CN117288735A - 一种核壳式sers基底的优化制备 - Google Patents

一种核壳式sers基底的优化制备 Download PDF

Info

Publication number
CN117288735A
CN117288735A CN202210677520.0A CN202210677520A CN117288735A CN 117288735 A CN117288735 A CN 117288735A CN 202210677520 A CN202210677520 A CN 202210677520A CN 117288735 A CN117288735 A CN 117288735A
Authority
CN
China
Prior art keywords
core
shell
sers
nano
sers substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210677520.0A
Other languages
English (en)
Inventor
邸志刚
周昊
贾春荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China University of Science and Technology
Original Assignee
North China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China University of Science and Technology filed Critical North China University of Science and Technology
Priority to CN202210677520.0A priority Critical patent/CN117288735A/zh
Publication of CN117288735A publication Critical patent/CN117288735A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Composite Materials (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明涉及一种核壳式SERS基底的优化设计方法,用于提升SERS增强效应,属于光纤传感技术领域。具体实验包含如下步骤:采用有限元法,设定SERS基底的纳米结构,在Ag核结构表面附着Au金属膜层,使Au金属包裹Ag金属核,构建核壳结构的SERS基底;确定仿真实验的初始条件,Au金属层的厚度、完美匹配曾具体边界条件,以及Ag核的半径;依次改变Auc壳的厚度、Ag核的半径以及散射光波的波长,利用COMSOL软件计算SERS基底的电场分布,并根据电场强度计算最终的SERS增强因子,选择增强效果较好的参数作为实验优化基底。本发明提升了信号的增强效果,根据场强变化确定最佳的SERS增强因子,从而得到一种高增益SERS新型基底,用于物质检测时,可得到更完善的检测效果。

Description

一种核壳式SERS基底的优化制备
技术领域
本发明涉及一种核壳式表面增强拉曼散射基底的优化设计,属于光纤传感技术领域。
背景技术
纳米技术的发展,为SERS基底的优化提供了新的方案。纳米材料因其灵活可变的特性,在SERS基底的研究中可根据不同纳米粒径尺寸、外形特征开展更为创新的研究。核壳式SERS基底由两种或多种不同的材料组成,所以核壳式SERS基底不仅具有多种单一型材料的特性,而且两种不同材料接触面上会产生局域表面等离子共振,使SERS效应增强。拉曼光谱技术是近年来国内外研究的热点课题,应用领域十分广泛,如药物检测、食品检测和化工环境等方面。表面增强拉曼光谱不仅能像拉曼光谱一样给出分子特征谱线,更具有极高的检测灵敏度,甚至能达到单分子检测水平。随着纳米技术和材料科学的发展,SERS技术得到了迅速的发展。表面增强拉曼散射(Surface Enhanced Raman Scattering ,SERS)是1974年Fleischmann等在粗糙银电极表面检测吡啶分子的实验中观察到拉曼信号增强的现象,但只将其增强效果归咎于增加表面积而增加分子信号,SERS的研究中,基底制备是一个尤为重要的环节。进行物质检测时,高质量的基底才能保障更完善的检测效果。因此,基底的选取十分关键。
SERS基底的优化可在三个方面实现:可重复性、兼容性和增益性。食品中含有的重金属元素对人的身体健康伤害巨大,过量摄入重金属会导致人中毒。目前对于重金属常规检测方法主要有: 原子荧光光谱、石墨炉原子吸收光谱法、电感耦合等离子体光谱法等。但这些方法对样品处理过程复杂,并不能够快速地对重金属及有害物质进行定量及定性检测且检测不灵敏、检测成本高。表面增强拉曼光谱具有检测快速、操作简单、设备简单、灵敏度高、特异性强、高通量、低成本等优点,可以克服检测中遇到的很多困难,近期逐渐成为研究的热点课题。而核壳结构的SERS基底,通过电场强度变化分析SERS增强因子对基底进行优化。适用于重金属离子的定性检测。
发明内容
本发明的目的是为解决现有技术的不足,提出一种核壳式SERS基底的优化设计。相对于单一的物质合成的纳米基底而言,核壳类基底由两种物质组成,其表面效应、小尺寸效应和宏观量子隧道效应得到了极大的改善。对于SERS增强机理的研究,选择激光纳米技术对增强效果进行研究,随着纳米技术的发展,以可控尺寸、形貌的纳米材料被广泛地应用到了SERS研究中,各种具有SERS活性的纳米材料不断涌现,可将其分为两大类:单一纳米材料如:纳米粒子、纳米空腔、纳米棒、纳米线等。复合型纳米材料如:混合式纳米材料、核壳材料。单一纳米粒子主要是贵金属纳米粒子如金、银等,其中以金溶胶与银溶胶最常见。核壳式SERS基底由两种或两种以上物质组成,不仅具有单种材料的特性,还具有复合材料的独特优势。
关于纳米粒子对SERS增强效果影响的研究,选择球状金属粒子作为对比。运用有限元法的COMSOL软件进行数值计算仿真的过程中,选择三维球体空间进行仿真,构建以银为核、金为壳的纳米核壳结构,与相同条件下没有金壳的单纳米银球结构和以金为核、银为壳的纳米核壳结构对比。
为实现上述目的,本发明采用以下技术方案:
一种核壳式SERS基底的优化制备,包括以下步骤:
1)采用有限元法,设置SERS基底的纳米结构,在Ag核结构表面上附着Au金属薄膜层,使Au金属包裹Ag金属核,形成核壳结构的纳米金属粒子;
2)确定仿真实验的初始条件,Au金属层的厚度、完美匹配层具体边界条件,以及Ag核的半径;
3)依次改变Au壳的厚度、Ag核的半径以及散射光波的波长,利用COMSOL软件计算SERS基底的电场强度分布,并根据电场强度计算最终的SERS增强因子;
4)选择Ag@Au纳米核壳结构、Au@Ag纳米核壳结构和Ag纳米球结构;
5)在波长、半径和壳厚度变化时仿真得到三种纳米结构电场强度变化,得到最佳变量时的数据以确定最佳增强因子;
6)确定最佳变量数据:在入射波长为523nm,半径为35nm、壳厚度为1nm、间距为0.8nm下进行电场仿真。根据仿真结果确定高场强效果的纳米粒子结构,再通过控制单一变量改变仿真模拟确定最佳场强效果下的纳米结构的输入环境变量和尺寸厚度变量,实现高增益新型SERS基底的设计。另外两种结构Ag、Au@Ag纳米核壳结构采用与之相同的外部条件进行仿真。经计算观察得到最佳增强效果时的核壳结构。
本实验利用双球结构核壳式金属纳米粒子间的电场在不同波长下的场强变化,经仿真模拟SERS增强因子的变化。
本实验的有益效果:
提升了信号增强效果,根据场强变化确定最佳SERS增强因子,从而得到一种高增益SERS新型基底,用于物质检测时,保证更完善的检测效果。
附图说明
附图1是输入光波在纳米式核壳结构场强测定的结构示意图,光源001、输入光波002、纳米壳结构003、纳米核结构004、电场强度结果005。
附图2是核壳结构模型图。
附图3是阵列式核壳结构基底。
具体实施方式
首先选取相同核半径(r=35nm)、相同核壳厚度(d=1nm)和固定间距0.8nm,通过改变波长的大小,对三种不同结构的纳米粒子进行仿真,选择波长为200nm-900nm区间进行仿真,可得Ag@Au核壳结构的SERS增强因子在入射波长为523nm时最强,Au@Ag核壳结构的SERS增强因子在入射波长为570nm时最强,单一Ag纳米球结构的SERS增强因子在入射波长为386nm时最强。
选取三种不同结构的SERS增强因子最强时的波长(523nm、570nm和386nm),核壳厚度和固定间距保持不变,改变核半径的大小,进行仿真,可得Ag@Au核壳结构的SERS增强因子在半径为38nm时最强,Au@Ag核壳结构的SERS增强因子在半径为35nm时最强,Ag纳米球结构的SERS增强因子在半径为35nm时最强。
在Ag@Au核壳结构波长为523nm,Au@Ag核壳结构波长为570nm的条件下,设定同一半径为38nm,同一固定间距0.8nm,改变壳厚度,得到对应的SERS增强因子。Ag@Au核壳结构的SERS增强因子在壳厚度为0.5nm时最强,Au@Ag核壳结构的SERS增强因子在壳厚度为0.3nm时最强。
不同结构的纳米粒子在各自最佳条件时,Ag@Au纳米核壳结构的SERS增强因子要高于Ag纳米球纳米结构和Au@Ag纳米核壳结构的SERS增强因子,所以Ag@Au纳米核壳结构的增强效果最好。

Claims (2)

1.一种核壳式SERS基底的优化制备方法,其特征包含如下:
1)采用有限元法计算,设置SERS基底的纳米结构,在Ag核结构基础上附着Au金属薄膜层,将Au金属包裹Ag金属核,形成核壳结构的纳米金属粒子;
2)确定仿真实验的初始条件,Au金属层的厚度、完美匹配层具体边界条件,以及Ag核的半径;
3)依次改变Au壳的厚度、Ag核的半径以及散射光波的波长,利用COMSOL软件计算SERS基底的电场强度分布,并根据电场强度计算最终的SERS增强因子;
4)选择增强效果较好的具体参数值作为本实验用于优化的SERS基底;
5)光源信号输出光波经过空气层连接到纳米Au壳结构,再连接到纳米Ag核结构上,光波全面覆盖双球结构Ag@Au纳米球,仿真场强变化。
2.根据权利要求1所述的Ag@Au纳米结构SERS基底的设计要求,其特征还包含如下步骤:
1)在三维立体空间设计具有一定间隙的双球结构,纳米个体Ag核外层Au壳,最外层包裹由空气填充的完美匹配层;
2)设计选定改变纳米结构半径、壳厚度以及波长可控变量进行仿真,验证不同变量下的增强效果;
3)最终的SERS基底设计,是将半径为38nm、壳厚度为0.5nm的Ag@Au核壳结构置于波长为532nm的散射光束下,双球纳米结构中心距离最近处产生高强度电场分布,从而产生更强的表面增强拉曼散射信号。
CN202210677520.0A 2022-06-16 2022-06-16 一种核壳式sers基底的优化制备 Pending CN117288735A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210677520.0A CN117288735A (zh) 2022-06-16 2022-06-16 一种核壳式sers基底的优化制备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210677520.0A CN117288735A (zh) 2022-06-16 2022-06-16 一种核壳式sers基底的优化制备

Publications (1)

Publication Number Publication Date
CN117288735A true CN117288735A (zh) 2023-12-26

Family

ID=89250405

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210677520.0A Pending CN117288735A (zh) 2022-06-16 2022-06-16 一种核壳式sers基底的优化制备

Country Status (1)

Country Link
CN (1) CN117288735A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117744451A (zh) * 2024-02-20 2024-03-22 山东理工大学 基于有限元和分子动力学的sers基底仿真优化方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117744451A (zh) * 2024-02-20 2024-03-22 山东理工大学 基于有限元和分子动力学的sers基底仿真优化方法
CN117744451B (zh) * 2024-02-20 2024-05-14 山东理工大学 基于有限元和分子动力学的sers基底仿真优化方法

Similar Documents

Publication Publication Date Title
Fan et al. Functionalized gold nanoparticles: synthesis, properties and biomedical applications
Zhang et al. SERS activated platform with three-dimensional hot spots and tunable nanometer gap
Zhang et al. Highly ordered arrays of hat-shaped hierarchical nanostructures with different curvatures for sensitive SERS and plasmon-driven catalysis
Zhao et al. Plasmon-exciton coupling by hybrids between graphene and gold nanorods vertical array for sensor
Chen et al. How to light special hot spots in multiparticle–film configurations
Zhu et al. Improve the surface-enhanced Raman scattering from rhodamine 6G adsorbed gold nanostars with vimineous branches
Guo et al. Improve optical properties by modifying Ag nanoparticles on a razor clam SERS substrate
Huang et al. Large surface-enhanced Raman scattering from nanoporous gold film over nanosphere
Wallace et al. Superimposed arrays of nanoprisms for multispectral molecular plasmonics
Zhao et al. Synergistic plasmon resonance coupling and light capture in ordered nanoarrays as ultrasensitive and reproducible SERS substrates
Zhang et al. A study on a hybrid SERS substrates based on arrayed gold nanoparticle/graphene/copper cone cavities fabricated by a conical tip indentation
Zhang et al. A facile method in removal of PVP ligands from silver nanowires for high performance and reusable SERS substrate
Das et al. Mesoporous Ag–TiO2 based nanocage like structure as sensitive and recyclable low-cost SERS substrate for biosensing applications
Wu et al. Long-range ordered silver nanoflower array structure for surface enhanced Raman scattering detecting
Das et al. Highly stable In@ SiO2 core-shell nanostructures for ultraviolet surface-enhanced Raman spectroscopy
CN117288735A (zh) 一种核壳式sers基底的优化制备
Du et al. Highly sensitive fiber optic enhanced Raman scattering sensor
Chen et al. FDTD simulation of the optical properties for a gold nanoparticle-over-nanosheet hybrid structure
Wang et al. SERS detection of thiram using polyacrylamide hydrogel-enclosed gold nanoparticle aggregates
Tian et al. Plasmonic Au-Ag alloy nanostars based high sensitivity surface enhanced Raman spectroscopy fiber probes
Mao et al. Detection of trace Rhodamine B using stable, uniformity, and reusable SERS substrate based on Ag@ SiO2-Au nanoparticles
Zhu et al. Theoretical and experimental investigation of the flexible Ag nano-tree@ Cu mesh SERS substrate
Yuan et al. Machine learning-driven multi-level composite SERS platform for trace detection of chlorogenic acid as pharmacodynamic substance in honeysuckle
Dong et al. Plasmon-exciton coupling for nanophotonic sensing on chip
Saini et al. Near field FEM simulations of plasmonic gold nanoparticle based SERS substrate with experimental validation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication