CN117384218A - Organic electroluminescent material and device thereof - Google Patents
Organic electroluminescent material and device thereof Download PDFInfo
- Publication number
- CN117384218A CN117384218A CN202210734047.5A CN202210734047A CN117384218A CN 117384218 A CN117384218 A CN 117384218A CN 202210734047 A CN202210734047 A CN 202210734047A CN 117384218 A CN117384218 A CN 117384218A
- Authority
- CN
- China
- Prior art keywords
- substituted
- carbon atoms
- unsubstituted
- group
- ring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 48
- 150000001875 compounds Chemical class 0.000 claims abstract description 66
- 150000004696 coordination complex Chemical class 0.000 claims abstract description 61
- 239000003446 ligand Substances 0.000 claims abstract description 40
- 229910052751 metal Inorganic materials 0.000 claims abstract description 36
- 239000002184 metal Substances 0.000 claims abstract description 36
- 239000000203 mixture Substances 0.000 claims abstract description 11
- 125000004432 carbon atom Chemical group C* 0.000 claims description 478
- 125000001424 substituent group Chemical group 0.000 claims description 147
- -1 alkyl germanium Chemical compound 0.000 claims description 142
- 125000003118 aryl group Chemical group 0.000 claims description 76
- 125000000217 alkyl group Chemical group 0.000 claims description 71
- 239000010410 layer Substances 0.000 claims description 71
- 125000001072 heteroaryl group Chemical group 0.000 claims description 66
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 51
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 claims description 47
- 229910052805 deuterium Inorganic materials 0.000 claims description 47
- 229910052739 hydrogen Inorganic materials 0.000 claims description 38
- 239000001257 hydrogen Substances 0.000 claims description 38
- 150000002431 hydrogen Chemical class 0.000 claims description 35
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 34
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 32
- 125000005103 alkyl silyl group Chemical group 0.000 claims description 31
- 125000003342 alkenyl group Chemical group 0.000 claims description 29
- 125000004404 heteroalkyl group Chemical group 0.000 claims description 29
- 229910052736 halogen Inorganic materials 0.000 claims description 28
- 150000002367 halogens Chemical class 0.000 claims description 28
- 125000000623 heterocyclic group Chemical group 0.000 claims description 28
- 229910052717 sulfur Inorganic materials 0.000 claims description 28
- 125000004104 aryloxy group Chemical group 0.000 claims description 26
- 125000000304 alkynyl group Chemical group 0.000 claims description 25
- 229910052760 oxygen Inorganic materials 0.000 claims description 25
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 22
- 125000006413 ring segment Chemical group 0.000 claims description 22
- 229910052757 nitrogen Inorganic materials 0.000 claims description 20
- 125000003545 alkoxy group Chemical group 0.000 claims description 19
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical group [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 18
- 125000002252 acyl group Chemical group 0.000 claims description 16
- 125000005104 aryl silyl group Chemical group 0.000 claims description 16
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 claims description 16
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 15
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 claims description 14
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 claims description 14
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 14
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 claims description 14
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 14
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 14
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 14
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 14
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 14
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 13
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 12
- 125000003277 amino group Chemical group 0.000 claims description 12
- 239000012044 organic layer Substances 0.000 claims description 12
- 125000003396 thiol group Chemical group [H]S* 0.000 claims description 12
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims description 11
- 229910052799 carbon Inorganic materials 0.000 claims description 11
- 125000004185 ester group Chemical group 0.000 claims description 11
- 229910052731 fluorine Inorganic materials 0.000 claims description 11
- 239000011737 fluorine Substances 0.000 claims description 11
- 125000000475 sulfinyl group Chemical group [*:2]S([*:1])=O 0.000 claims description 11
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 claims description 10
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 claims description 10
- 125000002843 carboxylic acid group Chemical group 0.000 claims description 10
- TXCDCPKCNAJMEE-UHFFFAOYSA-N dibenzofuran Chemical compound C1=CC=C2C3=CC=CC=C3OC2=C1 TXCDCPKCNAJMEE-UHFFFAOYSA-N 0.000 claims description 10
- 125000002462 isocyano group Chemical group *[N+]#[C-] 0.000 claims description 10
- 125000004076 pyridyl group Chemical group 0.000 claims description 10
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 10
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 9
- 229910052732 germanium Inorganic materials 0.000 claims description 9
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 9
- WLKSSWJSFRCZKL-UHFFFAOYSA-N trimethylgermanium Chemical compound C[Ge](C)C WLKSSWJSFRCZKL-UHFFFAOYSA-N 0.000 claims description 9
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 claims description 8
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 claims description 8
- IYYZUPMFVPLQIF-UHFFFAOYSA-N dibenzothiophene Chemical compound C1=CC=C2C3=CC=CC=C3SC2=C1 IYYZUPMFVPLQIF-UHFFFAOYSA-N 0.000 claims description 7
- 229910052741 iridium Inorganic materials 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 7
- XSCHRSMBECNVNS-UHFFFAOYSA-N quinoxaline Chemical compound N1=CC=NC2=CC=CC=C21 XSCHRSMBECNVNS-UHFFFAOYSA-N 0.000 claims description 7
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 claims description 6
- AWJUIBRHMBBTKR-UHFFFAOYSA-N isoquinoline Chemical compound C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 claims description 6
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 claims description 6
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims description 6
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 5
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- SLGBZMMZGDRARJ-UHFFFAOYSA-N Triphenylene Natural products C1=CC=C2C3=CC=CC=C3C3=CC=CC=C3C2=C1 SLGBZMMZGDRARJ-UHFFFAOYSA-N 0.000 claims description 4
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 4
- DHFABSXGNHDNCO-UHFFFAOYSA-N dibenzoselenophene Chemical compound C1=CC=C2C3=CC=CC=C3[se]C2=C1 DHFABSXGNHDNCO-UHFFFAOYSA-N 0.000 claims description 4
- 150000002148 esters Chemical class 0.000 claims description 4
- VVVPGLRKXQSQSZ-UHFFFAOYSA-N indolo[3,2-c]carbazole Chemical compound C1=CC=CC2=NC3=C4C5=CC=CC=C5N=C4C=CC3=C21 VVVPGLRKXQSQSZ-UHFFFAOYSA-N 0.000 claims description 4
- 229960005544 indolocarbazole Drugs 0.000 claims description 4
- FVZVCSNXTFCBQU-UHFFFAOYSA-N phosphanyl Chemical group [PH2] FVZVCSNXTFCBQU-UHFFFAOYSA-N 0.000 claims description 4
- 125000005580 triphenylene group Chemical group 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 claims description 3
- 150000002739 metals Chemical group 0.000 claims description 3
- XYFCBTPGUUZFHI-UHFFFAOYSA-N phosphine group Chemical group P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 claims description 3
- JWVCLYRUEFBMGU-UHFFFAOYSA-N quinazoline Chemical compound N1=CN=CC2=CC=CC=C21 JWVCLYRUEFBMGU-UHFFFAOYSA-N 0.000 claims description 3
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 claims description 3
- BPMFPOGUJAAYHL-UHFFFAOYSA-N 9H-Pyrido[2,3-b]indole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=N1 BPMFPOGUJAAYHL-UHFFFAOYSA-N 0.000 claims description 2
- WIUZHVZUGQDRHZ-UHFFFAOYSA-N [1]benzothiolo[3,2-b]pyridine Chemical compound C1=CN=C2C3=CC=CC=C3SC2=C1 WIUZHVZUGQDRHZ-UHFFFAOYSA-N 0.000 claims description 2
- HCAUQPZEWLULFJ-UHFFFAOYSA-N benzo[f]quinoline Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=N1 HCAUQPZEWLULFJ-UHFFFAOYSA-N 0.000 claims description 2
- 125000003636 chemical group Chemical group 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 229910052762 osmium Inorganic materials 0.000 claims description 2
- 230000003647 oxidation Effects 0.000 claims description 2
- 238000007254 oxidation reaction Methods 0.000 claims description 2
- UTUZBCDXWYMYGA-UHFFFAOYSA-N silafluorene Chemical compound C12=CC=CC=C2CC2=C1C=CC=[Si]2 UTUZBCDXWYMYGA-UHFFFAOYSA-N 0.000 claims description 2
- 125000001973 tert-pentyl group Chemical group [H]C([H])([H])C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 2
- VKLKXFOZNHEBSW-UHFFFAOYSA-N 5-[[3-[(4-morpholin-4-ylbenzoyl)amino]phenyl]methoxy]pyridine-3-carboxamide Chemical compound O1CCN(CC1)C1=CC=C(C(=O)NC=2C=C(COC=3C=NC=C(C(=O)N)C=3)C=CC=2)C=C1 VKLKXFOZNHEBSW-UHFFFAOYSA-N 0.000 claims 1
- 125000003262 carboxylic acid ester group Chemical group [H]C([H])([*:2])OC(=O)C([H])([H])[*:1] 0.000 claims 1
- 229940125904 compound 1 Drugs 0.000 claims 1
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 description 24
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 18
- 230000015572 biosynthetic process Effects 0.000 description 18
- 238000003786 synthesis reaction Methods 0.000 description 18
- 238000006467 substitution reaction Methods 0.000 description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 13
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 12
- 238000004440 column chromatography Methods 0.000 description 10
- 230000003111 delayed effect Effects 0.000 description 10
- 230000002829 reductive effect Effects 0.000 description 10
- 239000000758 substrate Substances 0.000 description 10
- MINMDCMSHDBHKG-UHFFFAOYSA-N 4-[4-[[6-methoxy-2-(2-methoxyimidazo[2,1-b][1,3,4]thiadiazol-6-yl)-1-benzofuran-4-yl]oxymethyl]-5-methyl-1,3-thiazol-2-yl]morpholine Chemical compound N1=C2SC(OC)=NN2C=C1C(OC1=CC(OC)=C2)=CC1=C2OCC(=C(S1)C)N=C1N1CCOCC1 MINMDCMSHDBHKG-UHFFFAOYSA-N 0.000 description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 238000001514 detection method Methods 0.000 description 7
- 150000003384 small molecules Chemical class 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 6
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 6
- 239000012074 organic phase Substances 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 230000000903 blocking effect Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000005538 encapsulation Methods 0.000 description 5
- 125000005842 heteroatom Chemical group 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 125000004433 nitrogen atom Chemical group N* 0.000 description 5
- 238000000103 photoluminescence spectrum Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical class C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 description 4
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical compound C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 4
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 125000006615 aromatic heterocyclic group Chemical group 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 229910052796 boron Chemical group 0.000 description 4
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 4
- 239000012634 fragment Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 230000005525 hole transport Effects 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- SKEDXQSRJSUMRP-UHFFFAOYSA-N lithium;quinolin-8-ol Chemical compound [Li].C1=CN=C2C(O)=CC=CC2=C1 SKEDXQSRJSUMRP-UHFFFAOYSA-N 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 4
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 125000002947 alkylene group Chemical group 0.000 description 3
- 125000000732 arylene group Chemical group 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000000295 emission spectrum Methods 0.000 description 3
- 125000005549 heteroarylene group Chemical group 0.000 description 3
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000004020 luminiscence type Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- DGUWACLYDSWXRZ-UHFFFAOYSA-N (2-formylphenyl)boronic acid Chemical compound OB(O)C1=CC=CC=C1C=O DGUWACLYDSWXRZ-UHFFFAOYSA-N 0.000 description 2
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 2
- BNRDGHFESOHOBF-UHFFFAOYSA-N 1-benzoselenophene Chemical compound C1=CC=C2[se]C=CC2=C1 BNRDGHFESOHOBF-UHFFFAOYSA-N 0.000 description 2
- 125000004972 1-butynyl group Chemical group [H]C([H])([H])C([H])([H])C#C* 0.000 description 2
- 125000004343 1-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])(*)C([H])([H])[H] 0.000 description 2
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 2
- LOBRHADLNRMHOO-UHFFFAOYSA-N 2-amino-6-bromophenol Chemical compound NC1=CC=CC(Br)=C1O LOBRHADLNRMHOO-UHFFFAOYSA-N 0.000 description 2
- 125000000069 2-butynyl group Chemical group [H]C([H])([H])C#CC([H])([H])* 0.000 description 2
- 125000006282 2-chlorobenzyl group Chemical group [H]C1=C([H])C(Cl)=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- 229940093475 2-ethoxyethanol Drugs 0.000 description 2
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 description 2
- 125000000474 3-butynyl group Chemical group [H]C#CC([H])([H])C([H])([H])* 0.000 description 2
- 229920001621 AMOLED Polymers 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 2
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 2
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 2
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical group [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- CUFNKYGDVFVPHO-UHFFFAOYSA-N azulene Chemical compound C1=CC=CC2=CC=CC2=C1 CUFNKYGDVFVPHO-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical compound C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- 235000010290 biphenyl Nutrition 0.000 description 2
- 239000004305 biphenyl Substances 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 229920000547 conjugated polymer Polymers 0.000 description 2
- 125000002993 cycloalkylene group Chemical group 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 2
- 230000005281 excited state Effects 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 150000002503 iridium Chemical class 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 125000003564 m-cyanobenzyl group Chemical group [H]C1=C([H])C(=C([H])C(C#N)=C1[H])C([H])([H])* 0.000 description 2
- SJFNDMHZXCUXSA-UHFFFAOYSA-M methoxymethyl(triphenyl)phosphanium;chloride Chemical compound [Cl-].C=1C=CC=CC=1[P+](C=1C=CC=CC=1)(COC)C1=CC=CC=C1 SJFNDMHZXCUXSA-UHFFFAOYSA-M 0.000 description 2
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 2
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 238000013086 organic photovoltaic Methods 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 125000006505 p-cyanobenzyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1C#N)C([H])([H])* 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 125000001476 phosphono group Chemical group [H]OP(*)(=O)O[H] 0.000 description 2
- 125000004437 phosphorous atom Chemical group 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 2
- 125000002568 propynyl group Chemical group [*]C#CC([H])([H])[H] 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 239000010703 silicon Chemical group 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical class O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 2
- 239000011593 sulfur Chemical group 0.000 description 2
- 125000004434 sulfur atom Chemical group 0.000 description 2
- 239000003826 tablet Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- KTZQTRPPVKQPFO-UHFFFAOYSA-N 1,2-benzoxazole Chemical compound C1=CC=C2C=NOC2=C1 KTZQTRPPVKQPFO-UHFFFAOYSA-N 0.000 description 1
- 150000000183 1,3-benzoxazoles Chemical class 0.000 description 1
- 125000000355 1,3-benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 1
- FLBAYUMRQUHISI-UHFFFAOYSA-N 1,8-naphthyridine Chemical compound N1=CC=CC2=CC=CN=C21 FLBAYUMRQUHISI-UHFFFAOYSA-N 0.000 description 1
- 125000004973 1-butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000004134 1-norbornyl group Chemical group [H]C1([H])C([H])([H])C2(*)C([H])([H])C([H])([H])C1([H])C2([H])[H] 0.000 description 1
- WJFKNYWRSNBZNX-UHFFFAOYSA-N 10H-phenothiazine Chemical compound C1=CC=C2NC3=CC=CC=C3SC2=C1 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 description 1
- BAXOFTOLAUCFNW-UHFFFAOYSA-N 1H-indazole Chemical compound C1=CC=C2C=NNC2=C1 BAXOFTOLAUCFNW-UHFFFAOYSA-N 0.000 description 1
- IEBQZJXMAOMNBO-UHFFFAOYSA-N 1h-indole;pyridine Chemical compound C1=CC=NC=C1.C1=CC=C2NC=CC2=C1 IEBQZJXMAOMNBO-UHFFFAOYSA-N 0.000 description 1
- XWIYUCRMWCHYJR-UHFFFAOYSA-N 1h-pyrrolo[3,2-b]pyridine Chemical compound C1=CC=C2NC=CC2=N1 XWIYUCRMWCHYJR-UHFFFAOYSA-N 0.000 description 1
- VEPOHXYIFQMVHW-XOZOLZJESA-N 2,3-dihydroxybutanedioic acid (2S,3S)-3,4-dimethyl-2-phenylmorpholine Chemical compound OC(C(O)C(O)=O)C(O)=O.C[C@H]1[C@@H](OCCN1C)c1ccccc1 VEPOHXYIFQMVHW-XOZOLZJESA-N 0.000 description 1
- 125000005810 2,5-xylyl group Chemical group [H]C1=C([H])C(=C(*)C([H])=C1C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000000022 2-aminoethyl group Chemical group [H]C([*])([H])C([H])([H])N([H])[H] 0.000 description 1
- 125000006280 2-bromobenzyl group Chemical group [H]C1=C([H])C(Br)=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 1
- 125000006481 2-iodobenzyl group Chemical group [H]C1=C([H])C(I)=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 125000005916 2-methylpentyl group Chemical group 0.000 description 1
- 125000004135 2-norbornyl group Chemical group [H]C1([H])C([H])([H])C2([H])C([H])([H])C1([H])C([H])([H])C2([H])* 0.000 description 1
- WELSCYIRWKBEBZ-UHFFFAOYSA-N 2-pyridin-2-yl-1,3-benzoxazole Chemical group N1=CC=CC=C1C1=NC2=CC=CC=C2O1 WELSCYIRWKBEBZ-UHFFFAOYSA-N 0.000 description 1
- QMEQBOSUJUOXMX-UHFFFAOYSA-N 2h-oxadiazine Chemical compound N1OC=CC=N1 QMEQBOSUJUOXMX-UHFFFAOYSA-N 0.000 description 1
- BCHZICNRHXRCHY-UHFFFAOYSA-N 2h-oxazine Chemical compound N1OC=CC=C1 BCHZICNRHXRCHY-UHFFFAOYSA-N 0.000 description 1
- ZJIOBDJEKDUUCI-UHFFFAOYSA-N 3,5-dimethylbenzoyl chloride Chemical compound CC1=CC(C)=CC(C(Cl)=O)=C1 ZJIOBDJEKDUUCI-UHFFFAOYSA-N 0.000 description 1
- WCJDEXKLYKVMMR-UHFFFAOYSA-N 3,7-diethyl-3-methylnonane-4,6-dione Chemical compound CCC(CC)C(=O)CC(=O)C(C)(CC)CC WCJDEXKLYKVMMR-UHFFFAOYSA-N 0.000 description 1
- 125000006279 3-bromobenzyl group Chemical group [H]C1=C([H])C(=C([H])C(Br)=C1[H])C([H])([H])* 0.000 description 1
- 125000004975 3-butenyl group Chemical group C(CC=C)* 0.000 description 1
- 125000003852 3-chlorobenzyl group Chemical group [H]C1=C([H])C(=C([H])C(Cl)=C1[H])C([H])([H])* 0.000 description 1
- 125000006291 3-hydroxybenzyl group Chemical group [H]OC1=C([H])C([H])=C([H])C(=C1[H])C([H])([H])* 0.000 description 1
- 125000006482 3-iodobenzyl group Chemical group [H]C1=C([H])C(=C([H])C(I)=C1[H])C([H])([H])* 0.000 description 1
- 125000005917 3-methylpentyl group Chemical group 0.000 description 1
- BWCDLEQTELFBAW-UHFFFAOYSA-N 3h-dioxazole Chemical compound N1OOC=C1 BWCDLEQTELFBAW-UHFFFAOYSA-N 0.000 description 1
- DHDHJYNTEFLIHY-UHFFFAOYSA-N 4,7-diphenyl-1,10-phenanthroline Chemical group C1=CC=CC=C1C1=CC=NC2=C1C=CC1=C(C=3C=CC=CC=3)C=CN=C21 DHDHJYNTEFLIHY-UHFFFAOYSA-N 0.000 description 1
- 125000006281 4-bromobenzyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1Br)C([H])([H])* 0.000 description 1
- 125000006283 4-chlorobenzyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1Cl)C([H])([H])* 0.000 description 1
- 125000003143 4-hydroxybenzyl group Chemical group [H]C([*])([H])C1=C([H])C([H])=C(O[H])C([H])=C1[H] 0.000 description 1
- 125000006483 4-iodobenzyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1I)C([H])([H])* 0.000 description 1
- UQRONKZLYKUEMO-UHFFFAOYSA-N 4-methyl-1-(2,4,6-trimethylphenyl)pent-4-en-2-one Chemical group CC(=C)CC(=O)Cc1c(C)cc(C)cc1C UQRONKZLYKUEMO-UHFFFAOYSA-N 0.000 description 1
- DIVZFUBWFAOMCW-UHFFFAOYSA-N 4-n-(3-methylphenyl)-1-n,1-n-bis[4-(n-(3-methylphenyl)anilino)phenyl]-4-n-phenylbenzene-1,4-diamine Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)N(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 DIVZFUBWFAOMCW-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- ASDMIVKXUPKEQA-UHFFFAOYSA-N C1(=CC=CC=C1)C(C[Ge])C1=CC=CC=C1 Chemical group C1(=CC=CC=C1)C(C[Ge])C1=CC=CC=C1 ASDMIVKXUPKEQA-UHFFFAOYSA-N 0.000 description 1
- YMXBTVMTFUVNSZ-UHFFFAOYSA-N CC(C)(C)[Ge](c1ccccc1)c1ccccc1 Chemical group CC(C)(C)[Ge](c1ccccc1)c1ccccc1 YMXBTVMTFUVNSZ-UHFFFAOYSA-N 0.000 description 1
- TXDQUYVYDVCKGS-UHFFFAOYSA-N CC(C)[Ge](C(C)C)C1=CC=CC=C1 Chemical group CC(C)[Ge](C(C)C)C1=CC=CC=C1 TXDQUYVYDVCKGS-UHFFFAOYSA-N 0.000 description 1
- ZTVPSNPZMQUCSQ-UHFFFAOYSA-N CC(C)[Ge](C)C Chemical group CC(C)[Ge](C)C ZTVPSNPZMQUCSQ-UHFFFAOYSA-N 0.000 description 1
- CQZCIUDEHIIYBE-UHFFFAOYSA-N CC(C)[Ge](C)C(C)C Chemical group CC(C)[Ge](C)C(C)C CQZCIUDEHIIYBE-UHFFFAOYSA-N 0.000 description 1
- FPEQOYNVLZOSNS-UHFFFAOYSA-N CC[Ge](CC)C1=CC=CC=C1 Chemical group CC[Ge](CC)C1=CC=CC=C1 FPEQOYNVLZOSNS-UHFFFAOYSA-N 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- JQQIPXPVVKIJCN-UHFFFAOYSA-N C[Ge](C(C)(C)C)C(C)(C)C Chemical group C[Ge](C(C)(C)C)C(C)(C)C JQQIPXPVVKIJCN-UHFFFAOYSA-N 0.000 description 1
- DCERHCFNWRGHLK-UHFFFAOYSA-N C[Si](C)C Chemical group C[Si](C)C DCERHCFNWRGHLK-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical group [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical group [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- FBVBNCGJVKIEHH-UHFFFAOYSA-N [1]benzofuro[3,2-b]pyridine Chemical compound C1=CN=C2C3=CC=CC=C3OC2=C1 FBVBNCGJVKIEHH-UHFFFAOYSA-N 0.000 description 1
- XFBBQEOMCCAUNY-UHFFFAOYSA-N [Ge]C(c1ccccc1)c1ccccc1 Chemical group [Ge]C(c1ccccc1)c1ccccc1 XFBBQEOMCCAUNY-UHFFFAOYSA-N 0.000 description 1
- CVVOWTWCWHITLU-UHFFFAOYSA-N [Ge]CCCC(C1=CC=CC=C1)C1=CC=CC=C1 Chemical group [Ge]CCCC(C1=CC=CC=C1)C1=CC=CC=C1 CVVOWTWCWHITLU-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 125000003670 adamantan-2-yl group Chemical group [H]C1([H])C(C2([H])[H])([H])C([H])([H])C3([H])C([*])([H])C1([H])C([H])([H])C2([H])C3([H])[H] 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000004202 aminomethyl group Chemical group [H]N([H])C([H])([H])* 0.000 description 1
- 229940111121 antirheumatic drug quinolines Drugs 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 125000003725 azepanyl group Chemical group 0.000 description 1
- 125000004069 aziridinyl group Chemical group 0.000 description 1
- RFRXIWQYSOIBDI-UHFFFAOYSA-N benzarone Chemical compound CCC=1OC2=CC=CC=C2C=1C(=O)C1=CC=C(O)C=C1 RFRXIWQYSOIBDI-UHFFFAOYSA-N 0.000 description 1
- PASDCCFISLVPSO-UHFFFAOYSA-N benzoyl chloride Chemical compound ClC(=O)C1=CC=CC=C1 PASDCCFISLVPSO-UHFFFAOYSA-N 0.000 description 1
- 125000006269 biphenyl-2-yl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C1=C(*)C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 125000006268 biphenyl-3-yl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C1=C([H])C(*)=C([H])C([H])=C1[H] 0.000 description 1
- 125000000319 biphenyl-4-yl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C1=C([H])C([H])=C([*])C([H])=C1[H] 0.000 description 1
- NYENCOMLZDQKNH-UHFFFAOYSA-K bis(trifluoromethylsulfonyloxy)bismuthanyl trifluoromethanesulfonate Chemical compound [Bi+3].[O-]S(=O)(=O)C(F)(F)F.[O-]S(=O)(=O)C(F)(F)F.[O-]S(=O)(=O)C(F)(F)F NYENCOMLZDQKNH-UHFFFAOYSA-K 0.000 description 1
- HIYUMYXSGIKHHE-UHFFFAOYSA-M bismuth trifluoromethanesulfonate Chemical compound [Bi+3].[O-]S(=O)(=O)C(F)(F)F HIYUMYXSGIKHHE-UHFFFAOYSA-M 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000007810 chemical reaction solvent Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- WCZVZNOTHYJIEI-UHFFFAOYSA-N cinnoline Chemical compound N1=NC=CC2=CC=CC=C21 WCZVZNOTHYJIEI-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000002188 cycloheptatrienyl group Chemical group C1(=CC=CC=CC1)* 0.000 description 1
- 125000001162 cycloheptenyl group Chemical group C1(=CCCCCC1)* 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- 125000000522 cyclooctenyl group Chemical group C1(=CCCCCCC1)* 0.000 description 1
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 description 1
- 125000002433 cyclopentenyl group Chemical group C1(=CCCC1)* 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000000412 dendrimer Substances 0.000 description 1
- 229920000736 dendritic polymer Polymers 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- IYYZUPMFVPLQIF-ALWQSETLSA-N dibenzothiophene Chemical group C1=CC=CC=2[34S]C3=C(C=21)C=CC=C3 IYYZUPMFVPLQIF-ALWQSETLSA-N 0.000 description 1
- RQBHLZUALKPJII-UHFFFAOYSA-N diethyl(methyl)germanium Chemical group CC[Ge](C)CC RQBHLZUALKPJII-UHFFFAOYSA-N 0.000 description 1
- JQZUMFHYRULBEN-UHFFFAOYSA-N diethyl(methyl)silicon Chemical group CC[Si](C)CC JQZUMFHYRULBEN-UHFFFAOYSA-N 0.000 description 1
- 125000005054 dihydropyrrolyl group Chemical group [H]C1=C([H])C([H])([H])C([H])([H])N1* 0.000 description 1
- 125000005594 diketone group Chemical group 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- LUGNZBKOLRFNPT-UHFFFAOYSA-N dimethyl(phenyl)germanium Chemical group C[Ge](C)C1=CC=CC=C1 LUGNZBKOLRFNPT-UHFFFAOYSA-N 0.000 description 1
- KMUIVDDMCZNNEJ-UHFFFAOYSA-N dimethyl(propan-2-yl)silicon Chemical group CC(C)[Si](C)C KMUIVDDMCZNNEJ-UHFFFAOYSA-N 0.000 description 1
- 125000006222 dimethylaminomethyl group Chemical group [H]C([H])([H])N(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000000532 dioxanyl group Chemical group 0.000 description 1
- YVCGDHWZULOHFR-UHFFFAOYSA-N diphenyl(propan-2-yl)germanium Chemical group C=1C=CC=CC=1[Ge](C(C)C)C1=CC=CC=C1 YVCGDHWZULOHFR-UHFFFAOYSA-N 0.000 description 1
- WEIWBVGUSBRKNW-UHFFFAOYSA-N ditert-butyl(methyl)silicon Chemical group CC(C)(C)[Si](C)C(C)(C)C WEIWBVGUSBRKNW-UHFFFAOYSA-N 0.000 description 1
- ZSWFCLXCOIISFI-UHFFFAOYSA-N endo-cyclopentadiene Natural products C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000005448 ethoxyethyl group Chemical group [H]C([H])([H])C([H])([H])OC([H])([H])C([H])([H])* 0.000 description 1
- 125000005745 ethoxymethyl group Chemical group [H]C([H])([H])C([H])([H])OC([H])([H])* 0.000 description 1
- ZAZKGFDQTUOMOL-UHFFFAOYSA-N ethyl(dimethyl)germanium Chemical group CC[Ge](C)C ZAZKGFDQTUOMOL-UHFFFAOYSA-N 0.000 description 1
- KJISMKWTHPWHFV-UHFFFAOYSA-N ethyl(dimethyl)silicon Chemical group CC[Si](C)C KJISMKWTHPWHFV-UHFFFAOYSA-N 0.000 description 1
- 125000006351 ethylthiomethyl group Chemical group [H]C([H])([H])C([H])([H])SC([H])([H])* 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 238000004770 highest occupied molecular orbital Methods 0.000 description 1
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- LNJXVUXPFZKMNF-UHFFFAOYSA-K iridium(3+);trichloride;trihydrate Chemical compound O.O.O.Cl[Ir](Cl)Cl LNJXVUXPFZKMNF-UHFFFAOYSA-K 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- QDLAGTHXVHQKRE-UHFFFAOYSA-N lichenxanthone Natural products COC1=CC(O)=C2C(=O)C3=C(C)C=C(OC)C=C3OC2=C1 QDLAGTHXVHQKRE-UHFFFAOYSA-N 0.000 description 1
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 1
- 125000000040 m-tolyl group Chemical group [H]C1=C([H])C(*)=C([H])C(=C1[H])C([H])([H])[H] 0.000 description 1
- 125000004184 methoxymethyl group Chemical group [H]C([H])([H])OC([H])([H])* 0.000 description 1
- KEQUDCFANSTZLY-UHFFFAOYSA-N methyl-di(propan-2-yl)silicon Chemical group CC(C)[Si](C)C(C)C KEQUDCFANSTZLY-UHFFFAOYSA-N 0.000 description 1
- 125000004092 methylthiomethyl group Chemical group [H]C([H])([H])SC([H])([H])* 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- 125000002757 morpholinyl group Chemical group 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 150000002829 nitrogen Chemical class 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 125000003518 norbornenyl group Chemical group C12(C=CC(CC1)C2)* 0.000 description 1
- 125000006504 o-cyanobenzyl group Chemical group [H]C1=C([H])C(C#N)=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 125000003261 o-tolyl group Chemical group [H]C1=C([H])C(*)=C(C([H])=C1[H])C([H])([H])[H] 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical compound C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 1
- AZHVQJLDOFKHPZ-UHFFFAOYSA-N oxathiazine Chemical compound O1SN=CC=C1 AZHVQJLDOFKHPZ-UHFFFAOYSA-N 0.000 description 1
- 125000000160 oxazolidinyl group Chemical group 0.000 description 1
- 125000002971 oxazolyl group Chemical group 0.000 description 1
- 125000003566 oxetanyl group Chemical group 0.000 description 1
- 125000000466 oxiranyl group Chemical group 0.000 description 1
- 125000006503 p-nitrobenzyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1[N+]([O-])=O)C([H])([H])* 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- XDJOIMJURHQYDW-UHFFFAOYSA-N phenalene Chemical compound C1=CC(CC=C2)=C3C2=CC=CC3=C1 XDJOIMJURHQYDW-UHFFFAOYSA-N 0.000 description 1
- 229950000688 phenothiazine Drugs 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- 125000005499 phosphonyl group Chemical group 0.000 description 1
- 239000011574 phosphorus Chemical group 0.000 description 1
- 108091008695 photoreceptors Proteins 0.000 description 1
- LFSXCDWNBUNEEM-UHFFFAOYSA-N phthalazine Chemical compound C1=NN=CC2=CC=CC=C21 LFSXCDWNBUNEEM-UHFFFAOYSA-N 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- CPNGPNLZQNNVQM-UHFFFAOYSA-N pteridine Chemical compound N1=CN=CC2=NC=CN=C21 CPNGPNLZQNNVQM-UHFFFAOYSA-N 0.000 description 1
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 1
- 150000003248 quinolines Chemical class 0.000 description 1
- 150000003252 quinoxalines Chemical class 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 239000011669 selenium Chemical group 0.000 description 1
- 125000003748 selenium group Chemical group *[Se]* 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- DWRSCILTXDLQBG-UHFFFAOYSA-N silolane Chemical compound C1CC[SiH2]C1 DWRSCILTXDLQBG-UHFFFAOYSA-N 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 125000003003 spiro group Chemical group 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 125000005017 substituted alkenyl group Chemical group 0.000 description 1
- 125000005415 substituted alkoxy group Chemical group 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 125000004426 substituted alkynyl group Chemical group 0.000 description 1
- 125000003107 substituted aryl group Chemical group 0.000 description 1
- 125000005346 substituted cycloalkyl group Chemical group 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- DBVXXBTUAZSUAY-UHFFFAOYSA-N tert-butyl(dimethyl)germanium Chemical group C[Ge](C)C(C)(C)C DBVXXBTUAZSUAY-UHFFFAOYSA-N 0.000 description 1
- ILMRJRBKQSSXGY-UHFFFAOYSA-N tert-butyl(dimethyl)silicon Chemical group C[Si](C)C(C)(C)C ILMRJRBKQSSXGY-UHFFFAOYSA-N 0.000 description 1
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 1
- 125000001412 tetrahydropyranyl group Chemical group 0.000 description 1
- 125000003554 tetrahydropyrrolyl group Chemical group 0.000 description 1
- KTQYWNARBMKMCX-UHFFFAOYSA-N tetraphenylene Chemical group C1=CC=C2C3=CC=CC=C3C3=CC=CC=C3C3=CC=CC=C3C2=C1 KTQYWNARBMKMCX-UHFFFAOYSA-N 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- VLLMWSRANPNYQX-UHFFFAOYSA-N thiadiazole Chemical compound C1=CSN=N1.C1=CSN=N1 VLLMWSRANPNYQX-UHFFFAOYSA-N 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- ZGYICYBLPGRURT-UHFFFAOYSA-N tri(propan-2-yl)silicon Chemical group CC(C)[Si](C(C)C)C(C)C ZGYICYBLPGRURT-UHFFFAOYSA-N 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- UMRPCNGKANTZSN-UHFFFAOYSA-N tributylgermanium Chemical group CCCC[Ge](CCCC)CCCC UMRPCNGKANTZSN-UHFFFAOYSA-N 0.000 description 1
- ISEIIPDWJVGTQS-UHFFFAOYSA-N tributylsilicon Chemical group CCCC[Si](CCCC)CCCC ISEIIPDWJVGTQS-UHFFFAOYSA-N 0.000 description 1
- YMSWJBZPRYKQHJ-UHFFFAOYSA-N triethylgermanium Chemical group CC[Ge](CC)CC YMSWJBZPRYKQHJ-UHFFFAOYSA-N 0.000 description 1
- QXTIBZLKQPJVII-UHFFFAOYSA-N triethylsilicon Chemical group CC[Si](CC)CC QXTIBZLKQPJVII-UHFFFAOYSA-N 0.000 description 1
- SLAJUCLVZORTHN-UHFFFAOYSA-N triphenylgermanium Chemical group C1=CC=CC=C1[Ge](C=1C=CC=CC=1)C1=CC=CC=C1 SLAJUCLVZORTHN-UHFFFAOYSA-N 0.000 description 1
- VCQDQISTTHQOPS-UHFFFAOYSA-N tripropylgermanium Chemical group CCC[Ge](CCC)CCC VCQDQISTTHQOPS-UHFFFAOYSA-N 0.000 description 1
- MMYRBBZVCDXGHG-UHFFFAOYSA-N tripropylsilicon Chemical group CCC[Si](CCC)CCC MMYRBBZVCDXGHG-UHFFFAOYSA-N 0.000 description 1
- TYCHBGWSCCIDHZ-UHFFFAOYSA-N tritert-butylgermanium Chemical group CC(C)(C)[Ge](C(C)(C)C)C(C)(C)C TYCHBGWSCCIDHZ-UHFFFAOYSA-N 0.000 description 1
- STDLEZMOAXZZNH-UHFFFAOYSA-N tritert-butylsilicon Chemical group CC(C)(C)[Si](C(C)(C)C)C(C)(C)C STDLEZMOAXZZNH-UHFFFAOYSA-N 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F15/00—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
- C07F15/0006—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
- C07F15/0033—Iridium compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
- C09K2211/1033—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/18—Metal complexes
- C09K2211/185—Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
An organic electroluminescent material and a device thereof are disclosed. The organic electroluminescent material is a ligand L containing metal M and having the structure of formula 1 a The metal complex can be used as a luminescent material in electroluminescent devices. The metal complex is applied to an electroluminescent device, so that higher current efficiency, power efficiency, external quantum efficiency and longer service life of the device can be obtained under low driving voltage, and the comprehensive performance of the device can be improved. An electroluminescent device comprising the metal complex and a compound composition comprising the metal complex are also disclosed.
Description
Technical Field
The present invention relates to compounds for use in organic electronic devices, such as organic electroluminescent devices. And more particularly, to an L having the structure of formula 1 a Metal complexes of ligands, electroluminescent devices and compound compositions comprising the same.
Background
Organic electronic devices include, but are not limited to, the following: organic Light Emitting Diodes (OLEDs), organic field effect transistors (O-FETs), organic light emitting transistors (OLEDs), organic photovoltaic devices (OPVs), dye-sensitized solar cells (DSSCs), organic optical detectors, organic photoreceptors, organic field effect devices (OFQDs), light emitting electrochemical cells (LECs), organic laser diodes and organic electroluminescent devices.
In 1987, tang and Van Slyke of Isomandah reported a double-layered organic electroluminescent device comprising an arylamine hole transport layer and a tris-8-hydroxyquinoline-aluminum layer as an electron transport layer and a light emitting layer (Applied Physics Letters,1987,51 (12): 913-915). Once biased into the device, green light is emitted from the device. The invention lays a foundation for the development of modern Organic Light Emitting Diodes (OLEDs). Most advanced OLEDs may include multiple layers, such as charge injection and transport layers, charge and exciton blocking layers, and one or more light emitting layers between the cathode and anode. Because OLEDs are self-emitting solid state devices, they offer great potential for display and lighting applications. Furthermore, the inherent properties of organic materials, such as their flexibility, may make them well suited for particular applications, such as in flexible substrate fabrication.
OLEDs can be divided into three different types according to their light emission mechanism. The OLED of the Tang and van Slyke invention is a fluorescent OLED. It uses only singlet light emission. The triplet states generated in the device are wasted through non-radiative decay channels. Thus, the Internal Quantum Efficiency (IQE) of fluorescent OLEDs is only 25%. This limitation prevents commercialization of OLEDs. In 1997, forrest and Thompson reported phosphorescent OLEDs using triplet emission from heavy metals containing complexes as emitters. Thus, both singlet and triplet states can be harvested, achieving a 100% IQE. Because of its high efficiency, the discovery and development of phosphorescent OLEDs has contributed directly to the commercialization of Active Matrix OLEDs (AMOLEDs). Recently, adachi achieved high efficiency by Thermally Activated Delayed Fluorescence (TADF) of organic compounds. These emitters have a small singlet-triplet gap, making it possible for excitons to return from the triplet state to the singlet state. In TADF devices, triplet excitons can generate singlet excitons by reverse intersystem crossing, resulting in high IQE.
OLEDs can also be classified into small molecule and polymeric OLEDs depending on the form of the materials used. Small molecule refers to any organic or organometallic material that is not a polymer. The molecular weight of the small molecules can be large as long as they have a precise structure. Dendrimers with a defined structure are considered small molecules. Polymeric OLEDs include conjugated polymers and non-conjugated polymers having pendant luminescent groups. Small molecule OLEDs can become polymeric OLEDs if post-polymerization occurs during fabrication.
Various methods of OLED fabrication exist. Small molecule OLEDs are typically fabricated by vacuum thermal evaporation. Polymeric OLEDs are manufactured by solution processes such as spin coating, inkjet printing and nozzle printing. Small molecule OLEDs can also be fabricated by solution processes if the material can be dissolved or dispersed in a solvent.
The emission color of an OLED can be achieved by the structural design of the luminescent material. The OLED may include a light emitting layer or layers to achieve a desired spectrum. Green, yellow and red OLEDs, phosphorescent materials have been successfully commercialized. Blue phosphorescent devices still have problems of blue unsaturation, short device lifetime, high operating voltage, and the like. Commercial full color OLED displays typically employ a mixing strategy using blue fluorescent and phosphorescent yellow, or red and green. Currently, a rapid decrease in efficiency of phosphorescent OLEDs at high brightness remains a problem. In addition, it is desirable to have a more saturated emission spectrum, higher efficiency and longer device lifetime.
In recent years, in the synthesis of OLED luminescent materials, there have been studies and reports on the use of benzoxazoles or benzoxazole derivatives as ligands, such as:
CN111777646a discloses a liquid crystal display device havingMetal complexes of the general structure and organic light emitting devices comprising the same, the disclosed ligand structures comprise substituted or unsubstituted 2- (phenyl) -naphtho [2,1-D]The oxazole backbone, however, does not disclose or teach ligands having other five membered heterocyclic fused structures, nor does the application disclose substituents R 1 Or R is 2 Continuing the ring-forming ligand structure.
CN105859794a discloses a liquid crystal display device havingAn iridium complex of the general formula and an organic light-emitting device comprising the iridium complex, disclosed in this application are ligands comprising a 2- (2-pyridyl) benzoxazole ring skeleton having a substituent or not, and do not disclose or teach ligands having other five-membered heterocyclic condensed structures, nor do they disclose ligand structures having other aromatic or heteroaromatic ring structures linked to the benzoxazole ring.
When the metal complex which is developed at present and takes benzoxazole or benzoxazole derivatives as ligands is used in an electroluminescent device, various defects still exist in the aspects of compound wavelength, device voltage, device efficiency, device service life and the like. In order to meet the increasing demands of the industry, there is still a need to develop a metal complex capable of achieving higher device efficiency and longer device lifetime at low driving voltages.
Disclosure of Invention
The present invention aims to provide a series of novel metal complexes to solve at least part of the above problems. The metal complex comprises a metal M and a ligand L having the structure of formula 1 a . When the metal complex is used as a luminescent material in an organic electroluminescent device, high current efficiency, power efficiency, external quantum efficiency and long service life of the device can be obtained under low driving voltage, and better device performance can be provided.
According to one embodiment of the present invention, a metal complex is disclosed comprising a metal M and a ligand L coordinated to the metal M a The metal M is selected from metals with a relative atomic mass of more than 40, and the ligand L a Has a structure represented by formula 1:
wherein a is selected identically or differently for each occurrence from O or S;
ring B is selected from a fused aromatic ring having 14 to 30 carbon atoms, or a fused heteroaromatic ring having 8 to 30 carbon atoms; and a single ring in ring B directly condensed with a five-membered ring containing N and a is a six-membered ring;
R x each occurrence, identically or differently, represents mono-, poly-or unsubstituted;
cy has a structure represented by one of formulas 2-1 to 2-6:
wherein Y is selected from O, S, se, CRR, siRR or NR, when two R exist at the same time, the two R are the same or different;
Y 1 -Y 5 Is selected from CR, identically or differently at each occurrence y Or N;
R x ,R y r is selected identically or differently on each occurrence from the group consisting of: hydrogen, deuterium, halogen, substituted or unsubstituted alkyl having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl having 3 to 20 ring carbon atoms, substituted or unsubstituted heteroaryl having 3 to 20 carbon atoms, substituted or unsubstituted heterocyclyl having 3 to 20 ring atoms, substituted or unsubstituted aralkyl having 7 to 30 carbon atoms, substituted or unsubstituted alkyl having 1 to 20 carbon atoms, substituted or unsubstituted aryloxy having 6 to 30 carbon atoms, substituted or unsubstituted alkenyl having 2 to 20 carbon atoms, substituted or unsubstituted alkynyl having 2 to 20 carbon atoms, substituted or unsubstituted aryl having 6 to 30 carbon atoms, substituted or unsubstituted heteroaryl having 3 to 30 carbon atoms, substituted or unsubstituted alkylsilyl having 3 to 20 carbon atoms, substituted or unsubstituted alkylsilyl having 6 to 20 carbon atoms, substituted or unsubstituted alkyl germanium having 3 to 20 carbon atoms, substituted or unsubstituted aryl having 6 to 20 carbon atoms, carbonyl having 0 to 20 carbon atoms, cyano, sulfonyl, cyano, carbonyl, cyano, sulfonyl, cyano, or the like;
Adjacent substituents R x ,R y R can optionally be linked to form a ring;
in formulas 2-1 to 2-6, "#" indicates the position where the Cy is attached to the metal M,represents the position where the Cy is linked to the five-membered ring containing N and A in formula 1.
According to another embodiment of the present invention, an electroluminescent device is disclosed, comprising an anode, a cathode, an organic layer disposed between the anode and the cathode, the organic layer comprising the metal complex of the previous embodiment.
According to yet another embodiment of the present invention, a compound composition comprising the metal complex of the previous embodiment is also disclosed.
The invention discloses a metal M-containing and L with a structure of formula 1 a Metal complexes of ligands. When the metal complex is used as a luminescent material in an organic electroluminescent device, the current efficiency, the power efficiency and the service life of the device can be improved under low driving voltage, and the comprehensive performance of the device is improved.
Drawings
Fig. 1 is a schematic view of an organic light emitting device that may contain the metal complex and compound compositions disclosed herein.
Fig. 2 is a schematic view of another organic light emitting device that may contain the metal complex and compound compositions disclosed herein.
Detailed Description
OLEDs can be fabricated on a variety of substrates, such as glass, plastic, and metal. Fig. 1 schematically illustrates, without limitation, an organic light-emitting device 100. The drawings are not necessarily to scale, and some of the layer structures in the drawings may be omitted as desired. The device 100 may include a substrate 101, an anode 110, a hole injection layer 120, a hole transport layer 130, an electron blocking layer 140, a light emitting layer 150, a hole blocking layer 160, an electron transport layer 170, an electron injection layer 180, and a cathode 190. The device 100 may be fabricated by sequentially depositing the layers described. The nature and function of the layers and exemplary materials are described in more detail in U.S. patent US7,279,704B2, columns 6-10, the entire contents of which are incorporated herein by reference.
There are more instances of each of these layers. For example, a flexible and transparent substrate-anode combination is disclosed in U.S. patent No. 5,844,363, which is incorporated by reference in its entirety. An example of a p-doped hole transport layer is doped with F in a 50:1 molar ratio 4 m-MTDATA of TCNQ as disclosed in U.S. patent application publication No. 2003/0230980, which is incorporated by reference in its entirety. Examples of host materials are disclosed in U.S. Pat. No. 6,303,238 to Thompson et al, which is incorporated by reference in its entirety. An example of an n-doped electron transport layer is BPhen doped with Li in a molar ratio of 1:1 as disclosed in U.S. patent application publication No. 2003/0230980, which is incorporated by reference in its entirety. Examples of cathodes are disclosed in U.S. Pat. nos. 5,703,436 and 5,707,745, which are incorporated by reference in their entirety, including composite cathodes having a thin layer of metal, such as Mg: ag, with an overlying transparent, electrically conductive, sputter deposited ITO layer. The principles and use of barrier layers are described in more detail in U.S. patent No. 6,097,147 and U.S. patent application publication No. 2003/0230980, which are incorporated by reference in their entirety. Examples of implant layers are provided in U.S. patent application publication No. 2004/0174116, which is incorporated by reference in its entirety. A description of protective layers can be found in U.S. patent application publication No. 2004/0174116, which is incorporated by reference in its entirety.
The above-described hierarchical structure is provided by way of non-limiting example. The function of the OLED may be achieved by combining the various layers described above, or some of the layers may be omitted entirely. It may also include other layers not explicitly described. Within each layer, a single material or a mixture of materials may be used to achieve optimal performance. Any functional layer may comprise several sublayers. For example, the light emitting layer may have two layers of different light emitting materials to achieve a desired light emission spectrum.
In one embodiment, an OLED may be described as having an "organic layer" disposed between a cathode and an anode. The organic layer may include one or more layers.
The OLED also requires an encapsulation layer, such as the organic light emitting device 200 shown schematically and without limitation in fig. 2, which differs from fig. 1 in that an encapsulation layer 102 may also be included over the cathode 190 to prevent harmful substances from the environment, such as moisture and oxygen. Any material capable of providing an encapsulation function may be used as the encapsulation layer, such as glass or an organic-inorganic hybrid layer. The encapsulation layer should be placed directly or indirectly outside the OLED device. Multilayer film packages are described in U.S. patent US7,968,146B2, the entire contents of which are incorporated herein by reference.
Devices manufactured according to embodiments of the present invention may be incorporated into a variety of consumer products having one or more electronic component modules (or units) of the device. Some examples of such consumer products include flat panel displays, monitors, medical monitors, televisions, billboards, lights for indoor or outdoor lighting and/or signaling, heads-up displays, displays that are fully or partially transparent, flexible displays, smart phones, tablet computers, tablet phones, wearable devices, smart watches, laptops, digital cameras, camcorders, viewfinders, micro-displays, 3-D displays, vehicle displays, and taillights.
The materials and structures described herein may also be used in other organic electronic devices as listed above.
As used herein, "top" means furthest from the substrate and "bottom" means closest to the substrate. In the case where the first layer is described as being "disposed" on "the second layer, the first layer is disposed farther from the substrate. Unless a first layer is "in contact with" a second layer, other layers may be present between the first and second layers. For example, a cathode may be described as "disposed on" an anode even though various organic layers are present between the cathode and the anode.
As used herein, "solution processable" means capable of being dissolved, dispersed, or transported in and/or deposited from a liquid medium in the form of a solution or suspension.
A ligand may be referred to as "photosensitive" when it is believed that the ligand directly contributes to the photosensitive properties of the emissive material. When it is believed that the ligand does not contribute to the photosensitive properties of the emissive material, the ligand may be referred to as "ancillary," but ancillary ligands may alter the properties of the photosensitive ligand.
It is believed that the Internal Quantum Efficiency (IQE) of fluorescent OLEDs can be limited by spin statistics that delay fluorescence by more than 25%. Delayed fluorescence can be generally classified into two types, i.e., P-type delayed fluorescence and E-type delayed fluorescence. The P-type delayed fluorescence is generated by triplet-triplet annihilation (TTA).
On the other hand, the E-type delayed fluorescence does not depend on the collision of two triplet states, but on the transition between the triplet states and the singlet excited state. Compounds capable of generating E-type delayed fluorescence need to have very small mono-triplet gaps in order for the conversion between the energy states. The thermal energy may activate a transition from the triplet state back to the singlet state. This type of delayed fluorescence is also known as Thermally Activated Delayed Fluorescence (TADF). A significant feature of TADF is that the delay component increases with increasing temperature. The fraction of backfill singlet excited states may reach 75% if the reverse intersystem crossing (RISC) rate is fast enough to minimize non-radiative decay from the triplet states. The total singlet fraction may be 100%, well in excess of 25% of the spin statistics of the electrically generated excitons.
Type E delayed fluorescence features can be found in excitation complex systems or in single compounds. Without being bound by theory, it is believed that E-delayed fluorescence requires a luminescent material with a small mono-triplet energy gap (Δe S-T ). Organic non-metal containing donor-acceptor luminescent materials may be able to achieve this. The emission of these materials is typically characterized as donor-acceptor Charge Transfer (CT) type emission. The spatial separation of HOMO from LUMO in these donor-acceptor compounds generally results in a small Δe S-T . These states may include CT states. Typically, donor-acceptor luminescent materials are constructed by linking an electron donor moiety (e.g., an amino or carbazole derivative) to an electron acceptor moiety (e.g., an N-containing six-membered aromatic ring).
Definition of terms for substituents
Halogen or halide-as used herein, includes fluorine, chlorine, bromine and iodine.
Alkyl-as used herein, includes straight and branched chain alkyl groups. The alkyl group may be an alkyl group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms. Examples of alkyl groups include methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-pentadecyl, n-hexadecyl, n-heptadecyl, n-octadecyl, neopentyl, 1-methylpentyl, 2-methylpentyl, 1-pentylhexyl, 1-butylpentyl, 1-heptyloctyl, 3-methylpentyl. Among the above, methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, neopentyl and n-hexyl are preferred. In addition, the alkyl group may be optionally substituted.
Cycloalkyl-as used herein, includes cyclic alkyl. Cycloalkyl groups may be cycloalkyl groups having 3 to 20 ring carbon atoms, preferably 4 to 10 carbon atoms. Examples of cycloalkyl groups include cyclobutyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, 4-dimethylcyclohexyl, 1-adamantyl, 2-adamantyl, 1-norbornyl, 2-norbornyl and the like. Among the above, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, 4-dimethylcyclohexyl are preferred. In addition, cycloalkyl groups may be optionally substituted.
Heteroalkyl-as used herein, a heteroalkyl comprises an alkyl chain in which one or more carbons is replaced by a heteroatom selected from the group consisting of nitrogen, oxygen, sulfur, selenium, phosphorus, silicon, germanium, and boron. The heteroalkyl group may be a heteroalkyl group having 1 to 20 carbon atoms, preferably a heteroalkyl group having 1 to 10 carbon atoms, more preferably a heteroalkyl group having 1 to 6 carbon atoms. Examples of heteroalkyl groups include methoxymethyl, ethoxymethyl, ethoxyethyl, methylthiomethyl, ethylthiomethyl, ethylthioethyl, methoxymethoxymethyl, ethoxymethoxymethyl, ethoxyethoxyethyl, hydroxymethyl, hydroxyethyl, hydroxypropyl, mercaptomethyl, mercaptoethyl, mercaptopropyl, aminomethyl, aminoethyl, aminopropyl, dimethylaminomethyl, trimethylgermylmethyl, trimethylgermylethyl, dimethylethylgermylmethyl, dimethylisopropylgermylmethyl, t-butyldimethylgermylmethyl, triethylgermylmethyl, triethylgermylethyl, triisopropylgermylmethyl, triisopropylgermylethyl, trimethylsilylmethyl, trimethylsilylethyl, trimethylsilylisopropyl, triisopropylsilylmethyl. In addition, heteroalkyl groups may be optionally substituted.
Alkenyl-as used herein, covers straight chain, branched chain, and cyclic alkylene groups. Alkenyl groups may be alkenyl groups containing 2 to 20 carbon atoms, preferably alkenyl groups having 2 to 10 carbon atoms. Examples of alkenyl groups include ethenyl, propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1, 3-butadienyl, 1-methylvinyl, styryl, 2-diphenylvinyl, 1-methallyl, 1-dimethylallyl, 2-methallyl, 1-phenylallyl, 2-phenylallyl, 3-diphenylallyl, 1, 2-dimethylallyl, 1-phenyl-1-butenyl, 3-phenyl-1-butenyl, cyclopentenyl, cyclopentadienyl, cyclohexenyl, cycloheptenyl, cycloheptatrienyl, cyclooctenyl, cyclooctatetraenyl and norbornenyl. In addition, alkenyl groups may be optionally substituted.
Alkynyl-as used herein, straight chain alkynyl is contemplated. The alkynyl group may be an alkynyl group containing 2 to 20 carbon atoms, preferably an alkynyl group having 2 to 10 carbon atoms. Examples of alkynyl groups include ethynyl, propynyl, propargyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-pentynyl, 2-pentynyl, 3-dimethyl-1-butynyl, 3-ethyl-3-methyl-1-pentynyl, 3-diisopropyl-1-pentynyl, phenylethynyl, phenylpropynyl and the like. Among the above, preferred are ethynyl, propynyl, propargyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-pentynyl and phenylethynyl. In addition, alkynyl groups may be optionally substituted.
Aryl or aromatic radicalsAs used herein, non-fused and fused systems are contemplated. The aryl group may be an aryl group having 6 to 30 carbon atoms, preferably an aryl group having 6 to 20 carbon atoms, more preferably an aryl group having 6 to 12 carbon atoms. Examples of the aryl group include phenyl, biphenyl, terphenyl, triphenylene, tetraphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene,perylene and azulene, preferably phenyl, biphenyl, terphenyl, triphenylene, fluorene and naphthalene. Examples of non-condensed aryl groups include phenyl, biphenyl-2-yl, biphenyl-3-yl, biphenyl-4-yl, p-terphenyl-3-yl, p-terphenyl-2-yl, m-terphenyl-4-yl, m-terphenyl-3-yl, m-terphenyl-2-yl, o-tolyl, m-tolyl, p- (2-phenylpropyl) phenyl, 4 '-methylbiphenyl-4' -tert-butyl-p-terphenyl-4-yl, o-cumyl, m-cumyl, p-cumyl, 2, 3-xylyl, 3, 4-xylyl, 2, 5-xylyl, mesityl and m-tetrabiphenyl. In addition, aryl groups may be optionally substituted.
Heterocyclyl or heterocycle-as used herein, non-aromatic cyclic groups are contemplated. The non-aromatic heterocyclic group includes a saturated heterocyclic group having 3 to 20 ring atoms and an unsaturated non-aromatic heterocyclic group having 3 to 20 ring atoms, at least one of which is selected from the group consisting of nitrogen atom, oxygen atom, sulfur atom, selenium atom, silicon atom, phosphorus atom, germanium atom and boron atom, and preferred non-aromatic heterocyclic groups are those having 3 to 7 ring atoms including at least one hetero atom such as nitrogen, oxygen, silicon or sulfur. Examples of non-aromatic heterocyclic groups include oxiranyl, oxetanyl, tetrahydrofuranyl, tetrahydropyranyl, dioxanyl, aziridinyl, dihydropyrrolyl, tetrahydropyrrolyl, piperidinyl, oxazolidinyl, morpholinyl, piperazinyl, oxacycloheptatrienyl, thietaneyl, azepanyl and tetrahydrosilol. In addition, the heterocyclic group may be optionally substituted.
Heteroaryl-as used herein, non-fused and fused heteroaromatic groups that may contain 1 to 5 heteroatoms, at least one of which is selected from the group consisting of nitrogen atoms, oxygen atoms, sulfur atoms, selenium atoms, silicon atoms, phosphorus atoms, germanium atoms, and boron atoms. Heteroaryl also refers to heteroaryl. The heteroaryl group may be a heteroaryl group having 3 to 30 carbon atoms, preferably a heteroaryl group having 3 to 20 carbon atoms, more preferably a heteroaryl group having 3 to 12 carbon atoms. Suitable heteroaryl groups include dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridine indole, pyrrolopyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indenoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, benzofuranopyridine, furodipyridine, benzothiophene, thienodipyridine, benzoselenophene, selenodipyridine, preferably dibenzothiophene, dibenzofuran, dibenzoselenophene, carbazole, indolocarbazole, imidazole, pyridine, triazine, benzimidazole, 1, 2-aza-boron, 1, 3-aza-boron, 1-aza-boron-4-aza, boron-doped compounds, and the like. In addition, heteroaryl groups may be optionally substituted.
Alkoxy-as used herein, is represented by-O-alkyl, -O-cycloalkyl, -O-heteroalkyl, or-O-heterocyclyl. Examples and preferred examples of the alkyl group, cycloalkyl group, heteroalkyl group and heterocyclic group are the same as described above. The alkoxy group may be an alkoxy group having 1 to 20 carbon atoms, preferably an alkoxy group having 1 to 6 carbon atoms. Examples of alkoxy groups include methoxy, ethoxy, propoxy, butoxy, pentoxy, hexyloxy, cyclopropyloxy, cyclobutyloxy, cyclopentyloxy, cyclohexyloxy, tetrahydrofuranyloxy, tetrahydropyranyloxy, methoxypropyloxy, ethoxyethyloxy, methoxymethyloxy and ethoxymethyloxy. In addition, the alkoxy group may be optionally substituted.
Aryloxy-as used herein, is represented by-O-aryl or-O-heteroaryl. Examples and preferred examples of aryl and heteroaryl groups are the same as described above. The aryloxy group may be an aryloxy group having 6 to 30 carbon atoms, preferably an aryloxy group having 6 to 20 carbon atoms. Examples of aryloxy groups include phenoxy and biphenoxy. In addition, the aryloxy group may be optionally substituted.
Aralkyl-as used herein, encompasses aryl-substituted alkyl. The aralkyl group may be an aralkyl group having 7 to 30 carbon atoms, preferably an aralkyl group having 7 to 20 carbon atoms, more preferably an aralkyl group having 7 to 13 carbon atoms. Examples of aralkyl groups include benzyl, 1-phenylethyl, 2-phenylethyl, 1-phenylisopropyl, 2-phenylisopropyl, phenyl tert-butyl, α -naphthylmethyl, 1- α -naphthyl-ethyl, 2- α -naphthylethyl, 1- α -naphthylisopropyl, 2- α -naphthylisopropyl, β -naphthylmethyl, 1- β -naphthyl-ethyl, 2- β -naphthyl-ethyl, 1- β -naphthylisopropyl, 2- β -naphthylisopropyl, p-methylbenzyl, m-methylbenzyl, o-methylbenzyl, p-chlorobenzyl, m-chlorobenzyl, o-chlorobenzyl, p-bromobenzyl, m-bromobenzyl, o-bromobenzyl, p-iodobenzyl, m-iodobenzyl, o-iodobenzyl, p-hydroxybenzyl, m-hydroxybenzyl, o-aminobenzyl, m-aminobenzyl, o-aminobenzyl, p-nitrobenzyl, m-nitrobenzyl, o-nitrobenzyl, p-cyanobenzyl, m-cyanobenzyl, cyano, o-cyanobenzyl, o-chlorobenzyl, 1-chlorophenyl and 1-isopropyl. Among the above, preferred are benzyl, p-cyanobenzyl, m-cyanobenzyl, o-cyanobenzyl, 1-phenylethyl, 2-phenylethyl, 1-phenylisopropyl and 2-phenylisopropyl. In addition, aralkyl groups may be optionally substituted.
Alkyl-as used herein, alkyl-substituted silicon groups are contemplated. The silyl group may be a silyl group having 3 to 20 carbon atoms, preferably a silyl group having 3 to 10 carbon atoms. Examples of the alkyl silicon group include trimethyl silicon group, triethyl silicon group, methyldiethyl silicon group, ethyldimethyl silicon group, tripropyl silicon group, tributyl silicon group, triisopropyl silicon group, methyldiisopropyl silicon group, dimethylisopropyl silicon group, tri-t-butyl silicon group, triisobutyl silicon group, dimethyl-t-butyl silicon group, and methyldi-t-butyl silicon group. In addition, the alkyl silicon group may be optionally substituted.
Arylsilane-as used herein, encompasses at least one aryl-substituted silicon group. The arylsilane group may be an arylsilane group having 6 to 30 carbon atoms, preferably an arylsilane group having 8 to 20 carbon atoms. Examples of arylsilyl groups include triphenylsilyl, phenyldiphenylsilyl, diphenylbiphenyl silyl, phenyldiethylsilyl, diphenylethylsilyl, phenyldimethylsilyl, diphenylmethylsilyl, phenyldiisopropylsilyl, diphenylisopropylsilyl, diphenylbutylsilyl, diphenylisobutylsilyl, diphenyltert-butylsilyl. In addition, arylsilane groups may be optionally substituted.
Alkyl germanium group-as used herein, alkyl substituted germanium groups are contemplated. The alkylgermanium group may be an alkylgermanium group having 3 to 20 carbon atoms, preferably an alkylgermanium group having 3 to 10 carbon atoms. Examples of alkyl germanium groups include trimethyl germanium group, triethyl germanium group, methyl diethyl germanium group, ethyl dimethyl germanium group, tripropyl germanium group, tributyl germanium group, triisopropyl germanium group, methyl diisopropyl germanium group, dimethyl isopropyl germanium group, tri-t-butyl germanium group, triisobutyl germanium group, dimethyl-t-butyl germanium group, methyl-di-t-butyl germanium group. In addition, alkyl germanium groups may be optionally substituted.
Arylgermanium group-as used herein, encompasses at least one aryl or heteroaryl substituted germanium group. The arylgermanium group may be an arylgermanium group having 6-30 carbon atoms, preferably an arylgermanium group having 8 to 20 carbon atoms. Examples of aryl germanium groups include triphenylgermanium group, phenylbiphenyl germanium group, diphenylbiphenyl germanium group, phenyldiethyl germanium group, diphenylethyl germanium group, phenyldimethyl germanium group, diphenylmethyl germanium group, phenyldiisopropylgermanium group, diphenylisopropylgermanium group, diphenylbutylgermanium group, diphenylisobutylglycol group, and diphenyltert-butylgermanium group. In addition, the arylgermanium group may be optionally substituted.
The term "aza" in azadibenzofurans, azadibenzothiophenes and the like means that one or more C-H groups in the corresponding aromatic fragment are replaced by a nitrogen atom. For example, azatriphenylenes include dibenzo [ f, h ] quinoxalines, dibenzo [ f, h ] quinolines, and other analogs having two or more nitrogens in the ring system. Other nitrogen analogs of the above-described aza derivatives will be readily apparent to those of ordinary skill in the art, and all such analogs are intended to be included in the terms described herein.
In the present disclosure, when any one of the terms from the group consisting of: substituted alkyl, substituted cycloalkyl, substituted heteroalkyl, substituted heterocyclyl, substituted aralkyl, substituted alkoxy, substituted aryloxy, substituted alkenyl, substituted alkynyl, substituted aryl, substituted heteroaryl, substituted alkylsilyl, substituted arylsilyl, substituted alkylgermanium, substituted arylgermanium, substituted amino, substituted acyl, substituted carbonyl, substituted carboxylic acid, substituted ester, substituted sulfinyl, substituted sulfonyl, substituted phosphino, alkyl, cycloalkyl, heteroalkyl, heterocyclyl, aralkyl, alkoxy, aryloxy, alkenyl, alkynyl, aryl, heteroaryl, alkylsilyl, arylsilyl, amino, acyl, carbonyl, carboxylic acid, ester, sulfinyl, sulfonyl and phosphino groups, which may be substituted with one or more groups selected from the group consisting of deuterium, halogen, unsubstituted alkyl having 1 to 20 carbon atoms, unsubstituted cycloalkyl having 3 to 20 ring carbon atoms, unsubstituted cycloalkyl having 1 to 20 carbon atoms, unsubstituted alkenyl having 3 to 20 carbon atoms, unsubstituted aryl having 3 to 20 carbon atoms, unsubstituted alkenyl having 3 to 30 carbon atoms, unsubstituted aryl having 3 to 20 carbon atoms, unsubstituted alkenyl having 3 to 20 carbon atoms, unsubstituted aryl having 3 to 30 carbon atoms, unsubstituted aryl having 3 to 20 carbon atoms, unsubstituted aryl having 3 to 30 carbon atoms, unsubstituted alkylgermanium groups having 3 to 20 carbon atoms, unsubstituted arylgermanium groups having 6 to 20 carbon atoms, unsubstituted amino groups having 0 to 20 carbon atoms, acyl groups, carbonyl groups, carboxylic acid groups, ester groups, cyano groups, isocyano groups, mercapto groups, sulfinyl groups, sulfonyl groups, phosphine groups, and combinations thereof.
It will be appreciated that when a fragment of a molecule is described as a substituent or otherwise attached to another moiety, its name may be written according to whether it is a fragment (e.g., phenyl, phenylene, naphthyl, dibenzofuranyl) or according to whether it is an entire molecule (e.g., benzene, naphthalene, dibenzofuran). As used herein, these different ways of specifying substituents or linking fragments are considered equivalent.
In the compounds mentioned in this disclosure, the hydrogen atoms may be partially or completely replaced by deuterium. Other atoms such as carbon and nitrogen may also be replaced by their other stable isotopes. Substitution of other stable isotopes in the compounds may be preferred because of their enhanced efficiency and stability of the device.
In the compounds mentioned in this disclosure, multiple substitution is meant to encompass double substitution up to the maximum available substitution range. When a substituent in a compound mentioned in this disclosure means multiple substitution (including di-substitution, tri-substitution, tetra-substitution, etc.), it means that the substituent may be present at a plurality of available substitution positions on its linking structure, and the substituent present at each of the plurality of available substitution positions may be of the same structure or of different structures.
In the compounds mentioned in this disclosure, adjacent substituents in the compounds cannot be linked to form a ring unless explicitly defined, for example, adjacent substituents can optionally be linked to form a ring. In the compounds mentioned in this disclosure, adjacent substituents can optionally be linked to form a ring, both in the case where adjacent substituents can be linked to form a ring and in the case where adjacent substituents are not linked to form a ring. Where adjacent substituents can optionally be joined to form a ring, the ring formed can be monocyclic or polycyclic (including spiro, bridged, fused, etc.), as well as alicyclic, heteroalicyclic, aromatic or heteroaromatic. In this expression, adjacent substituents may refer to substituents bonded to the same atom, substituents bonded to carbon atoms directly bonded to each other, or substituents bonded to further distant carbon atoms. Preferably, adjacent substituents refer to substituents bonded to the same carbon atom and substituents bonded to carbon atoms directly bonded to each other.
The expression that adjacent substituents can optionally be linked to form a ring is also intended to mean that two substituents bonded to the same carbon atom are linked to each other by a chemical bond to form a ring, which can be exemplified by the following formula:
The expression that adjacent substituents can optionally be linked to form a ring is also intended to be taken to mean that two substituents bonded to carbon atoms directly bonded to each other are linked to each other by a chemical bond to form a ring, which can be exemplified by the following formula:
the expression that adjacent substituents can optionally be linked to form a ring is also intended to be taken to mean that the two substituents bound to further distant carbon atoms are linked to each other by a chemical bond to form a ring, which can be exemplified by the following formula:
furthermore, the expression that adjacent substituents can optionally be linked to form a ring is also intended to be taken to mean that, in the case where one of the adjacent two substituents represents hydrogen, the second substituent is bonded at the position to which the hydrogen atom is bonded, thereby forming a ring. This is exemplified by the following formula:
according to one embodiment of the present invention, a metal complex is disclosed comprising a metal M and a ligand L coordinated to the metal M a The metal M is selected from metals with a relative atomic mass of more than 40, and the ligand L a Has a structure represented by formula 1:
wherein a is selected identically or differently for each occurrence from O or S;
ring B is selected from a fused aromatic ring having 14 to 30 carbon atoms, or a fused heteroaromatic ring having 8 to 30 carbon atoms; and a single ring in ring B directly condensed with a five-membered ring containing N and a is a six-membered ring;
R x Each occurrence, identically or differently, represents mono-, poly-or unsubstituted;
cy has a structure represented by one of formulas 2-1 to 2-6:
wherein Y is selected from O, S, se, CRR, siRR or NR, when two R exist at the same time, the two R are the same or different;
Y 1 -Y 5 is selected from CR, identically or differently at each occurrence y Or N;
R x ,R y r is selected identically or differently on each occurrence from the group consisting of: hydrogen, deuterium, halogen, substituted or unsubstituted alkyl having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl having 3 to 20 ring carbon atoms, substituted or unsubstituted heteroalkyl having 1 to 20 carbon atoms, substituted or unsubstituted heterocyclyl having 3 to 20 ring atoms, substituted or unsubstituted aralkyl having 7 to 30 carbon atoms, substituted or unsubstituted alkoxy having 1 to 20 carbon atoms, substituted or unsubstituted aryloxy having 6 to 30 carbon atoms, substituted or unsubstituted alkenyl having 2 to 20 carbon atoms, substituted or unsubstituted alkynyl having 2 to 20 carbon atoms, substituted or unsubstituted aryl having 6 to 30 carbon atoms, substituted or unsubstituted heteroaryl having 3 to 30 carbon atoms, substituted or unsubstituted alkylsilyl having 3 to 20 carbon atoms, substituted or unsubstituted An aryl silane group having 6 to 20 carbon atoms, a substituted or unsubstituted alkyl germanium group having 3 to 20 carbon atoms, a substituted or unsubstituted aryl germanium group having 6 to 20 carbon atoms, a substituted or unsubstituted amino group having 0 to 20 carbon atoms, an acyl group, a carbonyl group, a carboxylic acid group, an ester group, a cyano group, an isocyano group, a hydroxyl group, a mercapto group, a sulfinyl group, a sulfonyl group, a phosphino group, and combinations thereof;
adjacent substituents R x ,R y R can optionally be linked to form a ring;
in formulas 2-1 to 2-6, "#" indicates the position where the Cy is attached to the metal M,represents the position where the Cy is linked to the five-membered ring containing N and A in formula 1.
In this embodiment, "adjacent substituent R x ,R y R can optionally be linked to form a ring ", intended to mean a group of substituents adjacent thereto, e.g. two substituents R x Between two substituents R y Between two substituents R and R y In between, any one or more of these substituent groups may be linked to form a ring. Obviously, these substituents may not all be linked to form a ring.
Herein, "ring B is selected from a fused aromatic ring having 14 to 30 carbon atoms, or a fused heteroaromatic ring having 8 to 30 carbon atoms; and a single ring of the ring B directly condensed with the five-membered ring containing N and a is a six-membered ring ", which is intended to mean that the ring B itself is condensed from a plurality of rings, the ring B is condensed with the five-membered ring containing N and a in formula 1, and the single ring of the ring B directly condensed with the five-membered ring containing N and a is a six-membered ring (including a six-membered aromatic ring or a six-membered heteroaromatic ring), which is explained in formula 1':
In formula 1', B will be contained 1 -B 4 Is designated as ring B' which is directly fused to a five-membered ring comprising N and ARing B 'is part of ring B of formula 1, ring B' passing through B 1 And B 2 、B 2 And B 3 、B 3 And B 4 And further condensed with other rings to form the ring B, and the ring B is a condensed aromatic ring having 14 to 30 carbon atoms, or a condensed heteroaromatic ring having 8 to 30 carbon atoms.
According to one embodiment of the invention, wherein, in formula 1, a is selected from O.
According to one embodiment of the present invention, wherein ring B is selected from any one of the structures of the group consisting of formulas 1-1 to 1-14:
wherein X is selected, identically or differently, for each occurrence, from O, S or NR';
X 1 and X 2 Are all C and X 1 And X 2 One of them is connected with the N in the formula 1, X 1 And X 2 The other of (a) is connected to the a in formula 1;
X 3 -X 10 is selected from CR, identically or differently at each occurrence x Or N;
R’,R x and is selected identically or differently on each occurrence from the group consisting of: hydrogen, deuterium, halogen, substituted or unsubstituted alkyl having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl having 3 to 20 ring carbon atoms, substituted or unsubstituted heteroalkyl having 1 to 20 carbon atoms, substituted or unsubstituted heterocyclyl having 3 to 20 ring atoms, substituted or unsubstituted aralkyl having 7 to 30 carbon atoms, substituted or unsubstituted alkoxy having 1 to 20 carbon atoms, substituted or unsubstituted aryloxy having 6 to 30 carbon atoms, substituted or unsubstituted alkenyl having 2 to 20 carbon atoms, substituted or unsubstituted alkynyl having 2 to 20 carbon atoms, substituted or unsubstituted aryl having 6 to 30 carbon atoms, substituted or unsubstituted heteroaryl having 3 to 30 carbon atoms, substituted or unsubstituted alkylsilyl having 3 to 20 carbon atoms, substituted or unsubstituted arylsilyl having 6 to 20 carbon atoms, substituted or unsubstituted Substituted alkylgermanium groups having 3 to 20 carbon atoms, substituted or unsubstituted arylgermanium groups having 6 to 20 carbon atoms, substituted or unsubstituted amino groups having 0 to 20 carbon atoms, acyl groups, carbonyl groups, carboxylic acid groups, ester groups, cyano groups, isocyano groups, hydroxyl groups, mercapto groups, sulfinyl groups, sulfonyl groups, phosphino groups, and combinations thereof;
adjacent substituents R', R x Can optionally be linked to form a ring.
In this embodiment, "adjacent substituents R', R x Can optionally be linked to form a ring ", is intended to mean groups of adjacent substituents therein, e.g. two adjacent substituents R x Between two adjacent substituents R' and R x In between, any one or more of these substituent groups may be linked to form a ring. Obviously, these substituents may not all be linked to form a ring.
In the present embodiment, "X 1 And X 2 Are all C and X 1 And X 2 One of them is connected with the N in the formula 1, X 1 And X 2 The other of (a) is linked to the said a in formula 1, and is intended to mean that the formulae 1-1 to 1-14 may have different condensed modes, exemplified by formulae 1-9, when X 1 When connected with the N in the formula 1, X 2 To the A in formula 1, the structures of formulas 1 to 9 are:
at this time, the L a The structure of (2) is as follows:when X is 2 When connected with the N in the formula 1, X 1 To the A in formula 1, the structures of formulas 1 to 9 are:
at this time, the L a The structure of (2) is as follows:
in this embodiment, the ring B is selected from any one of formulas 1-1 to 1-14, so that the formulas 1-1 to 1-14 each satisfy the limitation of "a condensed aromatic ring having 14 to 30 carbon atoms, or a condensed heteroaromatic ring having 8 to 30 carbon atoms", for example, for formulas 1-1 to 1-3, wherein X is a heteroatom, and thus X 3 -X 6 All selected from CR x When X is the number of carbon atoms satisfying the above-mentioned limit conditions 3 -X 6 When any one or more of them is selected from N, X 3 -X 6 At least two adjacent R's in (a) x The ring may be formed by linking, and the above-mentioned limitation on the number of carbon atoms may be satisfied; for another example, for formulas 1-4 and 1-5, X 3 -X 8 Can be all selected from CR x At this time X 3 -X 8 At least two adjacent R's in (a) x To form a ring to satisfy the above-mentioned limitation of the number of carbon atoms, or X 3 -X 8 Any 1 or 2 are selected from N, and the rest are selected from CR x The above-mentioned limit conditions for the number of carbon atoms can be satisfied, or X 3 -X 8 Where more of them are selected from N, X 3 -X 8 At least two adjacent R's in (a) x The ring formation may satisfy the above-mentioned limitation on the number of carbon atoms; the same applies to formulas 1-6 to 1-14. In addition, taking formulae 1 to 9 as an example, 14 ring atoms are shared in formulae 1 to 9, X 1 And X 2 Fixed as C, if X 3 -X 10 Wherein the number of N atoms is greater than 6, the number of carbon atoms of the condensed hetero aromatic ring represented by the formula 1-9 is less than 8, and the definition of "the ring B is selected from condensed hetero aromatic rings having 8-30 carbon atoms" is not satisfied, the formula 1-9 is "X 3 -X 10 The case where the number of N atoms is greater than 6 "is not the present invention.
According to one embodiment of the present invention, wherein, in the formulae 1-1 to 1-3, formulae 1-6 to 1-14, X 3 -X 10 Is selected from CR, identically or differently at each occurrence x 。
According to one embodiment of the invention, wherein, in formula (I)1-4 to formula 1-14, X 3 -X 10 At least one of which is N.
According to one embodiment of the invention, wherein R x And is selected identically or differently on each occurrence from the group consisting of: hydrogen, deuterium, halogen, substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl groups having 3 to 20 ring carbon atoms, substituted or unsubstituted aralkyl groups having 7 to 30 carbon atoms, substituted or unsubstituted aryl groups having 6 to 30 carbon atoms, substituted or unsubstituted heteroaryl groups having 3 to 30 carbon atoms, substituted or unsubstituted silyl groups having 3 to 20 carbon atoms, substituted or unsubstituted aryl silyl groups having 6 to 20 carbon atoms, substituted or unsubstituted alkyl germanium groups having 3 to 20 carbon atoms, cyano groups, and combinations thereof.
According to one embodiment of the invention, wherein R x And is selected identically or differently on each occurrence from the group consisting of: hydrogen, deuterium, fluorine, substituted or unsubstituted alkyl groups having 1 to 6 carbon atoms, substituted or unsubstituted cycloalkyl groups having 3 to 6 ring carbon atoms, substituted or unsubstituted aryl groups having 6 to 18 carbon atoms, substituted or unsubstituted heteroaryl groups having 3 to 18 carbon atoms, substituted or unsubstituted alkylsilyl groups having 3 to 15 carbon atoms, substituted or unsubstituted alkylgermanium groups having 3 to 20 carbon atoms, cyano groups, and combinations thereof.
According to one embodiment of the invention, wherein R x And is selected identically or differently on each occurrence from the group consisting of: hydrogen, deuterium, fluorine, methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tert-butyl, neopentyl, cyclopentyl, cyclohexyl, phenyl, pyridyl, trimethylsilyl, trimethylgermanium, trifluoromethyl, cyano, partially or fully deuterated methyl, partially or fully deuterated ethyl, partially or fully deuterated propyl, partially or fully deuterated isopropyl, partially or fully deuterated n-butyl, partially or fully deuterated isobutyl, partially or fully deuterated tert-butyl, partially or fully deuterated neopentyl, partially or fully deuterated cyclopentyl, partially or fully deuterated cyclohexyl, partially or fully deuterated phenyl Fully deuterated pyridinyl, partially or fully deuterated trimethylsilyl, and combinations thereof.
According to one embodiment of the invention, wherein Cy is any one structure selected from the group consisting of:
wherein Z is selected from O, S, se, NR, CR "R", siR "R" or GeR "R"; when two R's are present at the same time, the two R's are the same or different;
R y each occurrence, identically or differently, represents mono-substituted, poly-substituted, or unsubstituted;
R y r 'and R' are selected identically or differently on each occurrence from the group consisting of: hydrogen, deuterium, halogen, substituted or unsubstituted alkyl having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl having 3 to 20 ring carbon atoms, substituted or unsubstituted heteroalkyl having 1 to 20 carbon atoms, substituted or unsubstituted heterocyclyl having 3 to 20 ring atoms, substituted or unsubstituted aralkyl having 7 to 30 carbon atoms, substituted or unsubstituted alkoxy having 1 to 20 carbon atoms, substituted or unsubstituted aryloxy having 6 to 30 carbon atoms, substituted or unsubstituted alkenyl having 2 to 20 carbon atoms, substituted or unsubstituted alkynyl having 2 to 20 carbon atoms, substituted or unsubstituted aryl having 6 to 30 carbon atoms, substituted or unsubstituted heteroaryl having 3 to 30 carbon atoms, substituted or unsubstituted alkylsilyl having 3 to 20 carbon atoms, substituted or unsubstituted arylsilyl having 6 to 20 carbon atoms, substituted or unsubstituted alkylgermanium having 3 to 20 carbon atoms, substituted or unsubstituted arylgermanium having 6 to 20 carbon atoms, substituted or unsubstituted amino having 0 to 20 carbon atoms, acyl, carbonyl, carboxylic acid, ester, cyano, isocyano, hydroxyl, mercapto, sulfinyl Acyl, sulfonyl, phosphino, and combinations thereof;
adjacent substituents R y R' can optionally be linked to form a ring;
wherein, "#" indicates the position where the Cy is attached to the metal M,represents the position where the Cy is linked to the five-membered ring containing N and A in formula 1.
In this embodiment, "adjacent substituent R y R "can optionally be linked to form a ring" is intended to mean a group of substituents wherein adjacent, e.g., two adjacent substituents R y Between two adjacent substituents R' and R y In between, any one or more of these substituent groups may be linked to form a ring. Obviously, these substituents may not all be linked to form a ring.
According to one embodiment of the invention, wherein R y And is selected identically or differently on each occurrence from the group consisting of: hydrogen, deuterium, halogen, substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl groups having 3 to 20 ring carbon atoms, substituted or unsubstituted aralkyl groups having 7 to 30 carbon atoms, substituted or unsubstituted aryl groups having 6 to 30 carbon atoms, substituted or unsubstituted heteroaryl groups having 3 to 30 carbon atoms, substituted or unsubstituted silyl groups having 3 to 20 carbon atoms, substituted or unsubstituted aryl silyl groups having 6 to 20 carbon atoms, substituted or unsubstituted alkyl germanium groups having 3 to 20 carbon atoms, cyano groups, and combinations thereof.
According to one embodiment of the invention, wherein R y And is selected identically or differently on each occurrence from the group consisting of: hydrogen, deuterium, fluorine, substituted or unsubstituted alkyl having 1 to 6 carbon atoms, substituted or unsubstituted cycloalkyl having 3 to 6 ring carbon atoms, substituted or unsubstituted aryl having 6 to 18 carbon atoms, substituted or unsubstituted heteroaryl having 3 to 18 carbon atoms, substituted or unsubstituted alkylsilyl having 3 to 15 carbon atoms, substituted or unsubstituted aryl having 3 to 18 ring carbon atomsAlkyl germanium groups having 3 to 20 carbon atoms, cyano groups, and combinations thereof.
According to one embodiment of the invention, wherein R y And is selected identically or differently on each occurrence from the group consisting of: hydrogen, deuterium, fluorine, methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tert-butyl, neopentyl, cyclopentyl, cyclohexyl, phenyl, pyridyl, trimethylsilyl, trimethylgermanium, cyano, partially or fully deuterated methyl, partially or fully deuterated ethyl, partially or fully deuterated propyl, partially or fully deuterated isopropyl, partially or fully deuterated n-butyl, partially or fully deuterated isobutyl, partially or fully deuterated tert-butyl, partially or fully deuterated neopentyl, partially or fully deuterated cyclopentyl, partially or fully deuterated cyclohexyl, partially or fully deuterated phenyl, partially or fully deuterated pyridyl, partially or fully deuterated trimethylsilyl, partially or fully deuterated trimethylgermanium, and combinations thereof.
According to one embodiment of the invention, wherein the ligand L a Each occurrence of which is identically or differently selected from the group consisting of 3-1 to
A structure represented by the formula 3-4:
wherein A is selected from O or S;
R x ,R y each occurrence, identically or differently, represents mono-substituted, poly-substituted or unsubstituted;
R x ,R y and is selected identically or differently on each occurrence from the group consisting of: hydrogen, deuterium, halogen, substituted or unsubstituted alkyl having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl having 3 to 20 ring carbon atoms, substituted or unsubstituted heteroalkyl having 1 to 20 carbon atoms, substituted or unsubstituted heterocyclyl having 3 to 20 ring atoms, substituted or unsubstituted aralkyl having 7 to 30 carbon atoms, substituted or unsubstituted alkoxy having 1 to 20 carbon atomsA substituted or unsubstituted aryloxy group having from 6 to 30 carbon atoms, a substituted or unsubstituted alkenyl group having from 2 to 20 carbon atoms, a substituted or unsubstituted alkynyl group having from 2 to 20 carbon atoms, a substituted or unsubstituted aryl group having from 6 to 30 carbon atoms, a substituted or unsubstituted heteroaryl group having from 3 to 30 carbon atoms, a substituted or unsubstituted alkylsilyl group having from 3 to 20 carbon atoms, a substituted or unsubstituted arylsilyl group having from 6 to 20 carbon atoms, a substituted or unsubstituted alkylgermanium group having from 3 to 20 carbon atoms, a substituted or unsubstituted arylgermanium group having from 6 to 20 carbon atoms, a substituted or unsubstituted amino group having from 0 to 20 carbon atoms, an acyl group, a carbonyl group, a carboxylic acid group, an ester group, a cyano group, an isocyano group, a hydroxyl group, a mercapto group, a sulfinyl group, a sulfonyl group, a phosphino group, and combinations thereof;
Adjacent substituents R x ,R y Can optionally be linked to form a ring.
Herein, "adjacent substituent R x ,R y Can optionally be linked to form a ring ", is intended to mean groups of adjacent substituents therein, e.g. two adjacent substituents R x Between two adjacent substituents R y In between, any one or more of these substituent groups may be linked to form a ring. Obviously, these substituents may not all be linked to form a ring.
According to one embodiment of the invention, wherein the ligand L a Has a structure represented by formulas 3 to 4.
According to one embodiment of the invention, at least one R x And/or at least one R y And is selected identically or differently on each occurrence from the group consisting of: deuterium, halogen, substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl groups having 3 to 20 ring carbon atoms, substituted or unsubstituted aryl groups having 6 to 30 carbon atoms, substituted or unsubstituted heteroaryl groups having 3 to 30 carbon atoms, cyano groups, and combinations thereof.
According to one embodiment of the invention, wherein the ligand L a Is selected identically or differently on each occurrence from the group consisting of L a1 To L a668 ,L a1 To L a668 See claim 11 for a specific structure.
According to one embodiment of the invention, wherein the L a1 To L a668 Hydrogen in the structure can be partially or fully replaced by deuterium.
According to one embodiment of the invention, wherein the metal complex has M (L a ) m (L b ) n (L c ) q Is of the general formula (I);
wherein, the metal M is selected from Ir, rh, re, os, pt, au or Cu; l (L) a 、L b And L c A first ligand, a second ligand and a third ligand coordinated to the metal M, respectively; m is selected from 1, 2 or 3, n is selected from 0, 1 or 2, q is selected from 0, 1 or 2, and m+n+q is equal to the oxidation state of the metal M; when m is equal to 2 or 3, a plurality of L a May be the same or different; when n is equal to 2, 2L b May be the same or different; when q is equal to 2, 2L c May be the same or different;
L a 、L b and L c Can optionally be linked to form a multidentate ligand;
L b and L c And is selected identically or differently on each occurrence from the group consisting of:
wherein R is a 、R b And R is c Each occurrence, identically or differently, represents mono-substituted, poly-substituted, or unsubstituted;
X b and is selected identically or differently on each occurrence from the group consisting of: o, S, se, NR N1 And CR (CR) C1 R C2 ;
X c And X d And is selected identically or differently on each occurrence from the group consisting of: o, S, se and NR N2 ;
R a 、R b 、R c 、R N1 、R N2 、R C1 And R is C2 At each occurrenceIdentically or differently selected from the group consisting of: hydrogen, deuterium, halogen, substituted or unsubstituted alkyl having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl having 3 to 20 ring carbon atoms, substituted or unsubstituted heteroaryl having 3 to 20 carbon atoms, substituted or unsubstituted heterocyclyl having 3 to 20 ring atoms, substituted or unsubstituted aralkyl having 7 to 30 carbon atoms, substituted or unsubstituted alkyl having 1 to 20 carbon atoms, substituted or unsubstituted aryloxy having 6 to 30 carbon atoms, substituted or unsubstituted alkenyl having 2 to 20 carbon atoms, substituted or unsubstituted alkynyl having 2 to 20 carbon atoms, substituted or unsubstituted aryl having 6 to 30 carbon atoms, substituted or unsubstituted heteroaryl having 3 to 30 carbon atoms, substituted or unsubstituted alkylsilyl having 3 to 20 carbon atoms, substituted or unsubstituted alkylsilyl having 6 to 20 carbon atoms, substituted or unsubstituted alkyl germanium having 3 to 20 carbon atoms, substituted or unsubstituted aryl having 6 to 20 carbon atoms, carbonyl having 0 to 20 carbon atoms, cyano, sulfonyl, cyano, carbonyl, cyano, sulfonyl, cyano, or the like;
Adjacent substituents R a 、R b 、R c 、R N1 、R N2 、R C1 And R is C2 Can optionally be linked to form a ring.
In this embodiment, adjacent substituents R a ,R b ,R c ,R N1 ,R N2 ,R C1 And R is C2 Can optionally be linked to form a ring, intended to mean groups of substituents adjacent thereto, e.g. two substituents R a Between two substituents R b Between two substituents R c Between, substituent R a And R is b Between, substituent R a And R is c Between, substituent R b And R is c Between, substituent R a And R is N1 Between, substituent R b And R is N1 Between, substituent R a And R is C1 Between, substituent R a And R is C2 Between, substituent R b And R is C1 Between, substituent R b And R is C2 Between, substituent R a And R is N2 Between, substituent R b And R is N2 Between, and R C1 And R is C2 In between, any one or more of these substituent groups may be linked to form a ring. For example, the number of the cells to be processed,r is an adjacent substituent a ,R b Can optionally be linked to form a ring, which can form a ring comprising, but not limited to, one or more of the following structures:
wherein W is selected from O, S, se, NR w Or CR (CR) w R w The method comprises the steps of carrying out a first treatment on the surface of the Wherein said R is w ,R a ’,R b ' definition and R a The same applies. Obviously, these substituents may not all be linked to form a ring.
According to one embodiment of the invention, wherein the metal M is selected from Ir, pt or Os.
According to one embodiment of the invention, wherein the metal M is Ir.
According to one embodiment of the invention, wherein L b Each occurrence is identically or differently selected from the following structures:
wherein R is 1 -R 7 And is selected identically or differently on each occurrence from the group consisting of: hydrogen, deuterium, halogen, substituted or unsubstituted alkyl having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl having 3 to 20 ring carbon atoms, substituted or unsubstituted utensilA heteroalkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted heterocyclic group having 3 to 20 ring atoms, a substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 30 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 20 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 30 carbon atoms, a substituted or unsubstituted alkylsilyl group having 3 to 20 carbon atoms, a substituted or unsubstituted arylsilyl group having 6 to 20 carbon atoms, a substituted or unsubstituted alkylgermanium group having 3 to 20 carbon atoms, a substituted or unsubstituted arylgermanium group having 6 to 20 carbon atoms, a substituted or unsubstituted amino group having 0 to 20 carbon atoms, an acyl group, a carbonyl group, an ester group, a cyano group, a mercapto group, a sulfonyl group, a phosphonyl group, and combinations thereof;
Adjacent substituents R 1 ,R 2 ,R 3 ,R 4 ,R 5 ,R 6 ,R 7 Can optionally be linked to form a ring.
Herein, "adjacent substituent R 1 ,R 2 ,R 3 ,R 4 ,R 5 ,R 6 ,R 7 Can optionally be linked to form a ring ", intended to mean groups of substituents adjacent thereto, e.g., substituents R 1 And R is 2 Between, substituent R 1 And R is 3 Between, substituent R 2 And R is 3 Between, substituent R 4 And R is 5 Between, substituent R 4 And R is 6 Between, substituent R 5 And R is 6 Between, substituent R 1 And R is 7 Between, substituent R 2 And R is 7 Between, substituent R 3 And R is 7 Between, substituent R 4 And R is 7 Between, substituent R 5 And R is 7 Between and substituent R 6 And R is 7 In between, any one or more of these substituent groups may be linked to form a ring. Obviously, between these substituents tooNone may be joined to form a ring.
According to one embodiment of the invention, wherein L c And is selected identically or differently on each occurrence from the group consisting of:
wherein R is a 、R b And R is c Each occurrence, identically or differently, represents mono-substituted, poly-substituted, or unsubstituted;
R a 、R b 、R c and is selected identically or differently on each occurrence from the group consisting of: hydrogen, deuterium, halogen, substituted or unsubstituted alkyl having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl having 3 to 20 ring carbon atoms, substituted or unsubstituted heteroalkyl having 1 to 20 carbon atoms, substituted or unsubstituted heterocyclyl having 3 to 20 ring atoms, substituted or unsubstituted aralkyl having 7 to 30 carbon atoms, substituted or unsubstituted alkoxy having 1 to 20 carbon atoms, substituted or unsubstituted aryloxy having 6 to 30 carbon atoms, substituted or unsubstituted alkenyl having 2 to 20 carbon atoms, substituted or unsubstituted aryl groups having from 6 to 30 carbon atoms, substituted or unsubstituted heteroaryl groups having from 3 to 30 carbon atoms, substituted or unsubstituted alkylsilyl groups having from 3 to 20 carbon atoms, substituted or unsubstituted alkylgermanium groups having from 3 to 20 carbon atoms, substituted or unsubstituted arylgermanium groups having from 6 to 20 carbon atoms, substituted or unsubstituted amino groups having from 0 to 20 carbon atoms, acyl groups, carbonyl groups, carboxylic acid groups, ester groups, cyano groups, isocyano groups, hydroxyl groups, mercapto groups, sulfinyl groups, sulfonyl groups, phosphino groups, and combinations thereof;
Adjacent substituents R a ,R b ,R c Can optionally be linked to form a ring.
In this embodiment, adjacent substituents R a ,R b ,R c Can optionally be linked to form a ring, intended to mean a group of substituents wherein adjacent, for example,two substituents R a Between two substituents R b Between two substituents R c Between, substituent R a And R is b Between, substituent R a And R is c Between and substituent R b And R is c In between, any one or more of these substituent groups may be linked to form a ring. For example, the number of the cells to be processed,r is an adjacent substituent a ,R b Can optionally be linked to form a ring, which can form a ring comprising, but not limited to, one or more of the following structures: Wherein W is selected from O, S, se, NR w Or CR (CR) w R w The method comprises the steps of carrying out a first treatment on the surface of the Wherein said R is w ,R a ’,R b ' definition and R a The same applies. Obviously, these substituents may not all be linked to form a ring.
According to one embodiment of the invention, wherein the metal complex has Ir (L a ) 2 (L b ) And has a structure represented by formula 4:
wherein a is selected identically or differently for each occurrence from O or S; r is R x ,R y Each occurrence, identically or differently, represents mono-substituted, poly-substituted or unsubstituted;
R x 、R y 、R 1 -R 7 and is selected identically or differently on each occurrence from the group consisting of: hydrogen, deuterium, halogen, substituted or unsubstituted alkyl having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl having 3 to 20 ring carbon atoms, substituted or unsubstituted alkyl having 1 to 20 carbon atoms A heteroatom, a substituted or unsubstituted heterocyclic group having 3 to 20 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 30 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 20 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 30 carbon atoms, a substituted or unsubstituted alkylsilyl group having 3 to 20 carbon atoms, a substituted or unsubstituted alkylgermanium group having 6 to 20 carbon atoms, a substituted or unsubstituted arylgermanium group having 6 to 20 carbon atoms, a substituted or unsubstituted amino group having 0 to 20 carbon atoms, an acyl group, a carbonyl group, a carboxylic acid group, an ester group, a cyano group, an isocyano group, a mercapto group, a sulfonyl group, a phosphono group, and combinations thereof;
adjacent substituents R x 、R y Can optionally be linked to form a ring;
adjacent substituents R 1 -R 7 Can optionally be linked to form a ring.
According to one embodiment of the invention, wherein R 1 -R 3 At least one or two selected from the group consisting of substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl groups having 3 to 20 ring carbon atoms, substituted or unsubstituted heteroalkyl groups having 1 to 20 carbon atoms, or combinations thereof; and/or R 4 -R 6 At least one of which is a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, a substituted or unsubstituted heteroalkyl group having 1 to 20 carbon atoms, or a combination thereof.
According to one embodiment of the invention, wherein R 1 -R 3 At least two of which are selected from substituted or unsubstituted alkyl groups having from 2 to 20 carbon atoms, substituted or unsubstituted cycloalkyl groups having from 3 to 20 ring carbon atoms, substituted or unsubstituted heteroalkyl groups having from 2 to 20 carbon atoms, or combinations thereof; and/or R 4 -R 6 At least two of which are selected from substituted or unsubstituted alkyl groups having from 2 to 20 carbon atoms, substituted or unsubstituted cycloalkyl groups having from 3 to 20 ring carbon atoms, substituted or unsubstituted heteroalkyl groups having from 2 to 20 carbon atoms, or combinations thereof.
According to one embodiment of the invention, wherein the metal complex has Ir (L a ) m (L c ) 3-m And has a structure represented by formula 5:
Wherein m is selected from 1,2 or 3; when m is selected from 1, two L c The same or different; when m is selected from 2 or 3, a plurality of L a The same or different;
a is selected identically or differently on each occurrence from O or S; r is R x ,R y Each occurrence, identically or differently, represents mono-substituted, poly-substituted or unsubstituted;
R x 、R y 、R a1 -R a4 ,R b1 -R b4 and is selected identically or differently on each occurrence from the group consisting of: hydrogen, deuterium, halogen, substituted or unsubstituted alkyl having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl having 3 to 20 ring carbon atoms, substituted or unsubstituted heteroalkyl having 1 to 20 carbon atoms, substituted or unsubstituted heterocyclyl having 3 to 20 ring atoms, substituted or unsubstituted aralkyl having 7 to 30 carbon atoms, substituted or unsubstituted alkoxy having 1 to 20 carbon atoms, substituted or unsubstituted aryloxy having 6 to 30 carbon atoms, substituted or unsubstituted alkenyl having 2 to 20 carbon atoms, substituted or unsubstituted alkynyl having 2 to 20 carbon atoms, substituted or unsubstituted aryl having 6 to 30 carbon atoms, substituted or unsubstituted heteroaryl having 3 to 30 carbon atoms, substituted or unsubstituted alkylsilyl having 3 to 20 carbon atoms, substituted or unsubstituted alkylsilyl having 6 to 20 carbon atoms, substituted or unsubstituted alkylgermanium having 3 to 20 carbon atoms, substituted or unsubstituted alkenyl having 6 to 20 carbon atoms Aryl germanium groups of atoms, substituted or unsubstituted amino groups having from 0 to 20 carbon atoms, acyl groups, carbonyl groups, carboxylic acid groups, ester groups, cyano groups, isocyano groups, hydroxyl groups, mercapto groups, sulfinyl groups, sulfonyl groups, phosphine groups, and combinations thereof;
adjacent substituents R x 、R y Can optionally be linked to form a ring;
adjacent substituents R a1 -R a4 ,R b1 -R b4 Can optionally be linked to form a ring.
In this embodiment, "adjacent substituent R a1 -R a4 ,R b1 -R b4 Can optionally be linked to form a ring ", intended to mean groups of substituents adjacent thereto, e.g., substituents R a1 And R is a2 Between, substituent R a2 And R is a3 Between, substituent R a3 And R is a4 Between, substituent R b1 And R is b2 Between, substituent R b2 And R is b3 Between and substituent R b3 And R is b4 In between, any one or more of these substituent groups may be linked to form a ring. Obviously, these substituents may not all be linked to form a ring.
According to one embodiment of the invention, wherein R a2 ,R a3 ,R b2 ,R b3 At least one or at least two or at least three or all selected from the group consisting of: deuterium, substituted or unsubstituted alkyl groups having 1-20 carbon atoms, substituted or unsubstituted cycloalkyl groups having 3-20 ring carbon atoms, substituted or unsubstituted aryl groups having 6-30 carbon atoms, substituted or unsubstituted heteroaryl groups having 3-30 carbon atoms, and combinations thereof.
According to one embodiment of the invention, R a2 ,R a3 ,R b2 ,R b3 At least one or at least two or at least three or all selected from the group consisting of: deuterium, substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl groups having 3 to 20 ring carbon atoms, and combinations thereof.
According to one embodiment of the invention, R a2 ,R a3 ,R b2 ,R b3 At least one or at least two or at least three or all selected from the group consisting of: deuterium, methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, t-butyl, cyclopentyl, cyclohexyl, neopentyl, t-pentyl, and combinations thereof.
According to one embodiment of the invention, wherein R x ,R y And is selected identically or differently on each occurrence from the group consisting of: hydrogen, deuterium, halogen, substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl groups having 3 to 20 ring carbon atoms, substituted or unsubstituted aralkyl groups having 7 to 30 carbon atoms, substituted or unsubstituted aryl groups having 6 to 30 carbon atoms, substituted or unsubstituted heteroaryl groups having 3 to 30 carbon atoms, substituted or unsubstituted silyl groups having 3 to 20 carbon atoms, substituted or unsubstituted arylsilyl groups having 6 to 20 carbon atoms, cyano groups, and combinations thereof.
According to one embodiment of the invention, R x ,R y And is selected identically or differently on each occurrence from the group consisting of: hydrogen, deuterium, fluorine, substituted or unsubstituted alkyl groups having 1 to 6 carbon atoms, substituted or unsubstituted cycloalkyl groups having 3 to 6 ring carbon atoms, substituted or unsubstituted aryl groups having 6 to 18 carbon atoms, substituted or unsubstituted heteroaryl groups having 3 to 18 carbon atoms, substituted or unsubstituted silyl groups having 3 to 15 carbon atoms, cyano groups, and combinations thereof.
According to one embodiment of the invention, R x ,R y And is selected identically or differently on each occurrence from the group consisting of: hydrogen, deuterium, fluorine, methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tert-butyl, neopentyl, cyclopentyl, cyclohexyl, phenyl, pyridyl, trimethylsilyl, trimethylgermanium, trifluoromethyl, cyano, partially or fully deuterated methyl, partially or fully deuterated ethyl, partially or fully deuterated propyl, partially or fully deuterated isopropyl, partially or fully deuterated n-butyl, partially or fully deuterated isobutyl, partially or fully deuterated tert-butyl, partially or fully deuterated novel, partially or fully deuteratedPentyl, partially or fully deuterated cyclopentyl, partially or fully deuterated cyclohexyl, partially or fully deuterated phenyl, partially or fully deuterated pyridyl, partially or fully deuterated trimethylsilyl, partially or fully deuterated trimethylgermanium, and combinations thereof.
According to one embodiment of the invention, wherein L b Selected from the group consisting of L b1 To L b322 A group consisting of said L b1 To L b322 See claim 15 for a specific structure.
According to one embodiment of the invention, wherein L c Selected from the group consisting of L c1 To L b321 A group consisting of said L c1 To L b321 See claim 15 for a specific structure.
According to one embodiment of the invention, wherein the metal complex is an Ir complex and has an Ir (L a )(L b )(L c )、Ir(L a ) 2 (L b )、Ir(L a ) 2 (L c ) And Ir (L) a )(L c ) 2 Any of the structures shown; when the metal complex has Ir (L) a )(L b )(L c ) In the structure of (2), the L a Selected from the group consisting of L a1 To L a668 Any one of the group consisting of the L b Selected from the group consisting of L b1 To L b322 Any one of the group consisting of the L c Selected from the group consisting of L c321 Any one of the group consisting of; when the metal complex has Ir (L) a ) 2 (L b ) In the structure of (2), the L a Is selected identically or differently on each occurrence from the group consisting of L a1 To L a668 Either or both of the group consisting of, L b Selected from the group consisting of L b1 To L b322 Any one of the group consisting of; when the metal complex has Ir (L) a ) 2 (L c ) In the structure of (2), the L a Is selected identically or differently on each occurrence from the group consisting of L a1 To L a668 Either or both of the group consisting of, L c Selected from the group consisting of L c321 Any one of the group consisting of; when the metal complex has Ir (L) a )(L c ) 2 In the structure of (2), the L a Selected from the group consisting of L a1 To L a668 Any one of the group consisting of the L c Is selected identically or differently on each occurrence from the group consisting of L c321 Either or both of the groups.
According to one embodiment of the invention, wherein the metal complex is selected from the group consisting of compounds 1 to 510, the specific structure of compounds 1 to 510 is seen in claim 16.
According to one embodiment of the present invention, an electroluminescent device is disclosed, comprising: an anode, a cathode, and an organic layer disposed between the anode and the cathode, the organic layer comprising the metal complex of any of the foregoing embodiments.
According to one embodiment of the invention, wherein the organic layer is a light emitting layer and the metal complex is a light emitting material.
According to one embodiment of the invention, the electroluminescent device emits red, yellow, green or white light.
According to one embodiment of the invention, the light emitting layer further comprises a first host compound.
According to one embodiment of the invention, the light emitting layer further comprises a second host compound.
According to one embodiment of the invention, the first host compound and/or the second host compound comprises at least one chemical group selected from the group consisting of: benzene, pyridine, pyrimidine, triazine, carbazole, azacarbazole, indolocarbazole, dibenzothiophene, azadibenzothiophene, dibenzofuran, azadibenzofuran, dibenzoselenophene, triphenylene, azatriphenylene, fluorene, silafluorene, naphthalene, quinoline, isoquinoline, quinazoline, quinoxaline, phenanthrene, azaphenanthrene, and combinations thereof.
According to one embodiment of the present invention, the first host compound has a structure represented by formula 6:
wherein E is 1 -E 6 Is selected identically or differently on each occurrence from C, CR e Or N, and E 1 -E 6 At least two of them are N, E 1 -E 6 At least one of which is C and is connected with the structure represented by the formula A;
wherein,
q is the same or different at each occurrence selected from the group consisting of O, S, se, N, NR ' ", CR '" R ' ", siR '" R ' ", der '" R ' "and R '" c=cr ' "; when two R '"are present at the same time, the two R'" may be the same or different;
p is 0 or 1; r is 0 or 1; and p+r=1;
l is, identically or differently, selected from a single bond, a substituted or unsubstituted alkylene group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkylene group having 3 to 20 carbon atoms, a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, a substituted or unsubstituted heteroarylene group having 3 to 20 carbon atoms, or a combination thereof;
Q 1 -Q 8 is selected identically or differently on each occurrence from C, CR q Or N;
when Q is selected from N, p is 0, r is 1;
when Q is selected from the group consisting of O, S, se, NR ' ", CR '" R ' ", siR '" R ' ", geR '" R ' "and R '" c=cr ' ", p is 1 and R is 0; at this time Q 1 -Q 8 One of them is C;
R e r' "and R q And is selected, identically or differently, on each occurrence, from the group consisting of: hydrogen, deuterium, halogen, substituted or unsubstituted alkyl having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl having 3 to 20 ring carbon atoms, substituted or unsubstituted heteroalkyl having 1 to 20 carbon atoms, substituted or unsubstitutedA substituted heterocyclic group having 3 to 20 ring atoms, a substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms, a substituted or unsubstituted aryl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 30 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 20 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 30 carbon atoms, a substituted or unsubstituted alkylsilyl group having 3 to 20 carbon atoms, a substituted or unsubstituted arylsilyl group having 6 to 20 carbon atoms, a substituted or unsubstituted alkylgermanium group having 3 to 20 carbon atoms, a substituted or unsubstituted arylgermanium group having 6 to 20 carbon atoms, a substituted or unsubstituted amine group having 0 to 20 carbon atoms, an acyl group, a carbonyl group, a carboxylic acid group, an ester group, a cyano group, an isocyano group, a hydroxy group, a mercapto group, a sulfinyl group, a phosphono group, and combinations thereof;
". Times." represents the position of attachment of formula A to formula 6;
adjacent substituents R e ,R”’,R q Can optionally be linked into a ring.
In this embodiment, "adjacent substituent R e ,R”’,R q Can optionally be linked to form a ring ", intended to mean groups of substituents adjacent thereto, e.g. two substituents R e Between two substituents R '", between two substituents R'" q In between, any one or more of these substituent groups may be linked to form a ring. Obviously, these substituents may not all be linked to form a ring.
According to one embodiment of the invention, wherein E 1 -E 6 Is selected identically or differently on each occurrence from C, CR e Or N, and E 1 -E 6 Wherein three are N, E 1 -E 6 At least one is CR e And said R e And is selected identically or differently on each occurrence from the group consisting of: substituted or unsubstituted aryl groups having from 6 to 30 carbon atoms, substituted or unsubstituted heteroaryl groups having from 3 to 30 carbon atoms, and combinations thereof;
and/or Q is selected identically or differently on each occurrence from O, S, N or NR' ";
and/or Q 1 -Q 8 At least one or at least two of them are selected from CR q And said R q Selected from substituted or unsubstituted aryl groups having from 6 to 30 carbon atoms, substituted or unsubstituted heteroaryl groups having from 5 to 30 carbon atoms, or combinations thereof;
And/or L is, identically or differently, selected from a single bond, a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, a substituted or unsubstituted heteroarylene group having 3 to 20 carbon atoms, or a combination thereof.
According to one embodiment of the invention, wherein the first host compound is selected from the group consisting of:
according to one embodiment of the present invention, wherein the second host compound has a structure represented by formula 7:
wherein,
L x each occurrence is identically or differently selected from a single bond, a substituted or unsubstituted alkylene group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkylene group having 3 to 20 carbon atoms, a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, a substituted or unsubstituted heteroarylene group having 3 to 20 carbon atoms, or a combination thereof;
v is selected, identically or differently, for each occurrence, from C, CR v Or N, and at least one of V is C, and is with L x Connecting;
u is selected, identically or differently, from C, CR for each occurrence u Or N, and at least one of U is C and is with L x Connecting;
R v and R is u And is selected, identically or differently, on each occurrence, from the group consisting of: hydrogen, deuterium, halogen, substituted or unsubstituted alkyl having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl having 3 to 20 ring carbon atoms, substituted or unsubstituted heteroalkyl having 1 to 20 carbon atoms, substituted or unsubstituted heterocyclyl having 3 to 20 ring atoms, substituted or unsubstituted aralkyl having 7 to 30 carbon atoms, substituted or unsubstituted alkoxy having 1 to 20 carbon atoms, substituted or unsubstituted aryloxy having 6 to 30 carbon atoms, substituted or unsubstituted alkenyl having 2 to 20 carbon atoms, substituted or unsubstituted alkynyl having 2 to 20 carbon atoms, substituted or unsubstituted aryl having 6 to 30 carbon atoms, substituted or unsubstituted heteroaryl having 3 to 30 carbon atoms, substituted or unsubstituted A substituted or unsubstituted alkylsilyl group having from 3 to 20 carbon atoms, a substituted or unsubstituted alkylgermanium group having from 3 to 20 carbon atoms, a substituted or unsubstituted arylgermanium group having from 6 to 20 carbon atoms, a substituted or unsubstituted amine group having from 0 to 20 carbon atoms, an acyl group, a carbonyl group, a carboxylic acid group, an ester group, a cyano group, an isocyano group, a hydroxyl group, a mercapto group, a sulfinyl group, a sulfonyl group, a phosphino group, and combinations thereof;
Ar 6 the same or different at each occurrence is selected from substituted or unsubstituted aryl groups having from 6 to 30 carbon atoms, substituted or unsubstituted heteroaryl groups having from 3 to 30 carbon atoms, or combinations thereof;
adjacent substituents R v And R is u Can optionally be linked to form a ring.
In this embodiment, "adjacent substituent R v And R is u Can optionally be linked to form a ring ", is intended to mean groups of adjacent substituents therein, e.g. two adjacent substituents R v Between two adjacent substituents R u In between, any one or more of these substituent groups may be linked to form a ring. Obviously, these substituents may not all be linked to form a ring.
According to one embodiment of the present invention, wherein the second host compound has a structure represented by one of formulas 7-a to 7-j:
According to one embodiment of the invention, wherein the second host compound is selected from the group consisting of:
according to one embodiment of the present invention, in the light-emitting layer, the metal complex is doped in the first host compound and the second host compound, and the weight of the metal complex is 1% -30% of the total weight of the light-emitting layer.
According to one embodiment of the invention, the weight of the metal complex is 3% -13% of the total weight of the light-emitting layer.
According to one embodiment of the present invention, a compound composition is disclosed comprising the metal complex of any of the previous embodiments.
Combined with other materials
The materials described herein for specific layers in an organic light emitting device may be used in combination with various other materials present in the device. Combinations of these materials are described in detail in U.S. patent application 2016/0359122A1, paragraphs 0132-0161, the entire contents of which are incorporated herein by reference. The materials described or mentioned therein are non-limiting examples of materials that may be used in combination with the compounds disclosed herein, and one skilled in the art can readily review the literature to identify other materials that may be used in combination.
Materials described herein as useful for specific layers in an organic light emitting device may be used in combination with a variety of other materials present in the device. For example, the compounds disclosed herein may be used in combination with a variety of light-emitting dopants, hosts, transport layers, barrier layers, implant layers, electrodes, and other layers that may be present. Combinations of these materials are described in detail in U.S. patent application Ser. No. 2015/0349273A1, paragraphs 0080-0101, the entire contents of which are incorporated herein by reference. The materials described or mentioned therein are non-limiting examples of materials that may be used in combination with the compounds disclosed herein, and one skilled in the art can readily review the literature to identify other materials that may be used in combination.
In the examples of material synthesis, all reactions were carried out under nitrogen protection, unless otherwise indicated. All reaction solvents were anhydrous and used as received from commercial sources. The synthetic products were subjected to structural confirmation and characterization testing using one or more equipment conventional in the art (including, but not limited to, bruker's nuclear magnetic resonance apparatus, shimadzu's liquid chromatograph, liquid chromatograph-mass spectrometer, gas chromatograph-mass spectrometer, differential scanning calorimeter, shanghai's optical technique fluorescence spectrophotometer, wuhan Koste's electrochemical workstation, anhui Bei Yi g sublimator, etc.), in a manner well known to those skilled in the art. In an embodiment of the device, the device characteristics are also tested using equipment conventional in the art (including, but not limited to, a vapor deposition machine manufactured by Angstrom Engineering, an optical test system manufactured by Frieda, st. John's, an ellipsometer manufactured by Beijing, etc.), in a manner well known to those skilled in the art. Since those skilled in the art are aware of the relevant contents of the device usage and the testing method, and can obtain the intrinsic data of the sample certainly and uninfluenced, the relevant contents are not further described in this patent.
Material synthesis examples:
the preparation method of the compound of the present invention is not limited, and is typically, but not limited to, exemplified by the following compounds, the synthetic routes and preparation methods thereof are as follows:
synthesis example 1: synthesis of Compound 173
Step 1: synthesis of intermediate 1
500mL of xylene was placed in a 1L three-necked flask, followed by sequential addition of 2-amino-6-bromophenol (19.8 g,105.3 mmol), benzoyl chloride (14.8 g,105.3 mmol), pyridine (8.3 g,105.3 mmol), and after completion of the reaction at room temperature for 1 hour, p-toluenesulfonic acid (80.1 g,421.2 mmol) was added to the reaction by TLC, and the reaction was warmed to 145℃overnight. After the completion of the reaction, the mixture was cooled to room temperature, and then neutralized with saturated aqueous sodium hydrogencarbonate, extracted with ethyl acetate, and the organic phase was collected, concentrated under reduced pressure, and purified by column chromatography to give intermediate 1 (15.0 g, yield 52%).
Step 2: synthesis of intermediate 2
To a 500mL three-necked flask, intermediate 1 (15.0 g,54.7 mmol), 2-formylphenylboronic acid (9.0 g,60.2 mmol), tetrakis (triphenylphosphine) palladium (3.2 g,2.7 mmol), sodium carbonate (14.5 g,136.8 mmol) and toluene/ethanol/water (180 mL/45mL/45 mL) were sequentially added, and after nitrogen substitution, the reaction was allowed to proceed at 100℃for 12 hours, after completion of the TLC detection, the reaction was cooled to room temperature, extracted with ethyl acetate, washed with saturated brine, and the organic phase was collected, concentrated under reduced pressure, and purified by column chromatography to give intermediate 2 (15.0 g, yield 92%).
Step 3: synthesis of intermediate 3
To a 500mL three-necked flask, intermediate 2 (15.0 g,50.2 mmol), (methoxymethyl) triphenylphosphine chloride (25.8 g,75.3 mmol) and tetrahydrofuran (250 mL) were sequentially added, potassium tert-butoxide (8.5 g,75.3 mmol) was added in portions to the reaction system at 0℃and then warmed to room temperature, the reaction was allowed to proceed overnight, after completion of TLC detection, water was added, extraction was performed with ethyl acetate, and the organic phase was collected, concentrated under reduced pressure, and purified by column chromatography to give intermediate 3 (8.6 g, yield 53%).
Step 4: synthesis of intermediate 4
To a 500mL three-necked flask, intermediate 3 (8.6 g,26.4 mmol), bismuth trifluoromethane sulfonate (0.9 g,1.4 mmol) and 1, 2-Dichloroethane (DCE) (200 mL) were successively added, and after nitrogen substitution, the mixture was reacted at 60℃for 12 hours, after completion of TLC detection, the mixture was cooled to room temperature, concentrated under reduced pressure, and purified by column chromatography to give intermediate 4 (6.4 g, yield 82%).
Step 5: synthesis of Compound 173
A dry 250mL round bottom flask was charged with intermediate 5 (3.0 g,3.6 mmol), intermediate 4 (1.6 g,5.5 mmol), 2-ethoxyethanol (40 mL) and DMF (40 mL), N 2 Under the protection, the reaction is heated at 100 ℃ for 140h. After the reaction was cooled, it was concentrated under reduced pressure, and purified by column chromatography to give compound 173 (0.1 g, yield 3%). The product was identified as the target product and had a molecular weight of 907.31.
Synthesis example 2: synthesis of Compound 43
Step 1: synthesis of intermediate 6
In a 250mL three-necked flask, 85mL of xylene was placed, followed by sequential addition of 2-amino-6-bromophenol (5.0 g,26.6 mmol), 3, 5-dimethylbenzoyl chloride (4.49 g,26.6 mmol), pyridine (2.1 g,26.6 mmol), and after completion of the reaction at room temperature for 1 hour, by TLC detection, p-toluenesulfonic acid (20.24 g,106.4 mmol) was added to the reaction, and the temperature was raised to 145℃for overnight. After the completion of the reaction, cooled to room temperature, neutralized with saturated aqueous sodium hydrogencarbonate, extracted with ethyl acetate, the organic phase was collected, concentrated under reduced pressure, and purified by column chromatography to give intermediate 6 (4.1 g, yield 51%).
Step 2: synthesis of intermediate 7
To a 250mL three-necked flask, intermediate 6 (4.1 g,13.64 mmol), 2-formylphenylboronic acid (2.25 g,15 mmol), tetrakis (triphenylphosphine) palladium (0.79 g,0.68 mmol), sodium carbonate (3.61 g,34.1 mmol) and toluene/ethanol/water (44 mL/11 mL) were sequentially added, and after replacing nitrogen, the reaction was allowed to proceed at 100℃for 12 hours, after completion of the TLC detection, cooled to room temperature, extracted with ethyl acetate, washed with saturated brine, and the organic phase was collected, concentrated under reduced pressure, and purified by column chromatography to give intermediate 7 (4.3 g, yield 95%).
Step 3: synthesis of intermediate 8
To a 250mL three-necked flask, add sequentially (4.6 g,13.6 mmol), (methoxymethyl) triphenylphosphine chloride (7 g,20.4 mmol) and tetrahydrofuran (90 mL), add potassium tert-butoxide (2.3 g,20.4 mmol) to the reaction system in portions at 0deg.C, then warm to room temperature, react overnight, after TLC detection reaction was complete, add water, extract with ethyl acetate, collect the organic phase, concentrate under reduced pressure, purify with column chromatography to afford intermediate 8 (2.2 g, 45% yield).
Step 4: synthesis of intermediate 9
To a 250mL three-necked flask, intermediate 8 (2 g,5.63 mmol), bismuth triflate (0.19 g,0.28 mmol) and dichloroethane (56 mL) were successively added, and after nitrogen substitution, the reaction was carried out at 60℃for 12 hours, after completion of TLC detection, the reaction was cooled to room temperature, concentrated under reduced pressure, and purified by column chromatography to give intermediate 9 (0.85 g, yield 47%).
Step 5: synthesis of Iridium dimers
A dried 100mL round bottom flask was charged with intermediate 5 (0.85 g,2.6 mmol), iridium trichloride trihydrate (0.26 g,0.75 mmol), 2-ethoxyethanol (9 mL), and water (3 mL), N 2 Under the protection, heating and reacting for 24 hours at 130 ℃. After the reaction cooled, it was filtered, and the solid was washed 3 times with methanol (30 mL), drained and the solid iridium dimer was collected and used directly in the next reaction.
Step 6 Synthesis of Compound 43
Into a 100mL single-necked flask, the iridium dimer obtained in the previous step, 3, 7-diethyl-3-methylnonane-4, 6-dione (0.25 g,1.1 mmol) and K were each added 2 CO 3 (0.5 g,3.75 mmol) and ethoxyethanol (12 mL) were placed in a reaction flask, after nitrogen substitution, reacted at 40℃for 24 hours, the reaction solution was filtered through celite, the cake was washed with a proper amount of EtOH, the crude product was washed with DCM (dichloromethane) to another flask, etOH was added thereto, DCM was removed by swirling at normal temperature, a solid was found to precipitate, it was filtered off, washed with a proper amount of EtOH again, dried and dissolved in DCM, concentrated, and further purified by column chromatography to give compound 43 (0.008 g, yield 1%) which was identified as the target product with a molecular weight of 1062.39.
Those skilled in the art will recognize that the above preparation method is only an illustrative example, and that those skilled in the art can modify it to obtain other compound structures of the present invention.
Determination of photoluminescence spectrum of compound 43:
photoluminescence spectrum (PL) data of compound 43 of the present invention was measured using a fluorescence spectrophotometer model number prismatic F98, manufactured by Shanghai prismatic light technologies, inc. Samples of Compound 43 were prepared to a concentration of 1X 10 with HPLC grade toluene solutions, respectively -6 The mol/L solution was then excited with light of 500nm wavelength at room temperature (298K) and its emission spectrum was measured, and the luminescence wavelength lambda of the photoluminescence spectrum was recorded max (nm) and full width at half maximum FWHM (nm) and are shown in Table 1.
Table 1 photoluminescence spectrum data of Compound 43
As can be seen from the data in table 1, the specific heterocyclic derivative with the structure of formula 1 disclosed in the present invention is used as a main ligand, the luminescent wavelength of the compound 43 using the diketone derivative as an auxiliary ligand is 539nm, the full width at half maximum is extremely narrow, and is only 26.1nm, which can realize very saturated luminescence, and the compound 43 disclosed in the present invention has very excellent luminescence performance and potential to be an excellent yellow-green phosphorescent luminescent material.
Device embodiment
Example 1
First, a glass substrate having an 80nm thick Indium Tin Oxide (ITO) anode was cleaned, and then treated with oxygen plasma and UV ozone. After the treatment, the substrate was baked in a glove box to remove moisture. The substrate is then mounted on a substrate support and loaded into a vacuum chamber. The organic layer specified below was at a vacuum level of about 10 -8 In the case of the support, vapor deposition was sequentially performed on the ITO anode by thermal vacuum vapor deposition at a rate of 0.2 to 2 Angstrom/sec. The compound HI is used as a hole injection layer (HIL, ). The compound HT is used as hole transport layer (HTL, -/-A)>). Compound X-4 is used as electron blocking layer (EBL, -/->). Then compound 173 of the invention was doped in compound X-4 and compound H-91 and co-deposited as a light emitting layer (EML, weight ratio 6:47:47,/for)>). On EML, compound H-1 acts as a hole blocking layer (HBL, ">). On the HBL, the compound ET and 8-hydroxyquinoline-lithium (Liq) were co-deposited as electron transport layer (ETL, weight ratio 40:60, < >>). Finally, 8-hydroxyquinoline-lithium (Liq) with a thickness of 1nm was evaporated as an electron injection layer, and 120nm of aluminum was evaporated as a cathode. The device is then transferred back to the glove box and encapsulated with a glass cover and a moisture absorbent to complete the deviceA device.
Comparative example 1
Comparative example 1 was prepared in the same manner as in example 1 except that the compound YD1 was used in place of the compound 173 of the present invention in the light-emitting layer (EML).
The partial layer structure and thickness of the device are shown in table 2 below. Wherein more than one of the materials used is obtained by doping different compounds in the weight ratio described.
Table 2 partial device structures of example 1 and comparative example 1
The structure of the materials used in the device is as follows:
the IVL characteristics of the device were measured. At 1000cd/m 2 The CIE data of the device, the maximum emission wavelength lambda, are measured max Full width at half maximum (FWHM), voltage (Voltage), current Efficiency (CE), power Efficiency (PE), external Quantum Efficiency (EQE); at 80mA/cm 2 The lifetime of the device is measured (LT 97); these data are recorded and shown in table 3.
Table 3 device data for example 1 and comparative example 1
Discussion:
as can be seen from the data in table 3, when the compound of the present invention is used as a light-emitting dopant in a device, the maximum emission wavelength of the device is 540nm, and the requirement of yellow-green phosphorescence emission is satisfied; compared with comparative example 1, the half-width of example 1 is 4.1nm, the voltage is reduced by 0.6eV, the current efficiency is improved by 2.7%, the power efficiency is remarkably improved by 25.7%, the external quantum efficiency is greatly improved by 8.6%, and more importantly, the device life of example 1 is improved by 1.6 times. The above data demonstrate that the disclosed compounds have very excellent properties.
In conclusion, the compound disclosed by the invention is applied to an electroluminescent device, can obviously improve the performance of the device, can improve the current efficiency, the power efficiency, the external quantum efficiency and the service life of the device while keeping low voltage and narrow half-peak width, improves the comprehensive performance of the device, and has great application potential and development prospect.
It should be understood that the various embodiments described herein are by way of example only and are not intended to limit the scope of the invention. Thus, as will be apparent to those skilled in the art, the claimed invention may include variations of the specific and preferred embodiments described herein. Many of the materials and structures described herein may be substituted with other materials and structures without departing from the spirit of the invention. It is to be understood that the various theories as to why the present invention works are not intended to be limiting.
Claims (22)
1. A metal complex comprising a metal M and a ligand L coordinated to the metal M a The metal M is selected from metals with a relative atomic mass of more than 40, and the ligand L a Has a structure represented by formula 1:
wherein a is selected identically or differently for each occurrence from O or S;
ring B is selected from a fused aromatic ring having 14 to 30 carbon atoms, or a fused heteroaromatic ring having 8 to 30 carbon atoms; and a single ring in ring B directly condensed with a five-membered ring containing N and a is a six-membered ring;
R x each occurrence, identically or differently, represents mono-, poly-or unsubstituted;
cy has a structure represented by one of formulas 2-1 to 2-6:
wherein Y is selected from O, S, se, CRR, siRR or NR, when two R exist at the same time, the two R are the same or different;
Y 1 -Y 5 Is selected from CR, identically or differently at each occurrence y Or N;
R x ,R y r is selected identically or differently on each occurrence from the group consisting of: hydrogen, deuterium, halogen, substituted or unsubstituted alkyl having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl having 3 to 20 ring carbon atoms, substituted or unsubstituted heteroaryl having 3 to 20 carbon atoms, substituted or unsubstituted heterocyclyl having 3 to 20 ring atoms, substituted or unsubstituted aralkyl having 7 to 30 carbon atoms, substituted or unsubstituted alkyl having 1 to 20 carbon atoms, substituted or unsubstituted aryloxy having 6 to 30 carbon atoms, substituted or unsubstituted alkenyl having 2 to 20 carbon atoms, substituted or unsubstituted alkynyl having 2 to 20 carbon atoms, substituted or unsubstituted aryl having 6 to 30 carbon atoms, substituted or unsubstituted heteroaryl having 3 to 30 carbon atoms, substituted or unsubstituted alkylsilyl having 3 to 20 carbon atoms, substituted or unsubstituted alkylsilyl having 6 to 20 carbon atoms, substituted or unsubstituted alkyl germanium having 3 to 20 carbon atoms, substituted or unsubstituted aryl having 6 to 20 carbon atoms, carbonyl having 0 to 20 carbon atoms, cyano, sulfonyl, cyano, carbonyl, cyano, sulfonyl, cyano, or the like;
Adjacent substituents R x ,R y R can optionally be linked to form a ring;
in formulas 2-1 to 2-6, "#" indicates the position where the Cy is attached to the metal M,represents the position where the Cy is linked to the five-membered ring containing N and A in formula 1.
2. The metal complex of claim 1, wherein a is selected from O.
3. The metal complex according to claim 1 or 2, wherein ring B is selected from any one of the structures of the group consisting of formulae 1-1 to 1-14:
wherein X is selected, identically or differently, for each occurrence, from O, S or NR';
X 1 and X 2 Are all C and X 1 And X 2 One of them is connected with the N in the formula 1, X 1 And X 2 The other of (a) is connected to the a in formula 1;
X 3 -X 10 is selected from CR, identically or differently at each occurrence x Or N;
R’,R x and is selected identically or differently on each occurrence from the group consisting of: hydrogen, deuterium, halogen, substituted or unsubstituted alkyl having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl having 3 to 20 ring carbon atoms, substituted or unsubstituted heteroalkyl having 1 to 20 carbon atoms, substituted or unsubstituted heterocyclyl having 3 to 20 ring atoms, substituted or unsubstituted aralkyl having 7 to 30 carbon atoms, substituted or unsubstituted alkoxy having 1 to 20 carbon atoms, substituted or unsubstituted aryloxy having 6 to 30 carbon atoms, substituted or unsubstituted alkenyl having 2 to 20 carbon atoms, substituted or unsubstituted alkynyl having 2 to 20 carbon atoms, substituted or unsubstituted aryl having 6 to 30 carbon atoms, substituted or unsubstituted heteroaryl having 3 to 30 carbon atoms, substituted or unsubstituted alkylsilyl having 3 to 20 carbon atoms, substituted or unsubstituted arylsilyl having 6 to 20 carbon atoms, substituted or unsubstituted Substituted alkylgermanyl groups having 3 to 20 carbon atoms, substituted or unsubstituted arylgermanyl groups having 6 to 20 carbon atoms, substituted or unsubstituted amino groups having 0 to 20 carbon atoms, acyl groups, carbonyl groups, carboxylic acid groups, ester groups, cyano groups, isocyano groups, hydroxyl groups, mercapto groups, sulfinyl groups, sulfonyl groups, phosphino groups, and combinations thereof;
adjacent substituents R', R x Can optionally be linked to form a ring.
4. The metal complex as claimed in claim 3, wherein, in the formulae 1-1 to 1-3, 1-6 to 1-14, X 3 -X 10 Is selected from CR, identically or differently at each occurrence x 。
5. The metal complex as claimed in claim 3, wherein, in the formulae 1 to 4 to 1 to 14, X 3 -X 10 At least one of which is N.
6. A metal complex as claimed in claim 3, wherein R x And is selected identically or differently on each occurrence from the group consisting of: hydrogen, deuterium, halogen, substituted or unsubstituted alkyl having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl having 3 to 20 ring carbon atoms, substituted or unsubstituted aralkyl having 7 to 30 carbon atoms, substituted or unsubstituted aryl having 6 to 30 carbon atoms, substituted or unsubstituted heteroaryl having 3 to 30 carbon atoms, substituted or unsubstituted silyl having 3 to 20 carbon atoms, substituted or unsubstituted aryl silyl having 6 to 20 carbon atoms, substituted or unsubstituted alkyl germanium group having 3 to 20 carbon atoms, cyano, and combinations thereof;
Preferably, R x And is selected identically or differently on each occurrence from the group consisting of: hydrogen, deuterium, fluorine, substituted or unsubstituted alkyl having 1 to 6 carbon atoms, substituted or unsubstituted cycloalkyl having 3 to 6 ring carbon atoms, substituted or unsubstituted aryl having 6 to 18 carbon atoms, substituted or unsubstituted heteroaryl having 3 to 18 carbon atoms, substituted or unsubstituted alkylsilyl having 3 to 15 carbon atoms, substituted or unsubstitutedSubstituted alkyl germanium groups having 3 to 20 carbon atoms, cyano groups, and combinations thereof;
more preferably, R x And is selected identically or differently on each occurrence from the group consisting of: hydrogen, deuterium, fluorine, methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tert-butyl, neopentyl, cyclopentyl, cyclohexyl, phenyl, pyridyl, trimethylsilyl, trimethylgermanium, trifluoromethyl, cyano, partially or fully deuterated methyl, partially or fully deuterated ethyl, partially or fully deuterated propyl, partially or fully deuterated isopropyl, partially or fully deuterated n-butyl, partially or fully deuterated isobutyl, partially or fully deuterated tert-butyl, partially or fully deuterated neopentyl, partially or fully deuterated cyclopentyl, partially or fully deuterated cyclohexyl, partially or fully deuterated phenyl, partially or fully deuterated pyridyl, partially or fully deuterated trimethylsilyl, and combinations thereof.
7. The metal complex of claim 1, wherein Cy is selected from any one of the structures in the group consisting of:
wherein Z is selected from O, S, se, NR, CR "R", siR "R" or GeR "R"; when two R's are present at the same time, the two R's are the same or different;
R y each occurrence, identically or differently, represents mono-substituted, poly-substituted, or unsubstituted;
R y r 'and R' are selected identically or differently on each occurrence from the group consisting of: hydrogen, deuterium, halogen, substituted or unsubstituted alkyl having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl having 3 to 20 ring carbon atoms, substituted or unsubstitutedAn unsubstituted heteroalkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted heterocyclic group having 3 to 20 ring atoms, a substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 30 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 20 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 30 carbon atoms, a substituted or unsubstituted alkylsilyl group having 3 to 20 carbon atoms, a substituted or unsubstituted arylsilyl group having 6 to 20 carbon atoms, a substituted or unsubstituted alkylgermanium group having 3 to 20 carbon atoms, a substituted or unsubstituted arylgermanium group having 6 to 20 carbon atoms, a substituted or unsubstituted amino group having 0 to 20 carbon atoms, an acyl group, a carbonyl group, a carboxylic acid ester group, a cyano group, a hydroxy group, a mercapto group, a sulfonyl group, a phosphine group, and combinations thereof;
Adjacent substituents R y R' can optionally be linked to form a ring;
wherein, "#" indicates the position where the Cy is attached to the metal M,represents the position where the Cy is linked to the five-membered ring containing N and A in formula 1.
8. The metal complex as defined in claim 1 or 7, wherein R y And is selected identically or differently on each occurrence from the group consisting of: hydrogen, deuterium, halogen, substituted or unsubstituted alkyl having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl having 3 to 20 ring carbon atoms, substituted or unsubstituted aralkyl having 7 to 30 carbon atoms, substituted or unsubstituted aryl having 6 to 30 carbon atoms, substituted or unsubstituted heteroaryl having 3 to 30 carbon atoms, substituted or unsubstituted alkylsilyl having 3 to 20 carbon atoms, substituted or unsubstituted arylsilyl having 6 to 20 carbon atoms, substituted or unsubstituted alkylgermanium group having 3 to 20 carbon atoms, cyanoA base, and combinations thereof;
preferably, R y And is selected identically or differently on each occurrence from the group consisting of: hydrogen, deuterium, fluorine, substituted or unsubstituted alkyl groups having 1 to 6 carbon atoms, substituted or unsubstituted cycloalkyl groups having 3 to 6 ring carbon atoms, substituted or unsubstituted aryl groups having 6 to 18 carbon atoms, substituted or unsubstituted heteroaryl groups having 3 to 18 carbon atoms, substituted or unsubstituted silyl groups having 3 to 15 carbon atoms, substituted or unsubstituted alkyl germanium groups having 3 to 20 carbon atoms, cyano groups, and combinations thereof;
More preferably, R y And is selected identically or differently on each occurrence from the group consisting of: hydrogen, deuterium, fluorine, methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tert-butyl, neopentyl, cyclopentyl, cyclohexyl, phenyl, pyridyl, trimethylsilyl, trimethylgermanium, cyano, partially or fully deuterated methyl, partially or fully deuterated ethyl, partially or fully deuterated propyl, partially or fully deuterated isopropyl, partially or fully deuterated n-butyl, partially or fully deuterated isobutyl, partially or fully deuterated tert-butyl, partially or fully deuterated neopentyl, partially or fully deuterated cyclopentyl, partially or fully deuterated cyclohexyl, partially or fully deuterated phenyl, partially or fully deuterated pyridyl, partially or fully deuterated trimethylsilyl, partially or fully deuterated trimethylgermanium, and combinations thereof.
9. The metal complex according to claim 1, wherein the ligand L a And is selected identically or differently at each occurrence from structures represented by formulas 3-1 through 3-4:
wherein A is selected from O or S;
R x ,R y each occurrence, identically or differently, represents mono-substituted, poly-substituted or unsubstituted;
R x ,R y And is selected identically or differently on each occurrence from the group consisting of: hydrogen, deuterium, halogen, substituted or unsubstituted alkyl having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl having 3 to 20 ring carbon atoms, substituted or unsubstituted heteroaryl having 3 to 20 carbon atoms, substituted or unsubstituted heterocyclyl having 3 to 20 ring atoms, substituted or unsubstituted aralkyl having 7 to 30 carbon atoms, substituted or unsubstituted alkyl having 1 to 20 carbon atoms, substituted or unsubstituted aryloxy having 6 to 30 carbon atoms, substituted or unsubstituted alkenyl having 2 to 20 carbon atoms, substituted or unsubstituted alkynyl having 2 to 20 carbon atoms, substituted or unsubstituted aryl having 6 to 30 carbon atoms, substituted or unsubstituted heteroaryl having 3 to 30 carbon atoms, substituted or unsubstituted alkylsilyl having 3 to 20 carbon atoms, substituted or unsubstituted alkylsilyl having 6 to 20 carbon atoms, substituted or unsubstituted alkyl germanium having 3 to 20 carbon atoms, substituted or unsubstituted aryl having 6 to 20 carbon atoms, carbonyl having 0 to 20 carbon atoms, cyano, sulfonyl, cyano, carbonyl, cyano, sulfonyl, cyano, or the like;
Adjacent substituents R x ,R y Can optionally be linked to form a ring;
preferably, the ligand L a Has a structure represented by formulas 3 to 4.
10. The metal complex as claimed in claim 9, wherein at least one R x And/or at least one R y And is selected identically or differently on each occurrence from the group consisting of: deuterium, halogen, substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl groups having 3 to 20 ring carbon atoms, substituted or unsubstituted aryl groups having 6 to 30 carbon atoms, substituted or unsubstituted heteroaryl groups having 3 to 30 carbon atoms, cyano groups, and combinations thereof.
11. The method as claimed in claim 1A metal complex, wherein the ligand L a And is selected identically or differently on each occurrence from the group consisting of:
optionally, said L a1 To L a668 Hydrogen in the structure can be partially or fully replaced by deuterium.
12. The metal complex according to claim 1, wherein the metal complex has a structure of M (L a ) m (L b ) n (L c ) q Is of the general formula (I); wherein, the metal M is selected from Ir, rh, re, os, pt, au or Cu; preferably, the metal M is selected from Ir, pt or Os; more preferably, the metal M is Ir;
L a 、L b and L c A first ligand, a second ligand and a third ligand coordinated to the metal M, respectively; m is selected from 1, 2 or 3, n is selected from 0, 1 or 2, q is selected from 0, 1 or 2, and m+n+q is equal to the oxidation state of the metal M; when m is equal to 2 or 3, a plurality of L a May be the same or different; when n is equal to 2, 2L b May be the same or different; when q is equal to 2, 2L c May be the same or different;
L a 、L b and L c Can optionally be linked to formA polydentate ligand;
L b and L c And is selected identically or differently on each occurrence from the group consisting of:
wherein R is a 、R b And R is c Each occurrence, identically or differently, represents mono-substituted, poly-substituted, or unsubstituted;
X b and is selected identically or differently on each occurrence from the group consisting of: o, S, se, NR N1 And CR (CR) C1 R C2 ;
X c And X d And is selected identically or differently on each occurrence from the group consisting of: o, S, se and NR N2 ;
R a 、R b 、R c 、R N1 、R N2 、R C1 And R is C2 And is selected identically or differently on each occurrence from the group consisting of: hydrogen, deuterium, halogen, substituted or unsubstituted alkyl having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl having 3 to 20 ring carbon atoms, substituted or unsubstituted heteroaryl having 3 to 20 carbon atoms, substituted or unsubstituted heterocyclyl having 3 to 20 ring atoms, substituted or unsubstituted aralkyl having 7 to 30 carbon atoms, substituted or unsubstituted alkoxy having 1 to 20 carbon atoms, substituted or unsubstituted aryloxy having 6 to 30 carbon atoms, substituted or unsubstituted alkenyl having 2 to 20 carbon atoms, substituted or unsubstituted alkynyl having 2 to 20 carbon atoms, substituted or unsubstituted aryl having 6 to 30 carbon atoms, substituted or unsubstituted heteroaryl having 3 to 30 carbon atoms, substituted or unsubstituted alkylsilyl having 3 to 20 carbon atoms, substituted or unsubstituted arylgermyl having 6 to 20 carbon atoms, substituted or unsubstituted alkylgermanium having 3 to 20 carbon atoms, substituted or unsubstituted arylgermanium having 6 to 20 carbon atoms, substituted or unsubstituted arylgermanium having 0 to 20 carbon atoms, carbonyl having 0 to 20 carbon atoms, Cyano, isocyano, hydroxy, mercapto, sulfinyl, sulfonyl, phosphino, and combinations thereof;
adjacent substituents R a 、R b 、R c 、R N1 、R N2 、R C1 And R is C2 Can optionally be linked to form a ring.
13. The metal complex according to claim 12, wherein the metal complex has Ir (L a ) 2 (L b ) And has a structure represented by formula 4:
wherein a is selected identically or differently for each occurrence from O or S; r is R x ,R y Each occurrence, identically or differently, represents mono-substituted, poly-substituted or unsubstituted;
R x 、R y 、R 1 -R 7 and is selected identically or differently on each occurrence from the group consisting of: hydrogen, deuterium, halogen, substituted or unsubstituted alkyl having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl having 3 to 20 ring carbon atoms, substituted or unsubstituted heteroaryl having 1 to 20 carbon atoms, substituted or unsubstituted heterocyclyl having 3 to 20 ring atoms, substituted or unsubstituted aralkyl having 7 to 30 carbon atoms, substituted or unsubstituted alkoxy having 1 to 20 carbon atoms, substituted or unsubstituted aryloxy having 6 to 30 carbon atoms, substituted or unsubstituted alkenyl having 2 to 20 carbon atoms, substituted or unsubstituted alkynyl having 2 to 20 carbon atoms, substituted or unsubstituted aryl having 6 to 30 carbon atoms, substituted or unsubstituted alkylsilyl having 3 to 20 carbon atoms, substituted or unsubstituted arylsilyl having 6 to 20 carbon atoms, substituted or unsubstituted alkyl germanium having 3 to 20 carbon atoms, substituted or unsubstituted aryl having 6 to 20 carbon atoms, substituted or unsubstituted amino having 0 to 20 carbon atoms, Acyl, carbonyl, carboxylic acid, ester, cyano, isocyano, hydroxy, mercapto, sulfinyl, sulfonyl, phosphino, and combinations thereof;
adjacent substituents R x 、R y Can optionally be linked to form a ring;
adjacent substituents R 1 -R 7 Can optionally be linked to form a ring;
preferably, R 1 -R 3 At least one or two selected from the group consisting of substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl groups having 3 to 20 ring carbon atoms, substituted or unsubstituted heteroalkyl groups having 1 to 20 carbon atoms, or combinations thereof; and/or R 4 -R 6 At least one of which is a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, a substituted or unsubstituted heteroalkyl group having 1 to 20 carbon atoms, or a combination thereof;
more preferably, R 1 -R 3 At least two of which are selected from substituted or unsubstituted alkyl groups having from 2 to 20 carbon atoms, substituted or unsubstituted cycloalkyl groups having from 3 to 20 ring carbon atoms, substituted or unsubstituted heteroalkyl groups having from 2 to 20 carbon atoms, or combinations thereof; and/or R 4 -R 6 At least two of which are selected from substituted or unsubstituted alkyl groups having from 2 to 20 carbon atoms, substituted or unsubstituted cycloalkyl groups having from 3 to 20 ring carbon atoms, substituted or unsubstituted heteroalkyl groups having from 2 to 20 carbon atoms, or combinations thereof.
14. The metal complex according to claim 12, wherein the metal complex has Ir (L a ) m (L c ) 3-m And has a structure represented by formula 5:
wherein m is selected from 1,2 or 3; when m is selected from 1, two L c The same or different; when m is selected from 2 or 3, a plurality of L a The same or different;
a is selected identically or differently on each occurrence from O or S; r is R x ,R y Each occurrence, identically or differently, represents mono-substituted, poly-substituted or unsubstituted;
R x 、R y 、R a1 -R a4 ,R b1 -R b4 and is selected identically or differently on each occurrence from the group consisting of: hydrogen, deuterium, halogen, substituted or unsubstituted alkyl having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl having 3 to 20 ring carbon atoms, substituted or unsubstituted heteroaryl having 3 to 20 carbon atoms, substituted or unsubstituted heterocyclyl having 3 to 20 ring atoms, substituted or unsubstituted aralkyl having 7 to 30 carbon atoms, substituted or unsubstituted alkyl having 1 to 20 carbon atoms, substituted or unsubstituted aryloxy having 6 to 30 carbon atoms, substituted or unsubstituted alkenyl having 2 to 20 carbon atoms, substituted or unsubstituted alkynyl having 2 to 20 carbon atoms, substituted or unsubstituted aryl having 6 to 30 carbon atoms, substituted or unsubstituted heteroaryl having 3 to 30 carbon atoms, substituted or unsubstituted alkylsilyl having 3 to 20 carbon atoms, substituted or unsubstituted alkylsilyl having 6 to 20 carbon atoms, substituted or unsubstituted alkyl germanium having 3 to 20 carbon atoms, substituted or unsubstituted aryl having 6 to 20 carbon atoms, carbonyl having 0 to 20 carbon atoms, cyano, sulfonyl, cyano, carbonyl, cyano, sulfonyl, cyano, or the like;
Adjacent substituents R x 、R y Can optionally be linked to form a ring;
adjacent substituents R a1 -R a4 ,R b1 -R b4 Can optionally be linked to form a ring;
preferably, R a2 ,R a3 ,R b2 ,R b3 At least one or at least two or at least three or all selected from the group consisting of: deuterium, substituted or unsubstituted alkyl having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl having 3 to 20 ring carbon atomsA group, a substituted or unsubstituted aryl group having from 6 to 30 carbon atoms, a substituted or unsubstituted heteroaryl group having from 3 to 30 carbon atoms, and combinations thereof;
more preferably, R a2 ,R a3 ,R b2 ,R b3 At least one or at least two or at least three or all selected from the group consisting of: deuterium, substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl groups having 3 to 20 ring carbon atoms, and combinations thereof;
most preferably, R a2 ,R a3 ,R b2 ,R b3 At least one or at least two or at least three or all selected from the group consisting of: deuterium, methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, t-butyl, cyclopentyl, cyclohexyl, neopentyl, t-pentyl, and combinations thereof.
15. The metal complex of claim 12, wherein L b And is selected identically or differently on each occurrence from the group consisting of:
Wherein L is c And is selected identically or differently on each occurrence from the group consisting of:
16. the metal complex according to claim 15, wherein the metal complex is an Ir complex and has Ir (L a )(L b )(L c )、Ir(L a ) 2 (L b )、Ir(L a ) 2 (L c ) And Ir (L) a )(L c ) 2 Any of the structures shown; when the metal complex has Ir (L) a )(L b )(L c ) In the structure of (2), the L a Selected from the group consisting of L a1 To L a668 Any one of the group consisting of the L b Selected from the group consisting of L b1 To L b322 Any one of the group consisting of the L c Selected from the group consisting of L c321 Any one of the group consisting of; when the metal complex has Ir (L) a ) 2 (L b ) In the structure of (2), the L a Is selected identically or differently on each occurrence from the group consisting of L a1 To L a668 Either or both of the group consisting of, L b Selected from the group consisting of L b1 To L b322 Any one of the group consisting of; when the metal complex has Ir (L) a ) 2 (L c ) In the structure of (2), the L a Is selected identically or differently on each occurrence from the group consisting of L a1 To L a668 Either or both of the group consisting of, L c Selected from the group consisting of L c321 Any one of the group consisting of; when the metal complex has Ir (L) a )(L c ) 2 In the structure of (2), the L a Selected from the group consisting of L a1 To L a668 Any one of the group consisting of the L c Is selected identically or differently on each occurrence from the group consisting of L c321 Either or both of the group consisting of;
Preferably, the metal complex is selected from the group consisting of compound 1 to compound 510,
wherein, the compounds 1 to 85 have Ir (L a ) 2 (L b ) Wherein two L a Identical, L a And L b Respectively correspond to structures selected from the list of:
wherein, compound 86 to compound 510 have Ir (L a )(L c ) 2 Wherein two L c Identical, L a And L c Respectively correspond to structures selected from the list of:
optionally, the hydrogen in the structures of compounds 1-510 can be partially or fully substituted with deuterium.
17. An electroluminescent device, comprising:
an anode is provided with a cathode,
a cathode electrode, which is arranged on the surface of the cathode,
and an organic layer disposed between the anode and cathode, wherein the organic layer comprises the metal complex of any one of claims 1-16.
18. The electroluminescent device of claim 17 wherein the organic layer is a light emitting layer and the metal complex is a light emitting material.
19. An electroluminescent device as claimed in claim 17 or 18 wherein the electroluminescent device emits red, yellow, green or white light.
20. The electroluminescent device of claim 18 wherein the light emitting layer further comprises a first host compound;
Preferably, the light-emitting layer further comprises a second host compound;
more preferably, the first host compound and/or the second host compound comprises at least one chemical group selected from the group consisting of: benzene, pyridine, pyrimidine, triazine, carbazole, azacarbazole, indolocarbazole, dibenzothiophene, azadibenzothiophene, dibenzofuran, azadibenzofuran, dibenzoselenophene, triphenylene, azatriphenylene, fluorene, silafluorene, naphthalene, quinoline, isoquinoline, quinazoline, quinoxaline, phenanthrene, azaphenanthrene, and combinations thereof.
21. The electroluminescent device of claim 20, wherein the metal complex is doped in the first host compound and the second host compound, the weight of the metal complex accounting for 1% -30% of the total weight of the light-emitting layer;
preferably, the weight of the metal complex accounts for 3% -13% of the total weight of the light-emitting layer.
22. A compound composition comprising the metal complex of any one of claims 1-16.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210734047.5A CN117384218A (en) | 2022-06-27 | 2022-06-27 | Organic electroluminescent material and device thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210734047.5A CN117384218A (en) | 2022-06-27 | 2022-06-27 | Organic electroluminescent material and device thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117384218A true CN117384218A (en) | 2024-01-12 |
Family
ID=89470737
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210734047.5A Pending CN117384218A (en) | 2022-06-27 | 2022-06-27 | Organic electroluminescent material and device thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117384218A (en) |
-
2022
- 2022-06-27 CN CN202210734047.5A patent/CN117384218A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114163424B (en) | Organic electroluminescent material and device thereof | |
CN118420679A (en) | Phosphorescent organometallic complex and application thereof | |
CN117624142A (en) | Organic electroluminescent material and device thereof | |
CN114256430B (en) | Electroluminescent device | |
CN114835718B (en) | Organic electroluminescent material and device thereof | |
CN113683643B (en) | Organic luminescent material | |
CN114075208B (en) | Electroluminescent material and device | |
CN116836204A (en) | Organic electroluminescent material and device thereof | |
CN118344350A (en) | Organic electroluminescent material and device thereof | |
CN116162083A (en) | Heterocyclic compound with cyano substituent | |
CN117362298A (en) | Electroluminescent material and device | |
CN113968873B (en) | Organic electroluminescent material and device thereof | |
CN114591341B (en) | Electroluminescent material and device thereof | |
CN114628601B (en) | Organic electroluminescent device | |
CN113968875B (en) | Electroluminescent material and device | |
CN117384218A (en) | Organic electroluminescent material and device thereof | |
CN117820379A (en) | Organic electroluminescent material and device thereof | |
CN116082407A (en) | Electroluminescent material and device thereof | |
CN116535443A (en) | Organic electroluminescent material and device thereof | |
CN116813600A (en) | Organic electroluminescent material and device thereof | |
CN117327122A (en) | Organic electroluminescent material and device thereof | |
CN117534709A (en) | Organic electroluminescent material and device thereof | |
CN116947930A (en) | Organic electroluminescent material and device thereof | |
CN116925148A (en) | Organic electroluminescent material and device thereof | |
CN118684655A (en) | Organic electroluminescent material and device thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |