CN117353658A - IV&CV fusion diagnostic system - Google Patents
IV&CV fusion diagnostic system Download PDFInfo
- Publication number
- CN117353658A CN117353658A CN202310623131.4A CN202310623131A CN117353658A CN 117353658 A CN117353658 A CN 117353658A CN 202310623131 A CN202310623131 A CN 202310623131A CN 117353658 A CN117353658 A CN 117353658A
- Authority
- CN
- China
- Prior art keywords
- diagnosis
- fusion
- server
- diagnostic
- photovoltaic module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000004927 fusion Effects 0.000 title claims abstract description 87
- 238000003745 diagnosis Methods 0.000 claims abstract description 165
- 238000004458 analytical method Methods 0.000 claims abstract description 77
- 238000002955 isolation Methods 0.000 claims description 20
- 238000012545 processing Methods 0.000 claims description 18
- 238000004891 communication Methods 0.000 claims description 5
- 230000000007 visual effect Effects 0.000 claims description 3
- 238000007689 inspection Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 10
- 230000007547 defect Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000010006 flight Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
- G06V20/17—Terrestrial scenes taken from planes or by drones
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
- G06V20/176—Urban or other man-made structures
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S50/00—Monitoring or testing of PV systems, e.g. load balancing or fault identification
- H02S50/10—Testing of PV devices, e.g. of PV modules or single PV cells
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S50/00—Monitoring or testing of PV systems, e.g. load balancing or fault identification
- H02S50/10—Testing of PV devices, e.g. of PV modules or single PV cells
- H02S50/15—Testing of PV devices, e.g. of PV modules or single PV cells using optical means, e.g. using electroluminescence
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Remote Sensing (AREA)
- Photovoltaic Devices (AREA)
Abstract
本发明公开了一种IV&CV融合诊断系统,包括:融合诊断服务器、IV诊断服务器和无人机,融合诊断服务器分别与IV诊断服务器和无人机通信连接,用于响应于诊断任务请求后,执行诊断任务,包括:触发IV诊断服务器对目标光伏电站内光伏组件的电流数据和电压数据进行IV诊断分析,并接收IV诊断服务器发送的IV诊断分析结果;控制无人机飞行,对目标光伏电站内的光伏组件进行图像采集,得到光伏组件图像,并对光伏组件图像进行识别,以得到CV诊断分析结果;对IV诊断分析结果和CV诊断分析结果进行匹配融合,得到最终的诊断分析结果。本发明实施例的IV&CV融合诊断系统通过IV、CV融合诊断光伏组件,能够提高光伏组件的故障诊断率。
The invention discloses an IV&CV fusion diagnosis system, which includes: a fusion diagnosis server, an IV diagnosis server and a drone. The fusion diagnosis server is communicated with the IV diagnosis server and the drone respectively, and is used to execute after responding to a diagnosis task request. Diagnostic tasks include: triggering the IV diagnostic server to perform IV diagnostic analysis on the current data and voltage data of the photovoltaic components in the target photovoltaic power station, and receiving the IV diagnostic analysis results sent by the IV diagnostic server; controlling the flight of the drone to perform IV diagnostic analysis on the photovoltaic components in the target photovoltaic power station. Collect images of photovoltaic modules to obtain photovoltaic module images, and identify the photovoltaic module images to obtain CV diagnostic analysis results; match and fuse the IV diagnostic analysis results and CV diagnostic analysis results to obtain the final diagnostic analysis results. The IV&CV fusion diagnosis system of the embodiment of the present invention can improve the fault diagnosis rate of photovoltaic components by fusion diagnosis of IV and CV.
Description
技术领域Technical field
本发明涉及数据处理技术领域,特别涉及一种IV&CV融合诊断系统。The invention relates to the field of data processing technology, and in particular to an IV&CV fusion diagnosis system.
背景技术Background technique
随着光伏行业的发展,对光伏组件的巡检方案已经从人工巡检步入了使用多种设备巡检诊断的时代。如IV诊断仪、无人机等,此类设备的出现改善了光伏巡检行业人工巡检费时费力的痛点,一定程度上提高了光伏巡检的效率并降低了耗费的人工成本。目前,人工巡检、传统人工操控无人机巡检以及IV诊断还存在如下缺点:1、人工巡检一定规模的光伏站,检查完所有组件需数天,且需要根据经验判断组件是否存在故障,设备故障发现率低,极大影响了电站的效益。2、IV诊断结果只能定位到组串,运维人员在进行消缺时,需要人工进行逐一甄别,分析判断出具体的故障组件,无法实现精准故障组件的定位。3、传统无人机巡检能够改善人工巡检的痛点,但会受到飞手的数量、飞手技术水平不一等因素影响,导致传统无人机巡检无法形成标准化、规范化、程序化的作业形式。With the development of the photovoltaic industry, the inspection program for photovoltaic modules has moved from manual inspection to the era of inspection and diagnosis using a variety of equipment. Such as IV diagnostic instruments, drones, etc. The emergence of such equipment has improved the time-consuming and labor-intensive pain points of manual inspections in the photovoltaic inspection industry, improved the efficiency of photovoltaic inspections and reduced labor costs to a certain extent. At present, manual inspection, traditional manual drone inspection and IV diagnosis still have the following shortcomings: 1. Manual inspection of a photovoltaic station of a certain scale requires several days to inspect all components, and it is necessary to judge whether the components are faulty based on experience , the equipment failure detection rate is low, which greatly affects the efficiency of the power station. 2. The IV diagnosis results can only locate the strings. When operation and maintenance personnel eliminate defects, they need to manually screen them one by one and analyze and determine the specific faulty components, which makes it impossible to accurately locate faulty components. 3. Traditional drone inspections can improve the pain points of manual inspections, but they will be affected by factors such as the number of pilots and the different technical levels of the pilots. As a result, traditional drone inspections cannot form a standardized, normalized and programmed system. Assignment form.
发明内容Contents of the invention
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的目的在于提出一种IV&CV融合诊断系统,以提高光伏组件的故障诊断率。The present invention aims to solve one of the technical problems in the related art, at least to a certain extent. To this end, the purpose of the present invention is to propose an IV&CV fusion diagnosis system to improve the fault diagnosis rate of photovoltaic modules.
为达到上述目的,本发明实施例提出了一种IV&CV融合诊断系统,所述系统包括:融合诊断服务器、IV诊断服务器和无人机,所述融合诊断服务器分别与所述IV诊断服务器和所述无人机通信连接,用于响应于诊断任务请求后,执行诊断任务,包括:触发所述IV诊断服务器对目标光伏电站内光伏组件的电流数据和电压数据进行IV诊断分析,并接收所述IV诊断服务器发送的IV诊断分析结果;控制所述无人机飞行,对所述目标光伏电站内的光伏组件进行图像采集,得到光伏组件图像,并对所述光伏组件图像进行识别,以得到CV诊断分析结果;对所述IV诊断分析结果和所述CV诊断分析结果进行匹配融合,得到最终的诊断分析结果。In order to achieve the above object, an embodiment of the present invention proposes an IV&CV fusion diagnosis system. The system includes: a fusion diagnosis server, an IV diagnosis server and a drone. The fusion diagnosis server is connected to the IV diagnosis server and the UAV respectively. The UAV communication connection is used to perform the diagnostic task after responding to the diagnostic task request, including: triggering the IV diagnostic server to perform IV diagnostic analysis on the current data and voltage data of the photovoltaic components in the target photovoltaic power station, and receiving the IV IV diagnostic analysis results sent by the diagnostic server; control the flight of the drone, collect images of photovoltaic components in the target photovoltaic power station, obtain photovoltaic component images, and identify the photovoltaic component images to obtain CV diagnosis Analysis results: Match and fuse the IV diagnostic analysis results and the CV diagnostic analysis results to obtain the final diagnostic analysis results.
另外,本发明实施例的IV&CV融合诊断系统还可以具有如下附加技术特征:In addition, the IV&CV fusion diagnosis system according to the embodiment of the present invention may also have the following additional technical features:
根据本发明的一个实施例,所述融合诊断服务器还用于:根据所述IV诊断分析结果确定目标区域,其中,所述目标区域为候选故障光伏组件所在区域;控制所述无人机飞行至所述目标区域处,以对所述目标区域内的光伏组件进行图像采集;对所述目标区域内的光伏组件图像进行识别,以从所述候选故障光伏组件中确定出最终的诊断分析结果。According to an embodiment of the present invention, the fusion diagnosis server is further configured to: determine a target area according to the IV diagnosis analysis result, wherein the target area is the area where the candidate faulty photovoltaic component is located; control the drone to fly to At the target area, images of the photovoltaic components in the target area are collected; and images of the photovoltaic components in the target area are identified to determine the final diagnostic analysis results from the candidate faulty photovoltaic components.
根据本发明的一个实施例,所述系统还包括:采集服务器、正向隔离装置和反向隔离装置,所述采集服务器通过所述正向隔离装置和所述反向隔离装置与所述融合诊断服务器通信连接,用于:通过所述反向隔离装置接收所述融合诊断服务器发送的所述诊断任务请求;根据所述诊断任务请求触发所述IV诊断服务器对所述目标光伏电站内光伏组件的电流数据和电压数据进行IV诊断分析;通过所述正向隔离装置将所述IV诊断服务器发送的IV诊断分析结果传输至所述融合诊断服务器。According to an embodiment of the present invention, the system further includes: a collection server, a forward isolation device and a reverse isolation device. The collection server communicates with the fusion diagnosis through the forward isolation device and the reverse isolation device. Server communication connection, configured to: receive the diagnosis task request sent by the fusion diagnosis server through the reverse isolation device; trigger the IV diagnosis server to perform inspection of the photovoltaic components in the target photovoltaic power station according to the diagnosis task request. The current data and voltage data are subjected to IV diagnosis analysis; the IV diagnosis analysis results sent by the IV diagnosis server are transmitted to the fusion diagnosis server through the forward isolation device.
根据本发明的一个实施例,所述述融合诊断服务器包括:图片存储器、关系型数据库、消息队列和数据处理模块;所述图片存储器,用于存储所述光伏组件图像;所述关系型数据库,用于存储所述IV诊断分析结果和所述CV诊断分析结果,以及所述图片存储器反馈的所述光伏组件图像的存储路径;所述消息队列,用于接收所述诊断任务请求和所述CV诊断分析结果;所述数据处理模块,用于在监听到所述消息队列接收到所述诊断任务请求后,利用预先训练好的AI模型对所述光伏组件图像进行识别,得到所述CV诊断分析结果,并通过所述消息队列将所述CV诊断分析结果传输至所述关系型数据库存储,以及对所述IV诊断分析结果和所述CV诊断分析结果进行匹配融合,得到最终的诊断分析结果。According to an embodiment of the present invention, the fusion diagnosis server includes: a picture memory, a relational database, a message queue and a data processing module; the picture memory is used to store the photovoltaic module image; the relational database, A storage path for storing the IV diagnostic analysis results and the CV diagnostic analysis results, as well as the photovoltaic module image fed back by the picture memory; the message queue, used to receive the diagnostic task request and the CV Diagnostic analysis results; the data processing module is used to use a pre-trained AI model to identify the photovoltaic component image after monitoring the message queue to receive the diagnostic task request, and obtain the CV diagnostic analysis As a result, the CV diagnostic analysis result is transmitted to the relational database storage through the message queue, and the IV diagnostic analysis result and the CV diagnostic analysis result are matched and fused to obtain the final diagnostic analysis result.
根据本发明的一个实施例,所述光伏组件图像包括可见光图像和红外图像,所述数据处理模块在利用预先训练好的AI模型对所述光伏组件图像进行识别时,具体用于:根据所述红外图像对应的红外相机参数计算出所述红外图像的实际尺寸,记为第一实际尺寸,根据所述可见光图像对应的可见光相机参数计算出所述可见光图像的实际尺寸,记为第二实际尺寸;获取所述无人机的位置信息,并根据所述位置信息、所述第一实际尺寸、所述第二实际尺寸,确定所述红外图像的中心点在所述可见光图像中的位置,记为第一位置;根据所述第一位置和所述红外图像中故障光伏组件的位置,得到所述故障光伏组件在所述可见光图像中的位置,记为第二位置;根据所述无人机的偏航角建立图像视野坐标系;在所述图像视野坐标系中,根据所述第二位置和所述可见光相机的视角,得到所述故障光伏组件相对所述无人机的视角,完成所述故障光伏组件的定位。According to an embodiment of the present invention, the photovoltaic component image includes a visible light image and an infrared image. When the data processing module uses a pre-trained AI model to identify the photovoltaic component image, it is specifically used to: according to the The actual size of the infrared image is calculated based on the infrared camera parameters corresponding to the infrared image, and is recorded as the first actual size. The actual size of the visible light image is calculated based on the visible light camera parameters corresponding to the visible light image, and is recorded as the second actual size. ; Obtain the position information of the UAV, and determine the position of the center point of the infrared image in the visible light image based on the position information, the first actual size, and the second actual size, record is the first position; according to the first position and the position of the faulty photovoltaic component in the infrared image, the position of the faulty photovoltaic component in the visible light image is obtained, which is recorded as the second position; according to the UAV The yaw angle establishes an image field of view coordinate system; in the image field of view coordinate system, according to the second position and the viewing angle of the visible light camera, the viewing angle of the faulty photovoltaic component relative to the drone is obtained, and the entire process is completed. Describe the location of faulty photovoltaic modules.
根据本发明的一个实施例,所述系统还包括:客户端,所述客户端与所述融合诊断服务器通信连接,用于向所述融合诊断服务器发送所述诊断任务请求,以及接收所述融合诊断服务器传输的故障诊断报告,其中,所述故障诊断报告由所述融合诊断服务器根据所述最终的故障光伏组件生成。According to an embodiment of the present invention, the system further includes: a client, the client is communicatively connected to the fusion diagnosis server, and is used to send the diagnosis task request to the fusion diagnosis server and receive the fusion diagnosis request. A fault diagnosis report transmitted by the diagnosis server, wherein the fault diagnosis report is generated by the fusion diagnosis server based on the final faulty photovoltaic module.
根据本发明的一个实施例,所述融合诊断服务器在执行诊断任务之前,还用于:获取所述目标光伏电站所处环境的天气信息;判断所述天气信息是否满足预设诊断任务条件;若满足,则执行诊断任务。According to an embodiment of the present invention, before executing the diagnostic task, the fusion diagnosis server is also used to: obtain weather information of the environment where the target photovoltaic power station is located; determine whether the weather information satisfies the preset diagnosis task conditions; if If satisfied, perform diagnostic tasks.
根据本发明的一个实施例,所述融合诊断服务器还用于在所述天气信息不满足所述预设诊断任务条件时,执行如下动作中的一者:进行任务等待,待在预设时间内所述天气信息满足所述预设诊断任务条件时,执行诊断任务;利用历史IV诊断分析结果和所述无人机采集的历史光伏组件图像进行故障融合诊断。According to an embodiment of the present invention, the fusion diagnosis server is also configured to perform one of the following actions when the weather information does not meet the preset diagnosis task conditions: perform task waiting and stay within the preset time. When the weather information meets the preset diagnosis task conditions, the diagnosis task is performed; the historical IV diagnosis analysis results and the historical photovoltaic module images collected by the drone are used to perform fault fusion diagnosis.
根据本发明的一个实施例,所述预设诊断任务条件包括:风速小于10m/s和辐照度大于600W/m2。According to an embodiment of the present invention, the preset diagnostic task conditions include: wind speed less than 10m/s and irradiance greater than 600W/m2.
根据本发明的一个实施例,所述IV诊断服务器通过内网防火墙和所述采集服务器进行通信。According to an embodiment of the present invention, the IV diagnosis server communicates with the collection server through an intranet firewall.
本发明实施例的IV&CV融合诊断系统,通过IV、CV融合诊断光伏组件,能够提高光伏组件的故障诊断率,可精准识别并标记故障的位置,同时,能够减少人力成本,提升运维效率。The IV&CV fusion diagnosis system of the embodiment of the present invention can improve the fault diagnosis rate of photovoltaic modules through IV and CV fusion diagnosis of photovoltaic modules, and can accurately identify and mark the location of faults. At the same time, it can reduce labor costs and improve operation and maintenance efficiency.
附图说明Description of drawings
图1是本发明一实施例的IV&CV融合诊断系统的结构示意图;Figure 1 is a schematic structural diagram of an IV&CV fusion diagnosis system according to an embodiment of the present invention;
图2是本发明一实施例的融合诊断服务器的工作流程示意图;Figure 2 is a schematic work flow diagram of a fusion diagnosis server according to an embodiment of the present invention;
图3是本发明另一实施例的IV&CV融合诊断系统的结构示意图;Figure 3 is a schematic structural diagram of an IV&CV fusion diagnosis system according to another embodiment of the present invention;
图4是本发明一实施例的融合诊断服务器的结构示意图;Figure 4 is a schematic structural diagram of a converged diagnosis server according to an embodiment of the present invention;
图5是本发明一实施例的数据处理模块在利用预先训练好的AI模型对光伏组件图像进行识别的流程示意图;Figure 5 is a schematic flow chart of the data processing module using a pre-trained AI model to identify photovoltaic module images according to an embodiment of the present invention;
图6是本发明一实施例的红外图像坐标系和可见光图像坐标系的示例图;Figure 6 is an example diagram of an infrared image coordinate system and a visible light image coordinate system according to an embodiment of the present invention;
图7是本发明一实施例的图像视野坐标系的示例图;Figure 7 is an example diagram of an image field of view coordinate system according to an embodiment of the present invention;
图8是本发明一实施例的故障位置与无人机的x和y对应视角的示例图;Figure 8 is an example diagram illustrating the corresponding viewing angles of the fault location and the x and y of the drone according to an embodiment of the present invention;
图9是本发明一实施例的IV&CV融合诊断系统具体工作流程示意图。Figure 9 is a schematic diagram of the specific work flow of the IV&CV fusion diagnosis system according to an embodiment of the present invention.
具体实施方式Detailed ways
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。Embodiments of the present invention are described in detail below, examples of which are illustrated in the accompanying drawings, wherein the same or similar reference numerals throughout represent the same or similar elements or elements with the same or similar functions. The embodiments described below with reference to the drawings are exemplary and are intended to explain the present invention and are not to be construed as limiting the present invention.
下面参考附图描述本发明实施例的IV&CV融合诊断系统。The IV&CV fusion diagnostic system according to the embodiment of the present invention will be described below with reference to the accompanying drawings.
图1是本发明一实施例的IV&CV融合诊断系统的结构示意图。Figure 1 is a schematic structural diagram of an IV&CV fusion diagnosis system according to an embodiment of the present invention.
如图1所示,IV&CV融合诊断系统包括:融合诊断服务器10、IV诊断服务器20和无人机30,融合诊断服务器10分别与IV诊断服务器20和无人机30通信连接,用于响应于诊断任务请求后,执行诊断任务,包括:触发IV诊断服务器20对目标光伏电站内光伏组件的电流数据和电压数据进行IV诊断分析,并接收IV诊断服务器20发送的IV诊断分析结果;控制无人机30飞行,对目标光伏电站内的光伏组件进行图像采集,得到光伏组件图像,并对光伏组件图像进行识别,以得到CV诊断分析结果;对IV诊断分析结果和CV诊断分析结果进行匹配融合,得到最终的诊断分析结果。As shown in Figure 1, the IV&CV fusion diagnosis system includes: a fusion diagnosis server 10, an IV diagnosis server 20 and a drone 30. The fusion diagnosis server 10 is communicatively connected to the IV diagnosis server 20 and the drone 30 respectively for responding to the diagnosis. After the task request, the diagnostic task is performed, including: triggering the IV diagnostic server 20 to perform IV diagnostic analysis on the current data and voltage data of the photovoltaic components in the target photovoltaic power station, and receiving the IV diagnostic analysis results sent by the IV diagnostic server 20; controlling the drone 30 flights, collect images of photovoltaic modules in the target photovoltaic power station, obtain photovoltaic module images, and identify the photovoltaic module images to obtain CV diagnostic analysis results; match and fuse the IV diagnostic analysis results and CV diagnostic analysis results to obtain Final diagnostic analysis results.
需要说明的是,IV诊断是通过对光伏组件的电流-电压(I-V)曲线进行分析,检测和诊断出光伏组件中存在故障的组件。具体地,可通过数据采集器将IV扫描指令下发给逆变器,逆变器完成光伏组串完整的IV曲线数据采集。基于对光伏组串典型IV特性参数的分析,识别出光伏组串的不同缺陷信息,并基于缺陷信息判断光伏组串是否存在异常。CV诊断是利用算法对无人机30采集到的图像进行识别,从而判断出光伏组件中的故障类型。It should be noted that IV diagnosis is to detect and diagnose faulty components in photovoltaic modules by analyzing the current-voltage (I-V) curve of photovoltaic modules. Specifically, the IV scan command can be sent to the inverter through the data collector, and the inverter completes the complete IV curve data collection of the photovoltaic string. Based on the analysis of typical IV characteristic parameters of photovoltaic strings, different defect information of photovoltaic strings is identified, and based on the defect information, it is judged whether there are abnormalities in the photovoltaic strings. CV diagnosis uses algorithms to identify images collected by the drone 30 to determine the type of fault in the photovoltaic module.
本发明实施例的IV&CV融合诊断系统,通过IV、CV融合诊断光伏组件,能够提高光伏组件的故障诊断率,可精准识别并标记故障的位置,同时,能够减少人力成本,提升运维效率。The IV&CV fusion diagnosis system of the embodiment of the present invention can improve the fault diagnosis rate of photovoltaic modules through IV and CV fusion diagnosis of photovoltaic modules, and can accurately identify and mark the location of faults. At the same time, it can reduce labor costs and improve operation and maintenance efficiency.
在本发明的一些实施例中,如图2所示,融合诊断服务器10还用于:In some embodiments of the present invention, as shown in Figure 2, the fusion diagnosis server 10 is also used to:
S11,根据IV诊断分析结果确定目标区域,其中,目标区域为候选故障光伏组件所在区域。S11. Determine the target area based on the IV diagnostic analysis results, where the target area is the area where the candidate faulty photovoltaic module is located.
S12,控制无人机30飞行至目标区域处,以对目标区域内的光伏组件进行图像采集。S12, control the drone 30 to fly to the target area to collect images of the photovoltaic modules in the target area.
S13,对目标区域内的光伏组件图像进行识别,以从候选故障光伏组件中确定出最终的诊断分析结果。S13, identify the photovoltaic module images in the target area to determine the final diagnostic analysis results from the candidate faulty photovoltaic modules.
作为一个示例,可根据实际诊断需求分为极速模式和精细模式。在极速模式下,先通过IV诊断对光伏电站的IV曲线进行全面检测,以识别出整个光伏组件中电池板的性能问题,针对发现的故障组串进行CV诊断。这样既可以缩减无人机30飞行路线,又能够充分利用IV快速和CV精细的优势。在精细模式下,同时使用IV和CV进行全面检测,对光伏组件的内外进行全面而细致的“体检”,能够实现更全面、更准确的诊断。As an example, it can be divided into extreme speed mode and fine mode according to actual diagnostic needs. In the extreme speed mode, the IV curve of the photovoltaic power station is first comprehensively tested through IV diagnosis to identify performance problems of the panels in the entire photovoltaic module, and CV diagnosis is performed on the discovered faulty strings. This can not only reduce the flight route of the UAV 30, but also make full use of the advantages of fast IV and precise CV. In the fine mode, IV and CV are used simultaneously for comprehensive detection, and a comprehensive and detailed "physical examination" of the inside and outside of the photovoltaic module can be achieved, which can achieve a more comprehensive and accurate diagnosis.
在该实施例中,IV&CV融合诊断系统能够有针对性的制定巡检任务,实现故障组串内问题组件的精准定位,从而减少不必要的无人机30巡检,节省无人机30的电力消耗。In this embodiment, the IV&CV fusion diagnosis system can formulate targeted inspection tasks to achieve precise location of problem components within the faulty string, thereby reducing unnecessary inspections by the UAV 30 and saving the power of the UAV 30 consumption.
在本发明的一些实施例中,如图3所示,IV&CV融合诊断系统还包括:采集服务器40、正向隔离装置50和反向隔离装置60。采集服务器40通过正向隔离装置50和反向隔离装置60与融合诊断服务器10通信连接,用于:In some embodiments of the present invention, as shown in Figure 3, the IV&CV fusion diagnosis system also includes: a collection server 40, a forward isolation device 50 and a reverse isolation device 60. The collection server 40 is communicatively connected to the fusion diagnosis server 10 through the forward isolation device 50 and the reverse isolation device 60, and is used for:
S21,通过反向隔离装置60接收融合诊断服务器10发送的诊断任务请求。S21: Receive the diagnosis task request sent by the fusion diagnosis server 10 through the reverse isolation device 60.
S22,根据诊断任务请求触发IV诊断服务器20对目标光伏电站内光伏组件的电流数据和电压数据进行IV诊断分析。S22, trigger the IV diagnosis server 20 to perform IV diagnosis analysis on the current data and voltage data of the photovoltaic components in the target photovoltaic power station according to the diagnosis task request.
S23,通过正向隔离装置50将IV诊断服务器20发送的IV诊断分析结果传输至融合诊断服务器10。S23 , transmit the IV diagnosis analysis results sent by the IV diagnosis server 20 to the fusion diagnosis server 10 through the forward isolation device 50 .
具体地,IV诊断服务器20通过内网防火墙70和采集服务器40进行通信。Specifically, the IV diagnosis server 20 communicates with the collection server 40 through the intranet firewall 70 .
作为一个示例,采集服务器40和融合诊断服务器10均可通过交换机80与其他设备通信连接。As an example, both the collection server 40 and the fusion diagnosis server 10 can be communicatively connected to other devices through the switch 80 .
需要说明的是,在一些实施方式中,IV&CV融合诊断系统可分为生产控制大区和管理信息大区,其中,生产控制大区可包括控制区(安全I区)和非控制区(安全II区),管理信息大区可包括安全III区。It should be noted that in some embodiments, the IV&CV fusion diagnosis system can be divided into a production control area and a management information area, where the production control area can include a control area (safety I area) and a non-control area (safety II area). area), the management information area may include Security III area.
在该实施例中,通过使用正向隔离装置50能够保护工作人员和设备免受电压冲击。当设备需要维修或检修时,使用正向隔离装置50切断电路,并通过接地装置将电压导向到地面,能够保障工作人员的安全。通过使用反向隔离装置60能够提高电力模块的稳定性和可靠性。In this embodiment, personnel and equipment can be protected from voltage surges through the use of forward isolation 50 . When the equipment needs to be repaired or inspected, the forward isolating device 50 is used to cut off the circuit and guide the voltage to the ground through the grounding device, which can ensure the safety of the staff. The stability and reliability of the power module can be improved by using the reverse isolation device 60 .
在本发明的一些实施例中,如图4所示,融合诊断服务器10包括:图片存储器101、关系型数据库102、消息队列103和数据处理模块104。In some embodiments of the present invention, as shown in Figure 4 , the fusion diagnosis server 10 includes: a picture memory 101, a relational database 102, a message queue 103 and a data processing module 104.
图片存储器101用于存储光伏组件图像。The picture memory 101 is used to store photovoltaic module images.
作为一个示例,在无人机30对目标光伏电站内的光伏组件的图像采集完成后,经过“空到地,地到云”的传输过程,上传拍摄的光伏组件图像到图片存储器101。As an example, after the drone 30 completes the image collection of the photovoltaic modules in the target photovoltaic power station, the captured photovoltaic module images are uploaded to the picture memory 101 through the "air to ground, ground to cloud" transmission process.
关系型数据库102用于存储IV诊断分析结果和CV诊断分析结果,以及图片存储器101反馈的光伏组件图像的存储路径。The relational database 102 is used to store the IV diagnostic analysis results and CV diagnostic analysis results, as well as the storage path of the photovoltaic module image fed back by the picture memory 101 .
消息队列103用于接收诊断任务请求和CV诊断分析结果。The message queue 103 is used to receive diagnostic task requests and CV diagnostic analysis results.
作为一个示例,消息队列103可为RabbitMQ消息队列。As an example, message queue 103 may be a RabbitMQ message queue.
数据处理模块104用于在监听到消息队列103接收到诊断任务请求后,利用预先训练好的AI模型对光伏组件图像进行识别,得到CV诊断分析结果,并通过消息队列103将CV诊断分析结果传输至关系型数据库102存储,以及对IV诊断分析结果和CV诊断分析结果进行匹配融合,得到最终的诊断分析结果。The data processing module 104 is configured to use the pre-trained AI model to identify the photovoltaic module image after listening to the message queue 103 to receive the diagnostic task request, obtain the CV diagnostic analysis results, and transmit the CV diagnostic analysis results through the message queue 103 stored in the relational database 102, and the IV diagnostic analysis results and the CV diagnostic analysis results are matched and fused to obtain the final diagnostic analysis result.
作为一个示例,数据处理模块104还可将最终的诊断分析结果传输至关系型数据库102存储。As an example, the data processing module 104 may also transmit the final diagnostic analysis results to the relational database 102 for storage.
在该实施例中,通过图片存储器101、关系型数据库102、消息队列103和数据处理模块104能够提高IV&CV融合诊断系统的可靠性和数据处理效率。In this embodiment, the reliability and data processing efficiency of the IV&CV fusion diagnosis system can be improved through the picture memory 101, the relational database 102, the message queue 103 and the data processing module 104.
在本发明的一些实施例中,光伏组件图像包括可见光图像和红外图像,如图5所示,数据处理模块104在利用预先训练好的AI模型对光伏组件图像进行识别时,具体用于:In some embodiments of the present invention, the photovoltaic module image includes a visible light image and an infrared image. As shown in Figure 5, the data processing module 104 is specifically used to identify the photovoltaic module image using a pre-trained AI model:
S31,根据红外图像对应的红外相机参数计算出红外图像的实际尺寸,记为第一实际尺寸,根据可见光图像对应的可见光相机参数计算出可见光图像的实际尺寸,记为第二实际尺寸。S31. Calculate the actual size of the infrared image according to the infrared camera parameters corresponding to the infrared image, and record it as the first actual size. Calculate the actual size of the visible light image according to the visible light camera parameters corresponding to the visible light image, and record it as the second actual size.
S32,获取无人机30的位置信息,并根据位置信息、第一实际尺寸、第二实际尺寸,确定红外图像的中心点在可见光图像中的位置,记为第一位置。S32, obtain the position information of the UAV 30, and determine the position of the center point of the infrared image in the visible light image based on the position information, the first actual size, and the second actual size, and record it as the first position.
S33,根据第一位置和红外图像中故障光伏组件的位置,得到故障光伏组件在可见光图像中的位置,记为第二位置。S33. According to the first position and the position of the faulty photovoltaic module in the infrared image, the position of the faulty photovoltaic module in the visible light image is obtained, which is recorded as the second position.
作为一个示例,如图6所示,可建立红外图像坐标系O1X1Y1和可见光图像坐标系O2X2Y2。通过位置信息、第一实际尺寸、第二实际尺寸得到红外图像在可见光图像中的配准。As an example, as shown in Figure 6, an infrared image coordinate system O1X1Y1 and a visible light image coordinate system O2X2Y2 can be established. The registration of the infrared image in the visible light image is obtained through the position information, the first actual size, and the second actual size.
S34,根据无人机30的偏航角建立图像视野坐标系。S34: Establish an image field of view coordinate system according to the yaw angle of the UAV 30.
作为一个示例,如图7所示,以无人机30为坐标原点,建立图像视野坐标系。As an example, as shown in Figure 7, the image field of view coordinate system is established with the UAV 30 as the coordinate origin.
S35,在图像视野坐标系中,根据第二位置和可见光相机的视角,得到故障光伏组件相对无人机30的视角,完成故障光伏组件的定位。S35. In the image field of view coordinate system, according to the second position and the angle of view of the visible light camera, the angle of view of the faulty photovoltaic module relative to the drone 30 is obtained, and the positioning of the faulty photovoltaic module is completed.
作为一个示例,如图8所示,根据第二位置和可见光相机的视角得到故障位置与无人机30的x和y对应视角,从而完成对故障光伏组件的定位。As an example, as shown in FIG. 8 , the fault location and the corresponding x and y angles of the drone 30 are obtained according to the second position and the visual angle of the visible light camera, thereby completing the positioning of the faulty photovoltaic module.
在该实施例中,数据处理模块104能够精确识别并标记故障光伏组件中缺陷的位置。In this embodiment, the data processing module 104 is able to accurately identify and mark the location of the defect in the failed photovoltaic module.
在本发明的一些实施例中,IV&CV融合诊断系统还包括:客户端,客户端与融合诊断服务器10通信连接,用于向融合诊断服务器10发送诊断任务请求,以及接收融合诊断服务器10传输的故障诊断报告,其中,故障诊断报告由融合诊断服务器10根据最终的故障光伏组件生成。In some embodiments of the present invention, the IV&CV fusion diagnosis system also includes: a client, which is communicatively connected to the fusion diagnosis server 10 and is used to send diagnostic task requests to the fusion diagnosis server 10 and receive faults transmitted by the fusion diagnosis server 10 Diagnosis report, wherein the fault diagnosis report is generated by the converged diagnosis server 10 based on the final faulty photovoltaic module.
作为一个示例,客户端可通过HTTP请求下发诊断计划。As an example, the client can deliver a diagnostic plan through an HTTP request.
在本发明的一些实施例中,融合诊断服务器10在执行诊断任务之前,还用于:In some embodiments of the present invention, before performing the diagnostic task, the fusion diagnosis server 10 is also used to:
S41,获取目标光伏电站所处环境的天气信息。S41: Obtain weather information of the environment where the target photovoltaic power station is located.
S42,判断天气信息是否满足预设诊断任务条件。S42: Determine whether the weather information meets the preset diagnosis task conditions.
S43,若满足,则执行诊断任务。S43, if satisfied, execute the diagnostic task.
具体地,融合诊断服务器10还用于在天气信息不满足预设诊断任务条件时,执行如下动作中的一者:进行任务等待,待在预设时间内天气信息满足预设诊断任务条件时,执行诊断任务;利用历史IV诊断分析结果和无人机30采集的历史光伏组件图像进行故障融合诊断。Specifically, the fusion diagnosis server 10 is also configured to perform one of the following actions when the weather information does not meet the preset diagnosis task conditions: perform task waiting, and wait until the weather information meets the preset diagnosis task conditions within the preset time. Perform diagnostic tasks; use historical IV diagnostic analysis results and historical photovoltaic module images collected by the drone 30 to perform fault fusion diagnosis.
更具体地,预设诊断任务条件包括:风速小于10m/s和辐照度大于600W/m2。More specifically, the preset diagnostic task conditions include: wind speed less than 10m/s and irradiance greater than 600W/m2.
在该实施例中,根据天气信息,选择是否进行诊断任务,以及在不满足预设诊断任务条件时,可利用历史IV诊断分析结果和无人机30采集的历史光伏组件图像进行故障融合诊断,能够满足各种诊断场景,便于及时准确的获取诊断结果。In this embodiment, according to the weather information, it is selected whether to perform the diagnostic task, and when the preset diagnostic task conditions are not met, the historical IV diagnostic analysis results and the historical photovoltaic component images collected by the drone 30 can be used to perform fault fusion diagnosis. It can meet various diagnostic scenarios and facilitate timely and accurate acquisition of diagnostic results.
作为一个示例,如图9所示,说明本发明的具体工作流程:As an example, as shown in Figure 9, the specific work flow of the present invention is illustrated:
A1,客户端下发计划请求给融合诊断服务器10。A1, the client issues a plan request to the fusion diagnosis server 10.
A2,融合诊断服务器10通过反向隔离装置60传输诊断任务请求。A2, the converged diagnosis server 10 transmits the diagnosis task request through the reverse isolation device 60 .
A3,采集服务器40发送诊断任务请求给IV诊断服务器20。A3: The collection server 40 sends a diagnostic task request to the IV diagnostic server 20.
A4,IV诊断服务器20根据诊断任务请求,对目标光伏电站内光伏组件的电流数据和电压数据进行IV诊断分析,并响应IV诊断分析结果给采集服务器40。A4, the IV diagnostic server 20 performs IV diagnostic analysis on the current data and voltage data of the photovoltaic modules in the target photovoltaic power station according to the diagnostic task request, and responds to the IV diagnostic analysis results to the collection server 40 .
A5,采集服务器40通过正向隔离装置50传输IV诊断分析结果给融合诊断服务器10。A5, the collection server 40 transmits the IV diagnosis analysis results to the fusion diagnosis server 10 through the forward isolation device 50.
A6,融合诊断服务器10通过MQTT下发飞行任务给无人机30。A6, the fusion diagnosis server 10 issues the flight task to the drone 30 through MQTT.
A7,无人机30对目标光伏电站内的光伏组件进行图像采集,得到光伏组件的可见光图像和红外图像,并上传至图片存储器101。A7, the UAV 30 collects images of the photovoltaic modules in the target photovoltaic power station, obtains visible light images and infrared images of the photovoltaic modules, and uploads them to the picture memory 101.
A8,图片存储器101生成光伏组件图像的存储路径。A8, the image memory 101 generates a storage path for photovoltaic component images.
A9,融合诊断服务器10将光伏组件图像的存储路径存储到关系型数据库102。A9. The fusion diagnosis server 10 stores the storage path of the photovoltaic module image into the relational database 102.
A10,关系型数据库102反馈入库响应。A10, the relational database 102 feeds back the storage response.
A11,融合诊断服务器10将诊断任务请求放入消息队列103。A11, the fusion diagnosis server 10 puts the diagnosis task request into the message queue 103.
A12,消息队列103推送对应请求给数据处理模块104。A12, the message queue 103 pushes the corresponding request to the data processing module 104.
A13,数据处理模块104在监听到诊断任务请求后,利用预先训练好的AI模型对光伏组件图像进行识别,得到CV诊断分析结果,以及对IV诊断分析结果和CV诊断分析结果进行匹配融合,得到最终的诊断分析结果。A13, after listening to the diagnostic task request, the data processing module 104 uses the pre-trained AI model to identify the photovoltaic component image, obtain the CV diagnostic analysis results, and match and fuse the IV diagnostic analysis results and the CV diagnostic analysis results to obtain Final diagnostic analysis results.
A14,数据处理模块104将最终的诊断分析结果传输至消息队列103。A14, the data processing module 104 transmits the final diagnostic analysis result to the message queue 103.
A15,消息队列103推送最终的诊断分析结果。A15, message queue 103 pushes the final diagnostic analysis result.
A16,融合诊断服务器10将最终的诊断分析结果传输至关系型数据库102进行存储。A16, the fusion diagnosis server 10 transmits the final diagnosis analysis results to the relational database 102 for storage.
A17,关系型数据库102反馈入库响应。A17, the relational database 102 feeds back the storage response.
A18,客户端接收融合诊断服务器10传输的故障诊断报告。A18: The client receives the fault diagnosis report transmitted by the converged diagnosis server 10.
应当理解,在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,“计算机可读介质”可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。It will be understood that the logic and/or steps represented in the flowchart diagrams or otherwise described herein, for example, may be considered a sequenced list of executable instructions for implementing the logical functions, and may be embodied in any computer-readable in a medium for use by, or in connection with, an instruction execution system, device, or device (such as a computer-based system, a system including a processor, or other system that can fetch instructions from an instruction execution system, device, or device and execute the instructions) system, device or equipment. For the purposes of this specification, a "computer-readable medium" may be any device that can contain, store, communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device. More specific examples (non-exhaustive list) of computer readable media include the following: electrical connections with one or more wires (electronic device), portable computer disk cartridges (magnetic device), random access memory (RAM), Read-only memory (ROM), erasable and programmable read-only memory (EPROM or flash memory), fiber optic devices, and portable compact disc read-only memory (CDROM). Additionally, the computer-readable medium may even be paper or other suitable medium on which the program may be printed, as the paper or other medium may be optically scanned, for example, and subsequently edited, interpreted, or otherwise suitable as necessary. process to obtain the program electronically and then store it in computer memory.
同时,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。Meanwhile, various parts of the present invention can be implemented in hardware, software, firmware or their combination. In the above embodiments, various steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system. For example, if it is implemented in hardware, as in another embodiment, it can be implemented by any one or a combination of the following technologies known in the art: a logic gate circuit with a logic gate circuit for implementing a logic function on a data signal. Discrete logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGA), field programmable gate arrays (FPGA), etc.
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。In the description of this specification, reference to the terms "one embodiment," "some embodiments," "an example," "specific examples," or "some examples" or the like means that specific features are described in connection with the embodiment or example. , structures, materials or features are included in at least one embodiment or example of the invention. In this specification, schematic representations of the above terms do not necessarily refer to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。In addition, the terms “first” and “second” are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as "first" and "second" may explicitly or implicitly include at least one of these features. In the description of the present invention, "plurality" means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。Although the embodiments of the present invention have been shown and described above, it can be understood that the above-mentioned embodiments are illustrative and should not be construed as limitations of the present invention. Those of ordinary skill in the art can make modifications to the above-mentioned embodiments within the scope of the present invention. The embodiments are subject to changes, modifications, substitutions and variations.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310623131.4A CN117353658A (en) | 2023-05-29 | 2023-05-29 | IV&CV fusion diagnostic system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310623131.4A CN117353658A (en) | 2023-05-29 | 2023-05-29 | IV&CV fusion diagnostic system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117353658A true CN117353658A (en) | 2024-01-05 |
Family
ID=89354617
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310623131.4A Pending CN117353658A (en) | 2023-05-29 | 2023-05-29 | IV&CV fusion diagnostic system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117353658A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110823899A (en) * | 2018-08-10 | 2020-02-21 | 杭州海康机器人技术有限公司 | Fault positioning method, device and system |
CN112953383A (en) * | 2017-08-30 | 2021-06-11 | 深圳市大疆创新科技有限公司 | Method and equipment for detecting photovoltaic panel and unmanned aerial vehicle |
CN114898232A (en) * | 2022-04-29 | 2022-08-12 | 中科云尚(南京)智能技术有限公司 | Photovoltaic power station unmanned aerial vehicle inspection method and system based on photovoltaic string data analysis |
CN115720080A (en) * | 2022-11-14 | 2023-02-28 | 苏州热工研究院有限公司 | Inspection control system and inspection control method for power generation area of photovoltaic power station |
KR20230036557A (en) * | 2021-09-06 | 2023-03-15 | 주식회사 대경산전 | A system for monitoring solar panel failures on a large scale using drones |
-
2023
- 2023-05-29 CN CN202310623131.4A patent/CN117353658A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112953383A (en) * | 2017-08-30 | 2021-06-11 | 深圳市大疆创新科技有限公司 | Method and equipment for detecting photovoltaic panel and unmanned aerial vehicle |
CN110823899A (en) * | 2018-08-10 | 2020-02-21 | 杭州海康机器人技术有限公司 | Fault positioning method, device and system |
KR20230036557A (en) * | 2021-09-06 | 2023-03-15 | 주식회사 대경산전 | A system for monitoring solar panel failures on a large scale using drones |
CN114898232A (en) * | 2022-04-29 | 2022-08-12 | 中科云尚(南京)智能技术有限公司 | Photovoltaic power station unmanned aerial vehicle inspection method and system based on photovoltaic string data analysis |
CN115720080A (en) * | 2022-11-14 | 2023-02-28 | 苏州热工研究院有限公司 | Inspection control system and inspection control method for power generation area of photovoltaic power station |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107357313A (en) | Power transmission line fault maintenance system and method based on unmanned aerial vehicle inspection image | |
CN111311967A (en) | Unmanned aerial vehicle-based power line inspection system and method | |
CN112270267B (en) | Camera recognition system that can automatically capture line faults | |
WO2020232608A1 (en) | Transmission and distribution device diagnosis method, apparatus, and system, computing device, medium, and product | |
AU2017225040B2 (en) | Lightning strike inconsistency aircraft dispatch mobile disposition tool | |
CN104503489A (en) | Data acquisition control device, data acquisition control method and data acquisition control system | |
CN111952883B (en) | Power transmission line fault recognition system and method based on three-dimensional laser radar | |
CN115169602A (en) | Maintenance method and device for power equipment, storage medium and computer equipment | |
CN114648510A (en) | State detection method and device of photovoltaic module, storage medium and electronic equipment | |
CN114648708A (en) | State detection method and device of photovoltaic module, storage medium and electronic equipment | |
CN113554781A (en) | Remote inspection method and device for overhead transmission line and computer equipment | |
CN112819988A (en) | Unmanned aerial vehicle power station intelligent inspection method and system based on 5G and network side server | |
CN114418285A (en) | An intelligent alarm system and method for power transmission and distribution inspection data | |
CN114995259A (en) | Intelligent unmanned system for power grid distribution room inspection and flight inspection method | |
CN113776783A (en) | A method for detecting fault lights in computer room servers based on inspection robots | |
CN116631087A (en) | Unmanned aerial vehicle-based electric power inspection system | |
CN116866512A (en) | Photovoltaic power station inspection system and operation method thereof | |
CN114627569B (en) | Abnormality processing method and device for power line inspection unmanned aerial vehicle and computer equipment | |
CN118534918A (en) | Substation inspection monitoring method and system based on unmanned aerial vehicle | |
CN112085221B (en) | Intelligent operation and detection method and system for digital pole tower | |
Mitra et al. | A UAV Payload for Real-time Inspection of Highway Ancillary Structures | |
CN118763793A (en) | Substation equipment fault collaborative detection method, system and medium based on drone | |
CN113344861A (en) | Insulator and accessory large and small hardware defect identification method and system based on video | |
CN117353658A (en) | IV&CV fusion diagnostic system | |
CN115755946A (en) | Power inspection method, device and system based on digital twinning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |