CN117299172B - A carbon nitride/molybdenum disulfide heterojunction piezoelectric photocatalyst and its preparation method and application - Google Patents
A carbon nitride/molybdenum disulfide heterojunction piezoelectric photocatalyst and its preparation method and application Download PDFInfo
- Publication number
- CN117299172B CN117299172B CN202311180041.9A CN202311180041A CN117299172B CN 117299172 B CN117299172 B CN 117299172B CN 202311180041 A CN202311180041 A CN 202311180041A CN 117299172 B CN117299172 B CN 117299172B
- Authority
- CN
- China
- Prior art keywords
- carbon nitride
- molybdenum disulfide
- hexavalent chromium
- water
- disulfide heterojunction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- JMANVNJQNLATNU-UHFFFAOYSA-N oxalonitrile Chemical compound N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 title claims abstract description 101
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 title claims abstract description 85
- 229910052982 molybdenum disulfide Inorganic materials 0.000 title claims abstract description 85
- 239000011941 photocatalyst Substances 0.000 title claims abstract description 12
- 238000002360 preparation method Methods 0.000 title claims abstract description 6
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 claims abstract description 84
- 239000000243 solution Substances 0.000 claims abstract description 38
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 28
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims abstract description 23
- 239000003054 catalyst Substances 0.000 claims abstract description 20
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 claims abstract description 18
- 238000006243 chemical reaction Methods 0.000 claims abstract description 11
- 235000015393 sodium molybdate Nutrition 0.000 claims abstract description 10
- 239000011684 sodium molybdate Substances 0.000 claims abstract description 10
- TVXXNOYZHKPKGW-UHFFFAOYSA-N sodium molybdate (anhydrous) Chemical compound [Na+].[Na+].[O-][Mo]([O-])(=O)=O TVXXNOYZHKPKGW-UHFFFAOYSA-N 0.000 claims abstract description 10
- 238000001035 drying Methods 0.000 claims abstract description 9
- 239000011259 mixed solution Substances 0.000 claims abstract description 9
- 238000001816 cooling Methods 0.000 claims abstract description 6
- 238000005406 washing Methods 0.000 claims abstract description 3
- 238000003756 stirring Methods 0.000 claims description 14
- 239000004202 carbamide Substances 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 7
- 238000009210 therapy by ultrasound Methods 0.000 claims description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 230000035484 reaction time Effects 0.000 claims description 2
- 229910052724 xenon Inorganic materials 0.000 claims description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical group [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims description 2
- 238000005286 illumination Methods 0.000 claims 2
- 230000001105 regulatory effect Effects 0.000 claims 2
- 238000002525 ultrasonication Methods 0.000 claims 1
- 230000001699 photocatalysis Effects 0.000 abstract description 39
- 239000000203 mixture Substances 0.000 abstract 1
- 238000007146 photocatalysis Methods 0.000 description 18
- 230000000694 effects Effects 0.000 description 12
- 238000000926 separation method Methods 0.000 description 10
- 238000002474 experimental method Methods 0.000 description 9
- 238000001179 sorption measurement Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 239000003344 environmental pollutant Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 231100000719 pollutant Toxicity 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 238000002604 ultrasonography Methods 0.000 description 6
- 239000000969 carrier Substances 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 238000005215 recombination Methods 0.000 description 4
- 230000006798 recombination Effects 0.000 description 4
- 238000006555 catalytic reaction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000004506 ultrasonic cleaning Methods 0.000 description 3
- 239000002351 wastewater Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000002800 charge carrier Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002715 modification method Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 206010070834 Sensitisation Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003933 environmental pollution control Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 238000013032 photocatalytic reaction Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- RWVGQQGBQSJDQV-UHFFFAOYSA-M sodium;3-[[4-[(e)-[4-(4-ethoxyanilino)phenyl]-[4-[ethyl-[(3-sulfonatophenyl)methyl]azaniumylidene]-2-methylcyclohexa-2,5-dien-1-ylidene]methyl]-n-ethyl-3-methylanilino]methyl]benzenesulfonate Chemical compound [Na+].C1=CC(OCC)=CC=C1NC1=CC=C(C(=C2C(=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C)C=2C(=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C)C=C1 RWVGQQGBQSJDQV-UHFFFAOYSA-M 0.000 description 1
- 230000007847 structural defect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/24—Nitrogen compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
- B01J37/10—Heat treatment in the presence of water, e.g. steam
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/20—Heavy metals or heavy metal compounds
- C02F2101/22—Chromium or chromium compounds, e.g. chromates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Hydrology & Water Resources (AREA)
- Water Supply & Treatment (AREA)
- Environmental & Geological Engineering (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Toxicology (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Catalysts (AREA)
- Physical Water Treatments (AREA)
Abstract
本发明公开了一种氮化碳/二硫化钼异质结压电光催化剂及其制备方法和应用,将一定配比的钼酸钠、硫脲和氮化碳溶于水形成混合溶液,调节溶液pH至0.1~2.0,搅拌均匀后,在180~220℃下反应20~30h,冷却、洗涤、干燥后,得到氮化碳/二硫化钼异质结催化剂;利用氮化碳/二硫化钼异质结在压电光催化条件下可以大大提高水体中六价铬去除的效率。此外,本发明的催化剂反应后可循环使用且易回收,对水体环境不会造成污染。
The present invention discloses a carbon nitride/molybdenum disulfide heterojunction piezoelectric photocatalyst and its preparation method and application. Sodium molybdate, thiourea and carbon nitride in a certain ratio are dissolved in water to form a mixed solution, the pH value of the solution is adjusted to 0.1-2.0, the solution is stirred evenly, and the mixture is reacted at 180-220°C for 20-30h. After cooling, washing and drying, a carbon nitride/molybdenum disulfide heterojunction catalyst is obtained. The carbon nitride/molybdenum disulfide heterojunction can greatly improve the efficiency of removing hexavalent chromium in water under piezoelectric photocatalytic conditions. In addition, the catalyst of the present invention can be recycled and easily recovered after the reaction, and will not cause pollution to the water environment.
Description
技术领域Technical Field
本发明涉及环境污染治理领域,尤其是涉及了一种氮化碳/二硫化钼异质结压电光催化剂及其制备方法和应用。The invention relates to the field of environmental pollution control, and in particular to a carbon nitride/molybdenum disulfide heterojunction piezoelectric photocatalyst and a preparation method and application thereof.
背景技术Background technique
光催化技术作为一种环境友好、高效的技术,在环境处理和能源交流方面具有世界性的前景,引起了研究者们的极大兴趣。性能理想的光催化剂是光催化技术推广应用的关键。然而,传统的单组分光催化剂对阳光利用率低,光电子和空穴对的复合率高,光催化活性低,极大地限制了光催化技术的实际应用。尽管目前的改性方法如掺杂、染料敏化、贵金属沉积、异质结构构建等都能促进光载流子的分离,但大多数光载流子在光催化反应前容易发生重组,这极大地限制了光催化性能的提高。因此,如何促进光电子与空穴的分离,同时抑制光电子与空穴的二次复合是环境污染物去除过程中关注的核心问题。在上述改性方法中,异质结结构作为研究最广泛的一种技术,在提高光催化性能方面具有稳定的性能和突出的实际应用前景,因而引起了研究者的极大兴趣。然而,异质结界面的结构缺陷容易诱发光生电荷载流子复合中心的形成,在一定程度上降低了电荷载流子分离效率。值得注意的是,压电/铁电材料极化形成的内置电场作为上光电子和空穴分离的内在驱动力,可以提高载流子的分离效率,提高光催化活性。此外,在静电屏蔽作用下,内置电场极易退出,导致自由载流子饱和,从而降低极化对载流子的分离效率。因此,在机械力的驱动下,由压电光催化剂组成的异质结所形成的内建电场的不断增强将极大地促进光生载流子的分离。As an environmentally friendly and efficient technology, photocatalysis has a global prospect in environmental treatment and energy exchange, which has aroused great interest among researchers. Photocatalysts with ideal performance are the key to the promotion and application of photocatalysis. However, traditional single-component photocatalysts have low sunlight utilization, high recombination rate of photoelectrons and holes, and low photocatalytic activity, which greatly limits the practical application of photocatalysis. Although current modification methods such as doping, dye sensitization, noble metal deposition, and heterostructure construction can promote the separation of photocarriers, most photocarriers are prone to recombination before photocatalytic reaction, which greatly limits the improvement of photocatalytic performance. Therefore, how to promote the separation of photoelectrons and holes and inhibit the secondary recombination of photoelectrons and holes is a core issue in the process of removing environmental pollutants. Among the above modification methods, heterojunction structure, as the most widely studied technology, has stable performance and outstanding practical application prospects in improving photocatalytic performance, and has aroused great interest among researchers. However, the structural defects of the heterojunction interface easily induce the formation of photogenerated charge carrier recombination centers, which reduces the charge carrier separation efficiency to a certain extent. It is worth noting that the built-in electric field formed by the polarization of piezoelectric/ferroelectric materials serves as the intrinsic driving force for the separation of photogenerated electrons and holes, which can improve the separation efficiency of carriers and enhance the photocatalytic activity. In addition, under the action of electrostatic screening, the built-in electric field is very easy to exit, resulting in the saturation of free carriers, thereby reducing the separation efficiency of polarization on carriers. Therefore, driven by mechanical force, the continuous enhancement of the built-in electric field formed by the heterojunction composed of piezoelectric photocatalysts will greatly promote the separation of photogenerated carriers.
二硫化钼是一种常见的压电催化材料,通过对其施加机械应力(例如超声、搅拌、风力、水流、摩擦和挤压等)使得二硫化钼内部发生极化,产生电子和空穴。Molybdenum disulfide is a common piezoelectric catalytic material. By applying mechanical stress (such as ultrasound, stirring, wind, water flow, friction and extrusion, etc.) to it, polarization occurs inside the molybdenum disulfide, generating electrons and holes.
发明内容Summary of the invention
为了克服上述现有光催化技术的缺点与不足,本发明的目的在于提供一种氮化碳/二硫化钼异质结压电光催化剂及其制备方法和应用。In order to overcome the above-mentioned shortcomings and deficiencies of the existing photocatalytic technology, the purpose of the present invention is to provide a carbon nitride/molybdenum disulfide heterojunction piezoelectric photocatalyst and its preparation method and application.
本发明针对二硫化钼的压电特性,利用常见的光催化剂氮化碳对二硫化钼进行改性,得到氮化碳/二硫化钼异质结。在超声条件下,将光照产生的光生电子和空穴有效的分离来直接或者间接的还原去除高毒性的六价铬,以此提高六价铬的去除效率。The present invention aims at the piezoelectric properties of molybdenum disulfide, and uses the common photocatalyst carbon nitride to modify molybdenum disulfide to obtain a carbon nitride/molybdenum disulfide heterojunction. Under ultrasonic conditions, the photogenerated electrons and holes generated by light are effectively separated to directly or indirectly reduce and remove highly toxic hexavalent chromium, thereby improving the removal efficiency of hexavalent chromium.
本发明的技术方案如下:The technical solution of the present invention is as follows:
一种氮化碳/二硫化钼异质结压电光催化剂的制备方法,包括如下步骤:A method for preparing a carbon nitride/molybdenum disulfide heterojunction piezoelectric photocatalyst comprises the following steps:
将钼酸钠、硫脲和氮化碳溶于水形成混合溶液,调节溶液pH至0.1~2.0,搅拌均匀后,在180~220℃下反应20~30h,冷却、洗涤、干燥后,得到氮化碳/二硫化钼异质结催化剂;所述钼酸钠、硫脲和氮化碳的物质的量之比为(3~15):(40~80):(0.5~3)。Sodium molybdate, thiourea and carbon nitride are dissolved in water to form a mixed solution, the pH value of the solution is adjusted to 0.1-2.0, and the solution is stirred evenly, and then reacted at 180-220° C. for 20-30 hours. After cooling, washing and drying, a carbon nitride/molybdenum disulfide heterojunction catalyst is obtained; the molar ratio of the sodium molybdate, thiourea and carbon nitride is (3-15):(40-80):(0.5-3).
优选地,所述钼酸钠、硫脲和氮化碳的物质的量之比为10±5:50±10:1;所述钼酸钠在溶液中的浓度为0.01~0.03mol/L。Preferably, the molar ratio of the sodium molybdate, thiourea and carbon nitride is 10±5:50±10:1; and the concentration of the sodium molybdate in the solution is 0.01-0.03 mol/L.
优选地,所述溶液pH值为0.5~1.0;所述搅拌时间为60±30分钟;所述反应温度为200±10℃;所述反应时间为24±2h;所述干燥温度为60±20℃;所述干燥时间为12±6h。Preferably, the solution pH value is 0.5-1.0; the stirring time is 60±30 minutes; the reaction temperature is 200±10°C; the reaction time is 24±2h; the drying temperature is 60±20°C; and the drying time is 12±6h.
优选地,所述碳化氮的制备方法为:将尿素溶于水中,调节pH至4~5,在60±20℃下干燥12±6h后,加热至530~570℃保温2~3h,冷却后得到氮化碳。Preferably, the method for preparing the carbonized nitrogen is as follows: dissolving urea in water, adjusting the pH to 4-5, drying at 60±20° C. for 12±6 hours, heating to 530-570° C. for 2-3 hours, and cooling to obtain carbon nitride.
优选地,所述尿素在水中的浓度为0.5~1g/mL;所述加热过程的加热速率为5~15℃/分钟。Preferably, the concentration of urea in water is 0.5-1 g/mL; and the heating rate of the heating process is 5-15° C./min.
上述方法制备得到的氮化碳/二硫化钼异质结压电光催化剂。The carbon nitride/molybdenum disulfide heterojunction piezoelectric photocatalyst prepared by the above method.
上述氮化碳/二硫化钼异质结压电光催化剂在去除六价铬中的应用。Application of the above carbon nitride/molybdenum disulfide heterojunction piezoelectric photocatalyst in removing hexavalent chromium.
优选地,所述应用包括如下步骤:Preferably, the application comprises the following steps:
1)将氮化碳/二硫化钼异质结催化剂加入到含六价铬的待处理水中搅拌;所述氮化碳/二硫化钼异质结催化剂在水中的浓度为0.3~1.5g/L;1) adding a carbon nitride/molybdenum disulfide heterojunction catalyst to the hexavalent chromium-containing water to be treated and stirring; the concentration of the carbon nitride/molybdenum disulfide heterojunction catalyst in the water is 0.3 to 1.5 g/L;
2)将步骤1)所得的待处理水进行超声和光照处理;所述超声处理的功率为50~150W;所述光照处理的强度为100~300mW/cm2。2) subjecting the water to be treated obtained in step 1) to ultrasonic and light treatment; the power of the ultrasonic treatment is 50-150W; the intensity of the light treatment is 100-300mW/cm 2 .
优选地,所述氮化碳/二硫化钼异质结催化剂在水中的浓度为0.5~1.0g/L;所述超声处理的功率为90~120W;所述光照处理的强度为175~225mW/cm2。Preferably, the concentration of the carbon nitride/molybdenum disulfide heterojunction catalyst in water is 0.5-1.0 g/L; the power of the ultrasonic treatment is 90-120 W; and the intensity of the light treatment is 175-225 mW/cm 2 .
优选地,所述超声处理使用超声波清洗机;所述光照处理的光源为氙灯或太阳灯。Preferably, the ultrasonic treatment uses an ultrasonic cleaning machine; the light source of the light treatment is a xenon lamp or a sun lamp.
本发明的原理为,针对氮化碳/二硫化钼的优异压电光催化性能,压电极化形成的内建电场能够使光生载流子定向移动,促进光生电子空穴对的分离以还原六价铬,达到去除高毒性六价铬的目的。The principle of the present invention is that, based on the excellent piezoelectric photocatalytic performance of carbon nitride/molybdenum disulfide, the built-in electric field formed by piezoelectric polarization can make the photogenerated carriers move in a directional manner, promote the separation of photogenerated electron-hole pairs to reduce hexavalent chromium, and achieve the purpose of removing highly toxic hexavalent chromium.
本发明与现有技术相比,具有如下优点和有益效果:Compared with the prior art, the present invention has the following advantages and beneficial effects:
本发明制备得到的氮化碳/二硫化钼催化剂具有明显的压电光催化性能,良好的稳定性和优异的催化性能,可以大大提高光生电子空穴对的分离效率,该催化剂在压电光催化条件下可大大提高水体中六价铬废水去除的效率。此外,本发明的催化剂反应后可循环使用且易回收,对水体环境不会造成污染。The carbon nitride/molybdenum disulfide catalyst prepared by the present invention has obvious piezoelectric photocatalytic performance, good stability and excellent catalytic performance, can greatly improve the separation efficiency of photogenerated electron-hole pairs, and the catalyst can greatly improve the efficiency of removing hexavalent chromium wastewater in water under piezoelectric photocatalytic conditions. In addition, the catalyst of the present invention can be recycled and easily recovered after the reaction, and will not cause pollution to the water environment.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是本发明实施例1中制备得到的氮化碳/二硫化钼TEM图和XRD图。FIG. 1 is a TEM image and an XRD image of carbon nitride/molybdenum disulfide prepared in Example 1 of the present invention.
图2A是本发明实施例2中不同比例氮化碳存在下氮化碳/二硫化钼异质结在可见光照射下去除六价铬的性能;图2B是本发明实施例2中不同比例氮化碳存在下氮化碳/二硫化钼异质结在超声振动下去除六价铬的性能。Figure 2A shows the performance of carbon nitride/molybdenum disulfide heterojunction in removing hexavalent chromium under visible light irradiation in the presence of different proportions of carbon nitride in Example 2 of the present invention; Figure 2B shows the performance of carbon nitride/molybdenum disulfide heterojunction in removing hexavalent chromium under ultrasonic vibration in the presence of different proportions of carbon nitride in Example 2 of the present invention.
图3是本发明实施例3中不同浓度氮化碳/二硫化钼异质结压电光催化去除六价铬的效果图。FIG. 3 is a diagram showing the effect of removing hexavalent chromium by piezoelectric photocatalysis of carbon nitride/molybdenum disulfide heterojunction with different concentrations in Example 3 of the present invention.
图4是本发明实施例4中不同样品压电光催化去除六价铬的效果图。FIG. 4 is a diagram showing the effect of piezoelectric photocatalysis on the removal of hexavalent chromium by different samples in Example 4 of the present invention.
图5是本发明实施例5中不同超声功率下氮化碳/二硫化钼异质结压电光催化去除六价铬的效果图。FIG5 is a diagram showing the effect of carbon nitride/molybdenum disulfide heterojunction piezoelectric photocatalysis on removal of hexavalent chromium at different ultrasonic powers in Example 5 of the present invention.
图6是本发明实施例6中不同光照强度下氮化碳/二硫化钼异质结压电光催化去除六价铬的效果图。FIG6 is a diagram showing the effect of carbon nitride/molybdenum disulfide heterojunction piezoelectric photocatalytic removal of hexavalent chromium under different light intensities in Example 6 of the present invention.
图7是本发明实施例7中氮化碳/二硫化钼在真实废水中压电光催化去除六价铬的效果图。FIG. 7 is a diagram showing the effect of piezoelectric photocatalytic removal of hexavalent chromium by carbon nitride/molybdenum disulfide in real wastewater in Example 7 of the present invention.
图8是本发明实施例8中氮化碳/二硫化钼压电光催化去除六价铬的循环性能测试图。FIG8 is a test graph of the cycle performance of carbon nitride/molybdenum disulfide piezoelectric photocatalytic removal of hexavalent chromium in Example 8 of the present invention.
具体实施方式Detailed ways
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。The present invention is further described in detail below in conjunction with embodiments and drawings, but the embodiments of the present invention are not limited thereto.
实施例中所用试剂如无特殊说明均可从市场常规购得。Unless otherwise specified, the reagents used in the examples can be purchased from the market.
实施例1Example 1
本实例提供了一种氮化碳/二硫化钼异质结催化剂的制备方法,具体步骤如下:This example provides a method for preparing a carbon nitride/molybdenum disulfide heterojunction catalyst, and the specific steps are as follows:
1)首先利用参考文献(DOI:10.1016/j.apcatb.2016.10.012)以尿素为原料制备氮化碳纳米材料,具体步骤为:将10g尿素溶解于15mL去离子水中,然后用盐酸调节pH至4~5,之后将尿素溶液在60℃条件下干燥12小时,然后将样品转移至带盖的坩埚中,最后将坩埚在马弗炉中以10℃/分钟的加热速率加热至550℃,并在此温度下保持2小时,冷却后得到氮化碳(C3N4)样品。1) First, carbon nitride nanomaterials were prepared using urea as raw material using reference (DOI: 10.1016/j.apcatb.2016.10.012). The specific steps were as follows: 10 g of urea was dissolved in 15 mL of deionized water, and then the pH was adjusted to 4-5 with hydrochloric acid. The urea solution was then dried at 60 °C for 12 hours. The sample was then transferred to a crucible with a lid. Finally, the crucible was heated to 550 °C at a heating rate of 10 °C/min in a muffle furnace and maintained at this temperature for 2 hours. After cooling, a carbon nitride (C 3 N 4 ) sample was obtained.
2)分别称取0.242g二水合钼酸钠、0.381g硫脲和0.009g氮化碳溶于80mL的去离子水,然后用1M的盐酸溶液调节溶液的pH至0.5,搅拌60分钟后将溶液转移至反应釜中,并在200℃下反应24小时。然后待反应釜冷却至室温,将反应物用水和乙醇各洗涤三次,并在60℃条件下干燥12小时,最终得到产物氮化碳/二硫化钼异质结。2) Weigh 0.242g sodium molybdate dihydrate, 0.381g thiourea and 0.009g carbon nitride respectively and dissolve them in 80mL deionized water, then adjust the pH of the solution to 0.5 with 1M hydrochloric acid solution, stir for 60 minutes, transfer the solution to a reactor, and react at 200°C for 24 hours. After the reactor is cooled to room temperature, wash the reactants with water and ethanol three times each, and dry them at 60°C for 12 hours to finally obtain the product carbon nitride/molybdenum disulfide heterojunction.
本发明实施例中制备得到的氮化碳/二硫化钼异质结催化剂的TEM图和XRD图如图1所示。证明实施例中所述的方法成功制备了氮化碳/二硫化钼异质结。The TEM image and XRD image of the carbon nitride/molybdenum disulfide heterojunction catalyst prepared in the embodiment of the present invention are shown in Figure 1. It is proved that the method described in the embodiment successfully prepared the carbon nitride/molybdenum disulfide heterojunction.
实施例2Example 2
本实施例与实施例1的不同之处在于:在不改变钼酸钠和硫脲投加量的情况下,改变氮化碳投加量分别为0.0045、0.009、0.018、0.027g制备了占钼原子物质的量5%、10%、20%和30%的氮化碳/二硫化钼异质结,选取六价铬作为污染物的代表,进行氮化碳/二硫化钼异质结压电光催化去除六价铬的实验。The difference between this embodiment and embodiment 1 is that: without changing the dosage of sodium molybdate and thiourea, the dosage of carbon nitride is changed to 0.0045, 0.009, 0.018, and 0.027 g, respectively, to prepare carbon nitride/molybdenum disulfide heterojunctions with a molybdenum atomic substance content of 5%, 10%, 20%, and 30%, respectively, and hexavalent chromium is selected as a representative of pollutants, and an experiment is carried out on the piezoelectric photocatalytic removal of hexavalent chromium by carbon nitride/molybdenum disulfide heterojunction.
实验步骤如下:The experimental steps are as follows:
配制50mg/L的六价铬溶液40mL于烧杯中。称取20mg氮化碳/二硫化钼异质结粉末加入六价铬溶液中,搅拌使六价铬溶液的吸附达到平衡。将混合溶液置于超声波清洗机中,超声开始反应。其中,氮化碳/二硫化钼异质结浓度为0.5g/L。Prepare 40 mL of 50 mg/L hexavalent chromium solution in a beaker. Weigh 20 mg of carbon nitride/molybdenum disulfide heterojunction powder and add it to the hexavalent chromium solution, stirring until the adsorption of the hexavalent chromium solution reaches equilibrium. Place the mixed solution in an ultrasonic cleaner and start the reaction with ultrasound. The concentration of carbon nitride/molybdenum disulfide heterojunction is 0.5 g/L.
本发明实例中不同比例氮化碳存在下氮化碳/二硫化钼异质结在可见光照射和超声振动下去除六价铬的性能如图2所示。对于含量氮化碳100%和0的氮化碳/二硫化钼异质结,光催化和压电催化反应20分钟后,六价铬的去除率分别为32.2%和41.3%及9.27%和44.3%。当氮化碳与二硫化钼复合后,随着氮化碳复合含量的逐渐增加,光催化和压电催化六价铬的去除效率表现出先增加后降低的现象,当氮化碳占钼原子物质的量的含量为10%时,光催化和压电催化六价铬的去除效率达到最大。这一结果验证了本发明中制备氮化碳/二硫化钼异质结的优选地钼酸钠、硫脲和氮化碳的物质的量之比为:10:50:1。The performance of the carbon nitride/molybdenum disulfide heterojunction in removing hexavalent chromium under visible light irradiation and ultrasonic vibration in the presence of different proportions of carbon nitride in the examples of the present invention is shown in Figure 2. For the carbon nitride/molybdenum disulfide heterojunction with 100% and 0 carbon nitride content, the removal rates of hexavalent chromium are 32.2% and 41.3% and 9.27% and 44.3% respectively after 20 minutes of photocatalytic and piezoelectric catalytic reactions. When carbon nitride is compounded with molybdenum disulfide, as the composite content of carbon nitride gradually increases, the removal efficiency of hexavalent chromium by photocatalysis and piezoelectric catalysis shows a phenomenon of first increasing and then decreasing. When the content of carbon nitride in the amount of molybdenum atomic substance is 10%, the removal efficiency of hexavalent chromium by photocatalysis and piezoelectric catalysis reaches the maximum. This result verifies that the preferred ratio of the amount of sodium molybdate, thiourea and carbon nitride for preparing the carbon nitride/molybdenum disulfide heterojunction in the present invention is: 10:50:1.
实施例3Example 3
本实施例采用实施例1制备的氮化碳/二硫化钼异质结,选取六价铬作为污染物的代表,进行不同浓度氮化碳/二硫化钼异质结压电光催化去除六价铬的实验。This example uses the carbon nitride/molybdenum disulfide heterojunction prepared in Example 1, selects hexavalent chromium as a representative of pollutants, and conducts experiments on piezoelectric photocatalytic removal of hexavalent chromium by carbon nitride/molybdenum disulfide heterojunctions with different concentrations.
实验步骤如下:The experimental steps are as follows:
配制50mg/L的六价铬溶液40mL于烧杯中。分别称取4、10、20和40mg氮化碳/二硫化钼异质结粉末加入六价铬溶液中,搅拌使六价铬溶液的吸附达到平衡。将混合溶液置于超声波清洗机中,超声开始反应。Prepare 40 mL of 50 mg/L hexavalent chromium solution in a beaker. Weigh 4, 10, 20 and 40 mg of carbon nitride/molybdenum disulfide heterojunction powder respectively and add them to the hexavalent chromium solution, stirring until the adsorption of the hexavalent chromium solution reaches equilibrium. Place the mixed solution in an ultrasonic cleaner to start the reaction by ultrasound.
本发明实施例中不同浓度氮化碳/二硫化钼异质结压电光催化去除六价铬的效果图如图3所示,从图中看出,随着氮化碳/二硫化钼异质结浓度的不断增加,六价铬的去除效率也在不断提高,当异质结浓度达到0.5g/L时,六价铬的去除效率为99.8%,而当异质结浓度达到1g/L时,六价铬的去除效率为100%。出于实际应用中的经济效益考虑,这一结果验证了本发明内容中氮化碳/二硫化钼异质结去除六价铬的优选浓度为0.5g/L。The effect diagram of the piezoelectric photocatalytic removal of hexavalent chromium by carbon nitride/molybdenum disulfide heterojunction with different concentrations in the embodiment of the present invention is shown in Figure 3. It can be seen from the figure that with the continuous increase of the concentration of carbon nitride/molybdenum disulfide heterojunction, the removal efficiency of hexavalent chromium is also continuously improved. When the heterojunction concentration reaches 0.5g/L, the removal efficiency of hexavalent chromium is 99.8%, and when the heterojunction concentration reaches 1g/L, the removal efficiency of hexavalent chromium is 100%. Considering the economic benefits in practical applications, this result verifies that the preferred concentration of carbon nitride/molybdenum disulfide heterojunction for removing hexavalent chromium in the content of the present invention is 0.5g/L.
实施例4Example 4
本实施例采用实施例1制备的氮化碳/二硫化钼异质结,选取六价铬作为污染物的代表,进行不同时间氮化碳/二硫化钼异质结压电光催化去除六价铬的实验。This example uses the carbon nitride/molybdenum disulfide heterojunction prepared in Example 1, selects hexavalent chromium as a representative of pollutants, and conducts experiments on the piezoelectric photocatalytic removal of hexavalent chromium by the carbon nitride/molybdenum disulfide heterojunction at different times.
实验步骤如下:The experimental steps are as follows:
配制50mg/L的六价铬溶液40mL于烧杯中。称取20mg氮化碳/二硫化钼异质结粉末加入六价铬溶液中,搅拌使六价铬溶液的吸附达到平衡。将混合溶液置于超声波清洗机中,超声开始反应。其中,氮化碳/二硫化钼异质结的浓度为0.5g/L。Prepare 40 mL of 50 mg/L hexavalent chromium solution in a beaker. Weigh 20 mg of carbon nitride/molybdenum disulfide heterojunction powder and add it to the hexavalent chromium solution, stirring until the adsorption of the hexavalent chromium solution reaches equilibrium. Place the mixed solution in an ultrasonic cleaning machine and start the reaction by ultrasound. The concentration of carbon nitride/molybdenum disulfide heterojunction is 0.5 g/L.
本发明实例中氮化碳/二硫化钼异质结压电光催化去除六价铬的效果如图4所示,从图中可以看出,氮化碳/二硫化钼异质结对六价铬几乎没有吸附,在30分钟内吸附小于5%。单独超声、光照和压电光催化,在20分钟内没有六价铬被还原。氮化碳和二硫化钼单独压电,在20分钟内可以分别去除37.5%和62.7%的六价铬,相比之下,氮化碳/二硫化钼异质结压电光催化对六价铬的还原去除表现出优异的效果,在20分钟内的去除率达到了99.8%。结果表明氮化碳/二硫化钼异质结具有出色的载流子分离效率,可以显著提高六价铬的还原去除效率。The effect of carbon nitride/molybdenum disulfide heterojunction piezoelectric photocatalysis on the removal of hexavalent chromium in the example of the present invention is shown in Figure 4. It can be seen from the figure that the carbon nitride/molybdenum disulfide heterojunction has almost no adsorption of hexavalent chromium, and the adsorption is less than 5% within 30 minutes. No hexavalent chromium was reduced within 20 minutes by ultrasound, light irradiation and piezoelectric photocatalysis alone. Carbon nitride and molybdenum disulfide can remove 37.5% and 62.7% of hexavalent chromium respectively within 20 minutes by piezoelectric alone. In contrast, the carbon nitride/molybdenum disulfide heterojunction piezoelectric photocatalysis shows excellent effect on the reduction and removal of hexavalent chromium, and the removal rate within 20 minutes reaches 99.8%. The results show that the carbon nitride/molybdenum disulfide heterojunction has excellent carrier separation efficiency and can significantly improve the reduction and removal efficiency of hexavalent chromium.
实施例5Example 5
本实施例采用实施例1制备的氮化碳/二硫化钼异质结,选取六价铬作为污染物的代表,进行不同超声功率下氮化碳/二硫化钼异质结压电光催化去除六价铬的实验。This example uses the carbon nitride/molybdenum disulfide heterojunction prepared in Example 1, selects hexavalent chromium as a representative of pollutants, and conducts experiments on the piezoelectric photocatalytic removal of hexavalent chromium by the carbon nitride/molybdenum disulfide heterojunction under different ultrasonic powers.
实验步骤如下:The experimental steps are as follows:
配制50mg/L的六价铬溶液40mL于烧杯中。称取20mg氮化碳/二硫化钼异质结粉末加入六价铬溶液中,搅拌使六价铬溶液的吸附达到平衡。将混合溶液置于超声波清洗机中,超声波清洗机功率分别调节至25、50、75和100W开始反应。其中,氮化碳/二硫化钼异质结的浓度为0.5g/L。Prepare 40 mL of 50 mg/L hexavalent chromium solution in a beaker. Weigh 20 mg of carbon nitride/molybdenum disulfide heterojunction powder and add it to the hexavalent chromium solution, stirring until the adsorption of the hexavalent chromium solution reaches equilibrium. Place the mixed solution in an ultrasonic cleaner, and adjust the power of the ultrasonic cleaner to 25, 50, 75 and 100 W to start the reaction. Among them, the concentration of carbon nitride/molybdenum disulfide heterojunction is 0.5 g/L.
本发明实例中不同超声功率下氮化碳/二硫化钼异质结压电光催化去除六价铬的效果如图5所示,随着超声波功率的不断增大氮化碳/二硫化钼异质结压电光催化去除六价铬的性能也不断提高,当超声波功率增大到100W时六价铬的去除效率接近100%,所以验证了本发明内容中氮化碳/二硫化钼异质结去除六价铬的优选地超声波清洗机的功率为100W。The effect of removing hexavalent chromium by piezoelectric photocatalysis of carbon nitride/molybdenum disulfide heterojunction under different ultrasonic powers in the examples of the present invention is shown in Figure 5. As the ultrasonic power continues to increase, the performance of removing hexavalent chromium by piezoelectric photocatalysis of carbon nitride/molybdenum disulfide heterojunction is also continuously improved. When the ultrasonic power increases to 100W, the removal efficiency of hexavalent chromium is close to 100%, so it is verified that the preferred power of the ultrasonic cleaning machine for removing hexavalent chromium by carbon nitride/molybdenum disulfide heterojunction in the content of the present invention is 100W.
实施例6Example 6
本实施例采用实施例1制备的氮化碳/二硫化钼异质结,选取六价铬作为污染物的代表,进行不同光照强度下氮化碳/二硫化钼异质结压电光催化去除六价铬的实验。This example uses the carbon nitride/molybdenum disulfide heterojunction prepared in Example 1, selects hexavalent chromium as a representative of pollutants, and conducts experiments on the piezoelectric photocatalytic removal of hexavalent chromium by the carbon nitride/molybdenum disulfide heterojunction under different light intensities.
实验步骤如下:The experimental steps are as follows:
配制50mg/L的六价铬溶液40mL于烧杯中。称取20mg氮化碳/二硫化钼异质结粉末加入六价铬溶液中,搅拌使六价铬溶液的吸附达到平衡。将混合溶液置于超声波清洗机中,分别调节光照强度分别至50、100、150和200mW/cm2开始反应。其中,氮化碳/二硫化钼异质结的浓度为0.5g/L。Prepare 40 mL of 50 mg/L hexavalent chromium solution in a beaker. Weigh 20 mg of carbon nitride/molybdenum disulfide heterojunction powder and add it to the hexavalent chromium solution, stirring until the adsorption of the hexavalent chromium solution reaches equilibrium. Place the mixed solution in an ultrasonic cleaner and adjust the light intensity to 50, 100, 150 and 200 mW/ cm2 respectively to start the reaction. Among them, the concentration of carbon nitride/molybdenum disulfide heterojunction is 0.5 g/L.
本发明实例中不同光照强度下氮化碳/二硫化钼异质结压电光催化去除六价铬的效果如图6所示,随着光照强度的不断增大氮化碳/二硫化钼异质结压电光催化去除六价铬的性能也不断提高,当光照强度增大到200mW/cm2时六价铬的去除效率接近100%,所以验证了本发明内容中氮化碳/二硫化钼异质结去除六价铬的优选地光照强度为200mW/cm2。The effect of removing hexavalent chromium by carbon nitride/molybdenum disulfide heterojunction piezoelectric photocatalysis under different light intensities in the examples of the present invention is shown in FIG6 . As the light intensity continues to increase, the performance of removing hexavalent chromium by carbon nitride/molybdenum disulfide heterojunction piezoelectric photocatalysis continues to improve. When the light intensity increases to 200 mW/cm 2 , the removal efficiency of hexavalent chromium is close to 100%. Therefore, it is verified that the preferred light intensity for removing hexavalent chromium by carbon nitride/molybdenum disulfide heterojunction in the content of the present invention is 200 mW/cm 2 .
实施例7Example 7
本实施例采用实施例1制备的氮化碳/二硫化钼异质结,选取六价铬作为污染物的代表,氮化碳/二硫化钼异质结压电光催化去除真实水体中的六价铬的实验。This example uses the carbon nitride/molybdenum disulfide heterojunction prepared in Example 1, selects hexavalent chromium as a representative of pollutants, and conducts an experiment on removing hexavalent chromium in real water by piezoelectric photocatalysis using the carbon nitride/molybdenum disulfide heterojunction.
实验步骤如下:The experimental steps are as follows:
分别用雨水、土壤消解液和去离子水配制50mg/L的六价铬溶液40mL于5个烧杯中。称取5份20mg氮化碳/二硫化钼异质结粉末加入六价铬溶液中,搅拌使六价铬的吸附达到平衡,开始反应。其中,氮化碳/二硫化钼异质结浓度为0.5g/L。Prepare 40 mL of 50 mg/L hexavalent chromium solution in 5 beakers using rainwater, soil digestion solution and deionized water. Weigh 5 portions of 20 mg carbon nitride/molybdenum disulfide heterojunction powder and add them to the hexavalent chromium solution. Stir until the adsorption of hexavalent chromium reaches equilibrium and start the reaction. The concentration of carbon nitride/molybdenum disulfide heterojunction is 0.5 g/L.
图7是本发明实施例中氮化碳/二硫化钼异质结在真实废水中压电光催化去除六价铬的效果图。实验表明,20分钟可以有效去除土壤、雨水和去离子水中的六价铬。本实例说明,氮化碳/二硫化钼异质结在不同的水体环境下都可以高效的压电光催化去除六价铬,这为工业上治理六价铬污染提供了一种可行性方案。Figure 7 is a diagram showing the effect of piezoelectric photocatalysis of carbon nitride/molybdenum disulfide heterojunction in real wastewater in an embodiment of the present invention to remove hexavalent chromium. Experiments show that hexavalent chromium can be effectively removed from soil, rainwater and deionized water in 20 minutes. This example shows that carbon nitride/molybdenum disulfide heterojunction can efficiently remove hexavalent chromium by piezoelectric photocatalysis in different water environments, which provides a feasible solution for industrial treatment of hexavalent chromium pollution.
实施例8Example 8
本实施例采用实施例1制备的氮化碳/二硫化钼异质结,选取六价铬作为污染物的代表,进行催化剂循环利用的实验。This example uses the carbon nitride/molybdenum disulfide heterojunction prepared in Example 1, selects hexavalent chromium as a representative of pollutants, and conducts an experiment on catalyst recycling.
实验步骤如下:The experimental steps are as follows:
配制50mg/L的六价铬溶液40mL于烧杯中。称取20mg氮化碳/二硫化钼异质结粉末加入六价铬溶液中,搅拌使六价铬溶液的吸附达到平衡。将混合溶液置于超声波清洗机中,100W超声和200mW/cm2光照下处理20min。反应结束后,剩余溶液在高速离心机中离心15min,转速为12000转,回收催化剂,再将此催化剂加入50mg/L的六价铬溶液40mL烧杯中,再重复上述六价铬去除的步骤实验,如此重复六次。Prepare 40mL of 50mg/L hexavalent chromium solution in a beaker. Weigh 20mg of carbon nitride/molybdenum disulfide heterojunction powder and add it to the hexavalent chromium solution, stirring to make the adsorption of the hexavalent chromium solution reach equilibrium. Place the mixed solution in an ultrasonic cleaner and treat it under 100W ultrasound and 200mW/ cm2 light for 20min. After the reaction is completed, the remaining solution is centrifuged in a high-speed centrifuge for 15min at a speed of 12,000 rpm, the catalyst is recovered, and the catalyst is added to a 40mL beaker of 50mg/L hexavalent chromium solution, and the above hexavalent chromium removal steps are repeated, and this is repeated six times.
图8是本发明实施例中氮化碳/二硫化钼异质结压电光催化去除六价铬中催化剂的循环利用的效果图。实验表明,氮化碳/二硫化钼异质结经历六次循环使用后,20分钟内对六价铬的去除效率从99.8%降到94.9%,性能仅降低了5%左右。本实例说明,氮化碳/二硫化钼异质结压电光催化去除六价铬在实际应用中具有可循环使用性和性质稳定性。Figure 8 is a diagram showing the effect of recycling the catalyst in the piezoelectric photocatalytic removal of hexavalent chromium by carbon nitride/molybdenum disulfide heterojunction in an embodiment of the present invention. The experiment shows that after the carbon nitride/molybdenum disulfide heterojunction has been recycled for six times, the removal efficiency of hexavalent chromium in 20 minutes has dropped from 99.8% to 94.9%, and the performance has only decreased by about 5%. This example shows that the piezoelectric photocatalytic removal of hexavalent chromium by carbon nitride/molybdenum disulfide heterojunction has recyclability and stability in properties in practical applications.
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above embodiments are preferred implementation modes of the present invention, but the implementation modes of the present invention are not limited to the above embodiments. Any other changes, modifications, substitutions, combinations, and simplifications that do not deviate from the spirit and principles of the present invention should be equivalent replacement methods and are included in the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311180041.9A CN117299172B (en) | 2023-09-13 | 2023-09-13 | A carbon nitride/molybdenum disulfide heterojunction piezoelectric photocatalyst and its preparation method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311180041.9A CN117299172B (en) | 2023-09-13 | 2023-09-13 | A carbon nitride/molybdenum disulfide heterojunction piezoelectric photocatalyst and its preparation method and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117299172A CN117299172A (en) | 2023-12-29 |
CN117299172B true CN117299172B (en) | 2024-05-07 |
Family
ID=89285729
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311180041.9A Active CN117299172B (en) | 2023-09-13 | 2023-09-13 | A carbon nitride/molybdenum disulfide heterojunction piezoelectric photocatalyst and its preparation method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117299172B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108636436A (en) * | 2018-04-28 | 2018-10-12 | 西安工程大学 | Effectively construct the preparation method of Z-type ternary heterojunction photochemical catalyst |
CN108889324A (en) * | 2018-06-21 | 2018-11-27 | 福建江夏学院 | A kind of synthetic method of molybdenum disulfide-carbonitride optic catalytic composite material |
CN108927200A (en) * | 2018-07-20 | 2018-12-04 | 信阳师范学院 | A kind of carbonitride/molybdenum sulfide heterojunction nanometer material and preparation method thereof |
CN113680366A (en) * | 2021-08-26 | 2021-11-23 | 上海电力大学 | A kind of graphitic carbon nitride based composite photocatalyst and preparation method and application thereof |
EP3932548A1 (en) * | 2020-06-30 | 2022-01-05 | CY Cergy Paris Université | Tio2 based photocatalyst, processes for its preparation and use thereof for degradation of biomass |
-
2023
- 2023-09-13 CN CN202311180041.9A patent/CN117299172B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108636436A (en) * | 2018-04-28 | 2018-10-12 | 西安工程大学 | Effectively construct the preparation method of Z-type ternary heterojunction photochemical catalyst |
CN108889324A (en) * | 2018-06-21 | 2018-11-27 | 福建江夏学院 | A kind of synthetic method of molybdenum disulfide-carbonitride optic catalytic composite material |
CN108927200A (en) * | 2018-07-20 | 2018-12-04 | 信阳师范学院 | A kind of carbonitride/molybdenum sulfide heterojunction nanometer material and preparation method thereof |
EP3932548A1 (en) * | 2020-06-30 | 2022-01-05 | CY Cergy Paris Université | Tio2 based photocatalyst, processes for its preparation and use thereof for degradation of biomass |
CN113680366A (en) * | 2021-08-26 | 2021-11-23 | 上海电力大学 | A kind of graphitic carbon nitride based composite photocatalyst and preparation method and application thereof |
Non-Patent Citations (3)
Title |
---|
"g-C3N4-MoS2的制备及其对盐酸四环素的催化降解性能";尚贞晓等;《化工环保》;20220221;第42卷(第2期);第190-194页 * |
"Low-frequency bibration induced piezoelectric boost to photocatalytic hydrogen evolution through 2D-2D-stacked MoS2-carbon nitride";Srinivaas Masimukku et al.;《Applied Surface Science》;20221220;文献号:614,第1-9页 * |
"Piezo-photocatalytic reduction of toxic Cr(VI) irons based on MoS2 nanoflowers";Xiu Li et al.;《Materials Letters》;20221126;文献号:333,第1-4页 * |
Also Published As
Publication number | Publication date |
---|---|
CN117299172A (en) | 2023-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113663693B (en) | A preparation method of indium zinc sulfide-titanium dioxide composite material and its application in producing hydrogen peroxide for wastewater treatment | |
CN101862662B (en) | Multi-doped half-load type Fenton-assisting titanium dioxide photochemical catalyst as well as preparation method and application method | |
CN110237834B (en) | Preparation method of carbon quantum dot/zinc oxide visible-light-driven photocatalyst | |
CN112495401B (en) | A Mo-doped MoO3@ZnIn2S4 Z system photocatalyst and its preparation method and application | |
CN104801328B (en) | Method for preparing TiO2/g-C3N4 composite photocatalyst at low temperature | |
CN108607588A (en) | A kind of preparation method of La doped class graphite phase carbon nitride catalysis material | |
CN103433060A (en) | Core-shell type TiO2/ZnIn2S4 composite photocatalyst and its preparation method and application | |
CN108940255A (en) | A kind of zinc oxide catalysis material and the preparation method and application thereof | |
CN110252370A (en) | A kind of preparation method and application of two-dimensional ZnO/g-C3N4 composite photocatalyst | |
CN107824207A (en) | A kind of preparation method for the silver phosphate composite photocatalyst for handling water body Malachite Green | |
CN113181900A (en) | Bi2WO6Protonated g-C3N4Nanosheet heterojunction photocatalyst and preparation method and application thereof | |
CN111841530A (en) | Catalyst for promoting water photolysis to produce hydrogen and preparation method thereof | |
CN117299172B (en) | A carbon nitride/molybdenum disulfide heterojunction piezoelectric photocatalyst and its preparation method and application | |
CN113058601B (en) | Preparation method and application of ternary composite catalyst for photocatalytic water splitting to hydrogen production | |
CN103934014B (en) | The preparation method of N doping indium sesquioxide nanometer rods/graphene oxide composite photo-catalyst | |
CN110064426A (en) | A kind of LixMoS2/CdS/g-C3N4The preparation and its decomposition aquatic products hydrogen application of composite photo-catalyst | |
CN118416907A (en) | Preparation and application of a supported photo-Fenton catalyst | |
CN106492865B (en) | A method of C3N4/CaTi2O4 (OH) 2 composite material is prepared using solvent-thermal method | |
CN105148903B (en) | A kind of Bi2WxMo1‑XO6Solid solution catalysis material photo catalytic reduction CO under visible light conditions2The method for preparing methanol and ethanol | |
CN110586149B (en) | Bismuth molybdate/titanium carbide heterojunction two-dimensional photocatalytic material and preparation method and application thereof | |
CN110252349A (en) | A preparation method of CdS@MoS2 composite photocatalyst prepared by in-situ photodeposition | |
CN106345509A (en) | A method for preparing C3N4/CaTi2O5 composite material by solvothermal method | |
CN110102326A (en) | Modified carbonitride composite photocatalyst material of the supported porous charcoal of a kind of nanogold and the preparation method and application thereof | |
CN113578296B (en) | A kind of lamellar gray TiO2 photocatalyst material and preparation method thereof | |
CN109939672A (en) | A kind of graphene quantum dots modified oxygen vacancy bismuth tungstate composite photocatalyst and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |