CN117338313B - Multi-dimensional feature EEG signal recognition method based on stacking integration technology - Google Patents
Multi-dimensional feature EEG signal recognition method based on stacking integration technology Download PDFInfo
- Publication number
- CN117338313B CN117338313B CN202311196950.1A CN202311196950A CN117338313B CN 117338313 B CN117338313 B CN 117338313B CN 202311196950 A CN202311196950 A CN 202311196950A CN 117338313 B CN117338313 B CN 117338313B
- Authority
- CN
- China
- Prior art keywords
- model
- matrix
- electroencephalogram
- data
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 45
- 230000010354 integration Effects 0.000 title claims abstract description 43
- 238000005516 engineering process Methods 0.000 title claims abstract description 42
- 239000011159 matrix material Substances 0.000 claims abstract description 102
- 238000000605 extraction Methods 0.000 claims abstract description 31
- 238000007781 pre-processing Methods 0.000 claims abstract description 22
- 238000012545 processing Methods 0.000 claims abstract description 19
- 238000000513 principal component analysis Methods 0.000 claims abstract description 17
- 230000009467 reduction Effects 0.000 claims abstract description 16
- 238000012549 training Methods 0.000 claims description 51
- 238000012360 testing method Methods 0.000 claims description 25
- 230000006870 function Effects 0.000 claims description 17
- 239000013598 vector Substances 0.000 claims description 12
- 238000013527 convolutional neural network Methods 0.000 claims description 9
- 238000011176 pooling Methods 0.000 claims description 9
- 238000010606 normalization Methods 0.000 claims description 7
- 230000004913 activation Effects 0.000 claims description 6
- 238000013528 artificial neural network Methods 0.000 claims description 6
- 230000015654 memory Effects 0.000 claims description 6
- 238000000354 decomposition reaction Methods 0.000 claims description 4
- 238000001914 filtration Methods 0.000 claims description 3
- 238000012880 independent component analysis Methods 0.000 claims description 3
- 238000007477 logistic regression Methods 0.000 claims description 3
- 238000012795 verification Methods 0.000 claims 7
- 210000004556 brain Anatomy 0.000 claims 2
- 230000009466 transformation Effects 0.000 claims 2
- 210000005252 bulbus oculi Anatomy 0.000 claims 1
- 238000004364 calculation method Methods 0.000 claims 1
- 230000007787 long-term memory Effects 0.000 claims 1
- 239000000284 extract Substances 0.000 abstract description 5
- 238000010200 validation analysis Methods 0.000 description 12
- 208000020016 psychiatric disease Diseases 0.000 description 9
- 230000006403 short-term memory Effects 0.000 description 5
- 230000036541 health Effects 0.000 description 4
- 238000002790 cross-validation Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000004397 blinking Effects 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000013135 deep learning Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004424 eye movement Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 206010003805 Autism Diseases 0.000 description 1
- 208000020706 Autistic disease Diseases 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 230000003631 expected effect Effects 0.000 description 1
- 230000003340 mental effect Effects 0.000 description 1
- 230000004630 mental health Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/369—Electroencephalography [EEG]
- A61B5/372—Analysis of electroencephalograms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Psychiatry (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Psychology (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physiology (AREA)
- Signal Processing (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及脑电信号处理技术领域,具体涉及基于堆叠集成技术的多维度特征脑电信号识别方法。The present invention relates to the technical field of electroencephalogram (EEG) signal processing, and in particular to a multi-dimensional feature electroencephalogram (EEG) signal recognition method based on stacking integration technology.
背景技术Background technique
随着社会节奏的加快,人们的精神压力逐渐增大,心理健康问题已成为当代社会面临的重要问题之一。据世界卫生组织公布的数据,2022年全球抑郁症患者人数达到了3.22亿,而自闭症等神经精神疾病的患病率也在不断攀升,给社会带来严重影响。As the pace of society accelerates, people's mental stress gradually increases, and mental health issues have become one of the important issues facing contemporary society. According to data released by the World Health Organization, the number of depression patients worldwide reached 322 million in 2022, and the prevalence of neuropsychiatric diseases such as autism is also rising, bringing serious impacts to society.
由于大多数心理疾病病因复杂,治疗难度大,针对性不足,故心理疾病的检测显得尤为重要。目前的心理疾病检测方法主要依赖于医师的主观判断和患者的自我反馈,存在着诊断准确率不高、耗时长、费用高等问题。Since most mental illnesses have complex causes, are difficult to treat, and lack specificity, the detection of mental illness is particularly important. Current methods for detecting mental illnesses mainly rely on the subjective judgment of physicians and self-feedback from patients, which have problems such as low diagnostic accuracy, long time consumption, and high cost.
随着科学技术的进步及深度学习算法的出现,非侵入性的脑电信号识别技术在抑郁症等心理疾病的检测和治疗中起到了重要的作用。然而,现有的脑电信号识别技术存在诸多问题,例如识别准确率不高,对脑电信号的特征提取不够充分,无法有效处理脑电信号的非线性和高维特性等,进而影响对抑郁症等心理疾病的脑电信号的识别。With the advancement of science and technology and the emergence of deep learning algorithms, non-invasive EEG signal recognition technology has played an important role in the detection and treatment of mental illnesses such as depression. However, existing EEG signal recognition technology has many problems, such as low recognition accuracy, insufficient feature extraction of EEG signals, and inability to effectively process the nonlinear and high-dimensional characteristics of EEG signals, which in turn affects the recognition of EEG signals of mental illnesses such as depression.
发明内容Summary of the invention
本发明的主要目的在于提供一种基于堆叠集成技术的多维度特征脑电信号识别方法,该识别方法提取脑电信号的多维度特征,使用堆叠集成技术,提高了提取的脑电信号的识别度。The main purpose of the present invention is to provide a multi-dimensional feature EEG signal recognition method based on stacking integration technology, which extracts multi-dimensional features of EEG signals and uses stacking integration technology to improve the recognition degree of the extracted EEG signals.
本发明所采用的技术方案是:The technical solution adopted by the present invention is:
一种基于堆叠集成技术的多维度特征脑电信号识别方法,其包括如下步骤:A multi-dimensional feature electroencephalogram signal recognition method based on stacking integration technology comprises the following steps:
1)获取健康受试者和非健康受试者两类不同的脑电信号,以便后续脑电信号的识别,并对脑电信号进行数据预处理;1) Obtain two different types of EEG signals from healthy subjects and unhealthy subjects to facilitate subsequent EEG signal recognition and perform data preprocessing on the EEG signals;
2)对预处理后的脑电数据进行多维度特征提取,构建特征矩阵,得到原始特征矩阵;2) Perform multi-dimensional feature extraction on the preprocessed EEG data, construct a feature matrix, and obtain the original feature matrix;
3)利用主成分分析算法对原始特征矩阵进行降维处理,得到最终特征矩阵;3) Use the principal component analysis algorithm to reduce the dimension of the original feature matrix to obtain the final feature matrix;
4)将步骤1)预处理后的脑电数据基于堆叠集成学习算法,利用步骤3)中的最终特征矩阵作为输入构建基于堆叠集成技术的多维度特征脑电信号识别模型;接着对该模型进行训练,得到训练好的识别模型;4) constructing a multi-dimensional feature EEG signal recognition model based on stacking integration technology using the EEG data preprocessed in step 1) based on a stacking integration learning algorithm and the final feature matrix in step 3) as input; then training the model to obtain a trained recognition model;
5)将待识别的脑电信号进行数据预处理和多维度特征提取后输入到训练好的步骤4)中的多维度特征脑电信号识别模型中,得到识别结果。5) After data preprocessing and multi-dimensional feature extraction of the EEG signal to be identified, the signal is input into the trained multi-dimensional feature EEG signal recognition model in step 4) to obtain the recognition result.
更进一步的方案是,步骤1)中对脑电信号进行数据预处理的步骤主要包括去噪和归一化,以消除信号中的噪声成分,提高信号质量,得到后续可用的脑电数据。A further solution is that the step of data preprocessing of the EEG signal in step 1) mainly includes denoising and normalization to eliminate the noise component in the signal, improve the signal quality, and obtain subsequent usable EEG data.
更进一步的方案是,步骤1)对脑电信号进行数据预处理的步骤包括:A further solution is that the step 1) of preprocessing the EEG signal includes:
11)对原始脑电信号进行去噪处理,以消除信号中的噪声成分,具体为:首先使用0.5~40Hz的带通滤波进行滤波处理;其次,利用独立成分分析方法去除数据中的眨眼和眼球运动等伪迹;11) De-noising the original EEG signal to eliminate the noise components in the signal, specifically: first, use a 0.5-40 Hz bandpass filter for filtering; second, use the independent component analysis method to remove artifacts such as blinking and eye movement in the data;
12)对去噪后的信号进行归一化处理,将信号的幅值范围缩放到[0,1]之间,具体为:使用Min-Max归一化方式对信号进行预处理,如下:12) Normalize the denoised signal and scale the signal amplitude range to [0, 1]. Specifically, use the Min-Max normalization method to preprocess the signal as follows:
其中zj为样本z中第j个元素,zmax为样本数据中的最大值,zmin为样本数据中的最小值;Where z j is the jth element in sample z, z max is the maximum value in the sample data, and z min is the minimum value in the sample data;
更进一步的方案是,步骤2)中,对预处理后的脑电数据在时频域和空域上进行特征提取,得到多维度特征,从而构建原始特征矩阵X{x1,x2,…,xm}。A further solution is that, in step 2), feature extraction is performed on the preprocessed EEG data in the time-frequency domain and the spatial domain to obtain multi-dimensional features, thereby constructing an original feature matrix X{x 1 , x 2 ,…, x m }.
更进一步的方案是,步骤2)中,对预处理后的脑电数据在时频域和空域上进行特征提取,得到多维度特征,从而构建原始特征矩阵的步骤为:A further solution is that in step 2), the preprocessed EEG data is subjected to feature extraction in the time-frequency domain and the spatial domain to obtain multi-dimensional features, thereby constructing the original feature matrix in the following steps:
21)对预处理后的脑电信号基于离散小波变换在时频域上进行特征提取,得到时频域特征;21) Extracting features of the preprocessed EEG signal in the time-frequency domain based on discrete wavelet transform to obtain time-frequency domain features;
22)对预处理后的脑电信号基于共空间模式(CSP)的方法在空域上进行特征提取,得到空域特征;CSP是一种对两分类任务下的特征提取算法,在最大化一类方差的同时最小化另一类方差,从而得到区分程度最大的特征向量;22) The preprocessed EEG signal is subjected to feature extraction in the spatial domain based on the common spatial pattern (CSP) method to obtain spatial features; CSP is a feature extraction algorithm for two-class classification tasks, which maximizes the variance of one class while minimizing the variance of the other class, thereby obtaining the feature vector with the highest degree of discrimination;
23)将提取的时频域特征和空域特征联合,构建联合特征矩阵,得到原始特征矩阵。23) Combine the extracted time-frequency domain features and spatial domain features to construct a joint feature matrix to obtain the original feature matrix.
更进一步的方案是,步骤21)中,基于离散小波变换提取脑电信号,获得逼近分量和细节分量,使用细节分量的能量信息作为时频域特征数据。A further solution is that in step 21), the EEG signal is extracted based on discrete wavelet transform to obtain approximation components and detail components, and the energy information of the detail components is used as feature data in the time-frequency domain.
更进一步的方案是,步骤3)中,利用主成分分析(PCA)算法对原始特征矩阵进行降维处理,得到最终特征矩阵的方法为:A further solution is that in step 3), the original feature matrix is reduced in dimension using the principal component analysis (PCA) algorithm to obtain the final feature matrix as follows:
使用主成分分析算法对原始特征矩阵进行降维处理,将高维数据降到低维空间中,减少数据的冗余信息,提高数据的处理效率和模型的精度,得到最终特征矩阵,具体步骤如下:Use the principal component analysis algorithm to reduce the dimensionality of the original feature matrix, reduce the high-dimensional data to a low-dimensional space, reduce the redundant information of the data, improve the data processing efficiency and the accuracy of the model, and obtain the final feature matrix. The specific steps are as follows:
31)对原始特征矩阵X{x1,x2,…,xm}进行去中心化处理,m表示特征向量的数量,xm代表第m个特征向量,得到去中心化后的矩阵Y;31) The original feature matrix X{x 1 , x 2 , …, x m } is decentralized, where m represents the number of feature vectors and x m represents the mth feature vector, to obtain a decentralized matrix Y;
32)计算去中心化后的矩阵Y的协方差矩阵D;32) Calculate the covariance matrix D of the decentralized matrix Y;
其中,m为特征向量的数量,Y为去中心化后的矩阵,YT为矩阵Y的转置矩阵;Where m is the number of eigenvectors, Y is the decentralized matrix, and Y T is the transposed matrix of matrix Y;
33)通过奇异值分解计算协方差矩阵D的特征值与特征向量;33) Calculate the eigenvalues and eigenvectors of the covariance matrix D by singular value decomposition;
34)对步骤33)得到的特征值按从大到小排序,选择其中最大的k个特征值;然后将其对应的k个特征向量分别作为列向量组成特征向量矩阵H;其中,k按照累计贡献率计算;34) Sort the eigenvalues obtained in step 33) from large to small, and select the largest k eigenvalues; then use the corresponding k eigenvectors as column vectors to form an eigenvector matrix H; where k is calculated according to the cumulative contribution rate;
35)根据矩阵H求出PCA降维后的最终特征矩阵F=H*X,其中,X为原始特征矩阵。经PCA降维后的最终特征矩阵最大程度代表了有用信息,减少了数据中的冗余信息,提高了数据的处理效率,作为下一步分类器的输入更佳。35) The final feature matrix F = H*X after PCA dimension reduction is obtained based on the matrix H, where X is the original feature matrix. The final feature matrix after PCA dimension reduction represents the useful information to the greatest extent, reduces the redundant information in the data, improves the data processing efficiency, and is better as the input of the next classifier.
更进一步的方案是,步骤4)中,使用堆叠集成算法构建脑电信号识别模型,选择两种算法,即卷积神经网络和长短期记忆网络作为第一层的基模型,选择逻辑回归分类器作为第二层的元模型;识别模型共分为两层,第一层为两种基模型,利用训练集对每个基模型进行训练,再使用训练好的基模型对数据进行分类预测,并输出预测标签;第二层为元模型,元模型将第一层的输出结果作为本层的输入再进行预测,结合5折交叉验证方法,最终得到基于堆叠集成技术的多维度特征脑电信号识别模型。接着对该多维度特征脑电信号识别模型进行训练,得到训练好的识别模型;该模型能有效提高脑电信号的识别度。A further solution is that in step 4), a stacked integration algorithm is used to construct an EEG signal recognition model, two algorithms, namely, convolutional neural network and long short-term memory network, are selected as the base model of the first layer, and a logistic regression classifier is selected as the meta-model of the second layer; the recognition model is divided into two layers, the first layer is two base models, each base model is trained using the training set, and then the trained base model is used to classify and predict the data, and the predicted label is output; the second layer is the meta-model, and the meta-model uses the output result of the first layer as the input of this layer for further prediction, combined with the 5-fold cross-validation method, and finally a multi-dimensional feature EEG signal recognition model based on stacked integration technology is obtained. Then the multi-dimensional feature EEG signal recognition model is trained to obtain a trained recognition model; this model can effectively improve the recognition of EEG signals.
更进一步的方案是,对多维度特征脑电信号识别模型进行训练,得到训练好的识别模型的具体步骤为:A further solution is to train the multi-dimensional feature EEG signal recognition model. The specific steps to obtain the trained recognition model are:
41)将步骤1)预处理后的脑电数据划分为训练集Dtrain和测试集Dtest,接着将训练集Dtrain等分为五个子集,每次训练时选择其中一个作为验证集Dm(m=1,2,3,4,5),其余四个组成新的训练集;41) Divide the EEG data preprocessed in step 1) into a training set D train and a test set D test , then divide the training set D train into five equal subsets, select one of them as a validation set D m (m = 1, 2, 3, 4, 5) in each training, and the remaining four constitute a new training set;
42)使用不同的新训练集分别对第一层的基模型进行训练,对于同一个基模型,五种不同的训练集能训练出五个不同参数的模型;42) Use different new training sets to train the base model of the first layer respectively. For the same base model, five different training sets can train five models with different parameters;
43)利用训练好的基模型对相应的验证集Dm进行预测,得到预测结果Mi(i=1,2,3,4,5);接着利用训练好的基模型对测试集Dtest进行预测,得到预测结果Ni(i=1,2,3,4,5);43) Use the trained base model to predict the corresponding validation set D m and obtain the prediction result Mi (i = 1, 2, 3, 4, 5); then use the trained base model to predict the test set D test and obtain the prediction result Ni (i = 1, 2, 3, 4, 5);
44)接着训练所有的基模型,重复步骤42)和43),分别利用新的训练集和验证集进行模型训练和预测,最终每个基模型可以得到验证集预测结果的集合Mn,将所有基模型的验证集预测结果集合记为M;利用测试集对所有基模型进行预测,最终将每个基模型的测试集预测结果Ni取加权平均,记为Nn,将所有基模型的测试集预测结果集合记为N;44) Then train all base models, repeat steps 42) and 43), use the new training set and validation set for model training and prediction respectively, and finally each base model can obtain a set Mn of validation set prediction results, and the set of validation set prediction results of all base models is recorded as M; use the test set to predict all base models, and finally take the weighted average of the test set prediction results Ni of each base model, recorded as Nn , and the set of test set prediction results of all base models is recorded as N;
45)将步骤44)中得到的所有基模型的验证集预测结果集合M作为第二层基模型的训练集进行训练,得到训练好的元模型。将所有基模型的测试集预测结果集合N作为第二层元模型的测试集来训练模型,由此得到最终的基于堆叠集成技术的多维度特征脑电信号识别模型。45) The validation set prediction result set M of all base models obtained in step 44) is used as the training set of the second-layer base model for training to obtain a trained meta-model. The test set prediction result set N of all base models is used as the test set of the second-layer meta-model for training the model, thereby obtaining the final multi-dimensional feature EEG signal recognition model based on stacking integration technology.
更进一步的方案是,基于堆叠集成技术的多维度特征脑电信号识别模型的第一层基模型及其参数选择如下:A further solution is that the first-layer base model and its parameters of the multi-dimensional feature EEG signal recognition model based on stacking integration technology are selected as follows:
a.卷积神经网络(CNN):该模型使用2个卷积层,第一层卷积层为1个Dropout层,第二层卷积层为1个最大池化层和1个全连接层;其中,第一层卷积层的核大小为64×5,第二层卷积层的核大小为128×3;然后在每个卷积层后使用ReLU作为激活函数;最大池化层使用最大池化来减少输入大小、内存使用量和参数数量,从而降低运算量;Dropout层用于防止神经网络的过拟合,最后使用Softmax函数作为二分类问题的类别预测输出;a. Convolutional Neural Network (CNN): This model uses two convolutional layers. The first convolutional layer is a Dropout layer, and the second convolutional layer is a maximum pooling layer and a fully connected layer. The kernel size of the first convolutional layer is 64×5, and the kernel size of the second convolutional layer is 128×3. ReLU is then used as the activation function after each convolutional layer. The maximum pooling layer uses maximum pooling to reduce the input size, memory usage, and number of parameters, thereby reducing the amount of computation. The Dropout layer is used to prevent overfitting of the neural network. Finally, the Softmax function is used as the category prediction output for the binary classification problem.
b.长短期记忆网络:LSTM单元内的隐藏层的尺寸设为64,LSTM结构由一个用于存储信息的存储单元和三个门组成,该三个门为输入门、输出门和遗忘门;这三个门控制数据的输入和输出;LSTM中存在四种不同的函数,即sigmoid、tanh、乘法和加法,用于在模型训练期间更轻松地更新权重;最后,在全连接层中,使用Softmax激活函数使神经网络能够实现二分类功能。b. Long Short-Term Memory Network: The size of the hidden layer within the LSTM unit is set to 64. The LSTM structure consists of a memory unit for storing information and three gates, namely the input gate, output gate, and forget gate. These three gates control the input and output of data. There are four different functions in LSTM, namely sigmoid, tanh, multiplication, and addition, which are used to update weights more easily during model training. Finally, in the fully connected layer, the Softmax activation function is used to enable the neural network to achieve binary classification functions.
本发明还提供一种基于堆叠集成技术的多维度特征脑电信号识别系统,该识别系统采用上述基于堆叠集成技术的多维度特征脑电信号识别方法,其包括:The present invention also provides a multi-dimensional feature EEG signal recognition system based on stacking integration technology, the recognition system adopts the multi-dimensional feature EEG signal recognition method based on stacking integration technology, and comprises:
脑电信号获取模块,用于获取脑电信号;An EEG signal acquisition module, used for acquiring EEG signals;
预处理模块,用于对获取的脑电信号进行数据预处理;A preprocessing module, used for performing data preprocessing on the acquired EEG signals;
多维度特征提取模块,用于对预处理后的脑电数据进行多维度特征提取,构建特征矩阵,得到原始特征矩阵;The multi-dimensional feature extraction module is used to extract multi-dimensional features from the pre-processed EEG data, construct a feature matrix, and obtain an original feature matrix;
降维处理模块,用于利用主成分分析算法对原始特征矩阵进行降维处理,得到最终特征矩阵;A dimension reduction processing module is used to perform dimension reduction processing on the original feature matrix using a principal component analysis algorithm to obtain a final feature matrix;
堆叠集成学习模块,用于将预处理后的脑电数据基于堆叠集成学习算法,利用最终特征矩阵作为输入构建基于堆叠集成技术的多维度特征脑电信号识别模型;接着对该模型进行训练,得到训练好的识别模型;将待识别的脑电信号进行数据预处理和多维度特征提取后输入到训练好的多维度特征脑电信号识别模型中,得到识别结果。The stacked ensemble learning module is used to construct a multi-dimensional feature EEG signal recognition model based on the stacked ensemble learning algorithm using the final feature matrix as input based on the preprocessed EEG data; then the model is trained to obtain a trained recognition model; the EEG signal to be recognized is subjected to data preprocessing and multi-dimensional feature extraction, and then input into the trained multi-dimensional feature EEG signal recognition model to obtain the recognition result.
本发明的有益效果在于:The beneficial effects of the present invention are:
本发明提取了脑电信号中的时频域和空域特征,相比提取单一的脑电特征,多维度特征尽可能完整地保留了脑电信号中包含的信息,能有效提高模型的识别精度和分类性能,同时对特征矩阵进行降维处理,提高数据的处理效率;The present invention extracts the time-frequency domain and spatial domain features in the EEG signal. Compared with extracting a single EEG feature, the multi-dimensional feature retains the information contained in the EEG signal as completely as possible, which can effectively improve the recognition accuracy and classification performance of the model. At the same time, the feature matrix is reduced in dimension to improve the data processing efficiency.
本发明中的识别模型能结合多种基学习器的优点,有效提高模型的泛化能力,弥补单一模型的不足,使模型的分类效果得到提升;模型使用了交叉验证,可有效防止过拟合,进一步提高模型的泛化能力和准确率;The recognition model in the present invention can combine the advantages of multiple base learners, effectively improve the generalization ability of the model, make up for the shortcomings of a single model, and improve the classification effect of the model; the model uses cross-validation, which can effectively prevent overfitting and further improve the generalization ability and accuracy of the model;
本发明将深度学习应用于脑电信号,通过人工智能算法对脑电信号进行识别和分类,进一步提高了识别的准确度,从而达到辅助诊断抑郁症等心理疾病的预期效果;The present invention applies deep learning to EEG signals, identifies and classifies EEG signals through artificial intelligence algorithms, and further improves the accuracy of identification, thereby achieving the expected effect of assisting in the diagnosis of mental illnesses such as depression;
本发明提取了脑电信号的多维度特征,尽可能完整地保留了脑电信号中的信息;The present invention extracts the multi-dimensional features of the EEG signal and retains the information in the EEG signal as completely as possible;
通过健康受试者和非健康受试者的脑电信号建立维度特征脑电信号识别模型,并对维度特征脑电信号识别模型进行训练,以提高判断的准确性;A dimensional feature EEG signal recognition model is established through EEG signals of healthy subjects and unhealthy subjects, and the dimensional feature EEG signal recognition model is trained to improve the accuracy of judgment;
本发明采用堆叠集成技术能够结合多个模型的优点,提高模型的泛化能力和准确率,从而达到辅助诊断心理疾病的效果。The present invention adopts stacking integration technology to combine the advantages of multiple models, improve the generalization ability and accuracy of the model, and thus achieve the effect of assisting the diagnosis of mental illness.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the following briefly introduces the drawings required for use in the embodiments or the description of the prior art. Obviously, the drawings described below are some embodiments of the present invention. For ordinary technicians in this field, other drawings can be obtained based on these drawings without paying creative work.
图1为基于堆叠集成技术的多维度特征脑电信号识别方法的流程示意图;FIG1 is a schematic diagram of a process of a multi-dimensional feature EEG signal recognition method based on stacking integration technology;
图2为本发明的一个实施例脑电信号采集时电极具体位置图;FIG2 is a diagram showing specific electrode positions during EEG signal collection according to an embodiment of the present invention;
图3为堆叠集成策略的第一层模型进行训练和预测的原理图。FIG3 is a schematic diagram showing the principle of training and predicting the first layer model of the stacking integration strategy.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。In order to make the purpose, technical solution and advantages of the present invention more clearly understood, the present invention is further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention and are not used to limit the present invention.
本发明通过采集多个受试者的脑电信号(健康受试者和非健康受试者的脑电信号)对基于堆叠集成技术的多维度特征脑电信号识别模型进行训练,得到训练好的识别模型。将待识别的脑电信号经过去噪和归一化等预处理后,对其进行多维度特征提取,得到原始特征矩阵,利用主成分分析算法对矩阵进行降维处理,得到最终特征矩阵。将最终特征矩阵输入到训练好的识别模型中,输出预测结果0或1(其中0代表健康,1代表非健康),根据模型给出的预测结果辅助判断该受试者是否有心理疾病,能有效提高脑电信号的识别度。The present invention trains a multi-dimensional feature EEG signal recognition model based on stacking integration technology by collecting EEG signals of multiple subjects (EEG signals of healthy subjects and unhealthy subjects) to obtain a trained recognition model. After the EEG signal to be recognized is pre-processed by denoising and normalization, multi-dimensional feature extraction is performed on it to obtain the original feature matrix, and the matrix is reduced in dimension using the principal component analysis algorithm to obtain the final feature matrix. The final feature matrix is input into the trained recognition model, and the prediction result 0 or 1 (where 0 represents health and 1 represents unhealth) is output. According to the prediction result given by the model, it is assisted to judge whether the subject has a mental illness, which can effectively improve the recognition of EEG signals.
本发明使用了堆叠集成学习算法,该算法通过将多个基学习器的预测结果进行集成,以提高预测的准确性。在本发明中,使用了多维特征提取并利用主成分分析算法对特征矩阵进行降维处理,使用卷积神经网络和长短期记忆网络进行模型训练,以实现脑电信号的准确识别。The present invention uses a stacked ensemble learning algorithm, which integrates the prediction results of multiple base learners to improve the accuracy of prediction. In the present invention, multi-dimensional feature extraction is used and the principal component analysis algorithm is used to reduce the dimension of the feature matrix, and convolutional neural networks and long short-term memory networks are used for model training to achieve accurate recognition of EEG signals.
实施例1Example 1
参见图1,一种基于堆叠集成技术的多维度特征脑电信号识别方法的流程示意图,其包括以下步骤:获取健康受试者和非健康受试者两类不同的脑电信号并对其进行数据预处理;然后对预处理后的脑电数据进行多维特征提取,得到原始特征矩阵;对原始特征矩阵进行降维处理,得到最终特征矩阵;将最终特征矩阵作为输入构建基于堆叠集成技术的多维度特征脑电信号识别模型;接着对该模型进行训练,得到训练好的识别模型;将待识别的脑电信号进行数据预处理和多维度特征提取后输入到训练好的模型中,输出预测结果0或1(其中0代表健康,1代表非健康),根据模型给出的预测结果辅助判断该受试者是否有心理疾病,能有效提高脑电信号的识别度。具体步骤如下:See Figure 1, which is a flow chart of a multi-dimensional feature EEG signal recognition method based on stacking integration technology, which includes the following steps: obtaining two different types of EEG signals from healthy subjects and unhealthy subjects and performing data preprocessing on them; then performing multi-dimensional feature extraction on the preprocessed EEG data to obtain the original feature matrix; performing dimensionality reduction processing on the original feature matrix to obtain the final feature matrix; using the final feature matrix as input to construct a multi-dimensional feature EEG signal recognition model based on stacking integration technology; then training the model to obtain a trained recognition model; performing data preprocessing and multi-dimensional feature extraction on the EEG signal to be recognized, and then inputting it into the trained model, outputting a prediction result of 0 or 1 (where 0 represents health and 1 represents unhealth), and assisting in judging whether the subject has a mental illness based on the prediction result given by the model, which can effectively improve the recognition of EEG signals. The specific steps are as follows:
S1:获取健康受试者和非健康受试者两类不同的脑电信号并对信号进行数据预处理,主要包括去噪和归一化,以消除信号中的噪声成分,提高信号质量,得到后续可用的脑电数据。S1: Obtain two different types of EEG signals from healthy subjects and unhealthy subjects and perform data preprocessing on the signals, mainly including denoising and normalization, to eliminate the noise components in the signals, improve the signal quality, and obtain subsequent usable EEG data.
S2:对预处理后的数据进行多维度特征提取,构建特征矩阵,得到原始特征矩阵。对预处理后的脑电数据在时频域和空域上进行特征提取,得到多维度特征,从而构建特征矩阵。S2: Perform multi-dimensional feature extraction on the preprocessed data, construct a feature matrix, and obtain the original feature matrix. Perform feature extraction on the preprocessed EEG data in the time-frequency domain and the spatial domain to obtain multi-dimensional features, thereby constructing a feature matrix.
S3:利用主成分分析算法对原始的特征矩阵进行降维处理,得到最终的特征矩阵。S3: Use the principal component analysis algorithm to reduce the dimension of the original feature matrix to obtain the final feature matrix.
S4:基于所得到的脑电数据和堆叠集成学习算法,利用步骤3中的最终特征矩阵作为输入构建基于堆叠集成技术的多维度特征脑电信号识别模型;接着对该模型进行训练,得到训练好的识别模型;S4: Based on the obtained EEG data and the stacking ensemble learning algorithm, a multi-dimensional feature EEG signal recognition model based on the stacking ensemble technology is constructed using the final feature matrix in step 3 as input; then the model is trained to obtain a trained recognition model;
S5、将待识别的脑电信号进行数据预处理和多维度特征提取后输入到训练好的步骤4)中的多维度特征脑电信号识别模型中,输出预测结果0或1(其中0代表健康,1代表非健康)。S5. After data preprocessing and multi-dimensional feature extraction, the EEG signal to be identified is input into the trained multi-dimensional feature EEG signal recognition model in step 4), and a prediction result of 0 or 1 is output (where 0 represents health and 1 represents unhealth).
其中,步骤1的具体方法为:The specific method of step 1 is:
S11、获取健康受试者和非健康受试者两类脑电信号数据。首先,使用脑电波采集装置从受试者那里采集脑电信号。为了获得最佳的信号质量,设置了以下参数:使用64个通道进行数据采集,其中一个通道被设定为参考电极;采样率设置为500Hz。电极的具体位置可以参考图2。S11. Obtain EEG signal data of two types of healthy subjects and unhealthy subjects. First, use an EEG acquisition device to collect EEG signals from the subjects. In order to obtain the best signal quality, the following parameters are set: 64 channels are used for data acquisition, one of which is set as the reference electrode; the sampling rate is set to 500 Hz. The specific position of the electrode can be referred to Figure 2.
S12、对原始脑电信号进行去噪处理,以消除信号中的噪声成分。首先使用0.5~40Hz的带通滤波进行滤波处理;其次,利用独立成分分析方法去除数据中的眨眼和眼球运动等伪迹。S12. De-noising the original EEG signal to eliminate the noise components in the signal. First, use a 0.5-40 Hz bandpass filter for filtering; second, use the independent component analysis method to remove artifacts such as blinking and eye movement in the data.
S13、对去噪后的信号进行归一化处理,将信号的幅值范围缩放到[0,1]之间。使用Min-Max归一化方式对数据进行预处理,如下:S13, normalize the denoised signal and scale the signal amplitude range to [0,1]. Use the Min-Max normalization method to preprocess the data as follows:
其中zj为样本z中第j个元素,zmax为样本数据中的最大值,zmin为样本数据中的最小值。Where z j is the jth element in sample z, z max is the maximum value in the sample data, and z min is the minimum value in the sample data.
步骤2的具体方法为:The specific method of step 2 is:
S21、对预处理后的脑电信号基于离散小波变换在时频域上进行特征提取,得到时频域特征;基于离散小波变换提取脑电信号,获得逼近分量和细节分量,使用细节分量的能量信息作为时频域特征数据。S21. Perform feature extraction on the preprocessed EEG signal in the time-frequency domain based on discrete wavelet transform to obtain time-frequency domain features; extract the EEG signal based on discrete wavelet transform to obtain approximation components and detail components, and use energy information of the detail components as feature data in the time-frequency domain.
具体的,离散小波定义如下:Specifically, the discrete wavelet is defined as follows:
在这个公式中,为小波基函数,a和n分别代表频率分辨率和时间平移量,f(t)代表预处理后的脑电信号,t代表时间索引,本发明选择的小波函数为db4。利用Mallat算法对信号进行分解:In this formula, is the wavelet basis function, a and n represent the frequency resolution and time shift respectively, f(t) represents the preprocessed EEG signal, t represents the time index, and the wavelet function selected by the present invention is db4. The signal is decomposed using the Mallat algorithm:
在这个公式中,x[e]是离散输出信号,e代表时间索引,L为分解层数,AL为低通逼近分量,Di为各层所对应的细节分量。In this formula, x[e] is the discrete output signal, e represents the time index, L is the number of decomposition layers, AL is the low-pass approximation component, and Di is the detail component corresponding to each layer.
S22、对预处理后的脑电信号基于共空间模式(CSP)的方法在空域上进行特征提取,得到空域特征;CSP是一种对两分类任务下的特征提取算法,在最大化一类方差的同时最小化另一类方差,从而得到区分程度最大的特征向量。S22. Perform feature extraction in the spatial domain based on the common spatial pattern (CSP) method on the preprocessed EEG signal to obtain spatial features. CSP is a feature extraction algorithm for two-classification tasks, which maximizes the variance of one class while minimizing the variance of the other class, thereby obtaining the feature vector with the highest degree of discrimination.
S23、将提取的时频域特征和空域特征联合,构建联合特征矩阵,得到原始特征矩阵。S23, combining the extracted time-frequency domain features and spatial domain features to construct a joint feature matrix to obtain an original feature matrix.
步骤3的具体方法为:The specific method of step 3 is:
S31、对原始特征矩阵X{x1,x2,…,xm}进行去中心化处理,m表示特征向量的数量,xm代表第m个特征向量,得到去中心化后的矩阵Y;S31. Decentralize the original feature matrix X{x 1 , x 2 , …, x m }, where m represents the number of feature vectors and x m represents the mth feature vector, to obtain a decentralized matrix Y;
S32、计算去中心化后的矩阵Y的协方差矩阵D;S32, calculating the covariance matrix D of the decentralized matrix Y;
其中,m为特征向量的数量,Y为去中心化后的矩阵,YT为矩阵Y的转置矩阵;Where m is the number of eigenvectors, Y is the decentralized matrix, and Y T is the transposed matrix of matrix Y;
S33、通过奇异值分解计算协方差矩阵D的特征值与特征向量;S33, calculating the eigenvalues and eigenvectors of the covariance matrix D by singular value decomposition;
S34、对得到的特征值按从大到小排序,选择其中最大的k个。然后将其对应的k个特征向量分别作为列向量组成特征向量矩阵H。其中,k按照累计贡献率计算;S34, sort the obtained eigenvalues from large to small, and select the largest k of them. Then use the corresponding k eigenvectors as column vectors to form an eigenvector matrix H. Among them, k is calculated according to the cumulative contribution rate;
S35、根据矩阵H求出降维后的最终特征矩阵F=H*X,其中,X为原始特征矩阵。经PCA降维后的最终特征矩阵最大程度代表了有用信息,减少了数据中的冗余信息,提高了数据的处理效率,作为下一步分类器的输入更佳。S35, the final feature matrix F=H*X after dimension reduction is obtained according to the matrix H, where X is the original feature matrix. The final feature matrix after dimension reduction by PCA represents the useful information to the greatest extent, reduces the redundant information in the data, improves the data processing efficiency, and is better as the input of the next classifier.
步骤4的具体方法为:The specific method of step 4 is:
使用堆叠集成算法构建脑电信号识别模型,选择两种算法,即卷积神经网络和长短期记忆网络作为第一层的基模型,选择逻辑回归分类器作为第二层的元模型;识别模型共分为两层,第一层为两种基模型,利用训练集对每个基模型进行训练,再使用训练好的基模型对数据进行分类预测,并输出预测标签;第二层为元模型,元模型将第一层的输出结果作为本层的输入再进行预测,结合5折交叉验证方法,最终得到基于堆叠集成技术的多维度特征脑电信号识别模型;接着对该多维度特征脑电信号识别模型进行训练,得到训练好的识别模型。第一层基模型的训练和预测步骤具体参见图3。The EEG signal recognition model was constructed using the stacking integration algorithm. Two algorithms, namely, convolutional neural network and long short-term memory network, were selected as the base models of the first layer, and the logistic regression classifier was selected as the meta-model of the second layer. The recognition model was divided into two layers. The first layer was two base models. Each base model was trained using the training set, and then the trained base model was used to classify and predict the data, and the predicted label was output. The second layer was the meta-model. The meta-model used the output of the first layer as the input of this layer for prediction. Combined with the 5-fold cross-validation method, a multi-dimensional feature EEG signal recognition model based on the stacking integration technology was finally obtained. Then the multi-dimensional feature EEG signal recognition model was trained to obtain a trained recognition model. The training and prediction steps of the first-layer base model are shown in Figure 3.
对多维度特征脑电信号识别模型进行训练,得到训练好的识别模型的具体步骤为:The specific steps of training the multi-dimensional feature EEG signal recognition model to obtain the trained recognition model are as follows:
S41、将脑电数据划分为训练集Dtrain和测试集Dtest,接着将训练集Dtrain等分为五个子集,每次训练时选择其中一个作为验证集Dm(m=1,2,3,4,5),其余四个组成新的训练集;S41, dividing the EEG data into a training set D train and a test set D test , and then equally dividing the training set D train into five subsets, selecting one of them as a validation set D m (m = 1, 2, 3, 4, 5) in each training, and the remaining four constitute a new training set;
S42、使用不同的新训练集分别对第一层的基模型进行训练。对于同一个基模型,五种不同的训练集能训练出五个不同参数的模型;S42, use different new training sets to train the base model of the first layer respectively. For the same base model, five different training sets can train five models with different parameters;
S43、利用训练好的基模型对相应的验证集Dm进行预测,得到预测结果Mi(i=1,2,3,4,5);接着利用训练好的基模型对测试集Dtest进行预测,得到预测结果Ni(i=1,2,3,4,5);S43, using the trained base model to predict the corresponding validation set D m , and obtain the prediction result Mi (i=1, 2, 3, 4, 5); then using the trained base model to predict the test set D test , and obtain the prediction result Ni (i=1, 2, 3, 4, 5);
S44、接着训练所有的基模型,重复步骤S42和S43,分别利用新的训练集和验证集进行模型训练和预测,最终每个基模型可以得到验证集预测结果的集合Mn,将所有基模型的验证集预测结果集合记为M;利用测试集对所有基模型进行预测,最终将每个基模型的测试集预测结果Ni取加权平均,记为Nn,将所有基模型的测试集预测结果集合记为N;S44, then train all base models, repeat steps S42 and S43, use the new training set and validation set for model training and prediction respectively, finally each base model can obtain a set Mn of validation set prediction results, and the set of validation set prediction results of all base models is recorded as M; use the test set to predict all base models, and finally take the weighted average of the test set prediction results Ni of each base model, recorded as Nn , and the set of test set prediction results of all base models is recorded as N;
S45、将步骤S44中得到的所有基模型的验证集预测结果集合M作为第二层基模型的训练集进行训练,得到训练好的元模型。将所有基模型的测试集预测结果集合N作为第二层元模型的测试集来训练模型,由此得到最终的基于堆叠集成技术的多维度特征脑电信号识别模型。S45, the validation set prediction result set M of all base models obtained in step S44 is used as the training set of the second-layer base model for training to obtain a trained meta-model. The test set prediction result set N of all base models is used as the test set of the second-layer meta-model for training the model, thereby obtaining the final multi-dimensional feature EEG signal recognition model based on the stacking integration technology.
基于堆叠集成技术的多维度特征脑电信号识别模型的第一层基模型及其参数选择如下:The first-layer base model and its parameter selection of the multi-dimensional feature EEG signal recognition model based on stacking integration technology are as follows:
a.卷积神经网络(CNN):该模型使用2个卷积层,1个Dropout层,1个最大池化层和1个全连接层。其中,第一层卷积层的核大小为64×5,第二层卷积层的核大小为128×3。然后在每个卷积层后使用ReLU作为激活函数。最大池化层使用最大池化来减少输入大小、内存使用量和参数数量,从而降低运算量。Dropout技术用于防止神经网络的过拟合,最后使用Softmax函数作为二分类问题的类别预测输出。a. Convolutional Neural Network (CNN): This model uses 2 convolutional layers, 1 Dropout layer, 1 max pooling layer, and 1 fully connected layer. The kernel size of the first convolutional layer is 64×5, and the kernel size of the second convolutional layer is 128×3. ReLU is then used as the activation function after each convolutional layer. The max pooling layer uses max pooling to reduce the input size, memory usage, and number of parameters, thereby reducing the amount of computation. Dropout technology is used to prevent overfitting of the neural network, and finally the Softmax function is used as the category prediction output for the binary classification problem.
b.长短期记忆网络(LSTM):LSTM单元内的隐藏层的尺寸设为64,LSTM结构由一个用于存储信息的存储单元和三个门(输入门、输出门和遗忘门)组成。这三个门控制数据的输入和输出。LSTM中存在四种不同的函数,即sigmoid、tanh、乘法和加法,用于在模型训练期间更轻松地更新权重。最后,在全连接层中,使用Softmax激活函数使神经网络能够实现二分类功能。b. Long Short-Term Memory Network (LSTM): The size of the hidden layer within the LSTM unit is set to 64. The LSTM structure consists of a memory unit for storing information and three gates (input gate, output gate, and forget gate). These three gates control the input and output of data. There are four different functions in LSTM, namely sigmoid, tanh, multiplication, and addition, which are used to update weights more easily during model training. Finally, in the fully connected layer, the Softmax activation function is used to enable the neural network to achieve binary classification functions.
实施例2Example 2
一种基于堆叠集成技术的多维度特征脑电信号识别系统,采用实施例1中的基于堆叠集成技术的多维度特征脑电信号识别方法,其包括:A multi-dimensional feature EEG signal recognition system based on stacking integration technology, using the multi-dimensional feature EEG signal recognition method based on stacking integration technology in Example 1, comprising:
脑电信号获取模块,用于获取脑电信号;An EEG signal acquisition module, used for acquiring EEG signals;
预处理模块,用于对获取的脑电信号进行数据预处理;A preprocessing module, used for performing data preprocessing on the acquired EEG signals;
多维度特征提取模块,用于对预处理后的脑电数据进行多维度特征提取,构建特征矩阵,得到原始特征矩阵;The multi-dimensional feature extraction module is used to extract multi-dimensional features from the pre-processed EEG data, construct a feature matrix, and obtain an original feature matrix;
降维处理模块,用于利用主成分分析算法对原始特征矩阵进行降维处理,得到最终特征矩阵;A dimension reduction processing module is used to perform dimension reduction processing on the original feature matrix using a principal component analysis algorithm to obtain a final feature matrix;
堆叠集成学习模块,用于将预处理后的脑电数据基于堆叠集成学习算法,利用最终特征矩阵作为输入构建基于堆叠集成技术的多维度特征脑电信号识别模型;接着对该模型进行训练,得到训练好的识别模型;将待识别的脑电信号进行数据预处理和多维度特征提取后输入到训练好的多维度特征脑电信号识别模型中,得到识别结果。The stacked ensemble learning module is used to construct a multi-dimensional feature EEG signal recognition model based on the stacked ensemble learning algorithm using the final feature matrix as input based on the preprocessed EEG data; then the model is trained to obtain a trained recognition model; the EEG signal to be recognized is subjected to data preprocessing and multi-dimensional feature extraction, and then input into the trained multi-dimensional feature EEG signal recognition model to obtain the recognition result.
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。It should be understood that those skilled in the art can make improvements or changes based on the above description, and all these improvements and changes should fall within the scope of protection of the appended claims of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311196950.1A CN117338313B (en) | 2023-09-15 | 2023-09-15 | Multi-dimensional feature EEG signal recognition method based on stacking integration technology |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311196950.1A CN117338313B (en) | 2023-09-15 | 2023-09-15 | Multi-dimensional feature EEG signal recognition method based on stacking integration technology |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117338313A CN117338313A (en) | 2024-01-05 |
CN117338313B true CN117338313B (en) | 2024-05-07 |
Family
ID=89368159
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311196950.1A Active CN117338313B (en) | 2023-09-15 | 2023-09-15 | Multi-dimensional feature EEG signal recognition method based on stacking integration technology |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117338313B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118141392B (en) * | 2024-05-09 | 2024-07-09 | 西南医科大学附属医院 | Electroencephalogram identification method |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110432899A (en) * | 2019-07-23 | 2019-11-12 | 南京工业大学 | Electroencephalogram signal identification method based on depth stacking support matrix machine |
WO2020248008A1 (en) * | 2019-06-14 | 2020-12-17 | The University Of Adelaide | A method and system for classifying sleep related brain activity |
CN112603334A (en) * | 2020-12-18 | 2021-04-06 | 杭州电子科技大学 | Spike detection method based on time sequence characteristics and stacked Bi-LSTM network |
CN112656427A (en) * | 2020-11-26 | 2021-04-16 | 山西大学 | Electroencephalogram emotion recognition method based on dimension model |
KR102334595B1 (en) * | 2020-12-21 | 2021-12-02 | 건국대학교 산학협력단 | Emotion recongnition method and device |
CN115374812A (en) * | 2022-08-02 | 2022-11-22 | 中山大学附属第三医院 | A signal feature extraction method for multiple feature fusion extraction of EEG signals |
CN115795346A (en) * | 2022-12-02 | 2023-03-14 | 江苏理工学院 | Classification and identification method of human electroencephalogram signals |
CN116211320A (en) * | 2023-03-16 | 2023-06-06 | 安徽工业大学 | Pattern recognition method for motor imagery brain-computer interface based on ensemble learning |
CN116484290A (en) * | 2023-04-18 | 2023-07-25 | 武汉纺织大学 | A method for building a depression recognition model based on Stacking integration |
CN116628420A (en) * | 2023-05-08 | 2023-08-22 | 武汉纺织大学 | A brain wave signal processing method based on LSTM neural network element learning |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220160286A1 (en) * | 2020-11-20 | 2022-05-26 | Anhui Huami Health Technology Co., Ltd. | Adaptive User Interaction Systems For Interfacing With Cognitive Processes |
-
2023
- 2023-09-15 CN CN202311196950.1A patent/CN117338313B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020248008A1 (en) * | 2019-06-14 | 2020-12-17 | The University Of Adelaide | A method and system for classifying sleep related brain activity |
CN110432899A (en) * | 2019-07-23 | 2019-11-12 | 南京工业大学 | Electroencephalogram signal identification method based on depth stacking support matrix machine |
CN112656427A (en) * | 2020-11-26 | 2021-04-16 | 山西大学 | Electroencephalogram emotion recognition method based on dimension model |
CN112603334A (en) * | 2020-12-18 | 2021-04-06 | 杭州电子科技大学 | Spike detection method based on time sequence characteristics and stacked Bi-LSTM network |
KR102334595B1 (en) * | 2020-12-21 | 2021-12-02 | 건국대학교 산학협력단 | Emotion recongnition method and device |
CN115374812A (en) * | 2022-08-02 | 2022-11-22 | 中山大学附属第三医院 | A signal feature extraction method for multiple feature fusion extraction of EEG signals |
CN115795346A (en) * | 2022-12-02 | 2023-03-14 | 江苏理工学院 | Classification and identification method of human electroencephalogram signals |
CN116211320A (en) * | 2023-03-16 | 2023-06-06 | 安徽工业大学 | Pattern recognition method for motor imagery brain-computer interface based on ensemble learning |
CN116484290A (en) * | 2023-04-18 | 2023-07-25 | 武汉纺织大学 | A method for building a depression recognition model based on Stacking integration |
CN116628420A (en) * | 2023-05-08 | 2023-08-22 | 武汉纺织大学 | A brain wave signal processing method based on LSTM neural network element learning |
Non-Patent Citations (2)
Title |
---|
基于SAE 和GNDO-SVM 的脑电信号情绪识别;陈晨等;《计算机系统应用》;20230823;第32卷(第10期);第284-292页 * |
堆叠稀疏降噪自编码的脑电信号识别;唐贤伦等;《电 子 科 技 大 学 学 报》;20190131;第48卷(第1期);第62-67页 * |
Also Published As
Publication number | Publication date |
---|---|
CN117338313A (en) | 2024-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cheng et al. | A motor imagery EEG feature extraction method based on energy principal component analysis and deep belief networks | |
Vrbancic et al. | Automatic classification of motor impairment neural disorders from EEG signals using deep convolutional neural networks | |
CN110059565A (en) | A kind of P300 EEG signal identification method based on improvement convolutional neural networks | |
Kumar et al. | OPTICAL+: a frequency-based deep learning scheme for recognizing brain wave signals | |
Aly et al. | Bio-signal based motion control system using deep learning models: A deep learning approach for motion classification using EEG and EMG signal fusion | |
Satapathy et al. | Automated classification of multi-class sleep stages classification using polysomnography signals: a nine-layer 1D-convolution neural network approach | |
Vallabhaneni et al. | Deep learning algorithms in eeg signal decoding application: a review | |
CN111695500A (en) | Method and system for recognizing motor imagery task of stroke patient based on transfer learning | |
Pinto et al. | Deep neural networks for biometric identification based on non-intrusive ECG acquisitions | |
CN117338313B (en) | Multi-dimensional feature EEG signal recognition method based on stacking integration technology | |
Lian et al. | The improved ELM algorithms optimized by bionic WOA for EEG classification of brain computer interface | |
CN115422973A (en) | An Attention-Based Spatial-Temporal Network EEG Emotion Recognition Method | |
CN113128353A (en) | Emotion sensing method and system for natural human-computer interaction | |
CN110543831A (en) | A brain pattern recognition method based on convolutional neural network | |
Bozhkov et al. | Deep learning models for brain machine interfaces | |
CN116602676A (en) | A method and system for EEG emotion recognition based on multi-feature fusion and CLSTN | |
CN113128384A (en) | Brain-computer interface software key technical method of stroke rehabilitation system based on deep learning | |
Guntari et al. | Classification of post-stroke EEG signal using genetic algorithm and recurrent neural networks | |
Rammy et al. | Sequence-to-sequence deep neural network with spatio-spectro and temporal features for motor imagery classification | |
CN117731302A (en) | Parkinson's disease state identification method based on transfer learning | |
CN116484290A (en) | A method for building a depression recognition model based on Stacking integration | |
CN115316955A (en) | A lightweight and fast decoding method for motor imagery EEG signals | |
Younis et al. | Building a Brain Computer Interface (BCI) Using Electroencephalogram (EEG) Signals' Classification | |
Mahapatra et al. | Decoding of imagined speech neural EEG signals using deep reinforcement learning technique | |
Gao et al. | Multi-head self-attention enhanced convolutional neural network for driver fatigue detection using eeg signals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |