragm wall projects are selected from historical projects, their stratigraphic distribution maps, leakage monitoring data and reinforcement plans are obtained, and then the required third layer is obtained by analyzing and processing these data. a message. At the same time, the stratigraphic distribution map of the current construction area is obtained as second information through on-site survey and data collection.

步骤S200、将第一信息进行预处理和转化得到地下连续墙工程时空数据,地下连续墙工程时空数据包括第一地层分布空间数据、渗漏信息时序数据和施工方案模型数据。Step S200: Preprocess and transform the first information to obtain spatio-temporal data of the underground diaphragm wall project. The spatio-temporal data of the underground diaphragm wall project includes the first stratum distribution spatial data, leakage information time series data and construction plan model data.

可以理解的是,在本步骤中,将历史项目的地层分布图进行数字化处理,提取其中的地质特征,对渗漏监测数据进行时间序列分析和处理,提取其中的渗漏规律和趋势,对接缝加固方案进行分析和整理,提取其中的加固参数。通过处理和转化,得到的地下连续墙工程时空数据可以为后续的建模和预测提供基础数据支持。本步骤将历史项目中的地下连续墙工程时空数据进行预处理和转化,得到适用于建模和预测的数据格式和输入数据,从而提高了后续深度学习算法建模和预测的准确性和效率,为渗漏预测提供更加可靠的数据支持。需要说明的是,步骤S200包括步骤S210、步骤S220、步骤S230和步骤S240。It can be understood that in this step, the stratigraphic distribution map of the historical project is digitized, the geological features are extracted, the leakage monitoring data is analyzed and processed in time series, the leakage patterns and trends are extracted, and the connection is Analyze and sort out the seam reinforcement schemes and extract the reinforcement parameters. Through processing and transformation, the obtained spatiotemporal data of underground diaphragm wall engineering can provide basic data support for subsequent modeling and prediction. This step preprocesses and transforms the spatiotemporal data of underground continuous wall engineering in historical projects to obtain data formats and input data suitable for modeling and prediction, thereby improving the accuracy and efficiency of subsequent deep learning algorithm modeling and prediction. Provide more reliable data support for leakage prediction. It should be noted that step S200 includes step S210, step S220, step S230 and step S240.

步骤S210、将地层分布图转化为网格状数据结构得到第一地层分布空间数据,第一地层分布空间数据包括网格节点和相邻网格节点间的连线,网格节点表示地质单元,连线为两个地质单元之间的空间关系和相互作用关系。Step S210: Convert the stratigraphic distribution map into a grid-like data structure to obtain first stratigraphic distribution spatial data. The first stratigraphic distribution spatial data includes grid nodes and connections between adjacent grid nodes. The grid nodes represent geological units. The connection is the spatial relationship and interaction between two geological units.

可以理解的是,在本步骤中,通过将地层分布图进行离散化处理,将其转化为网格节点的形式,并通过连线描述相邻网格节点间的空间关系和相互作用关系,从而得到第一地层分布空间数据。优选地,将地层分布图划分为多个网格单元,每个单元表示一个地质单元,并将单元之间的相邻关系表示为连线。在连线的基础上,可以进一步计算相邻地质单元之间的距离、接触面积等参数,从而更准确地描述地下连续墙施工区域的地质特征。本步骤将地层分布图转化为网格状数据结构,使得地质单元的空间关系得以量化和可视化,从而支持后续的数据处理和分析。It can be understood that in this step, the stratigraphic distribution map is discretized, converted into the form of grid nodes, and the spatial relationship and interaction relationship between adjacent grid nodes are described through connections, thereby Obtain the first stratigraphic distribution spatial data. Preferably, the stratigraphic distribution map is divided into multiple grid cells, each cell represents a geological unit, and the adjacent relationship between the cells is represented as a connection line. On the basis of the connection, parameters such as the distance and contact area between adjacent geological units can be further calculated to more accurately describe the geological characteristics of the underground diaphragm wall construction area. This step converts the stratigraphic distribution map into a grid-like data structure, allowing the spatial relationship of geological units to be quantified and visualized, thereby supporting subsequent data processing and analysis.

步骤S220、将渗漏量监测数据转化为渗漏信息时序数据,渗漏信息时序数据中的每个时间点表示一个预设时间段内的渗漏量。Step S220: Convert the leakage amount monitoring data into leakage information time series data. Each time point in the leakage information time series data represents the leakage amount within a preset time period.

可以理解的是,在本步骤中,将渗漏量监测数据转换为渗漏信息时序数据,通过时间序列分析和处理得到每个时间点的渗漏量信息。优选地,通过将监测数据进行平滑处理,消除噪声干扰,然后利用时间序列模型对渗漏量数据进行拟合和预测。这些预测结果可以用于制定合理的施工参数和渗漏控制方案,从而提高工程质量和效率。It can be understood that in this step, the leakage amount monitoring data is converted into leakage information time series data, and the leakage amount information at each time point is obtained through time series analysis and processing. Preferably, the monitoring data is smoothed to eliminate noise interference, and then a time series model is used to fit and predict the leakage data. These prediction results can be used to formulate reasonable construction parameters and leakage control plans, thereby improving project quality and efficiency.

步骤S230、将地下连续墙接缝加固方案转换为施工方案模型数据,施工方案模型数据包括三维模型数据和施工参数,三维模型数据包括钻孔灌注桩三维图形和旋喷桩三维图形。Step S230: Convert the underground diaphragm wall joint reinforcement plan into construction plan model data. The construction plan model data includes three-dimensional model data and construction parameters. The three-dimensional model data includes three-dimensional graphics of bored piles and three-dimensional graphics of jet grouting piles.

可以理解的是,在本步骤中,三维模型数据包括钻孔灌注桩三维图形和旋喷桩三维图形,施工参数包括钻孔直径、灌注桩长度、旋喷桩直径、旋喷桩间距等。本步骤将地下连续墙接缝加固方案转化为可操作的三维模型和施工参数,为后续的建模和预测提供了重要的数据支持。基于三维模型数据和施工参数,计算出每个加固节点的空间坐标和加固长度,从而预测渗漏量。通过本步骤,可以将复杂的加固方案转化为可操作的数据形式,为后续的建模和预测提供了重要的数据支持。It can be understood that in this step, the three-dimensional model data includes the three-dimensional graphics of the bored piles and the three-dimensional graphics of the jet grouting piles, and the construction parameters include the diameter of the borehole, the length of the cast-in-place piles, the diameter of the jet grouting piles, the spacing between the jet grouting piles, etc. This step converts the underground diaphragm wall joint reinforcement plan into an operable three-dimensional model and construction parameters, which provides important data support for subsequent modeling and prediction. Based on the three-dimensional model data and construction parameters, the spatial coordinates and reinforcement length of each reinforcement node are calculated to predict the amount of leakage. Through this step, complex reinforcement plans can be converted into operable data forms, providing important data support for subsequent modeling and prediction.

步骤S240、将第一地层分布空间数据、渗漏信息时序数据和施工方案模型数据进行整合得到地下连续墙工程时空数据。Step S240: Integrate the first stratum distribution spatial data, leakage information time series data and construction plan model data to obtain underground diaphragm wall engineering spatiotemporal data.

可以理解的是,在本步骤中,本步骤将历史项目的地质数据、施工方案和渗漏监测数据整合,得到了更加全面和准确的地下连续墙工程时空数据,为后续的渗漏量预测和建议施工参数的推荐提供了更加准确和可靠的数据基础。同时,本步骤提高了数据的利用率和价值,为工程建设的高效和安全提供了支持。需要说明的是,步骤S240包括步骤S241、步骤S242、步骤S243和步骤S244。It can be understood that in this step, this step integrates the geological data, construction plans and leakage monitoring data of historical projects to obtain more comprehensive and accurate spatiotemporal data of underground diaphragm wall projects, which can provide guidance for subsequent leakage prediction and The recommendation of recommended construction parameters provides a more accurate and reliable data basis. At the same time, this step improves the utilization and value of data and provides support for the efficiency and safety of project construction. It should be noted that step S240 includes step S241, step S242, step S243 and step S244.

步骤S241、将第一地层分布空间数据每个网格节点的地质属性信息和坐标信息与渗漏量监测数据结合,将渗漏信息时序数据添加到对应的地质单元中,得到具有渗漏信息的地质单元数据。Step S241: Combine the geological attribute information and coordinate information of each grid node of the first formation distribution spatial data with the leakage amount monitoring data, add the leakage information time series data to the corresponding geological unit, and obtain the leakage amount monitoring data. Geological unit data.

可以理解的是,在本步骤中,将第一地层分布空间数据中每个网格节点的地质属性信息和坐标信息与渗漏量监测数据结合起来,将渗漏信息时序数据添加到对应的地质单元中,得到具有渗漏信息的地质单元数据。这样,通过将不同的数据整合在一起,形成了更加丰富和完整的地下连续墙工程时空数据,为后续的渗漏量预测和建议施工参数的推荐提供了更加准确和可靠的基础。It can be understood that in this step, the geological attribute information and coordinate information of each grid node in the first stratigraphic distribution spatial data are combined with the leakage amount monitoring data, and the leakage information time series data is added to the corresponding geological In the unit, the geological unit data with leakage information is obtained. In this way, by integrating different data, a richer and more complete spatiotemporal data of underground diaphragm wall engineering is formed, which provides a more accurate and reliable basis for subsequent leakage prediction and recommendation of recommended construction parameters.

步骤S242、将施工参数中的空隙体积信息添加至钻孔灌注桩三维图形,将施工参数中的浆孔口信息添加至旋喷桩三维图形,得到一体数据模型。Step S242: Add the void volume information in the construction parameters to the three-dimensional graph of the bored pile, and add the slurry orifice information in the construction parameters to the three-dimensional graph of the jet grouting pile to obtain an integrated data model.

可以理解的是,在地下连续墙工程中,钻孔灌注桩和旋喷桩是常用的加固方法,它们的施工参数包括空隙体积和浆孔口等。在本步骤中,将这些施工参数添加至三维图形中,得到一个包含完整施工信息的一体数据模型,有利于后续的建模和分析,并可用于支持更精确的渗漏量预测和建议施工参数的推荐。It can be understood that in underground diaphragm wall projects, bored piles and jet grouting piles are commonly used reinforcement methods, and their construction parameters include void volume and slurry orifices. In this step, these construction parameters are added to the three-dimensional graphics to obtain an integrated data model containing complete construction information, which is beneficial to subsequent modeling and analysis, and can be used to support more accurate leakage predictions and recommended construction parameters. recommendation.

步骤S243、根据一体数据模型和预设的有限元计算公式计算得到渗漏计算值。Step S243: Calculate the leakage calculation value according to the integrated data model and the preset finite element calculation formula.

可以理解的是,在本步骤中,对于一个具有复杂结构和多个参数的地下连续墙工程系统,在考虑地质单元物性、施工参数、渗漏量监测数据等多方面因素的影响下,可以采用有限元方法对其进行数值模拟和分析。该方法可以将工程系统分割为多个有限元单元,分别求解各个单元的渗透流场、应力场等相关参数,再将其组合成整个系统的有限元解。其中,渗透流场的计算公式为达西定律,应力场的计算公式为弹性力学方程,通过迭代计算可以得到最终的渗漏计算值。涉及的公式如下:It can be understood that in this step, for an underground diaphragm wall engineering system with a complex structure and multiple parameters, under the influence of many factors such as geological unit physical properties, construction parameters, leakage monitoring data, etc., the method can be adopted Finite element method is used to numerically simulate and analyze it. This method can divide the engineering system into multiple finite element units, solve the seepage flow field, stress field and other related parameters of each unit separately, and then combine them into the finite element solution of the entire system. Among them, the calculation formula of the seepage flow field is Darcy's law, and the calculation formula of the stress field is the elastic mechanics equation. The final leakage calculation value can be obtained through iterative calculation. The formulas involved are as follows:

q=K×A×(u2-u1)/L;q=K×A×(u 2 -u 1 )/L;

其中,q为单位时间内通过单位截面积的液体体积,K为渗透系数,A为截面积,u1和u2为液体在两端的压力,L为长度。Among them, q is the volume of liquid passing through unit cross-sectional area per unit time, K is the permeability coefficient, A is the cross-sectional area, u 1 and u 2 are the pressures of the liquid at both ends, and L is the length.

步骤S244、将地质单元数据、一体数据模型和渗漏计算值按照对应的地质单元进行匹配,得到地下连续墙工程时空数据。Step S244: Match the geological unit data, the integrated data model and the leakage calculation values according to the corresponding geological units to obtain the spatiotemporal data of the underground diaphragm wall project.

可以理解的是,在本步骤中,首先根据地质单元的坐标信息和渗漏信息时序数据,将渗漏信息添加到对应的地质单元数据中,然后将一体数据模型中的施工参数信息与地质单元数据进行匹配,确定每个地质单元的具体施工参数,最后将匹配后的地质单元数据、一体数据模型和渗漏计算值整合得到地下连续墙工程时空数据,为后续的渗漏量预测和建议施工参数的推荐提供支持。It can be understood that in this step, first, the leakage information is added to the corresponding geological unit data based on the coordinate information of the geological unit and the leakage information time series data, and then the construction parameter information in the integrated data model is combined with the geological unit The data is matched to determine the specific construction parameters of each geological unit. Finally, the matched geological unit data, integrated data model and leakage calculation values are integrated to obtain the spatiotemporal data of the underground diaphragm wall project, which can be used to predict subsequent leakage and recommend construction. Parameter recommendations are provided.

步骤S300、根据地下连续墙工程时空数据和预设的深度学习算法建立渗漏量预测模型。Step S300: Establish a leakage prediction model based on the spatiotemporal data of the underground diaphragm wall project and the preset deep learning algorithm.

可以理解的是,在本步骤中,渗漏量预测模型可以利用历史项目的地层分布图、地下连续墙接缝加固方案和渗漏量监测数据,以及当前施工区域的地层分布图,对渗漏量进行预测。通过训练和优化深度学习算法,可以更加准确地预测渗漏量。需要说明的是,步骤S300包括步骤S310、步骤S320、步骤S330和步骤S340。It can be understood that in this step, the leakage amount prediction model can use the stratigraphic distribution map of historical projects, underground diaphragm wall joint reinforcement plans and leakage amount monitoring data, as well as the stratigraphic distribution map of the current construction area, to predict leakage quantity prediction. By training and optimizing deep learning algorithms, leakage volume can be predicted more accurately. It should be noted that step S300 includes step S310, step S320, step S330 and step S340.

步骤S310、对第一地层分布空间数据和施工方案模型数据进行特征提取,并将提取得到的特征信息与渗漏信息时序数据对应得到特征集。Step S310: Feature extraction is performed on the first stratigraphic distribution spatial data and construction plan model data, and the extracted feature information is matched with the leakage information time series data to obtain a feature set.

可以理解的是,在本步骤中,对地下连续墙工程时空数据进行特征提取的过程,目的是为了将数据转化为计算机可以处理的形式。优选地,本步骤可以通过特征工程的方式来完成,包括从地层分布图、施工方案模型数据和渗漏信息时序数据中提取出与渗漏量有关的特征,比如地质单元的类型、厚度、深度等地质属性,以及施工方案的参数信息,如旋喷桩的直径、间距、深度等等。将这些特征信息与渗漏信息时序数据对应,得到一个特征集,供后续的深度学习算法进行处理和分析。It can be understood that in this step, the purpose of feature extraction on the spatiotemporal data of the underground diaphragm wall project is to transform the data into a form that can be processed by a computer. Preferably, this step can be completed through feature engineering, including extracting features related to leakage volume, such as the type, thickness, and depth of geological units, from stratigraphic distribution maps, construction plan model data, and leakage information time series data. and other geological attributes, as well as parameter information of the construction plan, such as the diameter, spacing, depth, etc. of the jet grouting piles. Corresponding these feature information with the leakage information time series data, a feature set is obtained for subsequent processing and analysis by the deep learning algorithm.

步骤S320、将特征集按照预设的比例划分为训练集和测试集。Step S320: Divide the feature set into a training set and a test set according to a preset ratio.

可以理解的是,在本步骤中,训练集是用来训练深度学习算法的数据集,测试集是用来评估训练出来的模型的预测准确度和泛化能力的数据集。优选地,可以将特征集中的数据按照80:20的比例分成训练集和测试集。其中,80%的数据作为训练集,用于训练模型;20%的数据作为测试集,用于测试模型的预测效果。It can be understood that in this step, the training set is a data set used to train the deep learning algorithm, and the test set is a data set used to evaluate the prediction accuracy and generalization ability of the trained model. Preferably, the data in the feature set can be divided into a training set and a test set in a ratio of 80:20. Among them, 80% of the data is used as a training set to train the model; 20% of the data is used as a test set to test the prediction effect of the model.

步骤S330、使用训练集对预设的第一循环神经网络模型进行训练,并使用预设的反向传播算法对第一循环神经网络模型进行优化得到初始模型。Step S330: Use the training set to train the preset first recurrent neural network model, and use the preset backpropagation algorithm to optimize the first recurrent neural network model to obtain an initial model.

可以理解的是,在本步骤中,第一循环神经网络模型是一种可以处理具有时间序列特征的数据的神经网络模型,通过使用反向传播算法可以优化模型参数以提高模型预测的准确性。优选地,在具体实施时,根据训练集的特征集和对应的渗漏信息时序数据,通过设定不同的模型超参数和训练轮数等参数,进行模型的训练和优化。在模型训练和优化过程中,使用均方误差来评估模型的预测准确性,以便在后续的测试集中对其进行验证。本步骤的有益效果在于,通过训练得到的初始模型可以提高渗漏量预测的准确性和精度,从而为后续的渗漏量预测和建议施工参数的推荐提供可靠的数据支持。It can be understood that in this step, the first recurrent neural network model is a neural network model that can process data with time series characteristics, and the model parameters can be optimized by using the back propagation algorithm to improve the accuracy of model prediction. Preferably, during specific implementation, the model is trained and optimized by setting different model hyperparameters, number of training rounds and other parameters based on the feature set of the training set and the corresponding leakage information time series data. During model training and optimization, the mean squared error is used to evaluate the model's predictive accuracy in order to validate it on subsequent test sets. The beneficial effect of this step is that the initial model obtained through training can improve the accuracy and accuracy of leakage prediction, thereby providing reliable data support for subsequent leakage prediction and recommendation of recommended construction parameters.

其中,在本步骤中使用的第一循环神经网络模型包括输入层、序列化层、长短期记忆网络层、全连接层和输出层。输入层用于接收第一地层分布空间数据、施工方案模型数据和渗漏信息时序数据。序列化层用于将输入数据进行序列化处理,使其符合循环神经网络的输入要求。长短期记忆网络层对序列化后的输入数据进行循环处理,提取序列中的特征信息。全连接层用于将长短期记忆网络层中提取的特征信息进行展平,并通过全连接层进行特征融合和映射,得到特征向量。输出层用于将特征向量映射到预设的渗漏量预测值空间中,得到对应的渗漏量预测值。Among them, the first recurrent neural network model used in this step includes an input layer, a serialization layer, a long short-term memory network layer, a fully connected layer and an output layer. The input layer is used to receive the first stratum distribution spatial data, construction plan model data and leakage information time series data. The serialization layer is used to serialize the input data so that it meets the input requirements of the recurrent neural network. The long short-term memory network layer performs cyclic processing on the serialized input data and extracts feature information in the sequence. The fully connected layer is used to flatten the feature information extracted from the long short-term memory network layer, and perform feature fusion and mapping through the fully connected layer to obtain the feature vector. The output layer is used to map the feature vector into the preset leakage prediction value space to obtain the corresponding leakage prediction value.

优选地,在本实施例中,根据数据集的实际情况,输入层神经元数量为3,分别对应第一地层分布空间数据、施工方案模型数据和渗漏信息时序数据。长短期记忆网络层神经元数量为64,对应数据集中的时间序列长度为64。全连接层神经元数量为128,这是根据数据复杂度和需求精度等因素进行设置的。最终输出层只有一个神经元,表示预测的渗漏量值。Preferably, in this embodiment, according to the actual situation of the data set, the number of neurons in the input layer is 3, which respectively correspond to the first stratum distribution spatial data, construction plan model data and leakage information time series data. The number of neurons in the long short-term memory network layer is 64, and the length of the time series in the corresponding data set is 64. The number of neurons in the fully connected layer is 128, which is set based on factors such as data complexity and required accuracy. The final output layer has only one neuron, representing the predicted leakage value.

步骤S340、使用测试集对初始模型进行验证,评估第一循环神经网络模型的性能表现,并根据评估结果进行模型的调参和优化得到渗漏量预测模型。Step S340: Use the test set to verify the initial model, evaluate the performance of the first recurrent neural network model, and perform parameter adjustment and optimization of the model based on the evaluation results to obtain a leakage prediction model.

可以理解的是,在本步骤中,使用预设的测试集对初始模型进行验证和评估,以了解第一循环神经网络模型的性能表现,包括模型的准确性、泛化能力、稳定性等。通过对模型性能的评估,可以确定模型的优化方向和需要调整的参数,进一步进行模型的调参和优化,以得到更加精确和可靠的渗漏量预测模型。It can be understood that in this step, the preset test set is used to verify and evaluate the initial model to understand the performance of the first recurrent neural network model, including the accuracy, generalization ability, stability, etc. of the model. By evaluating the model performance, the optimization direction of the model and the parameters that need to be adjusted can be determined, and the parameters of the model can be further adjusted and optimized to obtain a more accurate and reliable leakage prediction model.

步骤S400、根据第二信息和渗漏量预测模型得到推荐方案,推荐方案包括至少一种建议施工参数和对应的渗漏量预测值。Step S400: Obtain a recommended solution based on the second information and the leakage amount prediction model. The recommended solution includes at least one recommended construction parameter and a corresponding leakage amount prediction value.

可以理解的是,在本步骤中,根据当前施工区域的地层分布图,提取出相应的特征信息,然后输入到训练好的模型中,得到对应的渗漏量预测值。根据预测值和预设的阈值,可以判断当前施工区域的渗漏风险程度,进而提出建议的施工参数,以降低渗漏风险。需要说明的是,步骤S400包括步骤S410、步骤S420、步骤S430和步骤S440。It can be understood that in this step, the corresponding feature information is extracted based on the stratigraphic distribution map of the current construction area, and then input into the trained model to obtain the corresponding leakage amount prediction value. Based on the predicted values and preset thresholds, the degree of leakage risk in the current construction area can be judged, and then recommended construction parameters can be proposed to reduce the risk of leakage. It should be noted that step S400 includes step S410, step S420, step S430 and step S440.

步骤S410、将第二信息转化为网络状数据结构得到第二地层分布空间数据。Step S410: Convert the second information into a network-like data structure to obtain second stratigraphic distribution spatial data.

可以理解的是,在本步骤中,将第二信息中的地质分布图转化为网格状数据结构,每个网格节点表示一个地质单元,通过节点之间的连线表示地质单元之间的空间关系和相互作用关系,得到第二地层分布空间数据。本步骤将第二信息转化为网络状数据结构,使得地质分布信息可以被计算机处理和分析,为后续步骤提供了基础数据支持。It can be understood that in this step, the geological distribution map in the second information is converted into a grid-like data structure. Each grid node represents a geological unit, and the connection between the nodes represents the relationship between the geological units. Spatial relationships and interaction relationships are used to obtain the second stratigraphic distribution spatial data. This step converts the second information into a network-like data structure so that the geological distribution information can be processed and analyzed by computers, providing basic data support for subsequent steps.

步骤S420、将第二地层分布空间数据作为渗漏量预测模型的输入值得到渗漏量预测结果,渗漏量预测结果包括至少一种渗漏量预测值。Step S420: Use the second formation distribution spatial data as an input value of the leakage amount prediction model to obtain a leakage amount prediction result, where the leakage amount prediction result includes at least one leakage amount prediction value.

可以理解的是,在本步骤中,第二地层分布空间数据可以是通过地质勘探、地质测量等手段获取的地质信息数据,例如不同深度下的地层类型、厚度、孔隙度等参数。利用这些参数作为输入,渗漏量预测模型可以预测出相应深度下的渗漏量预测值,从而推荐适合的建议施工参数。It can be understood that in this step, the second formation distribution spatial data may be geological information data obtained through geological exploration, geological surveying and other means, such as formation type, thickness, porosity and other parameters at different depths. Using these parameters as input, the leakage prediction model can predict the leakage prediction value at the corresponding depth, thereby recommending suitable recommended construction parameters.

步骤S430、根据渗漏量预测结果和预设的决策规则,得出至少一种建议施工参数。Step S430: Obtain at least one recommended construction parameter based on the leakage amount prediction result and the preset decision rule.

可以理解的是,在本步骤中,根据渗漏量预测模型预测得到的渗漏量预测值,结合预设的决策规则,得出最优或者次优的施工参数组合,作为推荐方案的一部分。优选地,根据实际情况和需求,可以设置不同的决策规则,例如根据渗漏量预测值的大小,给出不同的建议施工参数组合,或者根据其他因素,如成本、可行性等,进行权衡和决策。需要说明的是,步骤S430包括步骤S431、步骤432、步骤S433和步骤S434。It can be understood that in this step, based on the leakage volume prediction value predicted by the leakage volume prediction model and combined with the preset decision rules, the optimal or suboptimal construction parameter combination is obtained as part of the recommended plan. Preferably, according to the actual situation and needs, different decision rules can be set, such as giving different combinations of recommended construction parameters based on the predicted value of leakage, or making trade-offs and calculations based on other factors, such as cost, feasibility, etc. decision making. It should be noted that step S430 includes step S431, step 432, step S433 and step S434.

步骤S431、根据第一信息和预设的决策树算法建立决策规则,并根据决策规则对地下连续墙接缝加固方案中的施工参数进行分类得到每个类别对应的施工参数范围。Step S431: Establish decision rules based on the first information and the preset decision tree algorithm, and classify the construction parameters in the underground diaphragm wall joint reinforcement plan according to the decision rules to obtain the construction parameter range corresponding to each category.

可以理解的是,在本步骤中,首先根据第一信息和预设的决策树算法建立决策规则,即对已知的施工信息进行分类和整理,制定出对应的决策规则,以便对地下连续墙接缝加固方案中的施工参数进行分类。决策树算法通常会将信息按照特定的属性和值进行分支,构建出一棵决策树,从而实现对信息的分类和决策。接着,根据决策规则,将地下连续墙接缝加固方案中的施工参数进行分类,得到每个类别对应的施工参数范围。例如,例如钻孔灌注桩长度、孔距、灌注深度、旋喷桩间距、喷射压力等,然后为每个类别设置对应的施工参数范围,例如钻孔灌注桩长度为10-15米、孔距为1.5-2.0米、灌注深度为20-25米等。最后,根据渗漏量预测结果和已知的施工参数分类,采用预设的决策规则进行推理,得出至少一种建议施工参数。例如,当预测出的渗漏量较大时,可以根据预设的决策规则推断出需要采用更严格的施工参数,例如增加钻孔灌注桩数量、缩小灌注孔距、增加灌注深度等。本步骤根据第二信息和预设的决策规则,快速有效地得出至少一种建议施工参数,提高了决策的准确性和效率,减少了试错和调整的成本,同时还可以优化施工方案,降低了工程风险和质量隐患。It can be understood that in this step, the decision rules are first established based on the first information and the preset decision tree algorithm, that is, the known construction information is classified and organized, and the corresponding decision rules are formulated to facilitate the construction of the underground continuous wall. The construction parameters in the joint reinforcement scheme are classified. Decision tree algorithms usually branch information according to specific attributes and values to build a decision tree to classify information and make decisions. Then, according to the decision rules, the construction parameters in the underground diaphragm wall joint reinforcement scheme are classified, and the construction parameter range corresponding to each category is obtained. For example, such as bored pile length, hole spacing, pouring depth, jet grouting pile spacing, spray pressure, etc., and then set the corresponding construction parameter range for each category, such as bored pile length of 10-15 meters, hole spacing The depth is 1.5-2.0 meters, the filling depth is 20-25 meters, etc. Finally, based on the leakage prediction results and known construction parameter classifications, preset decision rules are used for reasoning to obtain at least one recommended construction parameter. For example, when the predicted leakage amount is large, it can be inferred based on the preset decision rules that more stringent construction parameters need to be adopted, such as increasing the number of bored piles, reducing the spacing of grouting holes, increasing the depth of grouting, etc. This step quickly and effectively obtains at least one recommended construction parameter based on the second information and the preset decision rules, which improves the accuracy and efficiency of decision-making, reduces the cost of trial and error and adjustment, and can also optimize the construction plan. Engineering risks and quality hazards are reduced.

步骤S432、将施工参数范围划分为至少两个子区间,并对每个子区间进行参数敏感度分析得到分析结果,分析结果包括各参数对渗漏量预测结果的影响程度。Step S432: Divide the construction parameter range into at least two sub-intervals, and perform parameter sensitivity analysis on each sub-interval to obtain analysis results. The analysis results include the degree of influence of each parameter on the leakage amount prediction result.

可以理解的是,在本步骤中,敏感度分析是通过对施工参数的微小变化来评估其对渗漏量预测结果的影响程度。优选地,本实施例中采用全局敏感度分析,选择施工方案模型数据中的空隙体积和浆孔口参数以及地下连续墙工程时空数据中的第一地层分布空间数据作为变量进行分析,对多个参数对渗漏量预测结果的影响进行综合评估。在地下连续墙工程中,考虑了多个参数对渗漏量预测结果的影响,如渗透系数、水头、地下水位落差等。通过全局敏感度分析,可以得到每个参数对渗漏量预测结果的影响程度,从而可以了解每个参数的重要性。使用拉丁超立方抽样法,对参数空间进行采样,进行数值模拟,并计算出每个参数的主效应和交互效应,最终得到每个参数对模型输出的影响程度。这样可以在选择施工参数时,更加科学和合理,提高工程质量和效益。It can be understood that in this step, the sensitivity analysis is to evaluate the impact of small changes in construction parameters on the leakage prediction results. Preferably, in this embodiment, global sensitivity analysis is used to select the void volume and slurry orifice parameters in the construction plan model data and the first stratum distribution spatial data in the underground diaphragm wall engineering spatio-temporal data as variables for analysis, and multiple Comprehensive evaluation of the impact of parameters on leakage volume prediction results. In the underground diaphragm wall project, the influence of multiple parameters on the leakage prediction results is considered, such as permeability coefficient, water head, groundwater level difference, etc. Through global sensitivity analysis, the impact of each parameter on the leakage prediction results can be obtained, so that the importance of each parameter can be understood. Using the Latin hypercube sampling method, the parameter space is sampled, numerical simulation is performed, and the main effect and interaction effect of each parameter are calculated, and finally the degree of influence of each parameter on the model output is obtained. In this way, the selection of construction parameters can be more scientific and reasonable, and the quality and efficiency of the project can be improved.

步骤S433、根据渗漏量预测结果和分析结果,对每个子区间的施工参数进行优化,得到对应的渗漏量预测值。Step S433: According to the leakage amount prediction results and analysis results, the construction parameters of each sub-interval are optimized to obtain the corresponding leakage amount prediction value.

可以理解的是,优选地,在本实施例中将渗漏量预测模型应用于地下连续墙工程中,根据第二信息生成的第二地层分布空间数据作为模型的输入,利用拉丁超立方抽样法生成一组具有代表性的施工参数组合,然后将这些参数组合输入到渗漏量预测模型中,得到对应的渗漏量预测值。接着,通过全局敏感度分析方法对每个施工参数的影响程度进行评估,得到各参数的敏感度值。最后,根据渗漏量预测结果和各参数的敏感度值,对每个子区间的施工参数进行优化,得到对应的渗漏量预测值和最佳的施工参数组合。这个步骤的有益效果是可以提高地下连续墙工程的施工效率和施工质量,减少施工成本和工期,并且降低渗漏风险,提高地下连续墙的稳定性和安全性。。It can be understood that, preferably, in this embodiment, the leakage amount prediction model is applied to the underground diaphragm wall project, and the second stratigraphic distribution spatial data generated according to the second information is used as the input of the model, and the Latin hypercube sampling method is used. A set of representative construction parameter combinations are generated, and then these parameter combinations are input into the leakage prediction model to obtain the corresponding leakage prediction value. Then, the influence degree of each construction parameter is evaluated through the global sensitivity analysis method, and the sensitivity value of each parameter is obtained. Finally, based on the leakage prediction results and the sensitivity values of each parameter, the construction parameters of each sub-interval are optimized to obtain the corresponding leakage prediction value and the best construction parameter combination. The beneficial effect of this step is to improve the construction efficiency and construction quality of the underground diaphragm wall project, reduce the construction cost and construction period, reduce the risk of leakage, and improve the stability and safety of the underground diaphragm wall. .

步骤S434、根据优化后的施工参数和对应的渗漏量预测值,得到建议施工参数。Step S434: Obtain recommended construction parameters based on the optimized construction parameters and corresponding leakage prediction values.

可以理解的是,在本步骤中,根据前面的步骤所得到的渗漏量预测结果和分析结果,确定出每个子区间的最优施工参数,并得到建议施工参数。It can be understood that in this step, the optimal construction parameters for each sub-interval are determined based on the leakage prediction results and analysis results obtained in the previous steps, and recommended construction parameters are obtained.

步骤S440、将所有建议施工参数和对应的渗漏量预测值整合得到推荐方案。Step S440: Integrate all recommended construction parameters and corresponding leakage prediction values to obtain a recommended solution.

可以理解的是,在本步骤中,推荐方案包括多种建议施工参数,每种参数都对应着一个渗漏量预测值,以此为依据提供决策支持。本步骤通过整合各项建议参数和对应的渗漏量预测值,可以对多个方案进行综合评估,进而选择出最优的方案,从而有效地指导地下连续墙工程的施工实践,并提高其施工质量和效率。It can be understood that in this step, the recommended plan includes a variety of recommended construction parameters, and each parameter corresponds to a predicted value of leakage, which is used as a basis to provide decision support. In this step, by integrating various recommended parameters and corresponding leakage prediction values, multiple solutions can be comprehensively evaluated and the optimal solution can be selected, thereby effectively guiding the construction practice of underground diaphragm wall engineering and improving its construction. Quality and efficiency.

实施例2:Example 2:

如图2所示,本实施例提供了一种基于深度学习的地下连续墙接头缝渗漏预测装置,装置包括:As shown in Figure 2, this embodiment provides a device for predicting underground continuous wall joint joint leakage based on deep learning. The device includes:

获取模块1,用于获取第一信息和第二信息,第一信息包括历史项目的地层分布图、地下连续墙接缝加固方案和渗漏量监测数据,地下连续墙接缝加固方案包括采用高压旋喷注浆加固法施工的参数,第二信息包括当前施工区域的地层分布图。Acquisition module 1 is used to obtain the first information and the second information. The first information includes the stratigraphic distribution map of the historical project, the underground diaphragm wall joint reinforcement plan and the leakage monitoring data. The underground diaphragm wall joint reinforcement plan includes the use of high pressure The parameters of the jet grouting reinforcement method construction, the second information includes the stratigraphic distribution map of the current construction area.

转化模块2,用于将第一信息进行预处理和转化得到地下连续墙工程时空数据,地下连续墙工程时空数据包括第一地层分布空间数据、渗漏信息时序数据和施工方案模型数据。The conversion module 2 is used to preprocess and convert the first information to obtain the spatio-temporal data of the underground diaphragm wall project. The spatio-temporal data of the underground diaphragm wall project includes the first stratum distribution spatial data, leakage information time series data and construction plan model data.

构建模块3,用于根据地下连续墙工程时空数据和预设的深度学习算法建立渗漏量预测模型。Building module 3 is used to establish a leakage prediction model based on the spatiotemporal data of the underground diaphragm wall project and the preset deep learning algorithm.

输出模块4,用于根据第二信息和渗漏量预测模型得到推荐方案,推荐方案包括至少一种建议施工参数和对应的渗漏量预测值。The output module 4 is used to obtain a recommended plan based on the second information and the leakage amount prediction model. The recommended plan includes at least one recommended construction parameter and a corresponding leakage amount prediction value.

在本公开的一种具体实施方式中,转化模块2包括:In a specific implementation of the present disclosure, the conversion module 2 includes:

第一处理单元21,用于将地层分布图转化为网格状数据结构得到第一地层分布空间数据,第一地层分布空间数据包括网格节点和相邻网格节点间的连线,网格节点表示地质单元,连线为两个地质单元之间的空间关系和相互作用关系。The first processing unit 21 is used to convert the stratigraphic distribution map into a grid-like data structure to obtain first stratigraphic distribution spatial data. The first stratigraphic distribution spatial data includes grid nodes and connections between adjacent grid nodes. The grid Nodes represent geological units, and lines represent the spatial relationship and interaction between two geological units.

第二处理单元22,用于将渗漏量监测数据转化为渗漏信息时序数据,渗漏信息时序数据中的每个时间点表示一个预设时间段内的渗漏量。The second processing unit 22 is used to convert the leakage amount monitoring data into leakage information time series data. Each time point in the leakage information time series data represents the leakage amount within a preset time period.

第三处理单元23,用于将地下连续墙接缝加固方案转换为施工方案模型数据,施工方案模型数据包括三维模型数据和施工参数,三维模型数据包括钻孔灌注桩三维图形和旋喷桩三维图形。The third processing unit 23 is used to convert the underground diaphragm wall joint reinforcement plan into construction plan model data. The construction plan model data includes three-dimensional model data and construction parameters. The three-dimensional model data includes three-dimensional graphics of bored piles and three-dimensional jet grouting piles. graphics.

第一整合单元24,用于将第一地层分布空间数据、渗漏信息时序数据和施工方案模型数据进行整合得到地下连续墙工程时空数据。The first integration unit 24 is used to integrate the first stratum distribution spatial data, leakage information time series data and construction plan model data to obtain underground continuous wall engineering spatiotemporal data.

在本公开的一种具体实施方式中,第一整合单元24包括:In a specific implementation of the present disclosure, the first integration unit 24 includes:

第一赋值单元241,用于将第一地层分布空间数据每个网格节点的地质属性信息和坐标信息与渗漏量监测数据结合,将渗漏信息时序数据添加到对应的地质单元中,得到具有渗漏信息的地质单元数据。The first assignment unit 241 is used to combine the geological attribute information and coordinate information of each grid node of the first stratigraphic distribution spatial data with the leakage amount monitoring data, and add the leakage information time series data to the corresponding geological unit, to obtain Geological unit data with seepage information.

第二赋值单元242,用于将施工参数中的空隙体积信息添加至钻孔灌注桩三维图形,将施工参数中的浆孔口信息添加至旋喷桩三维图形,得到一体数据模型。The second assignment unit 242 is used to add the void volume information in the construction parameters to the three-dimensional graph of the bored pile, and add the slurry orifice information in the construction parameters to the three-dimensional graph of the jet grouting pile to obtain an integrated data model.

第一计算单元243,用于根据一体数据模型和预设的有限元计算公式计算得到渗漏计算值。The first calculation unit 243 is used to calculate the leakage calculation value according to the integrated data model and the preset finite element calculation formula.

第一匹配单元244,用于将地质单元数据、一体数据模型和渗漏计算值按照对应的地质单元进行匹配,得到地下连续墙工程时空数据。The first matching unit 244 is used to match the geological unit data, the integrated data model and the leakage calculation value according to the corresponding geological unit to obtain the spatiotemporal data of the underground diaphragm wall project.

在本公开的一种具体实施方式中,构建模块3包括:In a specific implementation of the present disclosure, building module 3 includes:

第一提取单元31,用于对第一地层分布空间数据和施工方案模型数据进行特征提取,并将提取得到的特征信息与渗漏信息时序数据对应得到特征集。The first extraction unit 31 is used to extract features from the first stratigraphic distribution spatial data and construction plan model data, and associate the extracted feature information with the leakage information time series data to obtain a feature set.

第四处理单元32,用于将特征集按照预设的比例划分为训练集和测试集。The fourth processing unit 32 is used to divide the feature set into a training set and a test set according to a preset ratio.

第一建模单元33,使用训练集对预设的第一循环神经网络模型进行训练,并使用预设的反向传播算法对第一循环神经网络模型进行优化得到初始模型。The first modeling unit 33 uses the training set to train the preset first recurrent neural network model, and uses the preset backpropagation algorithm to optimize the first recurrent neural network model to obtain an initial model.

第二建模单元34,使用测试集对初始模型进行验证,评估第一循环神经网络模型的性能表现,并根据评估结果进行模型的调参和优化得到渗漏量预测模型。The second modeling unit 34 uses the test set to verify the initial model, evaluates the performance of the first recurrent neural network model, and performs parameter adjustment and optimization of the model based on the evaluation results to obtain a leakage prediction model.

在本公开的一种具体实施方式中,输出模块4包括:In a specific implementation of the present disclosure, the output module 4 includes:

第五处理单元41,用于将第二信息转化为网络状数据结构得到第二地层分布空间数据。The fifth processing unit 41 is used to convert the second information into a network-like data structure to obtain the second stratigraphic distribution spatial data.

第二计算单元42,用于将第二地层分布空间数据作为渗漏量预测模型的输入值得到渗漏量预测结果,渗漏量预测结果包括至少一种渗漏量预测值。The second calculation unit 42 is configured to use the second formation distribution spatial data as an input value of the leakage amount prediction model to obtain a leakage amount prediction result, where the leakage amount prediction result includes at least one leakage amount prediction value.

第六处理单元43,用于根据渗漏量预测结果和预设的决策规则,得出至少一种建议施工参数。The sixth processing unit 43 is used to derive at least one recommended construction parameter based on the leakage amount prediction results and the preset decision rules.

第二整合单元44,用于将所有建议施工参数和对应的渗漏量预测值整合得到推荐方案。The second integration unit 44 is used to integrate all recommended construction parameters and corresponding leakage prediction values to obtain a recommended solution.

在本公开的一种具体实施方式中,第六处理单元43包括:In a specific implementation of the present disclosure, the sixth processing unit 43 includes:

第一构建单元431,用于根据第一信息和预设的决策树算法建立决策规则,并根据决策规则对地下连续墙接缝加固方案中的施工参数进行分类得到每个类别对应的施工参数范围。The first construction unit 431 is used to establish decision rules based on the first information and the preset decision tree algorithm, and classify the construction parameters in the underground diaphragm wall joint reinforcement plan according to the decision rules to obtain the construction parameter range corresponding to each category. .

第七处理单元432,用于将施工参数范围划分为至少两个子区间,并对每个子区间进行参数敏感度分析得到分析结果,分析结果包括各参数对渗漏量预测结果的影响程度。The seventh processing unit 432 is used to divide the construction parameter range into at least two sub-intervals, and perform parameter sensitivity analysis on each sub-interval to obtain analysis results. The analysis results include the degree of influence of each parameter on the leakage amount prediction result.

第八处理单元433,用于根据渗漏量预测结果和分析结果,对每个子区间的施工参数进行优化,得到对应的渗漏量预测值。The eighth processing unit 433 is used to optimize the construction parameters of each sub-interval based on the leakage amount prediction results and analysis results to obtain the corresponding leakage amount prediction value.

第九处理单元434,用于根据优化后的施工参数和对应的渗漏量预测值,得到建议施工参数。The ninth processing unit 434 is used to obtain recommended construction parameters based on the optimized construction parameters and corresponding leakage prediction values.

需要说明的是,关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。It should be noted that, regarding the device in the above embodiment, the specific manner in which each module performs operations has been described in detail in the embodiment of the method, and will not be described in detail here.

以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection scope of the present invention.

以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。The above are only specific embodiments of the present invention, but the protection scope of the present invention is not limited thereto. Any person familiar with the technical field can easily think of changes or substitutions within the technical scope disclosed by the present invention. should be covered by the protection scope of the present invention. Therefore, the protection scope of the present invention should be subject to the protection scope of the claims.

Claims (10)

1.一种基于深度学习的地下连续墙接头缝渗漏预测方法,其特征在于,包括:1. A method for predicting joint leakage of underground diaphragm walls based on deep learning, which is characterized by including: 获取第一信息和第二信息,所述第一信息包括历史项目的地层分布图、地下连续墙接缝加固方案和渗漏量监测数据,所述地下连续墙接缝加固方案包括采用高压旋喷注浆加固法施工的参数,所述第二信息包括当前施工区域的地层分布图;Obtain first information and second information. The first information includes stratigraphic distribution maps of historical projects, underground diaphragm wall joint reinforcement plans and leakage monitoring data. The underground diaphragm wall joint reinforcement plan includes the use of high-pressure jet spraying. Parameters for the grouting reinforcement method construction, the second information includes the stratigraphic distribution map of the current construction area; 将所述第一信息进行预处理和转化得到地下连续墙工程时空数据,所述地下连续墙工程时空数据包括第一地层分布空间数据、渗漏信息时序数据和施工方案模型数据;Preprocess and convert the first information to obtain spatio-temporal data of the underground diaphragm wall project. The spatio-temporal data of the underground diaphragm wall project includes first stratum distribution spatial data, leakage information time series data and construction plan model data; 根据所述地下连续墙工程时空数据和预设的深度学习算法建立渗漏量预测模型;Establish a leakage prediction model based on the spatiotemporal data of the underground diaphragm wall project and the preset deep learning algorithm; 根据所述第二信息和所述渗漏量预测模型得到推荐方案,所述推荐方案包括至少一种建议施工参数和对应的渗漏量预测值。A recommended solution is obtained based on the second information and the leakage amount prediction model, and the recommended solution includes at least one recommended construction parameter and a corresponding leakage amount prediction value. 2.根据权利要求1所述的基于深度学习的地下连续墙接头缝渗漏预测方法,其特征在于,将所述第一信息进行预处理和转化得到地下连续墙工程时空数据,包括:2. The deep learning-based underground diaphragm wall joint joint leakage prediction method according to claim 1, characterized in that the first information is preprocessed and transformed to obtain the underground diaphragm wall engineering spatiotemporal data, including: 将所述地层分布图转化为网格状数据结构得到第一地层分布空间数据,所述第一地层分布空间数据包括网格节点和相邻所述网格节点间的连线,所述网格节点表示地质单元,所述连线为两个所述地质单元之间的空间关系和相互作用关系;The formation distribution map is converted into a grid-like data structure to obtain first formation distribution spatial data. The first formation distribution spatial data includes grid nodes and connections between adjacent grid nodes. The grid The nodes represent geological units, and the connection lines are the spatial relationship and interaction relationship between the two geological units; 将所述渗漏量监测数据转化为渗漏信息时序数据,所述渗漏信息时序数据中的每个时间点表示一个预设时间段内的渗漏量;Convert the leakage amount monitoring data into leakage information time series data, where each time point in the leakage information time series data represents the leakage amount within a preset time period; 将所述地下连续墙接缝加固方案转换为施工方案模型数据,所述施工方案模型数据包括三维模型数据和施工参数,所述三维模型数据包括钻孔灌注桩三维图形和旋喷桩三维图形;Convert the underground diaphragm wall joint reinforcement plan into construction plan model data. The construction plan model data includes three-dimensional model data and construction parameters. The three-dimensional model data includes three-dimensional graphics of bored piles and three-dimensional graphics of jet grouting piles; 将所述第一地层分布空间数据、所述渗漏信息时序数据和所述施工方案模型数据进行整合得到地下连续墙工程时空数据。The first stratigraphic distribution spatial data, the leakage information time series data and the construction plan model data are integrated to obtain the underground diaphragm wall project spatio-temporal data. 3.根据权利要求2所述的基于深度学习的地下连续墙接头缝渗漏预测方法,其特征在于,将所述第一地层分布空间数据、所述渗漏信息时序数据和所述施工方案模型数据进行整合得到地下连续墙工程时空数据,包括:3. The deep learning-based underground diaphragm wall joint joint leakage prediction method according to claim 2, characterized in that the first stratum distribution spatial data, the leakage information time series data and the construction plan model are The data is integrated to obtain the spatiotemporal data of the underground diaphragm wall project, including: 将所述第一地层分布空间数据每个网格节点的地质属性信息和坐标信息与所述渗漏量监测数据结合,将渗漏信息时序数据添加到对应的地质单元中,得到具有渗漏信息的地质单元数据;Combine the geological attribute information and coordinate information of each grid node of the first formation distribution spatial data with the leakage amount monitoring data, and add the leakage information time series data to the corresponding geological unit to obtain leakage information. Geological unit data; 将所述施工参数中的空隙体积信息添加至所述钻孔灌注桩三维图形,将所述施工参数中的浆孔口信息添加至所述旋喷桩三维图形,得到一体数据模型;Add the void volume information in the construction parameters to the three-dimensional graph of the bored pile, and add the slurry orifice information in the construction parameters to the three-dimensional graph of the jet grouting pile to obtain an integrated data model; 根据所述一体数据模型和预设的有限元计算公式计算得到渗漏计算值;The leakage calculation value is calculated according to the integrated data model and the preset finite element calculation formula; 将所述地质单元数据、所述一体数据模型和所述渗漏计算值按照对应的所述地质单元进行匹配,得到地下连续墙工程时空数据。The geological unit data, the integrated data model and the leakage calculation value are matched according to the corresponding geological unit to obtain the spatiotemporal data of the underground diaphragm wall project. 4.根据权利要求1所述的基于深度学习的地下连续墙接头缝渗漏预测方法,其特征在于,根据所述第二信息和所述渗漏量预测模型得到推荐方案,所述推荐方案包括至少一种建议施工参数和对应的渗漏量预测值,包括:4. The deep learning-based method for predicting underground diaphragm wall joint joint leakage according to claim 1, characterized in that a recommended solution is obtained according to the second information and the leakage amount prediction model, and the recommended solution includes At least one recommended construction parameter and corresponding leakage prediction value, including: 将所述第二信息转化为网络状数据结构得到第二地层分布空间数据;Convert the second information into a network-like data structure to obtain second stratigraphic distribution spatial data; 将所述第二地层分布空间数据作为所述渗漏量预测模型的输入值得到渗漏量预测结果,所述渗漏量预测结果包括至少一种渗漏量预测值;Using the second formation distribution spatial data as the input value of the leakage prediction model, a leakage prediction result is obtained, and the leakage prediction result includes at least one leakage prediction value; 根据所述渗漏量预测结果和预设的决策规则,得出至少一种建议施工参数;According to the leakage amount prediction results and the preset decision rules, at least one recommended construction parameter is obtained; 将所有所述建议施工参数和对应的所述渗漏量预测值整合得到推荐方案。All the recommended construction parameters and the corresponding predicted leakage values are integrated to obtain a recommended solution. 5.根据权利要求4所述的基于深度学习的地下连续墙接头缝渗漏预测方法,其特征在于,根据所述渗漏量预测结果和预设的决策规则,得出至少一种建议施工参数,包括:5. The method for predicting joint leakage of underground diaphragm wall joints based on deep learning according to claim 4, characterized in that at least one recommended construction parameter is obtained based on the leakage prediction result and the preset decision rule. ,include: 根据所述第一信息和预设的决策树算法建立决策规则,并根据所述决策规则对所述地下连续墙接缝加固方案中的施工参数进行分类得到每个类别对应的施工参数范围;Establish decision rules based on the first information and a preset decision tree algorithm, and classify the construction parameters in the underground diaphragm wall joint reinforcement scheme according to the decision rules to obtain the construction parameter range corresponding to each category; 将所述施工参数范围划分为至少两个子区间,并对每个所述子区间进行参数敏感度分析得到分析结果,所述分析结果包括各参数对所述渗漏量预测结果的影响程度;Divide the construction parameter range into at least two sub-intervals, and perform parameter sensitivity analysis on each of the sub-intervals to obtain analysis results, where the analysis results include the degree of influence of each parameter on the leakage amount prediction result; 根据所述渗漏量预测结果和所述分析结果,对每个所述子区间的施工参数进行优化,得到对应的渗漏量预测值;According to the leakage amount prediction results and the analysis results, the construction parameters of each sub-interval are optimized to obtain the corresponding leakage amount prediction value; 根据优化后的所述施工参数和对应的渗漏量预测值,得到建议施工参数。Based on the optimized construction parameters and corresponding leakage prediction values, recommended construction parameters are obtained. 6.一种基于深度学习的地下连续墙接头缝渗漏预测装置,其特征在于,包括:6. A device for predicting joint leakage of underground diaphragm walls based on deep learning, which is characterized by including: 获取模块,用于获取第一信息和第二信息,所述第一信息包括历史项目的地层分布图、地下连续墙接缝加固方案和渗漏量监测数据,所述地下连续墙接缝加固方案包括采用高压旋喷注浆加固法施工的参数,所述第二信息包括当前施工区域的地层分布图;Acquisition module, used to acquire first information and second information. The first information includes stratigraphic distribution maps of historical projects, underground diaphragm wall joint reinforcement plans and leakage monitoring data. The underground diaphragm wall joint reinforcement plan Including parameters for construction using high-pressure jet grouting reinforcement method, and the second information includes a stratigraphic distribution map of the current construction area; 转化模块,用于将所述第一信息进行预处理和转化得到地下连续墙工程时空数据,所述地下连续墙工程时空数据包括第一地层分布空间数据、渗漏信息时序数据和施工方案模型数据;A conversion module for preprocessing and converting the first information to obtain spatio-temporal data of the underground diaphragm wall project. The spatio-temporal data of the underground diaphragm wall project includes first stratum distribution spatial data, leakage information time series data and construction plan model data. ; 构建模块,用于根据所述地下连续墙工程时空数据和预设的深度学习算法建立渗漏量预测模型;A building module for establishing a leakage prediction model based on the spatiotemporal data of the underground diaphragm wall project and the preset deep learning algorithm; 输出模块,用于根据所述第二信息和所述渗漏量预测模型得到推荐方案,所述推荐方案包括至少一种建议施工参数和对应的渗漏量预测值。An output module is configured to obtain a recommended solution based on the second information and the leakage amount prediction model, where the recommended solution includes at least one recommended construction parameter and a corresponding leakage amount prediction value. 7.根据权利要求6所述的基于深度学习的地下连续墙接头缝渗漏预测装置,其特征在于,所述转化模块包括:7. The deep learning-based underground diaphragm wall joint joint leakage prediction device according to claim 6, characterized in that the conversion module includes: 第一处理单元,用于将所述地层分布图转化为网格状数据结构得到第一地层分布空间数据,所述第一地层分布空间数据包括网格节点和相邻所述网格节点间的连线,所述网格节点表示地质单元,所述连线为两个所述地质单元之间的空间关系和相互作用关系;The first processing unit is used to convert the stratigraphic distribution map into a grid-like data structure to obtain first stratigraphic distribution spatial data. The first stratigraphic distribution spatial data includes grid nodes and adjacent grid nodes. Connection lines, the grid nodes represent geological units, and the connection lines are the spatial relationship and interaction relationship between the two geological units; 第二处理单元,用于将所述渗漏量监测数据转化为渗漏信息时序数据,所述渗漏信息时序数据中的每个时间点表示一个预设时间段内的渗漏量;A second processing unit, configured to convert the leakage amount monitoring data into leakage information time series data, where each time point in the leakage information time series data represents the leakage amount within a preset time period; 第三处理单元,用于将所述地下连续墙接缝加固方案转换为施工方案模型数据,所述施工方案模型数据包括三维模型数据和施工参数,所述三维模型数据包括钻孔灌注桩三维图形和旋喷桩三维图形;The third processing unit is used to convert the underground diaphragm wall joint reinforcement plan into construction plan model data. The construction plan model data includes three-dimensional model data and construction parameters. The three-dimensional model data includes three-dimensional graphics of bored piles. and three-dimensional graphics of jet grouting piles; 第一整合单元,用于将所述第一地层分布空间数据、所述渗漏信息时序数据和所述施工方案模型数据进行整合得到地下连续墙工程时空数据。The first integration unit is used to integrate the first stratigraphic distribution spatial data, the leakage information time series data and the construction plan model data to obtain underground continuous wall engineering spatiotemporal data. 8.根据权利要求7所述的基于深度学习的地下连续墙接头缝渗漏预测装置,其特征在于,所述第一整合单元包括:8. The deep learning-based underground diaphragm wall joint joint leakage prediction device according to claim 7, characterized in that the first integration unit includes: 第一赋值单元,用于将所述第一地层分布空间数据每个网格节点的地质属性信息和坐标信息与所述渗漏量监测数据结合,将渗漏信息时序数据添加到对应的地质单元中,得到具有渗漏信息的地质单元数据;The first assignment unit is used to combine the geological attribute information and coordinate information of each grid node of the first formation distribution spatial data with the leakage amount monitoring data, and add the leakage information time series data to the corresponding geological unit. , obtain geological unit data with leakage information; 第二赋值单元,用于将所述施工参数中的空隙体积信息添加至所述钻孔灌注桩三维图形,将所述施工参数中的浆孔口信息添加至所述旋喷桩三维图形,得到一体数据模型;The second assignment unit is used to add the void volume information in the construction parameters to the three-dimensional graph of the bored pile, and add the slurry orifice information in the construction parameters to the three-dimensional graph of the jet grouting pile, to obtain Integrated data model; 第一计算单元,用于根据所述一体数据模型和预设的有限元计算公式计算得到渗漏计算值;The first calculation unit is used to calculate the leakage calculation value according to the integrated data model and the preset finite element calculation formula; 第一匹配单元,用于将所述地质单元数据、所述一体数据模型和所述渗漏计算值按照对应的所述地质单元进行匹配,得到地下连续墙工程时空数据。The first matching unit is used to match the geological unit data, the integrated data model and the leakage calculation value according to the corresponding geological unit to obtain the spatiotemporal data of the underground diaphragm wall project. 9.根据权利要求6所述的基于深度学习的地下连续墙接头缝渗漏预测装置,其特征在于,所述输出模块包括:9. The deep learning-based underground diaphragm wall joint joint leakage prediction device according to claim 6, characterized in that the output module includes: 第五处理单元,用于将所述第二信息转化为网络状数据结构得到第二地层分布空间数据;A fifth processing unit, configured to convert the second information into a network-like data structure to obtain second stratigraphic distribution spatial data; 第二计算单元,用于将所述第二地层分布空间数据作为所述渗漏量预测模型的输入值得到渗漏量预测结果,所述渗漏量预测结果包括至少一种渗漏量预测值;A second calculation unit, configured to use the second formation distribution spatial data as an input value of the leakage prediction model to obtain a leakage prediction result, where the leakage prediction result includes at least one leakage prediction value ; 第六处理单元,用于根据所述渗漏量预测结果和预设的决策规则,得出至少一种建议施工参数;A sixth processing unit, configured to derive at least one recommended construction parameter based on the leakage prediction results and the preset decision rules; 第二整合单元,用于将所有所述建议施工参数和对应的所述渗漏量预测值整合得到推荐方案。The second integration unit is used to integrate all the recommended construction parameters and the corresponding predicted leakage values to obtain a recommended solution. 10.根据权利要求9所述的基于深度学习的地下连续墙接头缝渗漏预测装置,其特征在于,所述第六处理单元包括:10. The deep learning-based underground diaphragm wall joint joint leakage prediction device according to claim 9, characterized in that the sixth processing unit includes: 第一构建单元,用于根据所述第一信息和预设的决策树算法建立决策规则,并根据所述决策规则对所述地下连续墙接缝加固方案中的施工参数进行分类得到每个类别对应的施工参数范围;A first building unit, configured to establish decision rules based on the first information and a preset decision tree algorithm, and classify the construction parameters in the underground diaphragm wall joint reinforcement scheme according to the decision rules to obtain each category Corresponding construction parameter range; 第七处理单元,用于将所述施工参数范围划分为至少两个子区间,并对每个所述子区间进行参数敏感度分析得到分析结果,所述分析结果包括各参数对所述渗漏量预测结果的影响程度;The seventh processing unit is used to divide the construction parameter range into at least two sub-intervals, and perform parameter sensitivity analysis on each of the sub-intervals to obtain analysis results. The analysis results include the effect of each parameter on the leakage amount. The degree of impact of the predicted results; 第八处理单元,用于根据所述渗漏量预测结果和所述分析结果,对每个所述子区间的施工参数进行优化,得到对应的渗漏量预测值;An eighth processing unit is used to optimize the construction parameters of each sub-interval according to the leakage amount prediction results and the analysis results, and obtain the corresponding leakage amount prediction value; 第九处理单元,用于根据优化后的所述施工参数和对应的渗漏量预测值,得到建议施工参数。The ninth processing unit is used to obtain recommended construction parameters based on the optimized construction parameters and corresponding leakage prediction values.
CN202311166997.3A 2023-09-11 2023-09-11 Underground diaphragm wall joint seam leakage prediction method and device based on deep learning Active CN117390381B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311166997.3A CN117390381B (en) 2023-09-11 2023-09-11 Underground diaphragm wall joint seam leakage prediction method and device based on deep learning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311166997.3A CN117390381B (en) 2023-09-11 2023-09-11 Underground diaphragm wall joint seam leakage prediction method and device based on deep learning

Publications (2)

Publication Number Publication Date
CN117390381A true CN117390381A (en) 2024-01-12
CN117390381B CN117390381B (en) 2024-06-25

Family

ID=89463876

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311166997.3A Active CN117390381B (en) 2023-09-11 2023-09-11 Underground diaphragm wall joint seam leakage prediction method and device based on deep learning

Country Status (1)

Country Link
CN (1) CN117390381B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117668762A (en) * 2024-01-31 2024-03-08 新疆三联工程建设有限责任公司 Monitoring and early warning system and method for residential underground leakage
CN119416164A (en) * 2025-01-07 2025-02-11 湖南首辅环境科技有限公司 Environmental protection water-stop curtain leakage risk early warning method and system based on deep learning

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107092990A (en) * 2017-05-03 2017-08-25 西安电子科技大学 The shield construction ground settlement forecast system and method analyzed based on big data
CN112836789A (en) * 2020-12-27 2021-05-25 苏州大学 A Dynamic Prediction Method of Ground Connecting Wall Deformation Based on Composite Neural Network Algorithm
CN114997548A (en) * 2022-08-05 2022-09-02 武九铁路客运专线湖北有限责任公司 Water movement geological seepage real-time early warning method based on genetic neural network
CN115470550A (en) * 2022-08-30 2022-12-13 广西大学 Method for calculating uplift displacement of lower horizontal tunnel caused by excavation of layered foundation pit
CN115563864A (en) * 2022-09-27 2023-01-03 中国电力科学研究院有限公司 Intelligent prediction method of water seepage in cable tunnel
CN116611350A (en) * 2023-07-19 2023-08-18 青岛理工大学 A Method for Predicting the Effect of Oil Well Acidizing Measures Based on Transfer Learning

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107092990A (en) * 2017-05-03 2017-08-25 西安电子科技大学 The shield construction ground settlement forecast system and method analyzed based on big data
CN112836789A (en) * 2020-12-27 2021-05-25 苏州大学 A Dynamic Prediction Method of Ground Connecting Wall Deformation Based on Composite Neural Network Algorithm
CN114997548A (en) * 2022-08-05 2022-09-02 武九铁路客运专线湖北有限责任公司 Water movement geological seepage real-time early warning method based on genetic neural network
CN115470550A (en) * 2022-08-30 2022-12-13 广西大学 Method for calculating uplift displacement of lower horizontal tunnel caused by excavation of layered foundation pit
CN115563864A (en) * 2022-09-27 2023-01-03 中国电力科学研究院有限公司 Intelligent prediction method of water seepage in cable tunnel
CN116611350A (en) * 2023-07-19 2023-08-18 青岛理工大学 A Method for Predicting the Effect of Oil Well Acidizing Measures Based on Transfer Learning

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘涵宇;夏强;张世殊;卢刚;万媛;: "基于水文地质参数敏感度分析的水库渗漏量不确定性评价", 科学技术与工程, no. 14, 18 May 2017 (2017-05-18) *
金晓飞;梁书亭;朱筱俊;孙崇芳;: ""Ⅱ"型接头嵌岩地下连续墙渗漏监测分析", 建筑结构, no. 02, 25 January 2017 (2017-01-25) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117668762A (en) * 2024-01-31 2024-03-08 新疆三联工程建设有限责任公司 Monitoring and early warning system and method for residential underground leakage
CN117668762B (en) * 2024-01-31 2024-05-17 新疆三联工程建设有限责任公司 Monitoring and early warning system and method for residential underground leakage
CN119416164A (en) * 2025-01-07 2025-02-11 湖南首辅环境科技有限公司 Environmental protection water-stop curtain leakage risk early warning method and system based on deep learning
CN119416164B (en) * 2025-01-07 2025-03-14 湖南首辅环境科技有限公司 Environmental protection water-stop curtain leakage risk early warning method and system based on deep learning

Also Published As

Publication number Publication date
CN117390381B (en) 2024-06-25

Similar Documents

Publication Publication Date Title
CN117390381B (en) Underground diaphragm wall joint seam leakage prediction method and device based on deep learning
CN112017289B (en) Well-seismic combined initial lithology model construction method based on deep learning
CN109555979A (en) A kind of water supply network leakage monitoring method
CN114638401B (en) Residual oil distribution prediction method and device based on history and predicted reservoir knowledge
CN110009150B (en) Data-driven intelligent prediction method for physical parameters of tight reservoirs
CN114997548B (en) A real-time early warning method of hydrodynamic geoseepage based on genetic neural network
CN113534261A (en) Reservoir gas-bearing detection method and device based on intelligent optimization integrated network
CN115654381A (en) Water supply pipeline leakage detection method based on graph neural network
CN118709917A (en) Solid mineral resource reserve estimation method and system based on high-order spatial simulation
CN115977736A (en) A coal and gas outburst early warning method driven by on-site real-time data
CN118191967B (en) Intelligent early warning system and method for full-space three-dimensional monitoring of water damage risk of coal seam roof
CN104598766A (en) Oil and gas reservoir comprehensive assessment oriented spatial case-based reasoning method
CN116862432B (en) Dynamic adjustment method and system for tunnel shallow buried section construction scheme
CN118822277B (en) Construction method for drilling holes for bridge pile foundations in karst areas
CN115860197A (en) Data-driven coal bed gas yield prediction method and system
CN111080167A (en) Underground space resource quality assessment method for urban planning
CN119538391A (en) Wellbore stability prediction and optimization system based on real-time monitoring data
CN118350110B (en) Generative geotechnical engineering design system and equipment based on artificial intelligence
CN117745466B (en) Tailing pond counting intelligent operation and maintenance system
CN115659772A (en) Real-time inversion method for flow-solid coupling parameters of station in water-rich area arch cover method
CN110188439A (en) Early warning method of ground subsidence in subway construction based on case reasoning and system dynamics
CN114547978A (en) Method and system for splitting water injection volume of multi-layer system based on heterogeneous graph neural network
CN119313833A (en) A 3D visualization method for mining geological drilling based on deep learning
CN118780423A (en) A method and system for evaluating the stability of surrounding rock in underground engineering
CN119206104A (en) A three-dimensional geological model construction method based on coupling of potential field interpolation and deep learning

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant