CN117275841A - 基于高导热聚乙烯材料的核电站用双层绝缘电缆制备方法 - Google Patents

基于高导热聚乙烯材料的核电站用双层绝缘电缆制备方法 Download PDF

Info

Publication number
CN117275841A
CN117275841A CN202311164592.6A CN202311164592A CN117275841A CN 117275841 A CN117275841 A CN 117275841A CN 202311164592 A CN202311164592 A CN 202311164592A CN 117275841 A CN117275841 A CN 117275841A
Authority
CN
China
Prior art keywords
insulated cable
double
layer insulated
heat
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311164592.6A
Other languages
English (en)
Inventor
刘柏欣
高宇
杜伯学
李敬
叶滨源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202311164592.6A priority Critical patent/CN117275841A/zh
Publication of CN117275841A publication Critical patent/CN117275841A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/14Insulating conductors or cables by extrusion
    • H01B13/141Insulating conductors or cables by extrusion of two or more insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/14Insulating conductors or cables by extrusion
    • H01B13/148Selection of the insulating material therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0208Cables with several layers of insulating material
    • H01B7/0216Two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0275Disposition of insulation comprising one or more extruded layers of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/42Insulated conductors or cables characterised by their form with arrangements for heat dissipation or conduction
    • H01B7/428Heat conduction
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/202Applications use in electrical or conductive gadgets use in electrical wires or wirecoating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Insulating Materials (AREA)

Abstract

本发明涉及一种基于高导热聚乙烯材料的核电站用双层绝缘电缆制备方法,包括1)填料改性;2)内层绝缘电缆制备;3)外层绝缘电缆制备;4)双层绝缘电缆制备。本发明将内、外层绝缘电缆以特定厚度挤塑到导线上,使双层绝缘电缆的介电常数、热导率与电场分布、热场分布匹配,均化电场分布、降低绝缘温度,更适用于核电站核岛内的高温、高辐射的环境应用。

Description

基于高导热聚乙烯材料的核电站用双层绝缘电缆制备方法
技术领域
本发明属于电缆绝缘技术领域,适用于核电站核岛内0.6/1kV等级动力电缆,涉及一种基于高导热聚乙烯材料的核电站用双层绝缘电缆制备方法。
背景技术
核能作为一种清洁、低碳、高效、优质的绿色能源,是人类应对气候变化的重要能源选择。然而,核电使用时,安全性是重中之重。特种电缆被称作核电站的“血管”和“神经”、与核反应堆安全密切相关。由于核电站电缆经常在高温下长期工作,电缆绝缘材料发生热老化甚至热击穿的几率大大提高。若能提高材料的导热能力,使其保持适中的工作温度,对于改善材料的绝缘性能,保障电气设备乃至整个核电系统的安全运行有重要的意义。核电站用动力电缆以交联聚乙烯(XLPE)、EVA弹性体以及硅橡胶或硅的复合物(如乙丙橡胶、丁基橡胶等)作为绝缘材料,由于核电站的特殊工况,单独使用某一种材料作为电缆绝缘很难满足使用要求,可将内、外双层使用不同材料,制备出双层结构,用于核电站电缆绝缘可以解决这个问题。
目前,核电电缆绝缘多是以阻燃聚烯烃作为外层绝缘,聚乙烯为内层绝缘。然而,聚乙烯材料导热系数低,容易造成内热外温的热场分布不均匀,并且内部靠近高压导体处的电场高,容易出现热击穿。调控热场分布、提升绝缘性能是亟需解决的关键问题。
目前,向聚合物基体中添加不同种类、不同含量以及不同尺寸的无机纳米颗粒以提高聚合物材料电气性能已经有了广泛的研究基础。复合得到的聚合物基纳米材料是在保留聚合物基体材料本身优点的前提下,兼备纳米颗粒的优良特性,从而拥有广阔的应用前景。研究表明,向低密度聚乙烯(LDPE)中加入氧化镁(MgO)、氧化铝(Al2O3)、二氧化硅(SiO2)以及石墨烯等纳米颗粒时,添加比例合适时,复合材料的击穿强度均能得到提高。为了改善聚合物材料的导热能力,通常是在聚合物基体加入导热系数高的材料,如MgO、SiO2、h-BN等。并且,掺杂微米、纳米无机颗粒后,由于颗粒的物理阻氧效应,还可以改善聚乙烯的耐辐射性。因此,以聚乙烯为基体,在其中掺杂h-BN、MgO、SiO2等无机颗粒,可同时提升电缆绝缘的导热、绝缘、耐辐射性能。这为基于复合材料开展绝缘设计提供了基础保障。
因此,将微米h-BN颗粒和纳米颗粒(如:SiO2或MgO等),掺杂入PE基体中,能够使获得的聚合物基微纳米复合材料具有优良的导热能力、绝缘性能以及耐辐照性。
研究设计一种新的基于聚乙烯材料的具有高导热性、超耐辐照性和强绝缘性的双层绝缘,实现介电常数、热导率与电场分布、热场分布的匹配,并兼顾耐辐射性能,应用于核电站,对今后核级电缆绝缘材料的选料、设计具有一定的指导意义。
发明内容
本发明的目的在于克服现有技术的不足,提出一种基于高导热聚乙烯材料的核电站用双层绝缘电缆制备方法,在交流体系下,内层绝缘料较高的介电常数会使得内部电场降低,外层较低的介电常数让电场较高,可以达到均匀电场的目的,将这种多层电缆结构用作核电站电缆绝缘,则可在保证优异的绝缘性能的同时,兼顾其耐受γ辐照和耐受高温的能力,有益于延长核级电缆的使用寿命。
本发明解决其技术问题是通过以下技术方案实现的:
一种基于高导热聚乙烯材料的核电站用双层绝缘电缆制备方法,其特征在于:所述方法的步骤为:
1)填料改性:选用硬度大于99%且质量分数为20wt%的微米级h-BN、质量分数为3wt%的纳米级SiO2颗粒两种填料,使用偶联剂KH550对上述两种填料进行表面改性;
2)内层绝缘电缆制备:选PE为基材,并与改性后的微米级h-BN及纳米级SiO2颗粒进行熔融共混形成共混物,将上述共混物进行热压成型制备得内层绝缘电缆;
3)外层绝缘电缆制备:选PE为基材并与硬度大于99%且质量分数为10wt%的微米级h-BN混合制得外层绝缘电缆;
4)双层绝缘电缆制备:将2)、3)制得的内层绝缘电缆、外层绝缘电缆依次挤塑到导线上,形成双层绝缘电缆。
而且,所述2)制得的内层绝缘电缆相对介电常数为2.8,导热系数为0.88W/(m·K),深能级陷阱中心为0.98eV。
而且,所述3)制得的外层绝缘电缆相对介电常数为2.6,导热系数为0.8W/(m·K),深陷阱能级中心0.94eV。
而且,所述双层绝缘电缆厚度为h0,内层绝缘电缆厚度为0.25~0.45h0,外层绝缘电缆厚度为0.55~0.75h0
本发明的优点和有益效果为:
本发明基于高导热聚乙烯材料的核电站用双层绝缘电缆制备方法,微米h-BN的掺杂可以在聚乙烯基体材料中形成更为紧凑的导热通路,同时纳米颗粒的引入可以弥补微米填料所导致的复合材料电气绝缘性能下降的问题。因此,只要调整好两种填料的配比和掺杂的工艺,就可以获得兼具优良的导热能力和绝缘性能的聚乙烯微纳米复合材料。本发明中,将这两种基于高导热的聚乙烯的复合材料,设计成多层电缆结构,内层绝缘使用电性能和导热性能好的h-BN/纳米颗粒/PE绝缘料,外层绝缘使用h-BN/PE料,使电缆绝缘能够拥有更好的耐高温的性能,更适用于核电站的应用,有益于延长核级电缆的使用寿命。通过对微纳米复合材料的性能检测,和电-热耦合场的计算,证明此方法是有效的。
附图说明
图1为本发明内层绝缘电缆的制备过程图;
图2为本发明内层绝缘电缆的制备机理图;
图3为本发明制备的双层绝缘电缆结构示意图;
图4为本发明PE中引入微纳米颗粒对性能提升的机理图;
图5为本发明不同辐照剂量对内层绝缘电缆导热率的影响图;
图6为本发明不同辐照剂量对内层绝缘电缆相对介电常数的影响曲线图;
图7为本发明不同辐照剂量对内层绝缘电缆介电损耗的影响曲线图。
具体实施方式
下面通过具体实施例对本发明作进一步详述,以下实施例只是描述性的,不是限定性的,不能以此限定本发明的保护范围。
一种基于高导热聚乙烯材料的核电站用双层绝缘电缆制备方法,其创新之处在于:所述方法的步骤为:
1)填料改性:选用硬度大于99%且质量分数为20wt%的微米级h-BN、质量分数为3wt%的纳米级SiO2颗粒两种填料,使用偶联剂KH550对上述两种填料进行表面改性,用填料表面的化学键与KH550之间发生化学偶联反应以提高填料的分散能力,防止加入后团聚严重,影响聚乙烯微纳米内层绝缘电缆的性能;
2)内层绝缘电缆制备:选PE为基材,并与改性后的微米级h-BN及纳米级SiO2颗粒进行熔融共混形成共混物,将上述共混物进行热压成型制备得内层绝缘电缆;制得的内层绝缘电缆相对介电常数为2.8,导热系数为0.88W/(m·K),深能级陷阱中心为0.98eV。
3)外层绝缘电缆制备:选PE为基材并与硬度大于99%且质量分数为10wt%的微米级h-BN混合制得外层绝缘电缆;制得的外层绝缘电缆相对介电常数为2.6,导热系数为0.8W/(m·K),深陷阱能级中心0.94eV。
4)双层绝缘电缆制备:将2)、3)制得的内层绝缘电缆、外层绝缘电缆依次挤塑到导线上,形成双层绝缘电缆。
对于线芯铜导体直径2.58mm的情况,双层绝缘电缆总厚度可为h0=0.7mm,内层绝缘厚度为0.25mm外层绝缘总厚度为0.45mm。
本专利采用德国Netzsch公司生产的LFA447型闪光导热仪。实验样品规格为10mm×10mm的正方形,厚度为2mm。实验温度范围为25-100℃,以25℃为间隔进行测量,测试3次取平均值。如表1为M0N0和M20N3的成分含量。
表1
不同辐照剂量对M0N0和M20N3的导热率影响如图5所示。未辐照时,随微纳米颗粒含量的增加,内层绝缘电缆的导热系数呈上升趋势。另一方面,保持微纳米含量不变时,随辐照剂量从0kGy增加至1000kGy,内层绝缘电缆的导热系数明显减小。内层绝缘电缆的热导率主要取决于填料和基体本身的热导率、填料的含量、分布以及填料与基体之间的界面结构以及材料晶体结构等因素。相比纯PE的低导热系数,SiO2和BN填料均具有相对较高的导热系数。在未辐照时,往PE基体材料中添加导热系数相对较高的纳米SiO2颗粒和微米BN,内层绝缘电缆的导热系数会得到提升。同时,随微纳米填料加入,内层绝缘电缆中粒子会相互接触,有助于部分导热通路的形成,因此对内层绝缘电缆导热系数的增加做出贡献。但是,内层绝缘电缆导热系数的提高仍很有限,可能是由于微纳米颗粒在PE基体中分散性不好,也有可能是填料与PE基体间的界面出现很多空洞等缺陷,导致声子散射,进而使内层绝缘电缆导热系数的提高受到阻碍。另外,随辐照剂量增加,内层绝缘电缆的导热系数先大幅降低后减低趋势变缓。这主要归因于交联反应。γ射线辐照产生的活性自由基相互作用引发交联反应,即生成三维网状结构。由于受到网状结构的限制,分子顺序被打乱,阻碍了大分子链的结晶,结晶度下降,晶体的完整性被破坏,由此晶格振动减弱,导热系数降低。辐照后期时,氧化降解反应加剧,交联度上升的趋势得到抑制。同时,原有结晶部分降解,产生小分子、极性基团等杂质,晶区的致密性受到破坏,粒子的相互碰撞增强,因而内层绝缘电缆导热系数大幅降低的趋势得到缓解。如表2为辐照样品的数据。
表2
研究认为,向聚合物基体中添加无机颗粒后,内层绝缘电缆的介电特性会发生改变。这是因为聚合物基体、无机填料以及两者间的界面在电学方面大不相同,从而引起不同性质的极化。另外,不同的填料也会造成不同的极化。
综上所述,聚合物基内层绝缘电缆的介电特性与无机填料的表面改性、填料的分散程度、聚合物基体本身的性质、填料的特性以及两者之间的相互作用等密切相关。
本专利中介电性能实验采用常州同惠电子TH2826A型LCR数字电桥对内层绝缘电缆进行测试。实验中,试样正反面均贴上30mm×30mm的正方形铜箔作为电极,频率设置为1kHz,分别测试了不同辐照剂量下M0N0、M0N3、M10N3和M20N3的介电常数和介电损耗。图6和图7分别为上述材料的介电谱测试结果。观察图6可知,保持辐照剂量不变时,随微纳米含量的增加,内层绝缘电缆的介电常数明显增加。保持微纳米含量不变时,随辐照剂量从0kGy增加至1000kGy,内层绝缘电缆的介电常数增加。
尽管为说明目的公开了本发明的实施例和附图,但是本领域的技术人员可以理解:在不脱离本发明及所附权利要求的精神和范围内,各种替换、变化和修改都是可能的,因此,本发明的范围不局限于实施例和附图所公开的内容。

Claims (4)

1.一种基于高导热聚乙烯材料的核电站用双层绝缘电缆制备方法,其特征在于:所述方法的步骤为:
1)填料改性:选用硬度大于99%且质量分数为20wt%的微米级h-BN、质量分数为3wt%的纳米级SiO2颗粒两种填料,使用偶联剂KH550对上述两种填料进行表面改性;
2)内层绝缘电缆制备:选PE为基材,并与改性后的微米级h-BN及纳米级SiO2颗粒进行熔融共混形成共混物,将上述共混物进行热压成型制备得内层绝缘电缆;
3)外层绝缘电缆制备:选PE为基材并与硬度大于99%且质量分数为10wt%的微米级h-BN混合制得外层绝缘电缆;
4)双层绝缘电缆制备:将2)、3)制得的内层绝缘电缆、外层绝缘电缆依次挤塑到导线上,形成双层绝缘电缆。
2.根据权利要求1所述的基于高导热聚乙烯材料的核电站用双层绝缘电缆制备方法,其特征在于:所述2)制得的内层绝缘电缆相对介电常数为2.8,导热系数为0.88W/(m·K),深能级陷阱中心为0.98eV。
3.根据权利要求1所述的基于高导热聚乙烯材料的核电站用双层绝缘电缆制备方法,其特征在于:所述3)制得的外层绝缘电缆相对介电常数为2.6,导热系数为0.8W/(m·K),深陷阱能级中心0.94eV。
4.根据权利要求1所述的基于高导热聚乙烯材料的核电站用双层绝缘电缆制备方法,其特征在于:所述双层绝缘电缆厚度为h0,内层绝缘电缆厚度为0.25~0.45h0,外层绝缘电缆厚度为0.55~0.75h0
CN202311164592.6A 2023-09-11 2023-09-11 基于高导热聚乙烯材料的核电站用双层绝缘电缆制备方法 Pending CN117275841A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311164592.6A CN117275841A (zh) 2023-09-11 2023-09-11 基于高导热聚乙烯材料的核电站用双层绝缘电缆制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311164592.6A CN117275841A (zh) 2023-09-11 2023-09-11 基于高导热聚乙烯材料的核电站用双层绝缘电缆制备方法

Publications (1)

Publication Number Publication Date
CN117275841A true CN117275841A (zh) 2023-12-22

Family

ID=89216977

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311164592.6A Pending CN117275841A (zh) 2023-09-11 2023-09-11 基于高导热聚乙烯材料的核电站用双层绝缘电缆制备方法

Country Status (1)

Country Link
CN (1) CN117275841A (zh)

Similar Documents

Publication Publication Date Title
Azizi et al. Performance improvement of EPDM and EPDM/Silicone rubber composites using modified fumed silica, titanium dioxide and graphene additives
David et al. Polymer nanocomposites-major conclusions and achievements reached so far
EP2637178A2 (en) Insulating composition and electric cable comprising same
KR101161360B1 (ko) 공간전하 저감 효과를 갖는 직류용 전력 케이블
EP2094773B2 (en) Semi-conducting polymer compositions for the preparation of wire and cable
Zhang et al. Effect of nanoparticle surface modification on charge transport characteristics in XLPE/SiO 2 nanocomposites
Li et al. DC breakdown characteristics of XLPE/BNNS nanocomposites considering BN nanosheet concentration, space charge and temperature
KR20120086072A (ko) 반도전성 조성물과 절연 조성물을 이용하여 제조된 경량 전력 케이블
Liu et al. Effect of thermal stress on the space charge distribution of 160 kV HVDC cable insulation material
KR101454092B1 (ko) 가교 폴리올레핀 조성물, 직류 전력 케이블 및 직류 전력 선로의 시공 방법
Zhao et al. Synergistic effect of ZnO microspherical varistors and carbon fibers on nonlinear conductivity and mechanical properties of the silicone rubber-based material
Polanský et al. Testing the applicability of LDPE/HNT composites for cable core insulation
CN114427145B (zh) 导热高分子复合材料及其制备方法
Lin et al. Octavinyl polyhedral oligomeric silsesquioxane on tailoring the DC electrical characteristics of polypropylene
Yang et al. Enhanced nonlinear conductivity of silicone rubber composites with hybrid graphene and alumina for cable accessory
Chi et al. Nonlinear conductivity and breakdown strength characteristics of silicon carbide and hexagonal boron nitride co-doped epoxy resin composites
CN117275841A (zh) 基于高导热聚乙烯材料的核电站用双层绝缘电缆制备方法
KR101461700B1 (ko) 반도체 또는 절연체 조성물에의 유기점토 사용을 통한 유전체 손실의 감소
CN106489181A (zh) 输电电缆
CN108586911A (zh) 一种低密度聚乙烯的轨道电缆绝缘材料及其制备方法
US20230135004A1 (en) Polymer nanocomposite for use in electrical and electronic equipment with properties suitable for applications such as electrical insulation and with thermal conductivity gain
Chi et al. Polymer nanocomposites in high-voltage insulation: the dielectric characteristics of doped polypropylene
Zhang et al. Investigations on the electrical performances of CuNPs/BN/EPDM composites
CN115394478A (zh) 一种海上风力发电的高压耐扭电缆及其绝缘层
KR101388136B1 (ko) 반도전성 조성물과 절연 조성물을 이용하여 제조된 직류용 전력 케이블

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination