CN117238173A - A comprehensive method and system for dynamic analysis of spatio-temporal hot spots in ship accidents - Google Patents
A comprehensive method and system for dynamic analysis of spatio-temporal hot spots in ship accidents Download PDFInfo
- Publication number
- CN117238173A CN117238173A CN202310950048.8A CN202310950048A CN117238173A CN 117238173 A CN117238173 A CN 117238173A CN 202310950048 A CN202310950048 A CN 202310950048A CN 117238173 A CN117238173 A CN 117238173A
- Authority
- CN
- China
- Prior art keywords
- analysis
- ship
- accident
- data
- space
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004458 analytical method Methods 0.000 title claims abstract description 171
- 238000000034 method Methods 0.000 title claims abstract description 32
- 238000012545 processing Methods 0.000 claims abstract description 17
- 238000001914 filtration Methods 0.000 claims abstract description 14
- 238000012216 screening Methods 0.000 claims abstract description 13
- 238000006243 chemical reaction Methods 0.000 claims abstract description 9
- 238000004364 calculation method Methods 0.000 claims description 18
- 230000008569 process Effects 0.000 claims description 14
- 230000006870 function Effects 0.000 claims description 13
- 230000002776 aggregation Effects 0.000 claims description 4
- 238000004220 aggregation Methods 0.000 claims description 4
- 230000002159 abnormal effect Effects 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 230000008859 change Effects 0.000 claims description 2
- 230000002123 temporal effect Effects 0.000 claims description 2
- 238000011835 investigation Methods 0.000 claims 1
- 230000008689 nuclear function Effects 0.000 claims 1
- 230000000630 rising effect Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 6
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000004590 computer program Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000007619 statistical method Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000012732 spatial analysis Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004452 microanalysis Methods 0.000 description 1
- 238000007431 microscopic evaluation Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种综合性的船舶事故时空热点动态分析方法及系统,涉及海上交通安全技术领域,包括:接收船舶事故数据,对船舶事故数据进行数据过滤和数据转换,得到船舶事故处理数据,其中,所述船舶事故数据包括船舶事故中的船舶类型、事件摘要、总吨位、船级社、事故坐标、事故发生时间、以及伤亡人数、船舶事故所在区域的交通流量数据;基于船舶事故处理数据,对船舶事故进行定位,得到船舶事故的地理位置分布,基于船舶事故的地理位置分布,对船舶事故进行密度分析、空间自相关分析和三维时空热点分析;分别对密度分析、空间自相关分析和三维时空热点分析进行参数调整,经过多次筛选,得到船舶事故时空热点输出结果。
The invention discloses a comprehensive method and system for dynamic analysis of ship accident spatio-temporal hot spots, which relates to the technical field of maritime traffic safety and includes: receiving ship accident data, performing data filtering and data conversion on the ship accident data, and obtaining ship accident processing data. Among them, the ship accident data includes the ship type in the ship accident, event summary, gross tonnage, classification society, accident coordinates, accident time, as well as the number of casualties, and traffic flow data of the area where the ship accident is located; based on the ship accident processing data , locate the ship accident, and obtain the geographical distribution of the ship accident. Based on the geographical distribution of the ship accident, density analysis, spatial autocorrelation analysis and three-dimensional spatio-temporal hotspot analysis are performed on the ship accident; density analysis, spatial autocorrelation analysis and Three-dimensional spatio-temporal hotspot analysis was used to adjust parameters, and after multiple screenings, the spatio-temporal hotspot output results of ship accidents were obtained.
Description
技术领域Technical field
本发明涉及海上交通安全技术领域,具体的是一种综合性的船舶事故时空热点动态分析方法及系统。The invention relates to the technical field of maritime traffic safety, specifically a comprehensive method and system for dynamic analysis of spatio-temporal hot spots in ship accidents.
背景技术Background technique
随着经济全球化的迅速发展,航运在世界贸易中扮演着重要角色,全球约80%的货物贸易是由国际航运完成。由于航运活动是在复杂和危险的水上环境中进行,容易导致船舶事故的发生,同时可能造成严重的经济损失、人员伤亡和海洋污染,船舶安全一直是国际航运界关注的重点。研究船舶事故的时空热点分布和演化,将有助于海事部门直观地了解管辖范围内船舶的交通安全状况,对于保障船舶的航行安全,特别是在预警和预报等方面具有重要意义。With the rapid development of economic globalization, shipping plays an important role in world trade. About 80% of global cargo trade is completed by international shipping. Since shipping activities are carried out in a complex and dangerous water environment, which can easily lead to ship accidents and may cause serious economic losses, casualties and marine pollution, ship safety has always been the focus of the international shipping community. Studying the spatio-temporal hotspot distribution and evolution of ship accidents will help the maritime department intuitively understand the traffic safety status of ships within their jurisdiction, and is of great significance for ensuring the navigation safety of ships, especially in early warning and forecasting.
当前,船舶事故热点分布的研究方法主要包括传统的统计分析和基于地理信息系统的空间分析。前者根据事故的地理坐标,通过统计分析确定事故的高发区域,后者通地理信息系统技术将事故的热点分布特征直观地呈现在地图上。这些研究大多从大跨度时间段对事故进行宏观分析,来探究事故的二维空间分布特征,然而,很少有研究人员关注船舶事故的三维时空热点分布,以及事故热点随着时间的演化规律。Currently, the research methods for the distribution of ship accident hot spots mainly include traditional statistical analysis and spatial analysis based on geographic information systems. The former determines the high-incidence areas of accidents through statistical analysis based on the geographical coordinates of the accident, while the latter uses geographic information system technology to visually present the distribution characteristics of accident hot spots on the map. Most of these studies conduct macro-analysis of accidents over a long span of time to explore the two-dimensional spatial distribution characteristics of accidents. However, few researchers pay attention to the three-dimensional spatio-temporal hot spot distribution of ship accidents and the evolution of accident hot spots over time.
发明内容Contents of the invention
为解决上述背景技术中提到的不足,本发明的目的在于提供一种综合性的船舶事故时空热点动态分析方法及系统,基于船舶事故历史大数据,从事故密度、聚集程度、以及时空热点的趋势和密度等角度出发,利用密度分析、空间自相关分析和三维时空热点分析方法,来更为全面和科学地识别船舶事故热点的时空分布与演化特征。In order to solve the deficiencies mentioned in the above background technology, the purpose of the present invention is to provide a comprehensive dynamic analysis method and system for spatio-temporal hot spots of ship accidents, based on the historical big data of ship accidents, from the accident density, aggregation degree, and spatio-temporal hot spots. Starting from the perspective of trend and density, density analysis, spatial autocorrelation analysis and three-dimensional spatio-temporal hot spot analysis methods are used to more comprehensively and scientifically identify the spatio-temporal distribution and evolution characteristics of ship accident hot spots.
本发明的目的可以通过以下技术方案实现:一种综合性的船舶事故时空热点动态分析方法,方法包括以下步骤:The purpose of the present invention can be achieved through the following technical solutions: a comprehensive dynamic analysis method of spatio-temporal hot spots in ship accidents, the method includes the following steps:
接收船舶事故数据,对船舶事故数据进行数据过滤和数据转换,得到船舶事故处理数据,其中,所述船舶事故数据包括船舶事故中的船舶类型、事件摘要、总吨位、船级社、事故坐标、事故发生时间、以及伤亡人数、船舶事故所在区域的交通流量数据;Receive ship accident data, perform data filtering and data conversion on the ship accident data, and obtain ship accident processing data, wherein the ship accident data includes ship type, event summary, gross tonnage, classification society, accident coordinates, The time of the accident, the number of casualties, and traffic flow data in the area where the ship accident occurred;
基于船舶事故处理数据,对船舶事故进行定位,得到船舶事故的地理位置分布,基于船舶事故的地理位置分布,对船舶事故进行密度分析、空间自相关分析和三维时空热点分析;Based on the ship accident processing data, the ship accident is located and the geographical distribution of the ship accident is obtained. Based on the geographical distribution of the ship accident, density analysis, spatial autocorrelation analysis and three-dimensional spatio-temporal hotspot analysis are performed on the ship accident;
分别对密度分析、空间自相关分析和三维时空热点分析进行参数调整,经过多次筛选,得到船舶事故时空热点输出结果。The parameters of density analysis, spatial autocorrelation analysis and three-dimensional spatio-temporal hot spot analysis were adjusted respectively. After multiple screenings, the output results of ship accident spatio-temporal hot spots were obtained.
优选地,所述数据过滤包括过滤掉船舶事故数据中无坐标的事故数据、清除异常数据、纠正错误数据,所述数据转换为对度分格式的船舶事故经纬度坐标数据转换成地理信息系统软件可识别的十进制形式的经纬度坐标数据。Preferably, the data filtering includes filtering out accident data without coordinates in the ship accident data, clearing abnormal data, and correcting erroneous data. The data is converted into ship accident longitude and latitude coordinate data in a degree format and can be converted into geographic information system software. Recognized latitude and longitude coordinate data in decimal format.
优选地,所述密度分析包括;核密度估计和点密度分析,用于确定船舶事故的密度水平和风险边界。Preferably, the density analysis includes; kernel density estimation and point density analysis, used to determine the density level and risk boundary of ship accidents.
优选地,所述核密度估计的计算公式为:Preferably, the calculation formula of the kernel density estimate is:
其中,f(x,y)为在(x,y)位置的估计密度,s为位置个数,h为带宽,K为核函数,λi为位置(x,y)到第i个位置的距离;Among them, f (x, y) is the estimated density at the (x, y) position, s is the number of positions, h is the bandwidth, K is the kernel function, and λ i is the distance from the position (x, y) to the i-th position. distance;
点密度分析F的计算公式为:The calculation formula of point density analysis F is:
其中,ρ为邻域半径,N(ρ)是以单元k的中心为圆心,邻域半径为ρ的圆型内的船舶事故数量,M为船舶交通密度。Among them, ρ is the neighborhood radius, N(ρ) is the number of ship accidents in a circle with the center of unit k as the center and the neighborhood radius ρ, and M is the ship traffic density.
优选地,所述空间自相关分析包括全局空间自相关分析和局部空间自相关分析。Preferably, the spatial autocorrelation analysis includes global spatial autocorrelation analysis and local spatial autocorrelation analysis.
优选地,所述全局空间自相关分析I计算公式为:Preferably, the calculation formula of the global spatial autocorrelation analysis I is:
其中,n为研究区域内的事故总数,xi和xj分别表示第i个和第j个空间观测值,wij表示空间二元邻接矩阵的元素,权重是位置i与其相邻位置j之间存在的邻域关系,W表示wij中所有事故的和,/> Among them, n is the total number of accidents in the study area, x i and x j represent the i-th and j-th spatial observation values respectively, w ij represents the elements of the spatial binary adjacency matrix, the weight is the neighborhood relationship existing between position i and its adjacent position j, W represents the sum of all accidents in w ij ,/>
局部空间自相关分析计算公式为:Local spatial autocorrelation analysis The calculation formula is:
其中,S为xj的标准差,局部空间自相关分析将事故聚集程度分为七类,具有90%、95%和99%置信水平的热点或冷点,以及无显著聚集的点。Among them, S is the standard deviation of x j , Local spatial autocorrelation analysis classifies the degree of accident clustering into seven categories, hot or cold spots with 90%, 95% and 99% confidence levels, and points with no significant clustering.
优选地,所述三维时空热点分析包括:新兴热点分析、时空热点趋势分析和时空核密度估计分析。Preferably, the three-dimensional spatio-temporal hot spot analysis includes: emerging hot spot analysis, spatio-temporal hot spot trend analysis and spatio-temporal kernel density estimation analysis.
优选地,所述新兴热点分析能够对事故热点进行更详细的解释和分类,同时也能呈现不同类型热点的变化,新兴热点分析将结果分为新增的、连续的、加强的、永久的、减少的、分散的、振荡的和历史的热点和冷点,所述时空热点趋势分析能够识别出具有统计学意义的事故热点变化趋势,时空热点趋势分析将热点或冷点的z得分随时间增加或减少的趋势分为七类,具有90%、95%和99%置信水平的上升或下降趋势,以及无显著趋势;Preferably, the emerging hotspot analysis can explain and classify accident hotspots in more detail, and can also present changes in different types of hotspots. The emerging hotspot analysis divides the results into new, continuous, enhanced, permanent, Reduce, disperse, oscillate and historical hot and cold spots. The spatio-temporal hot spot trend analysis can identify statistically significant accident hot spot changing trends. The spatio-temporal hot spot trend analysis increases the z-score of hot spots or cold spots over time. or decreasing trends are divided into seven categories, increasing or decreasing trends with 90%, 95% and 99% confidence levels, and no significant trend;
时空核密度估计的计算公式为:The calculation formula of spatiotemporal kernel density estimation is:
其中,为位置(x,y,t)处的密度估计,x维度和y维度为空间,t维度为时间,ds为空间带宽,dt为时间带宽,ds 2d是密度估计值/>乘以n得到的密度值,用每单位时空的事件数表示,核函数Ls和Lt的计算公式为:in, is the density estimate at position (x, y, t), the x and y dimensions are space, the t dimension is time, ds is the spatial bandwidth, dt is the time bandwidth, d s 2 d is the density estimate/> The density value obtained by multiplying by n is expressed as the number of events per unit of space and time. The calculation formulas of the kernel functions Ls and Lt are:
其中,u为经度xi和xi+1之间的差异率,v为纬度yi和yi+1之间的差异率,p为时间ti和ti+1之间的差异率。Among them, u is the difference rate between longitude xi and xi+1, v is the difference rate between latitude yi and yi+1, and p is the difference rate between time ti and ti+1.
优选地,所述得到船舶事故时空热点输出结果的过程:Preferably, the process of obtaining the output results of ship accident spatio-temporal hot spots:
在核密度估计的参数调整过程中,核密度估计的结果受到核函数K、带宽h、以及单元大小的共同影响,带宽影响密度表面的平滑度,而单元大小影响生成表面的粗糙度,需要经过多次筛选,最终得到最符合船舶事故核密度估计输出结果的一组;In the parameter adjustment process of kernel density estimation, the results of kernel density estimation are jointly affected by the kernel function K, bandwidth h, and unit size. The bandwidth affects the smoothness of the density surface, while the unit size affects the roughness of the generated surface. It needs to be After multiple screenings, a group was finally obtained that best matched the output results of ship accident nuclear density estimation;
在点密度分析的参数调整过程中,点密度分析的结果受到邻域半径ρ和船舶交通密度M的共同影响,需要经过多次筛选,最终得到最符合船舶事故点密度分析输出结果的一组;During the parameter adjustment process of point density analysis, the results of point density analysis are jointly affected by the neighborhood radius ρ and ship traffic density M, and need to be screened multiple times to finally obtain a group that best matches the output results of ship accident point density analysis;
在创建时空立方体、新兴时空热点分析、时空热点趋势分析、以及时空核密度估计的参数调整过程中,分析结果受到时空箱的时间和空间大小的共同影响,需要经过多次筛选,最终得到最符合船舶事故时空热点分析输出结果的一组;In the process of creating a space-time cube, emerging space-time hotspot analysis, space-time hotspot trend analysis, and parameter adjustment of space-time kernel density estimation, the analysis results are affected by the time and space size of the space-time box, and need to be screened multiple times to finally obtain the most suitable A set of output results of spatio-temporal hotspot analysis of ship accidents;
将符合船舶事故核密度估计输出结果、最符合船舶事故点密度分析输出结果、最符合船舶事故时空热点分析输出结果结合得到船舶事故时空热点输出结果。The output results that are consistent with the ship accident nuclear density estimation, the output results that are most consistent with the ship accident point density analysis, and the output results that are most consistent with the ship accident spatio-temporal hotspot analysis are combined to obtain the ship accident spatio-temporal hotspot output results.
第二方面,为了达到上述目的,本发明公开了一种综合性的船舶事故时空热点动态分析系统,包括:In the second aspect, in order to achieve the above purpose, the present invention discloses a comprehensive spatio-temporal hot spot dynamic analysis system for ship accidents, including:
数据处理模块:用于接收船舶事故数据,对船舶事故数据进行数据过滤和数据转换,得到船舶事故处理数据,其中,所述船舶事故数据包括船舶事故中的船舶类型、事件摘要、总吨位、船级社、事故坐标、事故发生时间、以及伤亡人数、船舶事故所在区域的交通流量数据;Data processing module: used to receive ship accident data, perform data filtering and data conversion on the ship accident data, and obtain ship accident processing data. The ship accident data includes the ship type, event summary, total tonnage, and ship accident data. Class society, accident coordinates, accident time, number of casualties, and traffic flow data in the area where the ship accident occurred;
事故分析模块:用于基于船舶事故处理数据,对船舶事故进行定位,得到船舶事故的地理位置分布,基于船舶事故的地理位置分布,对船舶事故进行密度分析、空间自相关分析和三维时空热点分析;Accident analysis module: used to locate ship accidents based on ship accident processing data and obtain the geographical distribution of ship accidents. Based on the geographical distribution of ship accidents, conduct density analysis, spatial autocorrelation analysis and three-dimensional spatio-temporal hotspot analysis of ship accidents. ;
结果输出模块:用于分别对密度分析、空间自相关分析和三维时空热点分析进行参数调整,经过多次筛选,得到船舶事故时空热点输出结果。Result output module: used to adjust parameters for density analysis, spatial autocorrelation analysis and three-dimensional spatiotemporal hotspot analysis respectively. After multiple screenings, the spatiotemporal hotspot output results of ship accidents are obtained.
本发明的有益效果:Beneficial effects of the present invention:
本发明能够实现对船舶事故空间分布的宏细观分析,能同时对事故开展空间热点分析和三维动态时空热点分析,可以直观且准确地呈现船舶事故的时空格局,识别出若干事故的易发地区,以及热点分布随着时间的演化过程,从而为海事安全部门、相关政府及政策制定者建立合理有效的船舶事故治理策略提供基础参考,有助于采取更加针对性的事故防范措施。This invention can realize macro- and micro-analysis of the spatial distribution of ship accidents, can simultaneously carry out spatial hotspot analysis and three-dimensional dynamic spatio-temporal hotspot analysis of accidents, can intuitively and accurately present the spatiotemporal pattern of ship accidents, and identify several accident-prone areas. , as well as the evolution of hotspot distribution over time, thus providing a basic reference for maritime safety departments, relevant governments and policymakers to establish reasonable and effective ship accident management strategies, and helping to take more targeted accident prevention measures.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图;In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the following will briefly introduce the drawings needed to describe the embodiments or the prior art. Obviously, for those of ordinary skill in the art, Speaking of which, other drawings can be obtained based on these drawings without any creative effort;
图1是本发明方法流程示意图;Figure 1 is a schematic flow diagram of the method of the present invention;
图2是本发明一种综合性的船舶事故时空热点动态分析方法及系统流程示意图;Figure 2 is a schematic flow diagram of a comprehensive spatio-temporal hot spot dynamic analysis method for ship accidents according to the present invention;
图3是本发明时空立方体的结构示意图;Figure 3 is a schematic structural diagram of the space-time cube of the present invention;
图4是本发明权威船舶事故数据库中事故经纬度坐标数据的转换方法和示例图;Figure 4 is a conversion method and example diagram of accident longitude and latitude coordinate data in the authoritative ship accident database of the present invention;
图5是本发明系统结构示意图;Figure 5 is a schematic structural diagram of the system of the present invention;
图6是本发明船舶事故的全局自相关分析结果图。Figure 6 is a global autocorrelation analysis result diagram of ship accidents according to the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, of the embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts fall within the scope of protection of the present invention.
如图1所示,一种综合性的船舶事故时空热点动态分析方法,方法包括以下步骤:As shown in Figure 1, a comprehensive dynamic analysis method of spatio-temporal hot spots in ship accidents includes the following steps:
接收船舶事故数据,对船舶事故数据进行数据过滤和数据转换,得到船舶事故处理数据,其中,所述船舶事故数据包括船舶事故中的船舶类型、事件摘要、总吨位、船级社、事故坐标、事故发生时间、以及伤亡人数、船舶事故所在区域的交通流量数据;Receive ship accident data, perform data filtering and data conversion on the ship accident data, and obtain ship accident processing data, wherein the ship accident data includes ship type, event summary, gross tonnage, classification society, accident coordinates, The time of the accident, the number of casualties, and traffic flow data in the area where the ship accident occurred;
基于船舶事故处理数据,对船舶事故进行定位,得到船舶事故的地理位置分布,基于船舶事故的地理位置分布,对船舶事故进行密度分析、空间自相关分析和三维时空热点分析;Based on the ship accident processing data, the ship accident is located and the geographical distribution of the ship accident is obtained. Based on the geographical distribution of the ship accident, density analysis, spatial autocorrelation analysis and three-dimensional spatio-temporal hotspot analysis are performed on the ship accident;
分别对密度分析、空间自相关分析和三维时空热点分析进行参数调整,经过多次筛选,得到船舶事故时空热点输出结果。The parameters of density analysis, spatial autocorrelation analysis and three-dimensional spatio-temporal hot spot analysis were adjusted respectively. After multiple screenings, the output results of ship accident spatio-temporal hot spots were obtained.
需要进一步进行说明的是,在具体实施过程中:上述方法具体包括:It should be further explained that during the specific implementation process: the above method specifically includes:
步骤1、原始数据收集。Step 1. Original data collection.
1.1、原始数据来源于权威的船舶事故数据库,包括但不限于船舶事故中的船舶类型、事故后果、事件摘要、总吨位、船级社、事故坐标、事故发生时间、以及伤亡人数、船舶事故所在区域的交通流量数据等。可靠的数据源是研究船舶事故的基础,船舶事故数据库可分为国际海事组织管理的公共数据库、船级社管理的商业数据库、以及政府部门和机构管理的国家数据库,从上述数据库收集的船舶事故数据更为全面和准确。1.1. The original data comes from the authoritative ship accident database, including but not limited to the type of ship in the ship accident, accident consequences, event summary, gross tonnage, classification society, accident coordinates, accident time, number of casualties, and location of the ship accident. Regional traffic flow data, etc. Reliable data sources are the basis for studying ship accidents. Ship accident databases can be divided into public databases managed by the International Maritime Organization, commercial databases managed by classification societies, and national databases managed by government departments and agencies. Ship accidents collected from the above databases The data is more comprehensive and accurate.
步骤2、数据过滤和转换。Step 2. Data filtering and transformation.
2.1、数据过滤,包括过滤掉船舶事故数据中无坐标的事故数据、清除异常数据、纠正错误数据。2.1. Data filtering, including filtering out accident data without coordinates in ship accident data, clearing abnormal data, and correcting erroneous data.
2.2、数据转换,对度分格式的船舶事故经纬度坐标数据(如140°57.20’)转换成地理信息系统软件可识别的十进制形式的经纬度坐标数据(如140.96)。地理信息系统分析软件仅能识别十进制形式的经纬度坐标数据,而船舶事故的经纬度坐标的数据格式通常为度分,把过滤后的船舶事故数据转换为十进制形式的坐标数据。2.2. Data conversion: Convert the longitude and latitude coordinate data of the ship accident in degree and minute format (such as 140°57.20’) into longitude and latitude coordinate data in decimal format (such as 140.96) that can be recognized by the geographic information system software. Geographic information system analysis software can only recognize longitude and latitude coordinate data in decimal form, and the data format of longitude and latitude coordinates of ship accidents is usually degrees and minutes. The filtered ship accident data is converted into coordinate data in decimal form.
步骤3、基于地理信息系统,建立时空热点动态分析方法。Step 3. Based on the geographical information system, establish a spatio-temporal hotspot dynamic analysis method.
3.1、基于地理信息系统,建立时空热点动态分析方法,包括:(1)根据船舶事故数据中的经纬度坐标对事故进行定位,可视化船舶事故的地理位置分布,展示事故的地理位置分布为后续的热点分析提供依据;(2)密度分析;(3)空间自相关分析;(4)三维时空热点分析。3.1. Based on the geographical information system, establish a dynamic analysis method of spatio-temporal hot spots, including: (1) Locate the accident according to the longitude and latitude coordinates in the ship accident data, visualize the geographical distribution of the ship accident, and display the geographical distribution of the accident as subsequent hot spots Provide basis for analysis; (2) density analysis; (3) spatial autocorrelation analysis; (4) three-dimensional spatio-temporal hot spot analysis.
3.2、密度分析,包括;核密度估计和点密度分析,目的在于确定船舶事故的密度水平和风险边界,利用核密度估计和点密度分析方法可以任意定义空间分析单元。3.2. Density analysis, including; kernel density estimation and point density analysis, aims to determine the density level and risk boundary of ship accidents. The spatial analysis unit can be defined arbitrarily using kernel density estimation and point density analysis methods.
其中,核密度估计是一种有效的事故密度识别方法,其中的热点是指事故密度水平最高的区域,核密度估计是一种估计随机变量未知密度函数的非参数方法,与参数估计方法相比,该方法不需要假设数据集的密度函数。通过核密度估计有机联系船舶事故的空间分布与地理区域环境,可用来确定船舶事故的密度水平。Among them, kernel density estimation is an effective accident density identification method. The hot spot refers to the area with the highest accident density level. Kernel density estimation is a non-parametric method for estimating the unknown density function of random variables. Compared with the parameter estimation method , this method does not require assumptions about the density function of the data set. Kernel density estimation is organically linked to the spatial distribution of ship accidents and the geographical environment, and can be used to determine the density level of ship accidents.
核密度估计的计算公式为:The calculation formula of kernel density estimation is:
其中,f(x,y)为在(x,y)位置的估计密度,s为位置个数,h为带宽,K为核函数,λi为位置(x,y)到第i个位置的距离。Among them, f (x, y) is the estimated density at the (x, y) position, s is the number of positions, h is the bandwidth, K is the kernel function, and λ i is the distance from the position (x, y) to the i-th position. distance.
点密度分析中的热点是指邻域中事故数量最多的区域,点密度分析通过将某一邻域中点的数量相加除以邻域面积,并且考虑到邻域内的船舶交通密度,某一时间段内某一单元的船舶事故密度的计算公式为:The hot spot in point density analysis refers to the area with the largest number of accidents in the neighborhood. Point density analysis divides the number of points in a certain neighborhood by the neighborhood area, and takes into account the ship traffic density in the neighborhood. The calculation formula for ship accident density in a certain unit during a time period is:
其中,ρ为邻域半径,N(ρ)是以单元k的中心为圆心,邻域半径为ρ的圆型内的船舶事故数量,M为船舶交通密度。Among them, ρ is the neighborhood radius, N(ρ) is the number of ship accidents in a circle with the center of unit k as the center and the neighborhood radius ρ, and M is the ship traffic density.
3.3、空间自相关分析,是根据对象属性的数量确定一致的对象组的分析方法,包括:全局空间自相关分析和局部空间自相关分析,可以弥补密度分析结果中缺乏统计学意义的不足。3.3. Spatial autocorrelation analysis is an analysis method that determines consistent object groups based on the number of object attributes. It includes: global spatial autocorrelation analysis and local spatial autocorrelation analysis, which can make up for the lack of statistical significance in the density analysis results.
其中,全局自相关分析方法用于描述某一研究对象的整体分布情况,判断研究对象整体上是否具有空间集聚特征,利用全局Moran's I统计分析来进行,全局Moran's I方法基于统计相关系数的协方差关系,其计算公式为:Among them, the global autocorrelation analysis method is used to describe the overall distribution of a certain research object and determine whether the research object as a whole has spatial aggregation characteristics. It is carried out using global Moran's I statistical analysis. The global Moran's I method is based on the covariance of the statistical correlation coefficient. relationship, its calculation formula is:
其中,n为研究区域内的事故总数,xi和xj分别表示第i个和第j个空间观测值,wij表示空间二元邻接矩阵的元素,权重是位置i与其相邻位置j之间存在的邻域关系,W表示wij中所有事故的和,/> Among them, n is the total number of accidents in the study area, x i and x j represent the i-th and j-th spatial observation values respectively, w ij represents the elements of the spatial binary adjacency matrix, the weight is the neighborhood relationship existing between position i and its adjacent position j, W represents the sum of all accidents in w ij ,/>
局部空间自相关分析方法可以明确具体的事故聚集范围,识别事故的热点区域,Getis-Ord Gi*是一种典型的局部空间自相关分析技术,其计算公式为:The local spatial autocorrelation analysis method can clarify the specific accident gathering range and identify the hot spots of accidents. Getis-Ord Gi* is a typical local spatial autocorrelation analysis technology, and its calculation formula is:
其中,S为xj的标准差,局部空间自相关分析将事故聚集程度分为七类,具有90%、95%和99%置信水平的热点或冷点,以及无显著聚集的点;Among them, S is the standard deviation of x j , Local spatial autocorrelation analysis divides the degree of accident clustering into seven categories, hot or cold spots with 90%, 95% and 99% confidence levels, and points with no significant clustering;
3.4、三维时空热点分析,包括:新兴热点分析、时空热点趋势分析和时空核密度估计分析,目的在于,统筹事故的空间和时间属性,分析事故的旧热点的消亡与新热点的形成、分析事故的发展趋势和分析事故密度随时间的变化。3.4. Three-dimensional spatio-temporal hot spot analysis, including: emerging hot spot analysis, spatio-temporal hot spot trend analysis and spatio-temporal kernel density estimation analysis. The purpose is to coordinate the spatial and temporal attributes of accidents, analyze the demise of old hot spots and the formation of new hot spots, and analyze accidents. Development trends and analysis of changes in accident density over time.
其中,新兴热点分析和时空热点趋势分析方法扩展了Getis-Ord Gi*统计以结合事故数据的时间维度,这两种方法通过结合Getis-Ord Gi*统计和Mann-Kendall趋势检验两种统计方法,不仅能评估事故空间聚类的位置和程度,还能评估时空箱时间序列的变化趋势,这两种分析方法的输入数据集是NetCDF数据格式(即用于存储多维科学数据的数据格式)的时空立方体。新兴热点分析和时空热点趋势分析中热点的定义是一个时空箱的局部汇总统计量显著高于预期的局部统计量,即基于完全空间随机性的假设计算的局部统计量,并且该差异太大而不是随机过程的结果,新兴热点分析能够对事故热点进行更详细的解释和分类,同时也能呈现不同类型热点的变化,新兴热点分析将结果分为新增的、连续的、加强的、永久的、减少的、分散的、振荡的和历史的热点和冷点,时空热点趋势分析能够识别出具有统计学意义的事故热点变化趋势,时空热点趋势分析将热点或冷点的z得分随时间增加或减少的趋势分为七类,具有90%、95%和99%置信水平的上升或下降趋势,以及无显著趋势。Among them, the emerging hot spot analysis and spatio-temporal hot spot trend analysis methods extend the Getis-Ord Gi* statistics to combine the time dimension of accident data. These two methods combine the Getis-Ord Gi* statistics and the Mann-Kendall trend test. It can not only evaluate the location and degree of accident spatial clustering, but also evaluate the changing trend of space-time box time series. The input data set of these two analysis methods is the space-time of NetCDF data format (that is, the data format used to store multi-dimensional scientific data). cube. The definition of a hotspot in emerging hotspot analysis and spatiotemporal hotspot trend analysis is that the local summary statistic of a spacetime box is significantly higher than the expected local statistic, that is, the local statistic calculated based on the assumption of complete spatial randomness, and the difference is too large. It is not the result of a random process. Emerging hotspot analysis can explain and classify accident hotspots in more detail, and can also present changes in different types of hotspots. Emerging hotspot analysis divides the results into new, continuous, enhanced, and permanent. , reduced, dispersed, oscillating and historical hot and cold spots, spatiotemporal hotspot trend analysis can identify statistically significant accident hotspot changing trends, spatiotemporal hotspot trend analysis will increase the z-score of hotspots or cold spots over time or Decreasing trends are divided into seven categories, increasing or decreasing trends with 90%, 95% and 99% confidence levels, and no significant trend.
时空核密度估计分析突破了上述热点分析技术不能研究船舶事故密度随时间变化的局限性,可以实现对船舶事故密度随时间演化过程的微观分析,计算公式为:The spatio-temporal kernel density estimation analysis breaks through the limitation that the above-mentioned hotspot analysis technology cannot study the change of ship accident density over time, and can realize the microscopic analysis of the evolution process of ship accident density over time. The calculation formula is:
其中,为位置(x,y,t)处的密度估计,x维度和y维度为空间,t维度为时间,ds为空间带宽,dt为时间带宽,ds 2d是密度估计值/>乘以n得到的密度值,用每单位时空的事件数表示,核函数Ls和Lt的计算公式为:in, is the density estimate at position (x, y, t), the x and y dimensions are space, the t dimension is time, ds is the spatial bandwidth, dt is the time bandwidth, d s 2 d is the density estimate/> The density value obtained by multiplying by n is expressed as the number of events per unit of space and time. The calculation formulas of the kernel functions Ls and Lt are:
其中,u为经度xi和xi+1之间的差异率,v为纬度yi和yi+1之间的差异率,p为时间ti和ti+1之间的差异率;Among them, u is the difference rate between longitude xi and xi+1, v is the difference rate between latitude yi and yi+1, p is the difference rate between time ti and ti+1;
步骤4、参数设置,获得最终的时空热点动态分析方法。Step 4. Set parameters to obtain the final spatio-temporal hot spot dynamic analysis method.
4.1、基于已建立的时空热点动态分析方法,对参数进行调整,满足精度要求,获得最终的时空热点动态分析方法;4.1. Based on the established spatio-temporal hot spot dynamic analysis method, adjust the parameters to meet the accuracy requirements and obtain the final spatio-temporal hot spot dynamic analysis method;
4.2、在核密度估计的参数调整过程中,核密度估计的结果受到核函数K、带宽h、以及单元大小的共同影响,常用的核函数有高斯核函数和矩形核函数,带宽影响密度表面的平滑度,而单元大小影响生成表面的粗糙度,需要经过多次筛选,最终选取最符合船舶事故核密度估计输出结果的一组;4.2. During the parameter adjustment process of kernel density estimation, the results of kernel density estimation are jointly affected by the kernel function K, bandwidth h, and unit size. Commonly used kernel functions include Gaussian kernel function and rectangular kernel function. Bandwidth affects the density surface. Smoothness, and the unit size affects the roughness of the generated surface, which requires multiple screenings to finally select a group that best matches the output results of the ship accident nuclear density estimation;
在点密度分析的参数调整过程中,点密度分析的结果受到邻域半径ρ和船舶交通密度M的共同影响,需要经过多次筛选,最终选取最符合船舶事故点密度分析输出结果的一组;在创建时空立方体、新兴时空热点分析、时空热点趋势分析、以及时空核密度估计的参数调整过程中,分析结果受到时空箱的时间和空间大小的共同影响,需要经过多次筛选,最终选取最符合船舶事故时空热点分析输出结果的一组,将符合船舶事故核密度估计输出结果、最符合船舶事故点密度分析输出结果、最符合船舶事故时空热点分析输出结果结合得到船舶事故时空热点输出结果。During the parameter adjustment process of point density analysis, the results of point density analysis are jointly affected by the neighborhood radius ρ and ship traffic density M, and need to be screened multiple times to finally select a group that best matches the output results of ship accident point density analysis; In the process of creating a space-time cube, emerging space-time hotspot analysis, space-time hotspot trend analysis, and parameter adjustment of space-time kernel density estimation, the analysis results are affected by the time and space size of the space-time box, and require multiple screenings to finally select the most suitable A set of ship accident spatio-temporal hotspot analysis output results combines the ship accident spatio-temporal hot spot output results that are consistent with the ship accident nuclear density estimation output, the most consistent ship accident point density analysis output, and the most consistent ship accident spatio-temporal hot spot analysis output results.
在本实施例中,时空立方体(x,y,t)是由时空箱组成的三维立方体,此工具可将点输入要素(即船舶事故的坐标和时间信息)聚合到时空箱中,其中x维度和y维度表示空间,t维度表示时间。通过空间定位可以得到时空箱时间序列,时空箱时间序列为纵向列。每列中包含数据点的数量是单位时间步长内发生的地理事件数量,每个时空箱有唯一的位置ID并保存聚合值,包括数据点的数量或指定属性的其他汇总统计数据,时空箱时间序列可以直观地显示船舶事故数量在地理位置上随时间的变化趋势。In this embodiment, the space-time cube (x, y, t) is a three-dimensional cube composed of space-time boxes. This tool can aggregate point input elements (ie, the coordinates and time information of ship accidents) into space-time boxes, where the x dimension The y dimension represents space and the t dimension represents time. The space-time box time series can be obtained through spatial positioning, and the space-time box time series is a vertical column. The number of data points contained in each column is the number of geographic events that occurred per unit time step. Each space-time bin has a unique location ID and holds an aggregate value, including the number of data points or other summary statistics for the specified attribute. The space-time bin The time series can visually display the changing trend of the number of ship accidents geographically over time.
在另一方面,如图5所示,本发明实施例还提供了一种综合性的船舶事故时空热点动态分析系统,包括:On the other hand, as shown in Figure 5, embodiments of the present invention also provide a comprehensive spatio-temporal hotspot dynamic analysis system for ship accidents, including:
数据处理模块:用于接收船舶事故数据,对船舶事故数据进行数据过滤和数据转换,得到船舶事故处理数据,其中,所述船舶事故数据包括船舶事故中的船舶类型、事件摘要、总吨位、船级社、事故坐标、事故发生时间、以及伤亡人数、船舶事故所在区域的交通流量数据;Data processing module: used to receive ship accident data, perform data filtering and data conversion on the ship accident data, and obtain ship accident processing data. The ship accident data includes the ship type, event summary, total tonnage, and ship accident data. Class society, accident coordinates, accident time, number of casualties, and traffic flow data in the area where the ship accident occurred;
事故分析模块:用于基于船舶事故处理数据,对船舶事故进行定位,得到船舶事故的地理位置分布,基于船舶事故的地理位置分布,对船舶事故进行密度分析、空间自相关分析和三维时空热点分析;Accident analysis module: used to locate ship accidents based on ship accident processing data and obtain the geographical distribution of ship accidents. Based on the geographical distribution of ship accidents, conduct density analysis, spatial autocorrelation analysis and three-dimensional spatio-temporal hotspot analysis of ship accidents. ;
结果输出模块:用于分别对密度分析、空间自相关分析和三维时空热点分析进行参数调整,经过多次筛选,得到船舶事故时空热点输出结果。Result output module: used to adjust parameters for density analysis, spatial autocorrelation analysis and three-dimensional spatiotemporal hotspot analysis respectively. After multiple screenings, the spatiotemporal hotspot output results of ship accidents are obtained.
基于同一种发明构思,本发明还提供一种计算机设备,该计算机设备包括:一个或多个处理器,以及存储器,用于存储一个或多个计算机程序;程序包括程序指令,处理器用于执行存储器存储的程序指令。处理器可能是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor、DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable GateArray,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等,其是终端的计算核心以及控制核心,其用于实现一条或一条以上指令,具体用于加载并执行计算机存储介质内一条或一条以上指令从而实现上述方法。Based on the same inventive concept, the present invention also provides a computer device. The computer device includes: one or more processors and a memory for storing one or more computer programs; the program includes program instructions, and the processor is used to execute the memory Stored program instructions. The processor may be a Central Processing Unit (CPU), or other general-purpose processor, Digital Signal Processor (DSP), Application Specific Integrated Circuit (ASIC), or field programmable Gate array (Field-Programmable GateArray, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc., which are the computing core and control core of the terminal, are used to implement one or more instructions, specifically It is used to load and execute one or more instructions in the computer storage medium to implement the above method.
需要进一步进行说明的是,基于同一种发明构思,本发明还提供一种计算机存储介质,该存储介质上存储有计算机程序,所述计算机程序被处理器运行时执行上述方法。该存储介质可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是但不限于电、磁、光、电、磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本发明中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。It should be further explained that, based on the same inventive concept, the present invention also provides a computer storage medium, the storage medium stores a computer program, and the computer program executes the above method when run by a processor. The storage medium may be any combination of one or more computer-readable media. The computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium. The computer-readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electrical, magnetic, infrared, or semiconductor system, device or device, or any combination thereof. More specific examples (non-exhaustive list) of computer readable storage media include: electrical connections having one or more conductors, portable computer disks, hard drives, random access memory (RAM), read only memory (ROM), Erasable programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above. In the present invention, a computer-readable storage medium may be any tangible medium that contains or stores a program for use by or in conjunction with an instruction execution system, apparatus, or device.
在本说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。In the description of this specification, reference to the terms "one embodiment," "example," "specific example," etc., means that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one aspect of the disclosure. in an embodiment or example. In this specification, schematic representations of the above terms do not necessarily refer to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
以上显示和描述了本公开的基本原理、主要特征和本公开的优点。本行业的技术人员应该了解,本公开不受上述实施例的限制,上述实施例和说明书中描述的只是说明本公开的原理,在不脱离本公开精神和范围的前提下,本公开还会有各种变化和改进,这些变化和改进都落入要求保护的本公开范围内容。The basic principles, main features, and advantages of the present disclosure have been shown and described above. Those skilled in the industry should understand that the present disclosure is not limited by the above embodiments. What is described in the above embodiments and descriptions only illustrates the principles of the present disclosure. Without departing from the spirit and scope of the present disclosure, the present disclosure will also have other features. Various changes and improvements are possible, which fall within the scope of the claimed disclosure.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310950048.8A CN117238173A (en) | 2023-07-31 | 2023-07-31 | A comprehensive method and system for dynamic analysis of spatio-temporal hot spots in ship accidents |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310950048.8A CN117238173A (en) | 2023-07-31 | 2023-07-31 | A comprehensive method and system for dynamic analysis of spatio-temporal hot spots in ship accidents |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117238173A true CN117238173A (en) | 2023-12-15 |
Family
ID=89095566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310950048.8A Pending CN117238173A (en) | 2023-07-31 | 2023-07-31 | A comprehensive method and system for dynamic analysis of spatio-temporal hot spots in ship accidents |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117238173A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117874437A (en) * | 2024-03-12 | 2024-04-12 | 广东电网有限责任公司 | Accident trend identification method based on time sequence analysis |
-
2023
- 2023-07-31 CN CN202310950048.8A patent/CN117238173A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117874437A (en) * | 2024-03-12 | 2024-04-12 | 广东电网有限责任公司 | Accident trend identification method based on time sequence analysis |
CN117874437B (en) * | 2024-03-12 | 2024-05-10 | 广东电网有限责任公司 | Accident trend identification method based on time sequence analysis |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | A predictive analytics method for maritime traffic flow complexity estimation in inland waterways | |
Shirowzhan et al. | Data mining for recognition of spatial distribution patterns of building heights using airborne lidar data | |
CN110135351A (en) | Boundary recognition method and equipment of built-up area based on urban building space data | |
CN112990976B (en) | Commercial site selection method, system, equipment and medium based on open source data mining | |
CN114936332B (en) | Method, device and storage medium for analyzing ship traffic flow in water area of wind farm | |
Yang et al. | Maritime traffic flow clustering analysis by density based trajectory clustering with noise | |
CN109978616A (en) | Agricultural product data monitoring early warning system | |
CN117238173A (en) | A comprehensive method and system for dynamic analysis of spatio-temporal hot spots in ship accidents | |
CN114202232A (en) | A system and method for optimizing ecological resource protection based on data analysis | |
CN116128378B (en) | Urban physical examination evaluation method, system, storage medium and electronic equipment | |
CN110826891B (en) | A method for obtaining relative collision risk based on ship cluster situation | |
Yu et al. | Incorporating remote sensing information in modeling house values | |
CN115713605A (en) | Commercial building group automatic modeling method based on image learning | |
CN111581927A (en) | Ocean economic operation monitoring and early warning system and computer equipment | |
CN113065753B (en) | Operation and maintenance region hierarchical management method, device, terminal and medium based on road network demand heat | |
CN117458450B (en) | Power data energy consumption prediction analysis method and system | |
CN118747550A (en) | A spatiotemporal business data early warning method and system based on multiple types of extreme weather | |
CN115424430B (en) | Highway traffic accident black spot section identification method and computer device | |
CN117591614A (en) | Geographic area similarity evaluation method based on multi-source data and EMD distance | |
CN113393710B (en) | Early warning method, early warning device and electronic equipment | |
CN115907159A (en) | Method, device, equipment and medium for determining similar path typhoon | |
Li et al. | A multi‐scale partitioning and aggregation method for large volumes of buildings considering road networks association constraints | |
Huang et al. | A novel regional ship collision risk assessment framework for multi-ship encounters in complex waters | |
CN114897319A (en) | Method for establishing bearing capacity evaluation and early warning index system of water resource environment | |
CN114782813B (en) | Methods, devices, equipment and media for assessing economic losses caused by earthquake damage to buildings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |