CN117315664A - 一种基于图像序列的废钢斗号码识别方法 - Google Patents

一种基于图像序列的废钢斗号码识别方法 Download PDF

Info

Publication number
CN117315664A
CN117315664A CN202311200301.4A CN202311200301A CN117315664A CN 117315664 A CN117315664 A CN 117315664A CN 202311200301 A CN202311200301 A CN 202311200301A CN 117315664 A CN117315664 A CN 117315664A
Authority
CN
China
Prior art keywords
image
steel bucket
network
scrap steel
waste steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202311200301.4A
Other languages
English (en)
Other versions
CN117315664B (zh
Inventor
乔文静
庞先昂
孙振行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Boang Information Technology Co ltd
Original Assignee
Shandong Boang Information Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Boang Information Technology Co ltd filed Critical Shandong Boang Information Technology Co ltd
Priority to CN202311200301.4A priority Critical patent/CN117315664B/zh
Publication of CN117315664A publication Critical patent/CN117315664A/zh
Application granted granted Critical
Publication of CN117315664B publication Critical patent/CN117315664B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V30/00Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
    • G06V30/10Character recognition
    • G06V30/14Image acquisition
    • G06V30/1444Selective acquisition, locating or processing of specific regions, e.g. highlighted text, fiducial marks or predetermined fields
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0464Convolutional networks [CNN, ConvNet]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V30/00Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
    • G06V30/10Character recognition
    • G06V30/14Image acquisition
    • G06V30/146Aligning or centring of the image pick-up or image-field
    • G06V30/147Determination of region of interest
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V30/00Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
    • G06V30/10Character recognition
    • G06V30/14Image acquisition
    • G06V30/146Aligning or centring of the image pick-up or image-field
    • G06V30/1475Inclination or skew detection or correction of characters or of image to be recognised
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V30/00Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
    • G06V30/10Character recognition
    • G06V30/18Extraction of features or characteristics of the image
    • G06V30/1801Detecting partial patterns, e.g. edges or contours, or configurations, e.g. loops, corners, strokes or intersections
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V30/00Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
    • G06V30/10Character recognition
    • G06V30/19Recognition using electronic means
    • G06V30/191Design or setup of recognition systems or techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • G06V30/19147Obtaining sets of training patterns; Bootstrap methods, e.g. bagging or boosting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Biophysics (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Image Analysis (AREA)

Abstract

本发明涉及目标识别的技术领域,公开了一种基于图像序列的废钢斗号码识别方法,其包括获取废钢斗表面图像;通过连续多帧图像确定运动的废钢斗,分离废钢斗以外的背景;根据图像中分离后的废钢斗,判断废钢斗的倾斜角度;根据倾斜角度,进行图像中废钢斗倾斜矫正;提取矫正后图像中废钢斗的号码。本发明具有通过分离废钢斗的背景,对废钢斗的图像进行倾斜角度计算,再对废钢斗进行倾斜矫正,可以得到正视的废钢斗的图像,更准确的提取废钢斗中的号码的效果。

Description

一种基于图像序列的废钢斗号码识别方法
技术领域
本发明涉及目标识别的技术领域,尤其是涉及一种基于图像序列的废钢斗号码识别方法。
背景技术
废钢斗是用来装盛装废钢的设备,其作用是给转炉运输冶炼所需的废钢。为了便于跟踪统计,在每个废钢斗尾部与侧边均印有号码。由于转炉废钢斗上的号码没有固定的字体、大小和位置,而且高温会对号码造成很大的影响,如污浊、损毁,再者天车吊着废钢斗行进过程中会出现废钢斗倾斜的情况,这些都会给识别带来一定的困难,而且,当废钢斗距离较远,号码较小且与颜色与背景颜色相似时,识别的难度更大。
发明内容
为了有效的对废钢斗上的号码进行准确识别,本发明提供一种基于图像序列的废钢斗号码识别方法。
第一方面,一种基于图像序列的废钢斗号码识别方法,其特征在于:包括如下步骤:
获取废钢斗表面图像;
通过连续多帧图像确定运动的废钢斗,分离废钢斗以外的背景;
根据图像中分离后的废钢斗,判断废钢斗的倾斜角度;
根据倾斜角度,进行图像中废钢斗倾斜矫正;
提取矫正后图像中废钢斗的号码。
进一步的,所述获取废钢斗表面图像采用耐高温的工业2D相机实时记录成像。
进一步的,所述确定运动的废钢斗采用对连续帧图像的差分得到前后帧之间的差异,并对差异图像进行图像增强,利用目标提取找到废钢斗区域。
进一步的,所述分离废钢斗以外的背景,具体为:
使用边缘检测算法来识别图像中的边缘,通过检测边缘可以找到目标物体与背景之间的分界线,对图像进行初步分离;
将初步分离后的图像进行二值化处理,通过连通区域分析算法,将图像中的像素点组成不同的连通区域,根据目标物体的大小以及形状特征进行选择和筛选,得到准确的废钢斗图像区域,则其余的为背景,对背景部分去色。
进一步的,所述判断废钢斗的倾斜角度,具体为:
通过边缘检测算法检测废钢斗的边缘,使用直线拟合算法将废钢斗的边缘线条拟合成边缘直线,设定x轴与y轴为标线,计算拟合出的边缘直线与标线之间的角度,得到第一倾斜角度;
通过角点检测算法,得到废钢斗的角点位置信息,所述角点位置信息为废钢斗的棱角的(x,y)坐标值,根据坐标值连线,设定x轴与y轴为标线,计算坐标值连线与标线之间的角度,得到第二倾斜角度,取第一倾斜角度与第二倾斜角度的中间角度值,得出废钢斗的倾斜角度。
进一步的,所述废钢斗倾斜矫正,具体为:
根据倾斜角度计算旋转矩阵,倾斜角度为θ,旋转矩阵R为:
根据旋转矩阵R,对原始图像进行逆时针旋转,旋转后的图像将使废钢斗与水平对齐。
进一步的,所述提取废钢斗号码采用深度学习模型进行处理,深度学习模型中包括有利用目标检测网络对废钢斗号码检测,利用字符识别网络对废钢斗号码识别,具体为:
构建一个深度学习模型,对模型进行训练,首先将矫正后的图像数据集分为训练集和测试集,在训练集上训练深度学习模型,并通过测试集进行调优;
使用独立的测试集对训练好的模型进行评估,计算识别准确率、召回率的指标;根据指标进行调整网络结构、增加训练数据以及调整超参数的模型优化;
将训练好的模型部署到废钢斗号码识别系统中,通过调用模型对图像序列进行识别,并输出识别结果。
进一步的,所述目标检测网络以及字符识别网络均包括前处理、深度学习网络处理以及后处理三部分,将所述前处理、深度网络学习处理以及后处理均移动至GPU进行运算,在GPU上运算完成后再从GPU内存传输至CPU内存。
进一步的,通过多任务学习或联合训练将目标检测网络以及字符识别网络合二为一,合并后具体为:
调整输入输出层:检测目标检测网络的输出和字符识别网络的输入是否具有相同的维度,如不一致,则调整网络结构或添加转换层来实现相同维度;
融合特征提取层:选择目标检测网络中的特征提取部分作为基础进行融合,提取的特征为已具备对目标进行定位和检测能力的特征;
添加识别层:在融合特征提取层之后添加用于号码识别的字符识别层,字符识别层将对目标检测提取到的感兴趣区域作为输入,输出是字符类别的预测结果,用于字符识别任务;
联合训练层:使用包含目标检测和字符识别标签的数据集进行联合训练,通过定义的损失函数来同时优化目标检测和识别任务;
端到端微调层:完成联合训练后,使用端到端的微调策略进一步优化网络,通过使用包含目标检测和识别任务的综合损失函数进行微调,得到高性能的网络。
第二方面,一种终端设备,包括处理器和计算机可读存储介质,处理器用于实现各指令;计算机可读存储介质用于存储多条指令,所述指令适于由处理器加载并执行所述的一种基于图像序列的废钢斗号码识别方法。
综上所述,本发明具有如下的有益技术效果:
本发明通过分离废钢斗的背景,对废钢斗的图像进行倾斜角度计算,再对废钢斗进行倾斜矫正,可以得到正视的废钢斗的图像,更准确的提取废钢斗中的号码。
该技术方案同时对识别号码的整个过程中采用的目标检测网络以及字符识别网络中的处理移动至GPU,在GPU运行后再传输至CPU,大大加快了处理速度,提升了计算性能;同时对目标检测网络以及字符识别网络进行二合一处理,数据集进行联合训练,合并后加快了运行处理速度。
附图说明
图1是本发明一种基于图像序列的废钢斗号码识别方法的流程图。
图2是本发明一种基于图像序列的废钢斗号码识别方法中合并后的网络构架。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
本发明实施例公开一种基于图像序列的废钢斗号码识别方法。参照图1,
实施例1
本实施例的一种基于图像序列的废钢斗号码识别方法,包括:
获取废钢斗表面图像;
通过连续多帧图像确定运动的废钢斗,分离废钢斗以外的背景;
根据图像中分离后的废钢斗,判断废钢斗的倾斜角度;
根据倾斜角度,进行图像中废钢斗倾斜矫正;
提取矫正后图像中废钢斗的号码。
具体包括以下步骤:
获取废钢斗表面图像采用耐高温的工业2D相机实时记录成像,工业2D相机安装在废钢斗吊起后的必经路线附近。
记录成像处理成连续多帧的图像,通过对连续帧图像的差分得到前后帧之间的差异,对差异图像进行图像增强,再利用目标提取找到废钢斗区域。
目标提取采用目标提取算法,具体为:
采用Bounding box对废钢斗进行最小矩形框选,废钢斗处有多个最小矩形被框选,设置坐标(x,y,w,h),其中(x,y)为图像左下角的坐标值,(w,h)为最小矩形的宽和高;
采用intersection over Union对矩形区域进行重合度计算,计算公式为:
R为一个矩形框,R’为与R有重合部分的矩形框;
对重合的多个矩形框进行计算Iou,将Iou大于0.5的记为TP,Iou小于等于0.5的记为FP,保留TP中矩形框并集的图像,即为废钢斗区域。
确定废钢斗区域后,需要分离废钢斗以外的背景,具体为:
使用边缘检测算法来识别图像中的边缘,通过检测边缘可以找到目标物体与背景之间的分界线,对图像进行初步分离;
将初步分离后的图像进行二值化处理,通过连通区域分析算法,常用连通区域标记以及区域生长标记,将图像中的标记的像素点组成不同的连通区域,根据目标物体的大小以及形状特征进行选择和筛选,得到准确的废钢斗图像区域,则其余的为背景,对背景部分去色。
其中边缘检测算法处理步骤为:
1.对输入图像进行灰度化处理;2.对灰度图像进行高斯滤波以平滑图像;3.计算图像梯度的幅值和方向;4.对梯度幅值进行非极大值抑制,细化边缘;5.使用双阈值算法进行边缘连接和边缘消除;6.通过连接强边缘和与之相连的弱边缘,形成连续的边缘路径。
连通区域分析算法处理步骤为:
1.构建图像的邻接表表示;2.遍历图像中的每个像素,找到与其相邻且灰度值相同的像素;3.将相邻像素合并为一个连通区域;4.标记每个连通区域,统计其大小等属性。
去除背景后,得到废钢斗的图像,再判断废钢斗的倾斜角度,具体为:
通过边缘检测算法检测图像中的边缘,使用直线拟合算法将废钢斗的边缘线条拟合成边缘直线,设定x轴与y轴为标线,计算拟合出的边缘直线与标线之间的角度,得到第一倾斜角度;
通过角点检测算法,得到废钢斗的角点位置信息,所述角点位置信息为废钢斗的棱角的(x,y)坐标值,根据坐标值连线,设定x轴与y轴为标线,计算坐标值连线与标线之间的角度,得到第二倾斜角度,取第一倾斜角度与第二倾斜角度的中间角度值,得出废钢斗的倾斜角度。
其中直线拟合算法采用最小二乘法直线拟合:
1.输入一组点坐标 (x_i, y_i);2.计算点的均值 (x_mean, y_mean);3.计算归一化的离差平方和 S_xx = sum((x_i - x_mean)^2) 和 S_xy = sum((x_i - x_mean) *(y_i - y_mean));4.拟合直线的斜率 k = S_xy / S_xx 和截距 b = y_mean - k * x_mean。
角点检测算法处理步骤为:
1.对输入图像进行灰度化处理;2.计算每个像素点的梯度(水平和垂直方向);3.计算每个像素点的结构相似性度量函数 R = det(M) - k * trace(M)^2,其中 M 是窗口内的自相关矩阵;4.对 R 做阈值处理,得到角点。
根据倾斜角度对废钢斗倾斜矫正,具体为:
根据倾斜角度计算旋转矩阵,倾斜角度为θ,旋转矩阵R为:
根据旋转矩阵R,对原始图像I进行逆时针旋转,对于每个像素坐标(x, y),经过(x’, y’) = R * (x, y),矫正后的像素坐标为(x’, y’),得到矫正后的图像I’,旋转后的图像将使废钢斗与水平对齐。
从矫正后的图像进行废钢斗号码检测和废钢斗号码识别,提取废钢斗号码采用深度学习模型进行处理,深度学习模型中包括有利用目标检测网络对废钢斗号码检测,利用字符识别网络对废钢斗号码识别,具体为:
构建一个深度学习模型,对模型进行训练,首先将矫正后的图像数据集分为训练集和测试集,在训练集上训练深度学习模型,并通过测试集进行调优;
使用独立的测试集对训练好的模型进行评估,计算识别准确率、召回率的指标;根据指标进行调整网络结构、增加训练数据以及调整超参数的模型优化;
将训练好的模型部署到废钢斗号码识别系统中,通过调用模型对图像序列进行识别,并输出识别结果。
其中废钢斗号码检测采用目标检测网络进行处理,具体为:
数据准备:收集和标注包含废钢斗号码的图像数据集,并将其划分为训练集和测试集。对图像进行裁剪和缩放处理,保证图像大小一致。
选择目标检测网络:选择一种适合目标检测任务的网络结构,如基于深度学习的网络,这些网络在目标检测任务上具有较好的性能。
网络训练:使用标注的数据集对目标检测网络进行训练。将图像输入网络,并根据标注信息计算损失函数进行反向传播优化网络参数。训练过程中可以采用一些技术手段,如数据增强、批量归一化等,以提高模型的泛化能力。
模型调优:根据实际情况,对训练得到的模型进行调优。可以根据需求调整网络的超参数,如学习率、迭代次数等,以获得更好的检测性能。
模型测试:使用测试集评估训练得到的目标检测模型的性能。将测试图像输入网络,获取目标的位置信息和类别预测结果。
后处理:根据检测结果进行后处理操作,如非极大值抑制(NMS),去除重叠框和低置信度的检测结果,获得最终的废钢斗号码检测结果。
废钢斗号码识别采用字符识别网络进行处理,具体为:
数据准备:收集和标注包含废钢斗号码的图像数据集,并将其划分为训练集和测试集。对图像进行预处理,如灰度化、二值化、图像增强等操作,以提升字符识别的准确性。
选择字符识别网络:选择一种适合字符识别任务的网络结构,如卷积神经网络等。这些网络在字符识别任务上有一定的应用。
网络训练:使用标注的数据集对字符识别网络进行训练。将图像输入网络,并根据标注信息计算损失函数进行反向传播优化网络参数。可以采用一些技巧,如数据增强、批量归一化等来提高模型的泛化能力。
模型调优:根据实际情况,对训练得到的模型进行调优。可以尝试不同的网络结构、参数配置和训练策略,以获得更好的字符识别性能。
模型测试:使用测试集评估训练得到的字符识别模型的性能。将测试图像输入网络,获取字符的识别结果。
后处理:根据实际需求进行后处理操作,如字符序列的整理、去除错误的识别结果等,获得最终的废钢斗号码识别结果。
目标检测网络以及字符识别网络均包括前处理、深度学习网络处理以及后处理三部分,由于图像众多,处理速度缓慢,所以将前处理、深度网络学习处理以及后处理均移动至GPU进行运算,在GPU上运算完成后再从GPU传输至CPU。
准备数据:需要将待处理的图像数据加载到GPU内存中,以便后续在GPU上进行处理。
前处理移动至GPU:将原本在CPU上执行的前处理操作(如图像预处理、尺寸调整等)移动到GPU上。这可以通过使用GPU加速的图像处理库(如CUDA、OpenCL)来实现。将图像数据从主机内存传输到GPU内存,并在GPU上执行相应的前处理操作。
深度学习网络处理:将深度学习网络模型移动到GPU上,使用GPU加速进行推理或训练。在GPU上执行前向传播和反向传播等深度学习计算任务,以获得更快的处理速度和更高的计算性能。
后处理移动至GPU:将原本在CPU上执行的后处理操作(如边界框筛选、结果解码等)移动到GPU上。类似于前处理,可以使用GPU加速的库来实现这些操作,并在GPU上对深度学习网络的输出结果进行处理。
获取结果:将处理后的结果从GPU内存传输回主机内存,以便进一步分析或输出。
通过将前处理和后处理与深度学习网络处理步骤结合在一起,并在GPU上执行,可以减少数据在主机内存和GPU内存之间的数据传输时间,从而提高整体处理速度。这种合成的处理框架能够充分利用GPU的并行计算能力,加快处理过程,适用于需要处理大量数据和复杂计算的任务。
由于数据庞大,且处理的视频图像以及后续的图像都非常多,所有处理过程中会对CPU产生负荷,运行速度降低,所以将部分处理移至GPU上,处理后在传给CPU,大大加快了处理速度,且给CPU减轻了计算量,提高了整体的计算速度。
参照图2,为了加快处理速度,除了将目标检测网络以及字符识别网络的处理移动至GPU上,还采用多任务学习或联合训练将目标检测网络以及字符识别网络合二为一,合并后具体为:
通过使用多任务学习(multi-task learning)或联合训练(joint training),合并后的网络可以被看作是一个多功能的综合网络,既可以进行目标检测,又可以进行字符识别。
合并后的网络通常由以下几个部分组成:
调整输入输出层:确保目标检测网络的输出和字符识别网络的输入具有相同的维度。如果不一致,可以通过调整网络结构或添加适当的转换层来实现匹配。
融合特征提取层:选择目标检测网络中的特征提取部分作为融合的基础。这些特征已经具备了对目标进行定位和检测的能力。
添加识别层:在融合特征提取层之后添加用于号码识别的字符识别层,字符识别层将对目标检测提取到的感兴趣区域作为输入,输出是字符类别的预测结果,用于字符识别任务。
联合训练层:使用包含目标检测和字符识别标签的数据集进行联合训练。可以定义适当的损失函数来同时优化目标检测和识别任务。例如,目标检测部分可以使用目标位置的回归损失,而识别部分可以使用交叉熵损失。
端到端微调层:在联合训练完成后,可以使用端到端的微调策略进一步优化网络。通过使用包含目标检测和识别任务的综合损失函数进行微调,可以提高网络的整体性能。
合并后的网络的运行逻辑如下:
将待处理的图像作为网络的输入到输入输出层。
在融合特征提取层中使用卷积、池化等操作提取图像的共享特征部分,在共享卷积层之后,添加目标检测网络的层。
使用经典的目标检测算法制定目标检测架构,也可以使用自定义的目标检测架构,目标检测网络的输出包括目标类别和边界框。
根据目标检测的边界框,从共享卷积层输出中提取感兴趣区域(Region ofInterest, ROI),该区域也叫ROI池化层,ROI池化层可以将不同大小的ROI缩放到固定尺寸,以便进行字符识别。
将ROI池化层的输出作为输入,用于字符识别任务,采用字符识别网络,对提取的ROI进行字符识别,字符识别分支的输出是字符类别的预测结果。
最终输出结果是将目标检测的边界框和字符识别的结果结合起来,形成最终的输出。将目标类别、边界框、字符类别等信息整合在一起。
实施例2
一种终端设备,包括处理器和计算机可读存储介质,处理器用于实现各指令;计算机可读存储介质用于存储多条指令,所述指令适于由处理器加载并执行所述的一种基于图像序列的废钢斗号码识别方法
以上均为本发明的较佳实施例,并非依此限制本发明的保护范围,故:凡依本发明的结构、形状、原理所做的等效变化,均应涵盖于本发明的保护范围之内。

Claims (10)

1.一种基于图像序列的废钢斗号码识别方法,其特征在于:包括如下步骤:
获取废钢斗表面图像;
通过连续多帧图像确定运动的废钢斗,分离废钢斗以外的背景;
根据图像中分离后的废钢斗,判断废钢斗的倾斜角度;
根据倾斜角度,进行图像中废钢斗倾斜矫正;
提取矫正后图像中废钢斗的号码。
2.根据权利要求1所述的一种基于图像序列的废钢斗号码识别方法,其特征在于:所述获取废钢斗表面图像采用耐高温的工业2D相机实时记录成像。
3.根据权利要求1所述的一种基于图像序列的废钢斗号码识别方法,其特征在于:所述确定运动的废钢斗采用对连续帧图像的差分得到前后帧之间的差异,并对差异图像进行图像增强,利用目标提取找到废钢斗区域。
4.根据权利要求3所述的一种基于图像序列的废钢斗号码识别方法,其特征在于:所述分离废钢斗以外的背景,具体为:
使用边缘检测算法来识别图像中的边缘,通过检测边缘可以找到目标物体与背景之间的分界线,对图像进行初步分离;
将初步分离后的图像进行二值化处理,通过连通区域分析算法,将图像中的像素点组成不同的连通区域,根据目标物体的大小以及形状特征进行选择和筛选,得到准确的废钢斗图像区域,则其余的为背景,对背景部分去色。
5.根据权利要求1所述的一种基于图像序列的废钢斗号码识别方法,其特征在于:所述判断废钢斗的倾斜角度,具体为:
通过边缘检测算法检测废钢斗的边缘,使用直线拟合算法将废钢斗的边缘线条拟合成边缘直线,设定x轴与y轴为标线,计算拟合出的边缘直线与标线之间的角度,得到第一倾斜角度;
通过角点检测算法,得到废钢斗的角点位置信息,所述角点位置信息为废钢斗的棱角的(x,y)坐标值,根据坐标值连线,设定x轴与y轴为标线,计算坐标值连线与标线之间的角度,得到第二倾斜角度,取第一倾斜角度与第二倾斜角度的中间角度值,得出废钢斗的倾斜角度。
6.根据权利要求1所述的一种基于图像序列的废钢斗号码识别方法,其特征在于:所述废钢斗倾斜矫正,具体为:
根据倾斜角度计算旋转矩阵,倾斜角度为θ,旋转矩阵R为:
根据旋转矩阵R,对原始图像进行逆时针旋转,旋转后的图像将使废钢斗与水平对齐。
7.根据权利要求4所述的一种基于图像序列的废钢斗号码识别方法,其特征在于:所述提取废钢斗号码采用深度学习模型进行处理,深度学习模型中包括有利用目标检测网络对废钢斗号码检测,利用字符识别网络对废钢斗号码识别,具体为:
构建一个深度学习模型,对模型进行训练,首先将矫正后的图像数据集分为训练集和测试集,在训练集上训练深度学习模型,并通过测试集进行调优;
使用独立的测试集对训练好的模型进行评估,计算识别准确率、召回率的指标;根据指标进行调整网络结构、增加训练数据以及调整超参数的模型优化;
将训练好的模型部署到废钢斗号码识别系统中,通过调用模型对图像序列进行识别,并输出识别结果。
8.根据权利要求7所述的一种基于图像序列的废钢斗号码识别方法,其特征在于:所述目标检测网络以及字符识别网络均包括前处理、深度学习网络处理以及后处理三部分,将所述前处理、深度网络学习处理以及后处理均移动至GPU进行运算,在GPU上运算完成后再从GPU内存传输至CPU内存。
9.根据权利要求8所述的一种基于图像序列的废钢斗号码识别方法,其特征在于:通过多任务学习或联合训练将目标检测网络以及字符识别网络合二为一,合并后具体为:
调整输入输出层:检测目标检测网络的输出和字符识别网络的输入是否具有相同的维度,如不一致,则调整网络结构或添加转换层来实现相同维度;
融合特征提取层:选择目标检测网络中的特征提取部分作为基础进行融合,提取的特征为已具备对目标进行定位和检测能力的特征;
添加识别层:在融合特征提取层之后添加用于号码识别的字符识别层,字符识别层将对目标检测提取到的感兴趣区域作为输入,输出是字符类别的预测结果,用于字符识别任务;
联合训练层:使用包含目标检测和字符识别标签的数据集进行联合训练,通过定义的损失函数来同时优化目标检测和识别任务;
端到端微调层:完成联合训练后,使用端到端的微调策略进一步优化网络,通过使用包含目标检测和识别任务的综合损失函数进行微调,得到高性能的网络。
10.一种终端设备,其特征在于,包括处理器和计算机可读存储介质,处理器用于实现各指令;计算机可读存储介质用于存储多条指令,所述指令适于由处理器加载并执行如权利要求1所述的一种基于图像序列的废钢斗号码识别方法。
CN202311200301.4A 2023-09-18 2023-09-18 一种基于图像序列的废钢斗号码识别方法 Active CN117315664B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311200301.4A CN117315664B (zh) 2023-09-18 2023-09-18 一种基于图像序列的废钢斗号码识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311200301.4A CN117315664B (zh) 2023-09-18 2023-09-18 一种基于图像序列的废钢斗号码识别方法

Publications (2)

Publication Number Publication Date
CN117315664A true CN117315664A (zh) 2023-12-29
CN117315664B CN117315664B (zh) 2024-04-02

Family

ID=89287619

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311200301.4A Active CN117315664B (zh) 2023-09-18 2023-09-18 一种基于图像序列的废钢斗号码识别方法

Country Status (1)

Country Link
CN (1) CN117315664B (zh)

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050094897A1 (en) * 2003-11-03 2005-05-05 Zuniga Oscar A. Method and device for determining skew angle of an image
CN105354574A (zh) * 2015-12-04 2016-02-24 山东博昂信息科技有限公司 一种车号识别方法及装置
US9621761B1 (en) * 2015-10-08 2017-04-11 International Business Machines Corporation Automatic correction of skewing of digital images
CN109145866A (zh) * 2018-09-07 2019-01-04 北京相貌空间科技有限公司 确定侧脸倾斜角度的方法及装置
CN109214380A (zh) * 2018-09-12 2019-01-15 湖北民族学院 车牌倾斜校正方法
US20190220685A1 (en) * 2018-01-12 2019-07-18 Canon Kabushiki Kaisha Image processing apparatus that identifies object and method therefor
CN110427937A (zh) * 2019-07-18 2019-11-08 浙江大学 一种基于深度学习的倾斜车牌矫正和不定长车牌识别方法
CN112598001A (zh) * 2021-03-08 2021-04-02 中航金城无人系统有限公司 一种基于多模型融合的船舶水尺读数自动识别方法
WO2022048617A1 (zh) * 2020-09-04 2022-03-10 深圳光峰科技股份有限公司 一种识别投影位置的方法、装置、系统和存储介质
WO2022121021A1 (zh) * 2020-12-10 2022-06-16 广州广电运通金融电子股份有限公司 一种身份证号码检测方法、装置、可读存储介质和终端
WO2022121039A1 (zh) * 2020-12-10 2022-06-16 广州广电运通金融电子股份有限公司 银行卡倾斜矫正检测方法、装置、可读存储介质和终端
CN114821452A (zh) * 2022-06-29 2022-07-29 山东博昂信息科技有限公司 一种彩绘列车车号识别方法、系统及介质
CN115147843A (zh) * 2022-07-26 2022-10-04 东集技术股份有限公司 文本识别方法、装置、存储介质及计算机设备
CN115439554A (zh) * 2022-08-29 2022-12-06 中国科学院深圳先进技术研究院 标靶、信息检测方法、装置、终端及存储介质
CN115439857A (zh) * 2022-11-03 2022-12-06 武昌理工学院 一种基于复杂背景图像的倾斜字符识别方法
CN115601757A (zh) * 2022-10-20 2023-01-13 上海致宇信息技术有限公司(Cn) 一种基于分段投影的扫描文档图像倾斜校正方法
WO2023024766A1 (zh) * 2021-08-24 2023-03-02 成都睿琪科技有限责任公司 物体尺寸识别方法、可读存储介质及物体尺寸识别系统
WO2023047165A1 (en) * 2021-09-21 2023-03-30 Sensetime International Pte. Ltd. Object sequence image processing method and apparatus, device and storage medium
CN116563282A (zh) * 2023-07-10 2023-08-08 东莞市博思特数控机械有限公司 一种基于机器视觉的钻削刀具检测方法及系统

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050094897A1 (en) * 2003-11-03 2005-05-05 Zuniga Oscar A. Method and device for determining skew angle of an image
US9621761B1 (en) * 2015-10-08 2017-04-11 International Business Machines Corporation Automatic correction of skewing of digital images
CN105354574A (zh) * 2015-12-04 2016-02-24 山东博昂信息科技有限公司 一种车号识别方法及装置
US20190220685A1 (en) * 2018-01-12 2019-07-18 Canon Kabushiki Kaisha Image processing apparatus that identifies object and method therefor
CN109145866A (zh) * 2018-09-07 2019-01-04 北京相貌空间科技有限公司 确定侧脸倾斜角度的方法及装置
CN109214380A (zh) * 2018-09-12 2019-01-15 湖北民族学院 车牌倾斜校正方法
CN110427937A (zh) * 2019-07-18 2019-11-08 浙江大学 一种基于深度学习的倾斜车牌矫正和不定长车牌识别方法
WO2022048617A1 (zh) * 2020-09-04 2022-03-10 深圳光峰科技股份有限公司 一种识别投影位置的方法、装置、系统和存储介质
WO2022121021A1 (zh) * 2020-12-10 2022-06-16 广州广电运通金融电子股份有限公司 一种身份证号码检测方法、装置、可读存储介质和终端
WO2022121039A1 (zh) * 2020-12-10 2022-06-16 广州广电运通金融电子股份有限公司 银行卡倾斜矫正检测方法、装置、可读存储介质和终端
CN112598001A (zh) * 2021-03-08 2021-04-02 中航金城无人系统有限公司 一种基于多模型融合的船舶水尺读数自动识别方法
WO2023024766A1 (zh) * 2021-08-24 2023-03-02 成都睿琪科技有限责任公司 物体尺寸识别方法、可读存储介质及物体尺寸识别系统
WO2023047165A1 (en) * 2021-09-21 2023-03-30 Sensetime International Pte. Ltd. Object sequence image processing method and apparatus, device and storage medium
CN114821452A (zh) * 2022-06-29 2022-07-29 山东博昂信息科技有限公司 一种彩绘列车车号识别方法、系统及介质
CN115147843A (zh) * 2022-07-26 2022-10-04 东集技术股份有限公司 文本识别方法、装置、存储介质及计算机设备
CN115439554A (zh) * 2022-08-29 2022-12-06 中国科学院深圳先进技术研究院 标靶、信息检测方法、装置、终端及存储介质
CN115601757A (zh) * 2022-10-20 2023-01-13 上海致宇信息技术有限公司(Cn) 一种基于分段投影的扫描文档图像倾斜校正方法
CN115439857A (zh) * 2022-11-03 2022-12-06 武昌理工学院 一种基于复杂背景图像的倾斜字符识别方法
CN116563282A (zh) * 2023-07-10 2023-08-08 东莞市博思特数控机械有限公司 一种基于机器视觉的钻削刀具检测方法及系统

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
何俏君等: "基于YOLOv2-Tiny的环视实时车位线识别算法", 汽车电器, no. 09, 20 September 2020 (2020-09-20), pages 1 - 5 *
周伟等: "基于改进Harris 角点检测的芯片图像快速校正", 电子测量与仪器学报, vol. 34, no. 10, 15 October 2020 (2020-10-15), pages 74 - 81 *
杨建等: "基于深度学习的方坯号识别系统设计", 工业控制计算机, vol. 32, no. 04, 25 April 2019 (2019-04-25), pages 40 - 44 *
潘宇等: "基于OpenMV 开发的数字图像处理技术", 电子技术与软件工程, 1 May 2021 (2021-05-01), pages 130 - 131 *
艾梦琴等: "基于MobileNet 模型的钢材表面字符检测识别算法", 现代计算机, no. 03, 25 January 2020 (2020-01-25), pages 73 *

Also Published As

Publication number Publication date
CN117315664B (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
CN110738207B (zh) 一种融合文字图像中文字区域边缘信息的文字检测方法
CN112528878B (zh) 检测车道线的方法、装置、终端设备及可读存储介质
CN109726717B (zh) 一种车辆综合信息检测系统
CN110334762B (zh) 一种基于四叉树结合orb和sift的特征匹配方法
CN115049700A (zh) 一种目标检测方法及装置
CN114529459B (zh) 一种对图像边缘进行增强处理的方法和系统及介质
CN114331986A (zh) 一种基于无人机视觉的坝体裂纹识别与测量方法
CN115331245A (zh) 一种基于图像实例分割的表格结构识别方法
US20230065041A1 (en) Geometric pattern matching method and device for performing the method
CN113034497A (zh) 一种基于视觉的保温杯焊缝定位检测方法及系统
CN113705673A (zh) 一种文字检测方法、装置、设备及存储介质
CN115937552A (zh) 一种基于融合手工特征与深度特征的图像匹配方法
CN110348307B (zh) 一种起重机金属结构攀爬机器人的路径边缘识别方法及系统
CN109558877B (zh) 基于kcf的海上目标跟踪算法
Tarchoun et al. Hand-Crafted Features vs Deep Learning for Pedestrian Detection in Moving Camera.
CN109766850B (zh) 基于特征融合的指纹图像匹配方法
CN117746165A (zh) 一种轮式挖掘机轮胎种类的识别方法及装置
CN112613565B (zh) 基于多特征融合与自适应学习率更新的抗遮挡跟踪方法
CN112053385B (zh) 基于深度强化学习的遥感视频遮挡目标跟踪方法
CN116596921B (zh) 一种焚烧炉渣分选方法及系统
CN111862147B (zh) 视频中多车辆和多行人目标的跟踪方法
CN117315664B (zh) 一种基于图像序列的废钢斗号码识别方法
CN115909072A (zh) 一种基于改进YOLOv4算法的弹着点水柱检测方法
CN114511582A (zh) 一种古城城垛自动提取方法
JP4194309B2 (ja) 文書方向推定方法および文書方向推定プログラム

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant