CN117313952A - Load prediction method, device, equipment and storage medium - Google Patents
Load prediction method, device, equipment and storage medium Download PDFInfo
- Publication number
- CN117313952A CN117313952A CN202311411788.0A CN202311411788A CN117313952A CN 117313952 A CN117313952 A CN 117313952A CN 202311411788 A CN202311411788 A CN 202311411788A CN 117313952 A CN117313952 A CN 117313952A
- Authority
- CN
- China
- Prior art keywords
- time period
- data
- historical
- electrical appliance
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 47
- 230000006399 behavior Effects 0.000 claims description 94
- 230000003542 behavioural effect Effects 0.000 claims description 42
- 238000004590 computer program Methods 0.000 claims description 20
- 238000013277 forecasting method Methods 0.000 claims description 16
- 238000004891 communication Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000005611 electricity Effects 0.000 description 3
- 238000010801 machine learning Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 2
- 238000003066 decision tree Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000007637 random forest analysis Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000013179 statistical model Methods 0.000 description 2
- 238000012706 support-vector machine Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000007477 logistic regression Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012731 temporal analysis Methods 0.000 description 1
- 238000000700 time series analysis Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/24—Querying
- G06F16/245—Query processing
- G06F16/2457—Query processing with adaptation to user needs
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/24—Querying
- G06F16/245—Query processing
- G06F16/2458—Special types of queries, e.g. statistical queries, fuzzy queries or distributed queries
- G06F16/2462—Approximate or statistical queries
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/24—Querying
- G06F16/245—Query processing
- G06F16/2458—Special types of queries, e.g. statistical queries, fuzzy queries or distributed queries
- G06F16/2465—Query processing support for facilitating data mining operations in structured databases
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/003—Load forecast, e.g. methods or systems for forecasting future load demand
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Databases & Information Systems (AREA)
- Economics (AREA)
- Human Resources & Organizations (AREA)
- Probability & Statistics with Applications (AREA)
- Strategic Management (AREA)
- Computational Linguistics (AREA)
- General Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Marketing (AREA)
- Fuzzy Systems (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Mathematical Physics (AREA)
- Health & Medical Sciences (AREA)
- Software Systems (AREA)
- Entrepreneurship & Innovation (AREA)
- Power Engineering (AREA)
- Primary Health Care (AREA)
- General Health & Medical Sciences (AREA)
- Water Supply & Treatment (AREA)
- Public Health (AREA)
- Quality & Reliability (AREA)
- Operations Research (AREA)
- Game Theory and Decision Science (AREA)
- Development Economics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域Technical field
本申请涉及电力技术领域,特别是涉及一种负荷预测方法、装置、设备和存储介质。This application relates to the field of electric power technology, and in particular to a load forecasting method, device, equipment and storage medium.
背景技术Background technique
在居民的用电高峰期,电力系统会出现负荷过重的情况,为了更好应对电力系统在用电高峰期的负荷压力,使得电力系统能够稳定运行,需要对家庭负荷数据进行预测。During the peak period of residents' electricity consumption, the power system will be overloaded. In order to better cope with the load pressure of the power system during the peak period of electricity consumption and enable the power system to operate stably, it is necessary to predict household load data.
传统技术中,电力系统中各家庭的目标控制终端根据与其连接的电表采集到的用电数据,确定该家庭中使用的电器设备,根据该家庭中各历史时间段对应的电器设备使用情况对目标时间段的目标负荷数据进行预测。In traditional technology, the target control terminal of each household in the power system determines the electrical equipment used in the household based on the power consumption data collected by the electricity meter connected to it, and sets the target control terminal based on the usage of the electrical equipment corresponding to each historical time period in the household. The target load data of the time period is forecasted.
然而,传统的负荷预测方法准确度较低。However, traditional load forecasting methods have low accuracy.
发明内容Contents of the invention
基于此,有必要针对上述技术问题,提供一种准确度高的负荷预测方法、装置、设备和存储介质。Based on this, it is necessary to provide a highly accurate load forecasting method, device, equipment and storage medium for the above technical problems.
第一方面,本申请提供了一种负荷预测方法。所述方法包括:In the first aspect, this application provides a load forecasting method. The methods include:
获取各家庭成员在目标时间区间内各目标时间段对应的目标行为数据,目标行为数据与各家庭成员在目标时间段内的居家情况对应;Obtain the target behavior data corresponding to each target time period of each family member within the target time interval, and the target behavior data corresponds to the home situation of each family member during the target time period;
根据目标时间段、目标行为数据和预设的负荷预测模型,得到目标时间段对应的负荷预测数据;According to the target time period, target behavior data and the preset load forecast model, the load forecast data corresponding to the target time period is obtained;
在其中一个实施例中,方法还包括:In one embodiment, the method further includes:
获取历史时间区间内的各历史时间段对应的电器使用整体数据,以及各家庭成员在各历史时间段内的历史行为数据;历史行为数据与各家庭成员在历史时间段内的居家情况对应;Obtain the overall electrical appliance usage data corresponding to each historical time period within the historical time interval, as well as the historical behavior data of each family member in each historical time period; the historical behavior data corresponds to the home situation of each family member in the historical time period;
基于各历史时间段对应的电器使用整体数据和各家庭成员在各历史时间段内的历史行为数据,得到负荷预测模型。Based on the overall electrical appliance usage data corresponding to each historical time period and the historical behavior data of each family member in each historical time period, a load forecasting model is obtained.
在其中一个实施例中,基于各历史时间段对应的电器使用整体数据和各家庭成员在各历史时间段内的历史行为数据,得到负荷预测模型,包括:In one embodiment, a load prediction model is obtained based on the overall electrical appliance usage data corresponding to each historical time period and the historical behavioral data of each family member in each historical time period, including:
针对每个历史时间段,将历史时间段对应的电器使用整体数据和各家庭成员的历史行为数据进行整合处理,得到历史时间段对应的电器使用成员数据;For each historical time period, the overall electrical appliance usage data corresponding to the historical time period and the historical behavioral data of each family member are integrated and processed to obtain the electrical appliance usage member data corresponding to the historical time period;
根据各历史时间段对应的电器使用成员数据,得到负荷预测模型。Based on the data of electrical appliance users corresponding to each historical time period, a load prediction model is obtained.
在其中一个实施例中,将历史时间段对应的电器使用整体数据和各家庭成员的历史行为数据进行整合处理,得到历史时间段对应的电器使用成员数据,包括:In one embodiment, the overall electrical appliance usage data corresponding to the historical time period and the historical behavioral data of each family member are integrated to obtain the electrical appliance usage member data corresponding to the historical time period, including:
根据历史行为数据,得到每个家庭成员在历史时间段内的历史行为成员数据;Based on the historical behavioral data, obtain the historical behavioral member data of each family member within the historical time period;
针对每个家庭成员,根据家庭成员对应的历史行为成员数据和电器使用整体数据,得到各家庭成员在历史时间段内的第一电器使用成员数据,For each family member, based on the historical behavioral member data and overall electrical appliance usage data corresponding to the family member, the first electrical appliance usage member data of each family member in the historical time period is obtained.
针对各家庭成员的成员组合,根据家庭成员对应的历史行为成员数据和电器使用整体数据,得到各成员组合在历史时间段内的第二电器使用成员数据,成员组合对应多个家庭成员;For each combination of family members, based on the historical behavioral member data and overall electrical appliance usage data corresponding to the family member, the second electrical appliance usage member data of each member combination in the historical time period is obtained, and the member combination corresponds to multiple family members;
根据各家庭成员在历史时间段内的第一电器使用成员数据和各成员组合在历史时间段内的第二电器使用成员数据,得到历史时间段对应的电器使用成员数据。According to the first electrical appliance user data of each family member in the historical time period and the second electrical appliance user data of each member combination in the historical time period, the electrical appliance user data corresponding to the historical time period is obtained.
在其中一个实施例中,根据目标时间段、目标行为数据和预设的负荷预测模型,得到目标时间段对应的负荷预测数据,包括:In one embodiment, load prediction data corresponding to the target time period is obtained based on the target time period, target behavior data and a preset load prediction model, including:
从历史时间区间内的各历史时间段中确定与目标时间段对应的参考时间段;Determine the reference time period corresponding to the target time period from each historical time period within the historical time interval;
若目标行为数据与参考时间段对应的各成员组合相对应,则根据各参考时间段内的第二电器使用成员数据确定目标时间段对应的负荷预测数据;If the target behavior data corresponds to each member combination corresponding to the reference time period, then determine the load prediction data corresponding to the target time period based on the second electrical appliance usage member data in each reference time period;
若目标行为数据与参考时间段对应的各家庭成员相对应,则根据各参考时间段内的第一电器使用成员数据确定目标时间段对应的负荷预测数据。If the target behavior data corresponds to each family member corresponding to the reference time period, then the load prediction data corresponding to the target time period is determined based on the first electrical appliance using member data in each reference time period.
在其中一个实施例中,基于各历史时间段对应的电器使用整体数据和各家庭成员在各历史时间段内的历史行为数据,得到负荷预测模型,包括:In one embodiment, a load prediction model is obtained based on the overall electrical appliance usage data corresponding to each historical time period and the historical behavioral data of each family member in each historical time period, including:
针对每个历史时间段,根据历史时间段对应的电器使用整体数据和各家庭成员的历史行为数据,得到各家庭成员在历史时间段内对应的电器使用组合数据;For each historical time period, based on the overall electrical appliance usage data corresponding to the historical time period and the historical behavioral data of each family member, the electrical appliance usage combination data corresponding to each family member in the historical time period is obtained;
利用电器使用组合数据对初始预测模型进行迭代学习,得到负荷预测模型。The initial prediction model is iteratively learned using combined electrical appliance usage data to obtain a load prediction model.
在其中一个实施例中,获取历史时间区间内的各历史时间段对应的电器使用整体数据,包括:In one embodiment, obtaining the overall electrical appliance usage data corresponding to each historical time period within the historical time interval includes:
针对每个历史时间段,获取历史时间段对应的电表读数数据;For each historical time period, obtain the meter reading data corresponding to the historical time period;
对电表读数数据的波形特征进行识别分析处理,得到电器使用整体数据。The waveform characteristics of the meter reading data are identified, analyzed and processed to obtain the overall electrical appliance usage data.
第二方面,本申请还提供了一种负荷预测装置。装置包括:In a second aspect, this application also provides a load prediction device. Devices include:
数据获取模块,用于获取各家庭成员在目标时间段内的目标行为数据,目标行为数据与各家庭成员在目标时间段内的居家情况对应;The data acquisition module is used to obtain the target behavior data of each family member during the target time period. The target behavior data corresponds to the home situation of each family member during the target time period;
负荷预测模块,用于根据目标时间段、目标行为数据和预设的负荷预测模型,得到目标时间段对应的负荷预测数据。The load forecasting module is used to obtain the load forecast data corresponding to the target time period based on the target time period, target behavior data and the preset load forecast model.
第三方面,本申请还提供了一种计算机设备。所述计算机设备包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现如第一方面所述方法的步骤。In a third aspect, this application also provides a computer device. The computer device includes a memory and a processor. The memory stores a computer program. When the processor executes the computer program, the steps of the method described in the first aspect are implemented.
第四方面,本申请还提供了一种计算机可读存储介质。所述计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实如第一方面所述方法的步骤。In a fourth aspect, this application also provides a computer-readable storage medium. The computer-readable storage medium has a computer program stored thereon, and when the computer program is executed by a processor, it implements the steps of the method described in the first aspect.
上述负荷预测方法、装置、设备和存储介质,通过获取各家庭成员在目标时间区间内各目标时间段对应的目标行为数据,目标行为数据与各家庭成员在目标时间段内的居家情况对应;根据目标时间段、目标行为数据和预设的负荷预测模型,得到目标时间段对应的负荷预测数据;这样,基于各家庭成员的行为数据,利用负荷预测模型预测得到目标时间段的负荷预测数据,避免传统技术中只根据各历史时间段对应的电器设备使用情况获取目标时间段的负荷预测数据,导致预测准确率低的问题;本申请中考虑到各家庭成员的行为数据对电器设备使用情况的影响,能够提高目标时间段对应的负荷预测数据的准确性,从而提高负荷预测方法的准确度。The above-mentioned load forecasting method, device, equipment and storage medium obtain the target behavior data corresponding to each target time period of each family member within the target time interval, and the target behavior data corresponds to the home situation of each family member during the target time period; according to The target time period, target behavior data and the preset load prediction model are used to obtain the load forecast data corresponding to the target time period; in this way, based on the behavioral data of each family member, the load prediction model is used to predict and obtain the load forecast data for the target time period, which avoids In traditional technology, the load forecast data of the target time period is only obtained based on the usage of electrical equipment corresponding to each historical time period, which leads to the problem of low prediction accuracy; in this application, the impact of behavioral data of each family member on the usage of electrical equipment is taken into consideration , can improve the accuracy of the load forecast data corresponding to the target time period, thereby improving the accuracy of the load forecast method.
附图说明Description of drawings
图1为一个实施例中负荷预测方法的应用环境图;Figure 1 is an application environment diagram of the load forecasting method in one embodiment;
图2为一个实施例中负荷预测方法的流程示意图;Figure 2 is a schematic flowchart of a load forecasting method in one embodiment;
图3为一个实施例中得到负荷预测模型的步骤的流程示意图;Figure 3 is a schematic flowchart of the steps of obtaining a load prediction model in one embodiment;
图4为一个实施例中得到负荷预测模型的步骤的流程示意图;Figure 4 is a schematic flowchart of the steps of obtaining a load prediction model in one embodiment;
图5为一个实施例中得到电器使用成员数据的步骤的流程示意图;Figure 5 is a schematic flowchart of the steps of obtaining electrical appliance usage member data in one embodiment;
图6为一个实施例中得到负荷预测数据的步骤的流程示意图;Figure 6 is a schematic flowchart of the steps of obtaining load forecast data in one embodiment;
图7为一个实施例中得到负荷预测模型的步骤的流程示意图;Figure 7 is a schematic flowchart of the steps of obtaining a load prediction model in one embodiment;
图8为一个实施例中得到电器使用整体数据的步骤的流程示意图;Figure 8 is a schematic flowchart of the steps of obtaining overall electrical appliance usage data in one embodiment;
图9为另一个实施例中负荷预测方法的流程示意图;Figure 9 is a schematic flowchart of a load prediction method in another embodiment;
图10为另一个实施例中负荷预测方法的流程示意图;Figure 10 is a schematic flow chart of a load prediction method in another embodiment;
图11为一个实施例中负荷预测装置的结构框图;Figure 11 is a structural block diagram of a load prediction device in one embodiment;
图12为一个实施例中计算机设备的内部结构图。Figure 12 is an internal structure diagram of a computer device in one embodiment.
具体实施方式Detailed ways
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。In order to make the purpose, technical solutions and advantages of the present application more clear, the present application will be further described in detail below with reference to the drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present application and are not used to limit the present application.
本申请实施例提供的负荷预测方法,可以应用于如图1所示的应用环境中。其中,目标控制终端102与智能电表104连接,智能电表104与家庭中的各电器设备连接,形成电器使用整体数据发送给目标控制终端102;目标控制终端102与录入装置106连接,接收录入装置106发送的目标行为数据;目标控制终端102与采集装置108连接,接收采集装置108发送的历史行为数据;目标控制终端102还通过网络接入到云端。其中,目标控制终端102可以但不限于是各种个人计算机、笔记本电脑、智能手机、平板电脑和便携式可穿戴设备,便携式可穿戴设备可为智能手表、智能手环、头戴设备等;录入装置106可以但不限于是各种个人计算机、笔记本电脑、智能手机、平板电脑和便携式可穿戴设备;采集装置108可以但不限于是各种智能门锁、指纹收集器。The load prediction method provided by the embodiment of the present application can be applied in the application environment as shown in Figure 1. Among them, the target control terminal 102 is connected to the smart meter 104, and the smart meter 104 is connected to each electrical device in the home to form overall electrical appliance usage data and send it to the target control terminal 102; the target control terminal 102 is connected to the input device 106, and receives the input device 106 The target behavior data sent; the target control terminal 102 is connected to the collection device 108 and receives the historical behavior data sent by the collection device 108; the target control terminal 102 is also connected to the cloud through the network. Among them, the target control terminal 102 can be, but is not limited to, various personal computers, laptops, smart phones, tablets and portable wearable devices. The portable wearable devices can be smart watches, smart bracelets, head-mounted devices, etc.; the input device 106 can be, but is not limited to, various personal computers, laptops, smart phones, tablets, and portable wearable devices; the collection device 108 can be, but is not limited to, various smart door locks and fingerprint collectors.
在一个实施例中,如图2所示,提供了一种负荷预测方法,以该方法应用于图1中的目标控制终端102为例进行说明,包括:In one embodiment, as shown in Figure 2, a load prediction method is provided. This method is explained by taking the method applied to the target control terminal 102 in Figure 1 as an example, including:
步骤202,获取各家庭成员在目标时间区间内各目标时间段对应的目标行为数据。Step 202: Obtain the target behavior data corresponding to each target time period of each family member within the target time interval.
其中,目标时间区间指的是使用本实施例中的负荷预测方法待预测的时间区间,目标时间段指的是目标时间区间划分成的多个均匀时长的时间段。The target time interval refers to the time interval to be predicted using the load prediction method in this embodiment, and the target time period refers to a plurality of uniformly long time periods divided into which the target time interval is divided.
其中,目标行为数据与各家庭成员在目标时间段内的居家情况对应。Among them, the target behavior data corresponds to the home situation of each family member during the target time period.
此处,家庭可以理解是以家庭为单位居住的房屋,一个家庭包括至少一个家庭成员。Here, a family can be understood as a house in which a family unit lives, and a family includes at least one family member.
示例性的,目标时间区间为某日0时至24时,各目标时间段为目标时间区间中的各个小时。For example, the target time interval is from 0:00 to 24:00 on a certain day, and each target time period is each hour in the target time interval.
示例性的,可以通过录入装置106获取各家庭成员录入的在目标时间区间内的离家时刻和归家时刻,从而确定各目标时间段的目标行为数据。家庭成员A通过录入装置106录入的信息包括该日8时20分离开该家庭,10时20分回到该家庭,可以判断家庭成员A在目标时间段8时至9时的目标行为数据为居家状态,目标时间段9时至10时的目标行为数据为为离家状态,目标时间段10时至11时的目标行为数据为居家状态。For example, the time of leaving home and the time of returning home entered by each family member within the target time interval can be obtained through the input device 106, thereby determining the target behavior data of each target time period. The information entered by family member A through the input device 106 includes that he left the family at 8:20 on that day and returned to the family at 10:20. It can be determined that the target behavior data of family member A in the target time period from 8:00 to 9:00 is at home. status, the target behavior data in the target time period from 9 to 10 o'clock is the away-from-home state, and the target behavior data in the target time period from 10 to 11 o'clock is the home state.
步骤204,根据目标时间段、目标行为数据和预设的负荷预测模型,得到目标时间段对应的负荷预测数据。Step 204: Obtain load prediction data corresponding to the target time period based on the target time period, target behavior data and the preset load prediction model.
其中,将目标时间段和目标行为数据输入预设的负荷预测模型,基于负荷预测模型根据目标行为数据进行预测,输出目标时间段对应的负荷预测数据。Among them, the target time period and target behavior data are input into a preset load prediction model, prediction is performed based on the target behavior data based on the load prediction model, and load prediction data corresponding to the target time period is output.
上述负荷预测方法中,通过获取各家庭成员在目标时间区间内各目标时间段对应的目标行为数据,目标行为数据与各家庭成员在各目标时间段内的居家情况对应;根据目标时间段、目标行为数据和预设的负荷预测模型,得到目标时间段对应的负荷预测数据;这样,基于各家庭成员的目标行为数据,利用负荷预测模型预测得到目标时间段的负荷预测数据,避免传统技术中只根据各历史时间段对应的电器设备使用情况获取目标时间段的负荷预测数据,导致预测准确率低的问题;而本申请中,各家庭成员的行为数据能够反映出目标时间段各家庭成员的居家情况,各家庭成员的居家情况能够对电器设备使用情况产生影响,本申请将这种影响纳入了负荷预测数据的预测过程,能够提高目标时间段对应的负荷预测数据的准确性,从而提高负荷预测方法的准确度。In the above load forecasting method, by obtaining the target behavior data corresponding to each target time period of each family member in the target time interval, the target behavior data corresponds to the home situation of each family member in each target time period; according to the target time period, target Behavioral data and the preset load forecasting model are used to obtain load forecasting data corresponding to the target time period; in this way, based on the target behavior data of each family member, the load forecasting model is used to predict and obtain load forecasting data for the target time period, avoiding the traditional technology that only The load forecast data of the target time period is obtained based on the usage of electrical equipment corresponding to each historical time period, which leads to the problem of low prediction accuracy; in this application, the behavioral data of each family member can reflect the home behavior of each family member in the target time period. The home situation of each family member can have an impact on the usage of electrical equipment. This application incorporates this impact into the prediction process of load forecast data, which can improve the accuracy of load forecast data corresponding to the target time period, thereby improving load forecasting. accuracy of the method.
在一个实施例中,基于图2所示的实施例,如图3所示,该方法还包括:In one embodiment, based on the embodiment shown in Figure 2, as shown in Figure 3, the method further includes:
步骤302,获取历史时间区间内的各历史时间段对应的电器使用整体数据,以及各家庭成员在各历史时间段内的历史行为数据。Step 302: Obtain the overall electrical appliance usage data corresponding to each historical time period within the historical time interval, and the historical behavior data of each family member in each historical time period.
其中,电器使用整体数据用于指示历史时间区间内的各历史时间段该家庭使用的各电器设备。Among them, the overall electrical appliance usage data is used to indicate each electrical appliance used by the household in each historical time period within the historical time interval.
示例性的,历史时间段Tj,k表示第j天的时段k,其中,k的取值范围为1~24,即T1,1表示第一天的时段1,对应第一天的0时~1时。历史时间区间内的各历史时间段对应的电器使用整体数据可以表示为如表1所示。For example, the historical time period T j,k represents the period k on the jth day, where k ranges from 1 to 24, that is, T 1,1 represents the period 1 on the first day, corresponding to 0 on the first day. hour to 1 hour. The overall electrical appliance usage data corresponding to each historical time period within the historical time interval can be expressed as shown in Table 1.
表1各历史时间段对应的电器使用整体数据Table 1 Overall electrical appliance usage data corresponding to each historical time period
其中,历史行为数据与各家庭成员在历史时间段内的居家情况对应。Among them, the historical behavior data corresponds to the home situation of each family member during the historical time period.
示例性的,可以通过采集装置108获取各家庭成员在各历史时间段内回到该家庭的时刻和离开该家庭的时刻,通过各家庭成员回到该家庭的时刻、离开该家庭的时刻确定各家庭成员在各历史时间段内历史行为数据。For example, the collection device 108 can be used to obtain the time when each family member returns to the family and the time when he leaves the family in each historical time period, and determines the time when each family member returns to the family and the time when he leaves the family. Historical behavioral data of family members in each historical time period.
示例性的,该家庭包括张某、李某和张某某3位家庭成员,各家庭成员在各历史时间段内的历史行为数据可以表示为如表2所示。For example, the family includes three family members: Zhang, Li, and Zhang. The historical behavior data of each family member in each historical time period can be expressed as shown in Table 2.
表2各家庭成员在各历史时间段内的历史行为数据Table 2 Historical behavioral data of each family member in each historical time period
其中,第一天的时段1对应的历史行为数据为张某、李某、张某某,表示在该时段内家庭成员张某、李某、张某某都处于居家状态。Among them, the historical behavior data corresponding to period 1 on the first day is Zhang, Li, and Zhang, which means that family members Zhang, Li, and Zhang are all at home during this period.
步骤304,基于各历史时间段对应的电器使用整体数据和各家庭成员在各历史时间段内的历史行为数据,得到负荷预测模型。Step 304: Obtain a load prediction model based on the overall electrical appliance usage data corresponding to each historical time period and the historical behavior data of each family member in each historical time period.
其中,负荷预测模型用于基于各历史时间段对应的电器使用整体数据和各家庭成员在各历史时间段内的历史行为数据,使用负荷预测模型对目标时间段对应的负荷数据进行预测,得到目标时间段对应的负荷预测数据。Among them, the load prediction model is used to predict the load data corresponding to the target time period based on the overall electrical appliance usage data corresponding to each historical time period and the historical behavior data of each family member in each historical time period, and obtain the target Load forecast data corresponding to the time period.
其中,负荷预测模型可以是统计学模型或者机器学习模型,本申请对此不作限定。The load prediction model may be a statistical model or a machine learning model, which is not limited in this application.
示例性的,负荷预测模型可以是统计模型,如线性回归、逻辑回归、时间序列分析模型等;也可以是机器学习模型,如决策树、随机森林、支持向量机、神经网络等。For example, the load prediction model can be a statistical model, such as linear regression, logistic regression, time series analysis model, etc.; or it can be a machine learning model, such as decision tree, random forest, support vector machine, neural network, etc.
本实施例中,基于历史时间区间内各历史时间段对应的电器使用整体数据和各家庭成员在各历史时间段内的历史行为数据,得到负荷预测模型,基于电器使用整体数据和历史行为数据对目标时间段的负荷情况进行预测,考虑各家庭成员的行为数据对电器设备使用情况的影响,从而提高目标时间段对应的负荷预测数据的准确性,提高负荷预测方法的准确度。In this embodiment, a load prediction model is obtained based on the overall electrical appliance usage data corresponding to each historical time period within the historical time interval and the historical behavioral data of each family member in each historical time period. Based on the overall electrical appliance usage data and historical behavioral data, a load prediction model is obtained. The load situation in the target time period is predicted, and the impact of the behavioral data of each family member on the use of electrical equipment is considered, thereby improving the accuracy of the load forecast data corresponding to the target time period and improving the accuracy of the load forecasting method.
在一个实施例中,基于图3所示的实施例,如图4所示,基于各历史时间段对应的电器使用整体数据和各家庭成员在各历史时间段内的历史行为数据,得到负荷预测模型,包括:In one embodiment, based on the embodiment shown in Figure 3, as shown in Figure 4, a load forecast is obtained based on the overall electrical appliance usage data corresponding to each historical time period and the historical behavior data of each family member in each historical time period. Models, including:
步骤402,针对每个历史时间段,将历史时间段对应的电器使用整体数据和各家庭成员的历史行为数据进行整合处理,得到历史时间段对应的电器使用成员数据。Step 402: For each historical time period, integrate the overall electrical appliance usage data corresponding to the historical time period and the historical behavior data of each family member to obtain electrical appliance usage member data corresponding to the historical time period.
其中,电器使用成员数据指的是将历史时间段对应的电器使用整体数据和各家庭成员的历史行为数据进行整合处理,得到的各家庭成员在各历史时间段的电器使用情况。Among them, the electrical appliance usage member data refers to the integration and processing of the overall electrical appliance usage data corresponding to the historical time period and the historical behavioral data of each family member, and the electrical appliance usage status of each family member in each historical time period is obtained.
示例性的,根据表1显示的各历史时间段对应的电器使用整体数据和表2显示的各家庭成员在各历史时间段内的历史行为数据对应的居家情况,可以得到各家庭成员在各历史时间段对应的电器使用成员数据,即,得到张某、李某、张某某在各历史时间段的电器使用情况。For example, according to the overall electrical appliance usage data corresponding to each historical time period shown in Table 1 and the home situation corresponding to the historical behavior data of each family member in each historical time period shown in Table 2, the household conditions of each family member in each historical time period can be obtained. The electrical appliance usage member data corresponding to the time period is obtained, that is, the electrical appliance usage of Zhang, Li, and Zhang in each historical time period is obtained.
步骤404,根据各历史时间段对应的电器使用成员数据,得到负荷预测模型。Step 404: Obtain a load prediction model based on the electrical appliance usage member data corresponding to each historical time period.
其中,负荷预测模型用于基于各历史时间段对应的电器使用成员数据,使用负荷预测模型对目标时间段对应的负荷数据进行预测,得到目标时间段对应的负荷预测数据。Among them, the load prediction model is used to predict the load data corresponding to the target time period based on the electrical appliance usage member data corresponding to each historical time period, and obtain the load prediction data corresponding to the target time period.
本实施例中,基于各历史时间段对应的电器使用成员数据,得到负荷预测模型,基于各家庭成员在各历史时间段对应的电器使用情况对目标时间段的负荷情况进行预测,充分利用历史时间段中各家庭成员使用电器的情况进行预测,能够有效提高目标时间段对应的负荷预测数据的准确性。In this embodiment, a load prediction model is obtained based on the data of electrical appliance users corresponding to each historical time period, and the load situation in the target time period is predicted based on the electrical appliance usage of each family member in each historical time period, making full use of historical time. Predicting the use of electrical appliances by each family member in a segment can effectively improve the accuracy of the load forecast data corresponding to the target time period.
在一个实施例中,基于图4所示的实施例,如图5所示,将历史时间段对应的电器使用整体数据和各家庭成员的历史行为数据进行整合处理,得到历史时间段对应的电器使用成员数据,包括:In one embodiment, based on the embodiment shown in Figure 4, as shown in Figure 5, the overall electrical appliance usage data corresponding to the historical time period and the historical behavior data of each family member are integrated to obtain the electrical appliances corresponding to the historical time period. Use member data, including:
步骤502,根据历史行为数据,得到每个家庭成员在历史时间段内的历史行为成员数据。Step 502: Obtain the historical behavioral member data of each family member within the historical time period based on the historical behavioral data.
其中,历史行为数据与各家庭成员在历史时间段内的居家情况对应,历史成员数据与各家庭成员中的其中一个家庭成员在历史时间段内的居家情况对应。Among them, the historical behavior data corresponds to the home situation of each family member in the historical time period, and the historical member data corresponds to the home situation of one of the family members in the historical time period.
示例性的,根据表2显示的各家庭成员在各历史时间段内的历史行为数据,各家庭成员中的其中一个家庭成员张某某在各历史时间段内的历史行为成员数据如表3所示。For example, according to the historical behavioral data of each family member in each historical time period shown in Table 2, the historical behavioral member data of one of the family members, Zhang Moumou, in each historical time period is as shown in Table 3. Show.
表3张某某在各历史时间段内的历史行为成员数据Table 3 Zhang Moumou’s historical behavioral member data in each historical time period
步骤504,针对每个家庭成员,根据家庭成员对应的历史行为成员数据和电器使用整体数据,得到各家庭成员在历史时间段内的第一电器使用成员数据。Step 504: For each family member, obtain the first electrical appliance usage member data of each family member within the historical time period based on the historical behavioral member data and overall electrical appliance usage data corresponding to the family member.
其中,各家庭成员在历史时间段内的第一电器使用成员数据是将该家庭成员的历史行为成员数据和电器使用整体数据进行整合处理得到的。Among them, the first electrical appliance usage member data of each family member in the historical time period is obtained by integrating the historical behavioral member data of the family member and the overall electrical appliance usage data.
示例性的,将表3显示的张某某在各历史时间段内的历史行为成员数据对应的居家情况和表1显示的各历史时间段对应的电器使用整体数据进行整合处理,可以得到张某某在各历史时间段内的第一电器使用成员数据,可以表示为如表4所示。For example, by integrating the home situation corresponding to Zhang's historical behavior member data in each historical time period shown in Table 3 and the overall electrical appliance usage data corresponding to each historical time period shown in Table 1, we can obtain Zhang's The data of members using the first electrical appliance in each historical time period can be expressed as shown in Table 4.
表4张某某在各历史时间段内的第一电器使用成员数据Table 4 Zhang Moumou’s first electrical appliance user data in each historical time period
示例性的,第一电器使用成员数据还包括张某在各历史时间段内的第一电器使用成员数据,如表5所示,以及李某在各历史时间段内的第一电器使用成员数据,如表6所示。For example, the first electrical appliance user data also includes Zhang's first electrical appliance user data in each historical time period, as shown in Table 5, and Li's first electrical appliance user data in each historical time period. , as shown in Table 6.
表5张某在各历史时间段内的第一电器使用成员数据Table 5 Zhang’s first electrical appliance user data in each historical time period
表6李某在各历史时间段内的第一电器使用成员数据Table 6 Li’s first electrical appliance user data in each historical time period
步骤506,针对各家庭成员的成员组合,根据家庭成员对应的历史行为成员数据和电器使用整体数据,得到各成员组合在历史时间段内的第二电器使用成员数据。Step 506: For each family member combination, obtain the second electrical appliance usage member data of each member combination within the historical time period based on the historical behavioral member data and overall electrical appliance usage data corresponding to the family member.
其中,成员组合对应多个家庭成员。Among them, the member combination corresponds to multiple family members.
示例性的,针对包括张某、李某和张某某3位家庭成员的家庭,成员组合包括张某和李某、张某和张某某、李某和张某某、张某和李某和张某某。For example, for a family including three family members: Zhang, Li and Zhang, the member combinations include Zhang and Li, Zhang and Zhang, Li and Zhang, Zhang and Li and Zhang Moumou.
示例性的,针对上述4种成员组合,各成员组合在各历史时间段内的第二电器使用成员数据分别可以表示为如表7、表8、表9和表10所示。For example, for the above four member combinations, the second electrical appliance usage member data of each member combination in each historical time period can be expressed as shown in Table 7, Table 8, Table 9 and Table 10 respectively.
表7张某和李某在各历史时间段内的第二电器使用成员数据Table 7 Second appliance usage member data of Zhang and Li in each historical time period
表8张某和张某某在各历史时间段内的第二电器使用成员数据Table 8 Second appliance usage member data of Zhang and Zhang in each historical time period
表9李某和张某某在各历史时间段内的第二电器使用成员数据Table 9 Second appliance usage member data of Li and Zhang in each historical time period
表10张某和李某和张某某在各历史时间段内的第二电器使用成员数据Table 10 Second appliance usage member data of Zhang, Li and Zhang in each historical time period
步骤508,根据各家庭成员在历史时间段内的第一电器使用成员数据和各成员组合在历史时间段内的第二电器使用成员数据,得到历史时间段对应的电器使用成员数据。Step 508: Obtain the electrical appliance user data corresponding to the historical time period based on the first electrical appliance user data of each family member in the historical time period and the second electrical appliance user data of each member combination in the historical time period.
本实施例中,通过历史时间段对应的电器使用整体数据和各家庭成员的历史行为数据,能够简便、快速地获取第一电器使用成员数据和第二电器使用成员数据进而得到电器使用成员数据,使得根据电器使用成员数据得到的负荷预测模型能够快速对目标时间段对应的负荷数据进行预测,提高负荷预测方法的效率。In this embodiment, through the overall electrical appliance usage data corresponding to the historical time period and the historical behavior data of each family member, the first appliance usage member data and the second appliance usage member data can be easily and quickly obtained, and then the appliance usage member data can be obtained. This enables the load forecasting model obtained based on the electrical appliance usage member data to quickly predict the load data corresponding to the target time period, thereby improving the efficiency of the load forecasting method.
在一个实施例中,基于图5所示的实施例,如图6所示,根据目标时间段、目标行为数据和预设的负荷预测模型,得到目标时间段对应的负荷预测数据,包括:In one embodiment, based on the embodiment shown in Figure 5, as shown in Figure 6, load prediction data corresponding to the target time period is obtained based on the target time period, target behavior data and the preset load prediction model, including:
步骤602,从历史时间区间内的各历史时间段中确定与目标时间段对应的参考时间段。Step 602: Determine the reference time period corresponding to the target time period from each historical time period within the historical time interval.
示例性的,目标时间段Ga,i表示第a天的时段i,则目标时间段对应的参考时间段为Tj,i,即历史时间区间内每一天的时段i。For example, the target time period G a,i represents the period i of day a, and the reference time period corresponding to the target time period is T j,i , that is, the period i of each day in the historical time interval.
步骤604,若目标行为数据与参考时间段对应的各成员组合相对应,则根据各参考时间段内的第二电器使用成员数据确定目标时间段对应的负荷预测数据。Step 604: If the target behavior data corresponds to each member combination corresponding to the reference time period, determine the load prediction data corresponding to the target time period based on the second electrical appliance usage member data in each reference time period.
示例性的,根据各家庭成员在目标时间段Ga,i的目标行为数据,目标时间段Ga,i的目标行为数据为张某和李某处于居家状态,与表7表示的成员组合相对应,根据表7中第i列表示的参考时段Tj,i对应的第二电器使用成员数据确定目标时间段对应的负荷预测数据。For example, according to the target behavior data of each family member in the target time period G a,i , the target behavior data of the target time period G a,i is that Zhang and Li are at home, which is consistent with the member combination shown in Table 7. Correspondingly, the load prediction data corresponding to the target time period is determined according to the second electrical appliance usage member data corresponding to the reference period T j,i represented by the i-th column in Table 7.
步骤606,若目标行为数据与参考时间段对应的各成员组合相对应,则根据各参考时间段内的第二电器使用成员数据确定目标时间段对应的负荷预测数据。Step 606: If the target behavior data corresponds to each member combination corresponding to the reference time period, determine the load prediction data corresponding to the target time period based on the second electrical appliance usage member data in each reference time period.
示例性的,根据各家庭成员在目标时间段Ga,b的目标行为数据,目标时间段Ga,b的目标行为数据为张某某处于居家状态,与表4表示的成员组合相对应,根据表4中第b列表示的参考时段Tj,b对应的第一电器使用成员数据确定目标时间段对应的负荷预测数据。For example, according to the target behavior data of each family member in the target time period G a,b , the target behavior data in the target time period G a,b is that Zhang is at home, corresponding to the member combination shown in Table 4, The load forecast data corresponding to the target time period is determined according to the first electrical appliance usage member data corresponding to the reference period T j,b represented by the b-th column in Table 4.
在一种可能的实施方式中,与目标行为数据对应的第一电器使用成员数据有多个,可以对多个第一电器使用成员数据进行均值处理,根据多个第一电器使用成员数据的均值确定目标时间段对应的负荷预测数据。In a possible implementation, there are multiple first appliance usage member data corresponding to the target behavior data, and the multiple first appliance usage member data can be averaged. According to the average value of the multiple first appliance usage member data Determine the load forecast data corresponding to the target time period.
本实施例中,根据目标时间段确定参考时间段,根据目标行为数据快速确定各家庭成员在参考时间段内的电器使用成员数据,得到目标时间段对应的负荷预测数据,在提高负荷预测方法的效率的同时提高负荷预测方法的准确性。In this embodiment, the reference time period is determined based on the target time period, the electrical appliance usage data of each family member in the reference time period is quickly determined based on the target behavior data, and the load prediction data corresponding to the target time period is obtained. In order to improve the load prediction method efficiency while improving the accuracy of load forecasting methods.
在一个实施例中,基于图3所示的实施例,如图7所示,基于各历史时间段对应的电器使用整体数据和各家庭成员在各历史时间段内的历史行为数据,得到负荷预测模型,包括:In one embodiment, based on the embodiment shown in Figure 3, as shown in Figure 7, a load forecast is obtained based on the overall electrical appliance usage data corresponding to each historical time period and the historical behavior data of each family member in each historical time period. Models, including:
步骤702,针对每个历史时间段,根据历史时间段对应的电器使用整体数据和各家庭成员的历史行为数据,得到各家庭成员在历史时间段内对应的电器使用组合数据。Step 702: For each historical time period, obtain the electrical appliance usage combination data corresponding to each family member in the historical time period based on the overall electrical appliance usage data corresponding to the historical time period and the historical behavior data of each family member.
其中,电器使用组合数据指的是将各历史时间段对应的电器使用整体数据和各家庭成员的历史行为数据组合起来形成的组合数据。Among them, the electrical appliance usage combination data refers to the combined data formed by combining the overall electrical appliance usage data corresponding to each historical time period and the historical behavior data of each family member.
示例性的,历史行为数据与各历史时间段对应的电器使用组合数据可以表示为如表11所示。For example, the historical behavior data and the electrical appliance usage combination data corresponding to each historical time period can be expressed as shown in Table 11.
表11各历史时间段对应的电器使用组合数据Table 11 Electrical appliance usage combination data corresponding to each historical time period
步骤704,利用电器使用组合数据对初始预测模型进行迭代学习,得到负荷预测模型。Step 704: Use the combined electrical appliance usage data to iteratively learn the initial prediction model to obtain a load prediction model.
将电器使用组合数据输入初始预测模型,电器使用组合数据中包含各历史时间段中家庭成员的历史行为与电器使用数据,通过迭代学习,对初始模型中的参数进行更新,得到负荷预测模型。Enter the electrical appliance usage combination data into the initial prediction model. The electrical appliance usage combination data contains the historical behavior and electrical appliance usage data of family members in each historical time period. Through iterative learning, the parameters in the initial model are updated to obtain the load prediction model.
其中,初始预测模型可以是机器学习模型,如决策树、随机森林、支持向量机、神经网络等,本申请对此不作限定。The initial prediction model may be a machine learning model, such as decision tree, random forest, support vector machine, neural network, etc., which is not limited in this application.
本实施例中,根据对历史时间段对应的电器使用整体数据和各家庭成员的历史行为数据进行组合得到的电器使用组合数据来训练初始预测模型,在对目标时间段对应的负荷数据进行预测时考虑了历史时间段对应的各家庭成员的行为数据和电器设备使用情况,从而提高目标时间段对应的负荷预测数据的准确性,提高负荷预测方法的准确度。In this embodiment, the initial prediction model is trained based on the combined electrical appliance usage data obtained by combining the overall electrical appliance usage data corresponding to the historical time period and the historical behavior data of each family member. When predicting the load data corresponding to the target time period, The behavioral data and electrical equipment usage of each family member corresponding to the historical time period are considered, thereby improving the accuracy of the load forecast data corresponding to the target time period and improving the accuracy of the load forecasting method.
在一个实施例中,如图8所示,获取历史时间区间内的各历史时间段对应的电器使用整体数据,包括:In one embodiment, as shown in Figure 8, the overall electrical appliance usage data corresponding to each historical time period within the historical time interval is obtained, including:
步骤802,针对每个历史时间段,获取历史时间段对应的电表读数数据。Step 802: For each historical time period, obtain the meter reading data corresponding to the historical time period.
步骤804,对电表读数数据的波形特征进行识别分析处理,得到电器使用整体数据。Step 804: Identify, analyze and process the waveform characteristics of the meter reading data to obtain overall electrical appliance usage data.
其中,各历史时间段对应的电器使用整体数据是对各历史时间段对应的电表读数数据进行识别分析得到的。通过实时监测各历史时间段中通过电表的电流和电压的波形特征及变化情况,识别出不同电器设备的开关状态和产生的负荷数据,获取电表读数数据对应的各电器设备。Among them, the overall electrical appliance usage data corresponding to each historical time period is obtained by identifying and analyzing the electric meter reading data corresponding to each historical time period. By real-time monitoring of the waveform characteristics and changes of the current and voltage passing through the meter in each historical time period, the switching status and generated load data of different electrical equipment are identified, and each electrical equipment corresponding to the meter reading data is obtained.
本实施例中,通过对电表读数数据的波形特征进行识别分析处理,得到电器使用整体数据,在不需要对电器设备进行实质性的改动或干预的情况下,能够快速、准确地识别出各历史时间段对应的电器设备使用情况。In this embodiment, by identifying and analyzing the waveform characteristics of the meter reading data, the overall electrical appliance usage data is obtained. Each historical data can be quickly and accurately identified without substantial modification or intervention to the electrical equipment. The usage of electrical equipment corresponding to the time period.
在一个实施例中,如图9所示,提供了一种负荷预测方法,该方法包括:In one embodiment, as shown in Figure 9, a load forecasting method is provided, which method includes:
步骤902,获取历史时间区间内的各历史时间段对应的电器使用整体数据,以及各家庭成员在各历史时间段内的历史行为数据。Step 902: Obtain the overall electrical appliance usage data corresponding to each historical time period within the historical time interval, and the historical behavior data of each family member in each historical time period.
可选的,针对每个历史时间段,获取历史时间段对应的电表读数数据,对电表读数数据的波形特征进行识别分析处理,得到电器使用整体数据。Optionally, for each historical time period, obtain the electric meter reading data corresponding to the historical time period, identify and analyze the waveform characteristics of the electric meter reading data, and obtain the overall electrical appliance usage data.
步骤904,针对每个历史时间段,根据历史行为数据,得到每个家庭成员在历史时间段内的历史行为成员数据。Step 904: For each historical time period, obtain the historical behavioral member data of each family member in the historical time period based on the historical behavioral data.
步骤906,针对每个家庭成员,根据家庭成员对应的历史行为成员数据和电器使用整体数据,得到各家庭成员在历史时间段内的第一电器使用成员数据。Step 906: For each family member, obtain the first electrical appliance usage member data of each family member in the historical time period based on the historical behavioral member data and overall electrical appliance usage data corresponding to the family member.
步骤908,针对各家庭成员的成员组合,根据家庭成员对应的历史行为成员数据和电器使用整体数据,得到各成员组合在历史时间段内的第二电器使用成员数据。Step 908: For each family member combination, obtain the second electrical appliance usage member data of each member combination within the historical time period based on the historical behavioral member data and overall electrical appliance usage data corresponding to the family member.
步骤910,根据各家庭成员在历史时间段内的第一电器使用成员数据和各成员组合在历史时间段内的第二电器使用成员数据,得到历史时间段对应的电器使用成员数据。Step 910: Obtain the electrical appliance user data corresponding to the historical time period based on the first electrical appliance user data of each family member in the historical time period and the second electrical appliance user data of each member combination in the historical time period.
步骤912,根据各历史时间段对应的电器使用成员数据,得到负荷预测模型。Step 912: Obtain a load prediction model based on the electrical appliance usage member data corresponding to each historical time period.
步骤914,获取各家庭成员在目标时间区间内各目标时间段对应的目标行为数据。Step 914: Obtain the target behavior data of each family member corresponding to each target time period within the target time interval.
步骤916,从历史时间区间内的各历史时间段中确定与目标时间段对应的参考时间段。Step 916: Determine the reference time period corresponding to the target time period from each historical time period within the historical time interval.
步骤918,若目标行为数据与参考时间段对应的各成员组合相对应,则根据各参考时间段内的第二电器使用成员数据确定目标时间段对应的负荷预测数据。Step 918: If the target behavior data corresponds to each member combination corresponding to the reference time period, determine the load prediction data corresponding to the target time period based on the second electrical appliance usage member data in each reference time period.
步骤920,若目标行为数据与参考时间段对应的各家庭成员相对应,则根据各参考时间段内的第一电器使用成员数据确定目标时间段对应的负荷预测数据。Step 920: If the target behavior data corresponds to each family member corresponding to the reference time period, determine the load prediction data corresponding to the target time period based on the first electrical appliance usage member data in each reference time period.
在一个实施例中,如图10所示,提供了一种负荷预测方法,该方法包括:In one embodiment, as shown in Figure 10, a load forecasting method is provided, which method includes:
步骤1002,获取历史时间区间内的各历史时间段对应的电器使用整体数据,以及各家庭成员在各历史时间段内的历史行为数据。Step 1002: Obtain the overall electrical appliance usage data corresponding to each historical time period within the historical time interval, and the historical behavior data of each family member in each historical time period.
其中,历史行为数据与各家庭成员在历史时间段内的居家情况对应。Among them, the historical behavior data corresponds to the home situation of each family member during the historical time period.
可选的,针对每个历史时间段,获取历史时间段对应的电表读数数据;对电表读数数据的波形特征进行识别分析处理,得到电器使用整体数据。Optionally, for each historical time period, obtain the electric meter reading data corresponding to the historical time period; identify and analyze the waveform characteristics of the electric meter reading data to obtain overall electrical appliance usage data.
步骤1004,针对每个历史时间段,根据历史时间段对应的电器使用整体数据和各家庭成员的历史行为数据,得到各家庭成员在历史时间段内对应的电器使用组合数据。Step 1004: For each historical time period, based on the overall electrical appliance usage data corresponding to the historical time period and the historical behavior data of each family member, the electrical appliance usage combination data corresponding to each family member in the historical time period is obtained.
步骤1006,利用电器使用组合数据对初始预测模型进行迭代学习,得到负荷预测模型。Step 1006: Use the combined electrical appliance usage data to iteratively learn the initial prediction model to obtain a load prediction model.
步骤1008,获取各家庭成员在目标时间区间内各目标时间段对应的目标行为数据。Step 1008: Obtain the target behavior data of each family member corresponding to each target time period within the target time interval.
其中,目标行为数据与各家庭成员在目标时间段内的居家情况对应。Among them, the target behavior data corresponds to the home situation of each family member during the target time period.
步骤1010,根据目标时间段、目标行为数据和预设的负荷预测模型,得到目标时间段对应的负荷预测数据。Step 1010: Obtain load prediction data corresponding to the target time period based on the target time period, target behavior data and the preset load prediction model.
应该理解的是,虽然如上所述的各实施例所涉及的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,如上所述的各实施例所涉及的流程图中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。It should be understood that although the steps in the flowcharts involved in the above-mentioned embodiments are shown in sequence as indicated by the arrows, these steps are not necessarily executed in the order indicated by the arrows. Unless explicitly stated in this article, there is no strict order restriction on the execution of these steps, and these steps can be executed in other orders. Moreover, at least some of the steps in the flowcharts involved in the above embodiments may include multiple steps or stages. These steps or stages are not necessarily executed at the same time, but may be completed at different times. The execution order of these steps or stages is not necessarily sequential, but may be performed in turn or alternately with other steps or at least part of the steps or stages in other steps.
基于同样的发明构思,本申请实施例还提供了一种用于实现上述所涉及的负荷预测方法的负荷预测装置。该装置所提供的解决问题的实现方案与上述方法中所记载的实现方案相似,故下面所提供的一个或多个负荷预测装置实施例中的具体限定可以参见上文中对于负荷预测方法的限定,在此不再赘述。Based on the same inventive concept, embodiments of the present application also provide a load prediction device for implementing the above-mentioned load prediction method. The solution to the problem provided by this device is similar to the solution recorded in the above method. Therefore, for the specific limitations in one or more load prediction device embodiments provided below, please refer to the above limitations on the load prediction method. I won’t go into details here.
在一个实施例中,如图11所示,提供了一种负荷预测装置,包括:数据输入模块1102和负荷预测模块1104,其中:In one embodiment, as shown in Figure 11, a load prediction device is provided, including: a data input module 1102 and a load prediction module 1104, wherein:
数据输入模块1102,用于获取各家庭成员在目标时间区间内各目标时间段对应的目标行为数据,目标行为数据与各家庭成员在目标时间段内的居家情况对应;The data input module 1102 is used to obtain the target behavior data corresponding to each target time period of each family member within the target time interval. The target behavior data corresponds to the home situation of each family member during the target time period;
负荷预测模块1104,用于根据目标时间段、目标行为数据和预设的负荷预测模型,得到目标时间段对应的负荷预测数据。The load prediction module 1104 is used to obtain load prediction data corresponding to the target time period based on the target time period, target behavior data and a preset load prediction model.
在一个实施例中,数据输入模块1102还用于获取历史时间区间内的各历史时间段对应的电器使用整体数据,以及各家庭成员在各历史时间段内的历史行为数据;历史行为数据与各家庭成员在历史时间段内的居家情况对应;负荷预测装置还包括模型生成模块,用于基于各历史时间段对应的电器使用整体数据和各家庭成员在各历史时间段内的历史行为数据,得到负荷预测模型。In one embodiment, the data input module 1102 is also used to obtain the overall electrical appliance usage data corresponding to each historical time period within the historical time interval, as well as the historical behavior data of each family member in each historical time period; the historical behavior data is related to each historical time period. Corresponding to the home conditions of family members in historical time periods; the load forecasting device also includes a model generation module, which is used to obtain based on the overall electrical appliance usage data corresponding to each historical time period and the historical behavior data of each family member in each historical time period. Load forecasting model.
在一个实施例中,模型生成模块用于针对每个历史时间段,将历史时间段对应的电器使用整体数据和各家庭成员的历史行为数据进行整合处理,得到历史时间段对应的电器使用成员数据;根据各历史时间段对应的电器使用成员数据,得到负荷预测模型。In one embodiment, the model generation module is used to integrate, for each historical time period, the overall electrical appliance usage data corresponding to the historical time period and the historical behavioral data of each family member to obtain the electrical appliance usage member data corresponding to the historical time period. ; Based on the data of electrical appliance users corresponding to each historical time period, a load forecasting model is obtained.
在一个实施例中,模型生成模块用于根据历史行为数据,得到每个家庭成员在历史时间段内的历史行为成员数据;针对每个家庭成员,根据家庭成员对应的历史行为成员数据和电器使用整体数据,得到各家庭成员在历史时间段内的第一电器使用成员数据,针对各家庭成员的成员组合,根据家庭成员对应的历史行为成员数据和电器使用整体数据,得到各成员组合在历史时间段内的第二电器使用成员数据,成员组合对应多个家庭成员;根据各家庭成员在历史时间段内的第一电器使用成员数据和各成员组合在历史时间段内的第二电器使用成员数据,得到历史时间段对应的电器使用成员数据。In one embodiment, the model generation module is used to obtain the historical behavioral member data of each family member in the historical time period based on the historical behavioral data; for each family member, based on the historical behavioral member data and electrical appliance usage corresponding to the family member The overall data is to obtain the first electrical appliance usage member data of each family member in the historical time period. For each family member's member combination, based on the historical behavioral member data corresponding to the family member and the overall electrical appliance usage data, the historical time of each member combination is obtained. The second appliance usage member data within the segment, the member combination corresponds to multiple family members; based on the first appliance usage member data of each family member in the historical time period and the second appliance usage member data of each member combination in the historical time period , obtain the electrical appliance usage member data corresponding to the historical time period.
在一个实施例中,负荷预测模块1104用于从历史时间区间内的各历史时间段中确定与目标时间段对应的参考时间段;若目标行为数据与参考时间段对应的各成员组合相对应,则根据各参考时间段内的第二电器使用成员数据确定目标时间段对应的负荷预测数据;若目标行为数据与参考时间段对应的各家庭成员相对应,则根据各参考时间段内的第一电器使用成员数据确定目标时间段对应的负荷预测数据。In one embodiment, the load prediction module 1104 is used to determine the reference time period corresponding to the target time period from each historical time period within the historical time period; if the target behavior data corresponds to each member combination corresponding to the reference time period, Then determine the load forecast data corresponding to the target time period based on the second electrical appliance user data in each reference time period; if the target behavior data corresponds to each family member corresponding to the reference time period, then determine the load forecast data corresponding to the first time period in each reference time period. The appliance uses member data to determine load forecast data for the target time period.
在一个实施例中,模型生成模块针对每个历史时间段,根据历史时间段对应的电器使用整体数据和各家庭成员的历史行为数据,得到各家庭成员在历史时间段内对应的电器使用组合数据;利用电器使用组合数据对初始预测模型进行迭代学习,得到负荷预测模型。In one embodiment, for each historical time period, the model generation module obtains the combined electrical appliance usage data corresponding to each family member in the historical time period based on the overall electrical appliance usage data corresponding to the historical time period and the historical behavioral data of each family member. ;Use the electrical appliance usage combined data to iteratively learn the initial prediction model to obtain the load prediction model.
在一个实施例中,数据输入模块1102用于获取历史时间区间内的各历史时间段对应的电表读数数据;对电表读数数据的波形特征进行识别分析处理,得到电器使用整体数据。In one embodiment, the data input module 1102 is used to obtain electric meter reading data corresponding to each historical time period within the historical time interval; perform identification and analysis on the waveform characteristics of the electric meter reading data to obtain overall electrical appliance usage data.
上述负荷预测装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。Each module in the above load prediction device can be implemented in whole or in part by software, hardware and combinations thereof. Each of the above modules may be embedded in or independent of the processor of the computer device in the form of hardware, or may be stored in the memory of the computer device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.
在一个实施例中,提供了一种计算机设备,该计算机设备可以是终端,其内部结构图可以如图12所示。该计算机设备包括处理器、存储器、输入/输出接口、通信接口、显示单元和输入装置。其中,处理器、存储器和输入/输出接口通过系统总线连接,通信接口、显示单元和输入装置通过输入/输出接口连接到系统总线。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的输入/输出接口用于处理器与外部设备之间交换信息。该计算机设备的通信接口用于与外部的终端进行有线或无线方式的通信,无线方式可通过WIFI、移动蜂窝网络、NFC(近场通信)或其他技术实现。该计算机程序被处理器执行时以实现一种负荷预测方法。该计算机设备的显示单元用于形成视觉可见的画面,可以是显示屏、投影装置或虚拟现实成像装置。显示屏可以是液晶显示屏或者电子墨水显示屏,该计算机设备的输入装置可以是显示屏上覆盖的触摸层,也可以是计算机设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。In one embodiment, a computer device is provided. The computer device may be a terminal, and its internal structure diagram may be as shown in FIG. 12 . The computer device includes a processor, memory, input/output interface, communication interface, display unit and input device. Among them, the processor, memory and input/output interface are connected through the system bus, and the communication interface, display unit and input device are connected to the system bus through the input/output interface. Wherein, the processor of the computer device is used to provide computing and control capabilities. The memory of the computer device includes non-volatile storage media and internal memory. The non-volatile storage medium stores operating systems and computer programs. This internal memory provides an environment for the execution of operating systems and computer programs in non-volatile storage media. The input/output interface of the computer device is used to exchange information between the processor and external devices. The communication interface of the computer device is used for wired or wireless communication with external terminals. The wireless mode can be implemented through WIFI, mobile cellular network, NFC (Near Field Communication) or other technologies. The computer program when executed by the processor implements a load forecasting method. The display unit of the computer equipment is used to form a visually visible picture, and may be a display screen, a projection device or a virtual reality imaging device. The display screen can be a liquid crystal display or an electronic ink display. The input device of the computer device can be a touch layer covered on the display screen, or it can be a button, trackball or touch pad provided on the computer device casing, or it can be External keyboard, trackpad or mouse, etc.
本领域技术人员可以理解,图12中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。Those skilled in the art can understand that the structure shown in Figure 12 is only a block diagram of a partial structure related to the solution of the present application, and does not constitute a limitation on the computer equipment to which the solution of the present application is applied. Specific computer equipment can May include more or fewer parts than shown, or combine certain parts, or have a different arrangement of parts.
在一个实施例中,提供了一种计算机设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现上述各方法实施例中的步骤。In one embodiment, a computer device is provided, including a memory and a processor. A computer program is stored in the memory. When the processor executes the computer program, it implements the steps in the above method embodiments.
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述各方法实施例中的步骤。In one embodiment, a computer-readable storage medium is provided, on which a computer program is stored. When the computer program is executed by a processor, the steps in the above method embodiments are implemented.
在一个实施例中,提供了一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现上述各方法实施例中的步骤。In one embodiment, a computer program product is provided, including a computer program that implements the steps in each of the above method embodiments when executed by a processor.
需要说明的是,本申请所涉及的用户信息(包括但不限于用户设备信息、用户个人信息等)和数据(包括但不限于用于分析的数据、存储的数据、展示的数据等),均为经用户授权或者经过各方充分授权的信息和数据,且相关数据的收集、使用和处理需要遵守相关国家和地区的相关法律法规和标准。It should be noted that the user information (including but not limited to user equipment information, user personal information, etc.) and data (including but not limited to data used for analysis, stored data, displayed data, etc.) involved in this application are all It is information and data authorized by the user or fully authorized by all parties, and the collection, use and processing of relevant data need to comply with the relevant laws, regulations and standards of relevant countries and regions.
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-OnlyMemory,ROM)、磁带、软盘、闪存、光存储器、高密度嵌入式非易失性存储器、阻变存储器(ReRAM)、磁变存储器(Magnetoresistive Random Access Memory,MRAM)、铁电存储器(Ferroelectric Random Access Memory,FRAM)、相变存储器(Phase Change Memory,PCM)、石墨烯存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器等。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory,SRAM)或动态随机存取存储器(Dynamic RandomAccess Memory,DRAM)等。本申请所提供的各实施例中所涉及的数据库可包括关系型数据库和非关系型数据库中至少一种。非关系型数据库可包括基于区块链的分布式数据库等,不限于此。本申请所提供的各实施例中所涉及的处理器可为通用处理器、中央处理器、图形处理器、数字信号处理器、可编程逻辑器、基于量子计算的数据处理逻辑器等,不限于此。Those of ordinary skill in the art can understand that all or part of the processes in the methods of the above embodiments can be completed by instructing relevant hardware through a computer program. The computer program can be stored in a non-volatile computer-readable storage. In the media, when executed, the computer program may include the processes of the above method embodiments. Any reference to memory, database or other media used in the embodiments provided in this application may include at least one of non-volatile and volatile memory. Non-volatile memory can include read-only memory (ROM), magnetic tape, floppy disk, flash memory, optical memory, high-density embedded non-volatile memory, resistive memory (ReRAM), magnetic variable memory (Magnetoresistive Random) Access Memory (MRAM), Ferroelectric Random Access Memory (FRAM), Phase Change Memory (PCM), graphene memory, etc. Volatile memory may include random access memory (Random Access Memory, RAM) or external cache memory. By way of illustration but not limitation, RAM can be in various forms, such as static random access memory (Static Random Access Memory, SRAM) or dynamic random access memory (Dynamic Random Access Memory, DRAM). The databases involved in the various embodiments provided in this application may include at least one of a relational database and a non-relational database. Non-relational databases may include blockchain-based distributed databases, etc., but are not limited thereto. The processors involved in the various embodiments provided in this application may be general-purpose processors, central processing units, graphics processors, digital signal processors, programmable logic devices, quantum computing-based data processing logic devices, etc., and are not limited to this.
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above embodiments can be combined in any way. To simplify the description, not all possible combinations of the technical features in the above embodiments are described. However, as long as there is no contradiction in the combination of these technical features, all possible combinations should be used. It is considered to be within the scope of this manual.
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。The above-described embodiments only express several implementation modes of the present application, and their descriptions are relatively specific and detailed, but should not be construed as limiting the patent scope of the present application. It should be noted that, for those of ordinary skill in the art, several modifications and improvements can be made without departing from the concept of the present application, and these all fall within the protection scope of the present application. Therefore, the scope of protection of this application should be determined by the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311411788.0A CN117313952A (en) | 2023-10-27 | 2023-10-27 | Load prediction method, device, equipment and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311411788.0A CN117313952A (en) | 2023-10-27 | 2023-10-27 | Load prediction method, device, equipment and storage medium |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117313952A true CN117313952A (en) | 2023-12-29 |
Family
ID=89284793
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311411788.0A Pending CN117313952A (en) | 2023-10-27 | 2023-10-27 | Load prediction method, device, equipment and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117313952A (en) |
-
2023
- 2023-10-27 CN CN202311411788.0A patent/CN117313952A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10846643B2 (en) | Method and system for predicting task completion of a time period based on task completion rates and data trend of prior time periods in view of attributes of tasks using machine learning models | |
CN107358247B (en) | Method and device for determining lost user | |
CN114757602B (en) | Supply side electric power carbon emission risk early warning method and device and computer equipment | |
Liu et al. | Short‐term load forecasting based on LSTNet in power system | |
CN117056776A (en) | Carbon emission monitoring method, apparatus, device, medium and computer program product | |
CN116304673A (en) | Model training method, device and computer equipment for abnormal electricity consumption recognition | |
CN116010226A (en) | Software system reliability simulation evaluation method, device and computer equipment | |
CN117031292A (en) | Battery health state prediction method, device, computer equipment and storage medium | |
CN118672555A (en) | Task flow creation method, device, computer equipment and readable storage medium | |
CN117391018A (en) | Circuit optimization method, device and computer equipment | |
CN117371510A (en) | Power load prediction model training method and device based on domain generalization | |
CN117540915A (en) | Big data technology-based selection scheme generation method, device, equipment and medium | |
CN116191398A (en) | Load forecasting method, device, computer equipment and storage medium | |
CN117313952A (en) | Load prediction method, device, equipment and storage medium | |
CN115827977A (en) | Training method and device of user preference prediction model and computer equipment | |
CN117495131A (en) | Power consumption data prediction method, device, computer equipment and storage medium | |
CN117495128A (en) | Electricity consumption data prediction method, device, computer equipment and storage medium | |
CN119253580A (en) | Simulation identification method, device and computer equipment for building power load | |
CN119760624A (en) | A method, system, device and medium for predicting electricity consumption of emerging rural businesses | |
CN117764529A (en) | Target item determining method, device, computer equipment, storage medium and product | |
CN117875737A (en) | Resource prediction method, apparatus, device, storage medium, and program product | |
CN120218292A (en) | Associated information prediction method, associated information prediction device, computer equipment and storage medium | |
CN115618288A (en) | Class Determination Method, Device, Equipment, Storage Medium, and Program Product | |
CN117436974A (en) | Product recommendation method, device, computer equipment and storage medium | |
CN116090629A (en) | Power consumption data processing method, device, computer equipment and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Country or region after: China Address after: Room 86, room 406, No.1, Yichuang street, Zhongxin Guangzhou Knowledge City, Huangpu District, Guangzhou City, Guangdong Province Applicant after: Southern Power Grid Digital Grid Research Institute Co.,Ltd. Address before: Room 86, room 406, No.1, Yichuang street, Zhongxin Guangzhou Knowledge City, Huangpu District, Guangzhou City, Guangdong Province Applicant before: Southern Power Grid Digital Grid Research Institute Co.,Ltd. Country or region before: China |
|
CB02 | Change of applicant information |