CN117372564B - 一种重构多光谱图像的方法、系统及存储介质 - Google Patents
一种重构多光谱图像的方法、系统及存储介质 Download PDFInfo
- Publication number
- CN117372564B CN117372564B CN202311641120.5A CN202311641120A CN117372564B CN 117372564 B CN117372564 B CN 117372564B CN 202311641120 A CN202311641120 A CN 202311641120A CN 117372564 B CN117372564 B CN 117372564B
- Authority
- CN
- China
- Prior art keywords
- image
- multispectral
- interpolation
- reconstructing
- residual error
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 76
- 238000003860 storage Methods 0.000 title claims abstract description 7
- 238000001228 spectrum Methods 0.000 claims abstract description 24
- 238000005070 sampling Methods 0.000 claims abstract description 12
- 238000012545 processing Methods 0.000 claims abstract description 11
- 238000004891 communication Methods 0.000 claims description 30
- 230000006870 function Effects 0.000 claims description 22
- 238000012549 training Methods 0.000 claims description 22
- 238000012360 testing method Methods 0.000 claims description 18
- 230000003595 spectral effect Effects 0.000 claims description 15
- 238000003384 imaging method Methods 0.000 claims description 9
- 101000581533 Homo sapiens Methylcrotonoyl-CoA carboxylase beta chain, mitochondrial Proteins 0.000 claims description 8
- 102100027320 Methylcrotonoyl-CoA carboxylase beta chain, mitochondrial Human genes 0.000 claims description 8
- 238000004645 scanning capacitance microscopy Methods 0.000 claims description 8
- 230000005540 biological transmission Effects 0.000 claims description 6
- 238000012806 monitoring device Methods 0.000 claims description 6
- 238000012544 monitoring process Methods 0.000 claims description 6
- 238000000605 extraction Methods 0.000 claims description 5
- 230000002776 aggregation Effects 0.000 claims description 3
- 238000004220 aggregation Methods 0.000 claims description 3
- 238000013135 deep learning Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 238000013459 approach Methods 0.000 description 5
- 230000000007 visual effect Effects 0.000 description 5
- 101001095231 Homo sapiens Peptidyl-prolyl cis-trans isomerase D Proteins 0.000 description 4
- 102100037827 Peptidyl-prolyl cis-trans isomerase D Human genes 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000013527 convolutional neural network Methods 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000000701 chemical imaging Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/001—Texturing; Colouring; Generation of texture or colour
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/09—Supervised learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
- G06T3/4015—Image demosaicing, e.g. colour filter arrays [CFA] or Bayer patterns
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/74—Image or video pattern matching; Proximity measures in feature spaces
- G06V10/75—Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/74—Image or video pattern matching; Proximity measures in feature spaces
- G06V10/761—Proximity, similarity or dissimilarity measures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10032—Satellite or aerial image; Remote sensing
- G06T2207/10036—Multispectral image; Hyperspectral image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- Software Systems (AREA)
- Computing Systems (AREA)
- General Health & Medical Sciences (AREA)
- Data Mining & Analysis (AREA)
- Computational Linguistics (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Databases & Information Systems (AREA)
- Medical Informatics (AREA)
- Multimedia (AREA)
- Image Processing (AREA)
Abstract
Description
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311641120.5A CN117372564B (zh) | 2023-12-04 | 2023-12-04 | 一种重构多光谱图像的方法、系统及存储介质 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311641120.5A CN117372564B (zh) | 2023-12-04 | 2023-12-04 | 一种重构多光谱图像的方法、系统及存储介质 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117372564A CN117372564A (zh) | 2024-01-09 |
CN117372564B true CN117372564B (zh) | 2024-03-08 |
Family
ID=89396877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311641120.5A Active CN117372564B (zh) | 2023-12-04 | 2023-12-04 | 一种重构多光谱图像的方法、系统及存储介质 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117372564B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118175435B (zh) * | 2024-05-13 | 2024-08-13 | 中国工程物理研究院电子工程研究所 | 一种基于强度差值的多尺度残差多光谱去马赛克网络结构 |
CN118279541B (zh) * | 2024-05-30 | 2024-09-03 | 天津恒达文博科技股份有限公司 | 一种用于文物图像采集的多光谱相机图像数据处理方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111104850A (zh) * | 2019-10-30 | 2020-05-05 | 中国资源卫星应用中心 | 一种基于残差网络的遥感影像建筑物自动提取方法和系统 |
CN116029930A (zh) * | 2023-01-09 | 2023-04-28 | 西安电子科技大学 | 一种基于卷积神经网络的多光谱图像去马赛克方法 |
CN116128735A (zh) * | 2023-04-17 | 2023-05-16 | 中国工程物理研究院电子工程研究所 | 基于密集连接残差网络的多光谱图像去马赛克结构及方法 |
CN116134298A (zh) * | 2020-06-03 | 2023-05-16 | 伦敦大学国王学院 | 用于联合去马赛克和光谱特征图估计的方法和系统 |
CN116309139A (zh) * | 2023-03-03 | 2023-06-23 | 西北工业大学 | 一种适用于一对多红外多光谱图像去马赛克方法 |
CN116309070A (zh) * | 2023-03-24 | 2023-06-23 | 阿坝州自然资源与科技信息研究所 | 一种高光谱遥感图像超分辨率重建方法、装置及计算机设备 |
CN117011534A (zh) * | 2022-04-25 | 2023-11-07 | 北京小米移动软件有限公司 | 光谱重建方法、装置、电子设备和存储介质 |
-
2023
- 2023-12-04 CN CN202311641120.5A patent/CN117372564B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111104850A (zh) * | 2019-10-30 | 2020-05-05 | 中国资源卫星应用中心 | 一种基于残差网络的遥感影像建筑物自动提取方法和系统 |
CN116134298A (zh) * | 2020-06-03 | 2023-05-16 | 伦敦大学国王学院 | 用于联合去马赛克和光谱特征图估计的方法和系统 |
CN117011534A (zh) * | 2022-04-25 | 2023-11-07 | 北京小米移动软件有限公司 | 光谱重建方法、装置、电子设备和存储介质 |
CN116029930A (zh) * | 2023-01-09 | 2023-04-28 | 西安电子科技大学 | 一种基于卷积神经网络的多光谱图像去马赛克方法 |
CN116309139A (zh) * | 2023-03-03 | 2023-06-23 | 西北工业大学 | 一种适用于一对多红外多光谱图像去马赛克方法 |
CN116309070A (zh) * | 2023-03-24 | 2023-06-23 | 阿坝州自然资源与科技信息研究所 | 一种高光谱遥感图像超分辨率重建方法、装置及计算机设备 |
CN116128735A (zh) * | 2023-04-17 | 2023-05-16 | 中国工程物理研究院电子工程研究所 | 基于密集连接残差网络的多光谱图像去马赛克结构及方法 |
Non-Patent Citations (1)
Title |
---|
"基于可变形卷积和多尺度残差注意力的多光谱行人检测方法";张国立 等;《激光与光电子学进展》;第1-14页 * |
Also Published As
Publication number | Publication date |
---|---|
CN117372564A (zh) | 2024-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN117372564B (zh) | 一种重构多光谱图像的方法、系统及存储介质 | |
CN108830796B (zh) | 基于谱空结合和梯度域损失的高光谱图像超分辨重构方法 | |
Jiang et al. | A switched view of Retinex: Deep self-regularized low-light image enhancement | |
Ma et al. | A wavelet-based dual-stream network for underwater image enhancement | |
CN109509160A (zh) | 一种利用逐层迭代超分辨率的分层次遥感图像融合方法 | |
EP4055555A1 (en) | Noise reconstruction for image denoising | |
CN112465727A (zh) | 基于HSV色彩空间和Retinex理论的无正常光照参考的低照度图像增强方法 | |
CN111598789B (zh) | 一种基于深度学习的稀疏颜色传感器图像重建方法 | |
Huang et al. | Color correction and restoration based on multi-scale recursive network for underwater optical image | |
Li et al. | Adaptive weighted multiscale retinex for underwater image enhancement | |
CN116309126A (zh) | 基于自回归模型的五波段多光谱图像重建方法 | |
CN113379861B (zh) | 基于色彩恢复块的彩色微光图像重建方法 | |
Ding et al. | Learning-based underwater image enhancement: An efficient two-stream approach | |
CN117274060B (zh) | 一种无监督的端到端去马赛克方法及系统 | |
Feng et al. | Unsupervised Spectral Demosaicing With Lightweight Spectral Attention Networks | |
Nguyen et al. | Two-step color-polarization demosaicking network | |
Tang et al. | Curvature-based real-time brightness adjustment for ultra hd video | |
CN114638761B (zh) | 一种高光谱图像全色锐化方法、设备及介质 | |
US11997246B2 (en) | Trained artificial intelligence model for raw to RGB image transformation | |
CN114092327B (zh) | 一种利用异构知识蒸馏的高光谱图像超分辨率方法 | |
CN115760638A (zh) | 一种基于深度学习的端到端去模糊超分辨率的方法 | |
Yue et al. | Recaptured Raw Screen Image and Video Demoir\'eing via Channel and Spatial Modulations | |
You et al. | CNN-Based Local Tone Mapping in the Perceptual Quantization Domain | |
Huang et al. | Unsupervised image dehazing based on improved generative adversarial networks | |
Kumar et al. | Orthogonal transform based generative adversarial network for image dehazing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CB03 | Change of inventor or designer information |
Inventor after: Song Yansong Inventor after: Dong Keyan Inventor after: Hao Qun Inventor after: Zhang Bo Inventor after: Pu Mingxu Inventor after: Yan Gangqi Inventor after: Liang Zonglin Inventor after: Liu Tianci Inventor after: Hu Wenyi Inventor before: Song Yansong Inventor before: Dong Keyan Inventor before: Hao Qun Inventor before: Zhang Bo Inventor before: Pu Mingxu Inventor before: Yan Gangqi Inventor before: Liang Zonglin Inventor before: Liu Tianci Inventor before: Hu Wenyi |
|
CB03 | Change of inventor or designer information |