CN117237684B - A pixel-level area matching method and device - Google Patents
A pixel-level area matching method and device Download PDFInfo
- Publication number
- CN117237684B CN117237684B CN202311499467.0A CN202311499467A CN117237684B CN 117237684 B CN117237684 B CN 117237684B CN 202311499467 A CN202311499467 A CN 202311499467A CN 117237684 B CN117237684 B CN 117237684B
- Authority
- CN
- China
- Prior art keywords
- feature map
- area
- target
- pixel
- parameter information
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Image Processing (AREA)
Abstract
Description
技术领域Technical field
本发明涉及区域监测技术领域,尤其涉及的是一种像素级别的区域匹配方法及装置。The present invention relates to the field of area monitoring technology, and in particular to a pixel-level area matching method and device.
背景技术Background technique
一直以来,建立自然保护区被公认为是保护生物多样性的最有效的保护措施之一。全球各种自然保护区的数量多,覆盖面积也较大,但如何科学评估自然保护区建立的效果一直存在争议。评价自然保护区的保护效果很大程度上取决于对照的选择,选择一个可比性强的对照才可能获得可靠的评估结果。The establishment of nature reserves has long been recognized as one of the most effective conservation measures for protecting biological diversity. There are many nature reserves around the world, covering a large area, but how to scientifically evaluate the effects of the establishment of nature reserves has been controversial. Evaluating the conservation effect of nature reserves depends largely on the selection of controls. Only by selecting a highly comparable control can reliable evaluation results be obtained.
现有技术是根据大量先验知识并进行参数调整后得到对照,这样得到的对照会受到主观因素影响,即,得到的对照并不准确,从而导致评估结果不准确。The existing technology is based on a large amount of prior knowledge and parameter adjustment to obtain the comparison. The comparison obtained in this way will be affected by subjective factors, that is, the obtained comparison is not accurate, resulting in inaccurate evaluation results.
因此,现有技术存在缺陷,有待改进与发展。Therefore, the existing technology has defects and needs to be improved and developed.
发明内容Contents of the invention
本申请提供了一种像素级别的区域匹配方法及装置,以解决相关技术中得到的对照并不准确的技术问题。This application provides a pixel-level area matching method and device to solve the technical problem of inaccurate comparison obtained in related technologies.
为实现上述目的,本申请采用了以下技术方案:In order to achieve the above purpose, this application adopts the following technical solutions:
本申请第一方面实施例提供一种像素级别的区域匹配方法,包括以下步骤:The first embodiment of the present application provides a pixel-level area matching method, which includes the following steps:
获取目标保护区的第一特征参数信息以及目标候选区的第二特征参数信息;Obtain the first characteristic parameter information of the target protected area and the second characteristic parameter information of the target candidate area;
根据所述第一特征参数信息构建第一多通道特征图,以及根据所述第二特征参数信息构建第二多通道特征图;Construct a first multi-channel feature map based on the first feature parameter information, and construct a second multi-channel feature map based on the second feature parameter information;
计算所述第二多通道特征图上与所述第一多通道特征图中每个像素相匹配的目标像素点,根据各个目标像素点得到所述目标候选区对应的对照特征图;Calculate target pixel points on the second multi-channel feature map that match each pixel in the first multi-channel feature map, and obtain a comparison feature map corresponding to the target candidate area based on each target pixel point;
将所述第一多通道特征图和所述对照特征图保存为对照图像组。The first multi-channel feature map and the comparison feature map are saved as a comparison image group.
可选地,所述目标候选区是以所述目标保护区的中心点为圆心,以第一预设距离为半径的圆形区域作为第一区域,以第二预设距离为半径的圆形区域作为第二区域,在所述第二区域中去除所述第一区域后得到;所述第二预设距离大于所述第一预设距离,所述第一区域的面积大于所述目标保护区的面积。Optionally, the target candidate area is a circular area with the center point of the target protected area as the center, a first preset distance as the radius, and a circular area with the second preset distance as the radius. area as the second area, obtained by removing the first area from the second area; the second preset distance is greater than the first preset distance, and the area of the first area is greater than the target protection area of the district.
可选地,所述获取目标保护区的第一特征参数信息以及目标候选区的第二特征参数信息,包括:Optionally, the obtaining the first characteristic parameter information of the target protected area and the second characteristic parameter information of the target candidate area includes:
获取所述目标保护区对应的第一遥感影像数据,根据所述第一遥感影像数据得到所述目标保护区的第一特征参数信息;Obtain first remote sensing image data corresponding to the target protected area, and obtain first characteristic parameter information of the target protected area based on the first remote sensing image data;
获取所述目标候选区对应的第二遥感影像数据,根据所述第二遥感影像数据得到所述目标保护区的第二特征参数信息;Obtain second remote sensing image data corresponding to the target candidate area, and obtain second characteristic parameter information of the target protected area based on the second remote sensing image data;
所述第一特征参数信息和所述第二特征参数信息中的特征参数均包括:坡度、海拔、植被类型、森林砍伐情况、与道路的第一距离、与水源的第二距离以及与人类活动区域的第三距离。The characteristic parameters in the first characteristic parameter information and the second characteristic parameter information include: slope, altitude, vegetation type, deforestation status, first distance from the road, second distance from the water source, and distance from human activities The third distance of the area.
可选地,根据所述第一特征参数信息构建第一多通道特征图,以及根据所述第二特征参数信息构建第二多通道特征图,包括:Optionally, constructing a first multi-channel feature map based on the first feature parameter information, and constructing a second multi-channel feature map based on the second feature parameter information includes:
将所述第一特征参数信息中的每个特征参数作为一个通道特征,构建得到第一多通道特征图;Use each characteristic parameter in the first characteristic parameter information as a channel feature to construct a first multi-channel feature map;
将所述第二特征参数信息中的每个特征参数作为一个通道特征,构建得到第二多通道特征图。Each feature parameter in the second feature parameter information is used as a channel feature to construct a second multi-channel feature map.
可选地,计算所述第二多通道特征图上与所述第一多通道特征图中每个像素相匹配的目标像素点,根据各个目标像素点得到所述目标候选区对应的对照特征图,包括:Optionally, calculate the target pixel points on the second multi-channel feature map that match each pixel in the first multi-channel feature map, and obtain a comparison feature map corresponding to the target candidate area based on each target pixel point. ,include:
利用最近邻算法计算所述第一多通道特征图中的每个像素与所述第二多通道特征图上各个像素点之间的特征相似度;Using the nearest neighbor algorithm to calculate the feature similarity between each pixel in the first multi-channel feature map and each pixel point in the second multi-channel feature map;
将所述特征相似度达到预设阈值的像素点作为目标像素点;Use pixels whose feature similarity reaches a preset threshold as target pixels;
将各个所述目标像素点聚集,得到所述目标候选区对应的对照特征图。Each target pixel point is gathered to obtain a comparison feature map corresponding to the target candidate area.
可选地,将所述第一多通道特征图和所述对照特征图保存为对照图像组之后,还包括:Optionally, after saving the first multi-channel feature map and the comparison feature map as a comparison image group, the method further includes:
根据所述对照图像组对所述目标保护区和所述目标候选区进行监测,并根据监测结果得到所述目标保护区的保护效果评估结果。The target protected area and the target candidate area are monitored according to the comparison image group, and the protection effect evaluation result of the target protected area is obtained based on the monitoring results.
可选地,根据所述对照图像组对所述目标保护区和所述目标候选区进行监测,并根据监测结果得到所述目标保护区的保护效果评估结果,包括:Optionally, monitor the target protected area and the target candidate area according to the comparison image group, and obtain the protection effect evaluation results of the target protected area based on the monitoring results, including:
当达到预定监测时间时,获取当前所述目标保护区的第三遥感影像数据和所述目标候选区的第四遥感影像数据;When the predetermined monitoring time is reached, obtain the third remote sensing image data of the current target protected area and the fourth remote sensing image data of the target candidate area;
根据所述第三遥感影像数据得到所述目标保护区的第三特征参数信息,以及根据所述第四遥感影像数据得到所述目标候选区的第四特征参数信息;Obtain third characteristic parameter information of the target protected area according to the third remote sensing image data, and obtain fourth characteristic parameter information of the target candidate area according to the fourth remote sensing image data;
根据所述第三特征参数信息构建第三多通道特征图,以及根据所述第四特征参数信息构建第四多通道特征图;Construct a third multi-channel feature map based on the third feature parameter information, and construct a fourth multi-channel feature map based on the fourth feature parameter information;
计算所述第四多通道特征图上与所述第三多通道特征图中每个像素相匹配的目标像素点,根据各个目标像素点得到所述目标候选区对应的变化特征图;Calculate target pixel points on the fourth multi-channel feature map that match each pixel in the third multi-channel feature map, and obtain a change feature map corresponding to the target candidate area based on each target pixel point;
将所述第四多通道特征图与所述对照图像组中的第一多通道特征图进行比对,得到保护区变化信息;Compare the fourth multi-channel feature map with the first multi-channel feature map in the comparison image group to obtain protection zone change information;
将所述变化特征图与所述对照图像组中的对照特征图进行比对,得到候选区变化信息;Compare the change feature map with the control feature map in the control image group to obtain candidate area change information;
根据所述保护区变化信息和所述候选区变化信息得到所述目标保护区的保护效果评估结果。The protection effect evaluation result of the target protected area is obtained based on the protected area change information and the candidate area change information.
本申请第二方面实施例提供一种像素级别的区域匹配装置,包括:The second embodiment of the present application provides a pixel-level area matching device, including:
获取模块,用于获取目标保护区的第一特征参数信息以及目标候选区的第二特征参数信息;An acquisition module, used to acquire the first characteristic parameter information of the target protected area and the second characteristic parameter information of the target candidate area;
构建模块,用于根据所述第一特征参数信息构建第一多通道特征图,以及根据所述第二特征参数信息构建第二多通道特征图;A building module configured to construct a first multi-channel feature map based on the first feature parameter information, and a second multi-channel feature map based on the second feature parameter information;
计算模块,用于计算所述第二多通道特征图上与所述第一多通道特征图中每个像素相匹配的目标像素点,根据各个目标像素点得到所述目标候选区对应的对照特征图;A calculation module configured to calculate target pixel points on the second multi-channel feature map that match each pixel in the first multi-channel feature map, and obtain comparison features corresponding to the target candidate area based on each target pixel point. picture;
保存模块,用于将所述第一多通道特征图和所述对照特征图保存为对照图像组。A saving module, configured to save the first multi-channel feature map and the comparison feature map as a comparison image group.
本申请第三方面实施例提供一种终端,所述终端包括存储器、处理器及存储在所述存储器中并可在所述处理器上运行的像素级别的区域匹配程序,所述处理器执行所述像素级别的区域匹配程序时,实现如上所述的像素级别的区域匹配方法的步骤。A third embodiment of the present application provides a terminal. The terminal includes a memory, a processor, and a pixel-level area matching program stored in the memory and executable on the processor. The processor executes the When describing the pixel-level area matching procedure, the steps of the pixel-level area matching method as described above are implemented.
本申请第四方面实施例提供一种计算机可读存储介质,所述计算机可读存储介质上存储有像素级别的区域匹配程序,所述像素级别的区域匹配程序被处理器执行时,实现如上所述的像素级别的区域匹配方法的步骤。A fourth embodiment of the present application provides a computer-readable storage medium. A pixel-level area matching program is stored on the computer-readable storage medium. When the pixel-level area matching program is executed by a processor, the above steps are implemented. The steps of the pixel-level region matching method described above.
本发明的有益效果:本发明实施例通过获取目标保护区的第一特征参数信息以及目标候选区的第二特征参数信息;根据所述第一特征参数信息构建第一多通道特征图,以及根据所述第二特征参数信息构建第二多通道特征图;计算所述第二多通道特征图上与所述第一多通道特征图中每个像素相匹配的目标像素点,根据各个目标像素点得到所述目标候选区对应的对照特征图;将所述第一多通道特征图和所述对照特征图保存为对照图像组。本发明通过将区域中的特征像素化,避免了由于过度依赖先验知识而无法进行定量分析的问题,通过构建多通道特征图,从而实现像素级别的区域匹配,得到可比性强且准确的对照图像组,进而提高了目标保护区的评估准确性。Beneficial effects of the present invention: The embodiment of the present invention obtains the first characteristic parameter information of the target protected area and the second characteristic parameter information of the target candidate area; constructs a first multi-channel feature map according to the first characteristic parameter information, and according to The second feature parameter information constructs a second multi-channel feature map; calculates the target pixel points on the second multi-channel feature map that match each pixel in the first multi-channel feature map, and based on each target pixel point A comparison feature map corresponding to the target candidate area is obtained; and the first multi-channel feature map and the comparison feature map are saved as a comparison image group. This invention avoids the problem of being unable to perform quantitative analysis due to over-reliance on prior knowledge by pixelating the features in the region. By constructing a multi-channel feature map, it achieves pixel-level regional matching and obtains highly comparable and accurate comparisons. Image sets, thereby improving the accuracy of assessment of target protected areas.
附图说明Description of the drawings
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present application will become apparent and readily understood from the following description of the embodiments in conjunction with the accompanying drawings, in which:
图1是本发明中像素级别的区域匹配方法较佳实施例的流程图。Figure 1 is a flow chart of a preferred embodiment of the pixel-level area matching method in the present invention.
图2是本发明中像素级别的区域匹配方法较佳实施例的目标保护区、缓冲区和目标候选区之间的关系示意图。Figure 2 is a schematic diagram of the relationship between the target protection area, the buffer area and the target candidate area in a preferred embodiment of the pixel-level area matching method of the present invention.
图3是本发明中像素级别的区域匹配方法较佳实施例中的多通道特征图。Figure 3 is a multi-channel feature map in a preferred embodiment of the pixel-level area matching method in the present invention.
图4是本发明中像素级别的区域匹配装置较佳实施例的功能原理框图。FIG. 4 is a functional block diagram of a preferred embodiment of the pixel-level area matching device in the present invention.
图5是本发明中终端的较佳实施例的功能原理框图。Figure 5 is a functional functional block diagram of a preferred embodiment of the terminal in the present invention.
具体实施方式Detailed ways
为使本发明的目的、技术方案及优点更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the purpose, technical solutions and advantages of the present invention clearer and clearer, the present invention will be further described in detail below with reference to the accompanying drawings and examples. It should be understood that the specific embodiments described here are only used to explain the present invention and are not intended to limit the present invention.
现有技术的主要缺点包括:(1)可能无法充分捕捉森林景观的空间异质性和局部变化;(2)计算成本高,尤其是在大尺度项目中;(3)需要大量先验知识和参数调整,这可能导致结果受主观因素影响;(4)一般选择的区域为连续区域。The main disadvantages of existing techniques include: (1) they may not adequately capture the spatial heterogeneity and local variation of forest landscapes; (2) they are computationally expensive, especially in large-scale projects; (3) they require extensive prior knowledge and Parameter adjustment, which may cause the results to be affected by subjective factors; (4) The generally selected area is a continuous area.
请参见图1,本发明实施例所述的像素级别的区域匹配方法包括如下步骤:Referring to Figure 1, the pixel-level area matching method according to the embodiment of the present invention includes the following steps:
步骤S100、获取目标保护区的第一特征参数信息以及目标候选区的第二特征参数信息。Step S100: Obtain the first characteristic parameter information of the target protected area and the second characteristic parameter information of the target candidate area.
在一种实施例中,所述目标候选区是以所述目标保护区的中心点为圆心,以第一预设距离为半径的圆形区域作为第一区域,以第二预设距离为半径的圆形区域作为第二区域,在所述第二区域中去除所述第一区域后得到;所述第二预设距离大于所述第一预设距离,所述第一区域的面积大于所述目标保护区的面积。In one embodiment, the target candidate area is a circular area with the center point of the target protected area as the center, a first preset distance as the radius as the first area, and a second preset distance as the radius. The circular area is used as the second area, which is obtained by removing the first area from the second area; the second preset distance is greater than the first preset distance, and the area of the first area is greater than the Describe the area of the target protected area.
具体地,将所要监测的保护区作为目标保护区,在目标保护区周围选择固定半径的缓冲区,缓冲区是第一区域去除目标保护区后得到的区域,目标候选区是第二区域中去除第一区域后得到的区域。例如,第一预设距离设置为300km,第二预设距离设置为700km,如图2所示,中间的圆形区域表示目标保护区,圆形外围的第一个环形区域为缓冲区,第二个环形区域为目标候选区。Specifically, the protected area to be monitored is used as the target protected area, and a buffer zone with a fixed radius is selected around the target protected area. The buffer area is the area obtained after removing the target protected area from the first area, and the target candidate area is the area removed from the second area. The area obtained after the first area. For example, the first preset distance is set to 300km, and the second preset distance is set to 700km. As shown in Figure 2, the circular area in the middle represents the target protection zone, and the first annular area outside the circle is the buffer zone. The two annular areas are target candidate areas.
本申请实施例通过上述方式选择目标保护区对应的目标候选区,既能够得到目标保护区的相似环境,又避免了保护区域和候选区过于接近导致对比结果不明显的问题,进而能够得到可比性强的对照。The embodiment of the present application selects the target candidate area corresponding to the target protected area through the above method, which can not only obtain the similar environment of the target protected area, but also avoid the problem that the comparison result is not obvious due to the protection area and the candidate area being too close, thereby achieving comparability. Strong contrast.
在一种实现方式中,所述步骤S100具体包括:获取所述目标保护区对应的第一遥感影像数据,根据所述第一遥感影像数据得到所述目标保护区的第一特征参数信息;获取所述目标候选区对应的第二遥感影像数据,根据所述第二遥感影像数据得到所述目标保护区的第二特征参数信息;所述第一特征参数信息和所述第二特征参数信息中的特征参数均包括:坡度、海拔、植被类型、森林砍伐情况、与道路的第一距离、与水源的第二距离以及与人类活动区域的第三距离。In one implementation, the step S100 specifically includes: obtaining the first remote sensing image data corresponding to the target protected area, and obtaining the first characteristic parameter information of the target protected area according to the first remote sensing image data; obtaining According to the second remote sensing image data corresponding to the target candidate area, the second characteristic parameter information of the target protected area is obtained according to the second remote sensing image data; among the first characteristic parameter information and the second characteristic parameter information The characteristic parameters include: slope, altitude, vegetation type, deforestation, first distance from roads, second distance from water sources, and third distance from human activity areas.
具体地,本申请实施例分别收集目标保护区和目标候选区的多个特征参数,特征参数包括坡度、海拔、植被类型、森林砍伐情况、与道路的第一距离、与水源的第二距离和与人类活动区域的第三距离等。这些特征参数都可以从遥感影像数据中得到。遥感影像(RS,Remote Sensing Image)是指记录各种地物电磁波大小的胶片或照片,主要分为航空像片和卫星相片。本申请实施例将地理匹配问题转换为图像中的目标像素点匹配问题,利用遥感图像处理技术获取保护区和候选区的信息。其中,与道路的第一距离可以通过获取路网数据,再利用算法获得每个位置距离道路的距离。Specifically, the embodiment of this application collects multiple characteristic parameters of the target protected area and the target candidate area respectively. The characteristic parameters include slope, altitude, vegetation type, deforestation status, first distance from the road, second distance from the water source, and Third distance from human activity areas, etc. These characteristic parameters can be obtained from remote sensing image data. Remote Sensing Image (RS) refers to films or photos that record the size of electromagnetic waves of various ground objects. It is mainly divided into aerial photos and satellite photos. The embodiment of this application converts the geographical matching problem into the target pixel point matching problem in the image, and uses remote sensing image processing technology to obtain information about protected areas and candidate areas. Among them, the first distance to the road can be obtained by obtaining road network data, and then using an algorithm to obtain the distance of each location from the road.
本申请实施例还可以采用其他遥感数据源,如光学遥感、合成孔径雷达遥感等,进一步丰富特征信息。Embodiments of this application may also use other remote sensing data sources, such as optical remote sensing, synthetic aperture radar remote sensing, etc., to further enrich feature information.
本申请实施例使用传统的遥感处理方法,如最小距离分类、支持向量机等进行特征匹配,通过获取区域的多个特征参数,以便于根据各个特征参数构建多通道特征图,从而实现像素级别的区域匹配,最终提高评估的准确性。The embodiments of this application use traditional remote sensing processing methods, such as minimum distance classification, support vector machines, etc., to perform feature matching. By obtaining multiple feature parameters of the area, multi-channel feature maps can be constructed based on each feature parameter, thereby achieving pixel-level Region matching ultimately improves the accuracy of assessment.
如图1所示,所述像素级别的区域匹配方法还包括如下步骤:As shown in Figure 1, the pixel-level area matching method also includes the following steps:
步骤S200、根据所述第一特征参数信息构建第一多通道特征图,以及根据所述第二特征参数信息构建第二多通道特征图。Step S200: Build a first multi-channel feature map based on the first feature parameter information, and build a second multi-channel feature map based on the second feature parameter information.
在一种实施例中,所述步骤S200具体包括:将所述第一特征参数信息中的每个特征参数作为一个通道特征,构建得到第一多通道特征图;将所述第二特征参数信息中的每个特征参数作为一个通道特征,构建得到第二多通道特征图。In one embodiment, the step S200 specifically includes: using each feature parameter in the first feature parameter information as a channel feature to construct a first multi-channel feature map; using the second feature parameter information Each feature parameter in is used as a channel feature to construct a second multi-channel feature map.
具体地,本实施例将坡度、海拔、植被类型、森林砍伐情况、与道路的第一距离、与水源的第二距离和与人类活动区域的第三距离这些特征单独构建为图像的通道特征,如图3所示,图像上的每个通道代表一个特征。每一个目标像素点是由n个特征构成1 * n的特征向量。其中,目标保护区和目标候选区的每一个像素都是1 * n的特征向量,区别在于像素个数。Specifically, this embodiment constructs the features of slope, altitude, vegetation type, deforestation, first distance from the road, second distance from the water source, and third distance from the human activity area as channel features of the image. As shown in Figure 3, each channel on the image represents a feature. Each target pixel is a 1 * n feature vector composed of n features. Among them, each pixel of the target protected area and target candidate area is a 1 * n feature vector, and the difference lies in the number of pixels.
本申请实施例通过构建多通道特征图,从而实现像素级别的候选区域匹配方法,进而得到可比性强的对照。The embodiment of this application implements a pixel-level candidate area matching method by constructing a multi-channel feature map, thereby obtaining a highly comparable comparison.
如图1所示,所述像素级别的区域匹配方法还包括如下步骤:As shown in Figure 1, the pixel-level area matching method also includes the following steps:
步骤S300、计算所述第二多通道特征图上与所述第一多通道特征图中每个像素相匹配的目标像素点,根据各个目标像素点得到所述目标候选区对应的对照特征图。Step S300: Calculate target pixel points on the second multi-channel feature map that match each pixel in the first multi-channel feature map, and obtain a comparison feature map corresponding to the target candidate area based on each target pixel point.
在一种实施例中,所述步骤S300具体包括:利用最近邻算法计算所述第一多通道特征图中的每个像素与所述第二多通道特征图上各个像素点之间的特征相似度;将所述特征相似度达到预设阈值的像素点作为目标像素点;将各个所述目标像素点聚集,得到所述目标候选区对应的对照特征图。In one embodiment, the step S300 specifically includes: using the nearest neighbor algorithm to calculate the feature similarity between each pixel in the first multi-channel feature map and each pixel point in the second multi-channel feature map. degree; use pixels whose feature similarity reaches a preset threshold as target pixels; gather each of the target pixels to obtain a comparison feature map corresponding to the target candidate area.
具体地,从目标候选区中使用KNN(最近邻算法)匹配到目标保护区像素i的最佳像素点作为目标像素点,目标保护区上的每个目标像素点均对应目标候选区中的一个目标像素点。最后将所有匹配到的点组合为完整的对照特征图进行对比分析。Specifically, the best pixel point matched to the target protected area pixel i using KNN (nearest neighbor algorithm) from the target candidate area is used as the target pixel point. Each target pixel point on the target protected area corresponds to one of the target candidate areas. target pixel. Finally, all matched points are combined into a complete control feature map for comparative analysis.
本实施例可以充分捕捉空间异质性和局部变化,通过将地理位置像素化、影响因素图像通道化,可以避免由于过度依赖先验知识而无法进行定量分析的问题,并且可以实现点对点的对照分析,而不再使用连续区域对连续区域的对照方式。This embodiment can fully capture spatial heterogeneity and local changes. By pixelating the geographical location and channelizing the image of influencing factors, it can avoid the problem of being unable to perform quantitative analysis due to excessive reliance on prior knowledge, and can achieve point-to-point comparative analysis. , instead of using the continuous area to continuous area comparison method.
如图1所示,所述像素级别的区域匹配方法还包括如下步骤:As shown in Figure 1, the pixel-level area matching method also includes the following steps:
步骤S400、将所述第一多通道特征图和所述对照特征图保存为对照图像组。Step S400: Save the first multi-channel feature map and the comparison feature map as a comparison image group.
本申请实施例提高了保护区对比分析的准确性,减少了主观因素的影响;通过自动化处理,提高了对比分析的效率;并且基于KNN算法的匹配效果优于传统的距离匹配方法;像素级别的匹配可以避免区域匹配过程中存在的误匹配或漏匹配问题。The embodiments of the present application improve the accuracy of comparative analysis of protected areas and reduce the influence of subjective factors; improve the efficiency of comparative analysis through automated processing; and the matching effect based on the KNN algorithm is better than the traditional distance matching method; pixel-level Matching can avoid mismatching or missing matching problems in the region matching process.
在一种实施例中,所述步骤S400之后还包括:步骤S500、根据所述对照图像组对所述目标保护区和所述目标候选区进行监测,并根据监测结果得到所述目标保护区的保护效果评估结果。In one embodiment, the step S400 further includes: step S500, monitoring the target protected area and the target candidate area according to the comparison image group, and obtaining the target protected area according to the monitoring results. Protection effect evaluation results.
具体地,本申请实施例在得到了可比性强的对照图像对的前提下,后续监测的数据均与该对照图像对进行比对,提高了保护区对比分析的准确性,减少了主观因素的影响。Specifically, in the embodiment of the present application, on the premise of obtaining a highly comparable control image pair, all subsequent monitoring data are compared with the control image pair, which improves the accuracy of the comparative analysis of the protected area and reduces the risk of subjective factors. Influence.
在一种实现方式中,所述步骤S500具体包括:In one implementation, step S500 specifically includes:
步骤S510、当达到预定监测时间时,获取当前所述目标保护区的第三遥感影像数据和所述目标候选区的第四遥感影像数据;Step S510: When the predetermined monitoring time is reached, obtain the third remote sensing image data of the current target protected area and the fourth remote sensing image data of the target candidate area;
步骤S520、根据所述第三遥感影像数据得到所述目标保护区的第三特征参数信息,以及根据所述第四遥感影像数据得到所述目标候选区的第四特征参数信息;Step S520: Obtain third characteristic parameter information of the target protected area according to the third remote sensing image data, and obtain fourth characteristic parameter information of the target candidate area according to the fourth remote sensing image data;
步骤S530、根据所述第三特征参数信息构建第三多通道特征图,以及根据所述第四特征参数信息构建第四多通道特征图;Step S530: Construct a third multi-channel feature map based on the third feature parameter information, and construct a fourth multi-channel feature map based on the fourth feature parameter information;
步骤S540、计算所述第四多通道特征图上与所述第三多通道特征图中每个像素相匹配的目标像素点,根据各个目标像素点得到所述目标候选区对应的变化特征图;Step S540: Calculate the target pixel points on the fourth multi-channel feature map that match each pixel in the third multi-channel feature map, and obtain the change feature map corresponding to the target candidate area according to each target pixel point;
步骤S550、将所述第四多通道特征图与所述对照图像组中的第一多通道特征图进行比对,得到保护区变化信息;Step S550: Compare the fourth multi-channel feature map with the first multi-channel feature map in the comparison image group to obtain protection zone change information;
步骤S560、将所述变化特征图与所述对照图像组中的对照特征图进行比对,得到候选区变化信息;Step S560: Compare the change feature map with the control feature map in the control image group to obtain candidate area change information;
步骤S570、根据所述保护区变化信息和所述候选区变化信息得到所述目标保护区的保护效果评估结果。Step S570: Obtain the protection effect evaluation result of the target protected area based on the protected area change information and the candidate area change information.
具体地,本申请实施例通过自动化处理,提高了对比分析的效率。本申请实施例还可以引入时序数据,实现动态对比分析,以评估保护区在不同时间段的保护效果。本申请的应用场景可以包括湿地保护区、海洋保护区等,通用性广泛。Specifically, the embodiments of the present application improve the efficiency of comparative analysis through automated processing. The embodiments of this application can also introduce time series data to implement dynamic comparative analysis to evaluate the protection effect of the protected area in different time periods. The application scenarios of this application can include wetland reserves, marine reserves, etc., with wide versatility.
在一种实施例中,如图4所示,基于上述像素级别的区域匹配方法,本发明还相应提供了一种像素级别的区域匹配装置,包括:In one embodiment, as shown in Figure 4, based on the above pixel level area matching method, the present invention also provides a pixel level area matching device, including:
获取模块100,用于获取目标保护区的第一特征参数信息以及目标候选区的第二特征参数信息;The acquisition module 100 is used to acquire the first characteristic parameter information of the target protected area and the second characteristic parameter information of the target candidate area;
构建模块200,用于根据所述第一特征参数信息构建第一多通道特征图,以及根据所述第二特征参数信息构建第二多通道特征图;Building module 200, configured to construct a first multi-channel feature map based on the first feature parameter information, and build a second multi-channel feature map based on the second feature parameter information;
计算模块300,用于计算所述第二多通道特征图上与所述第一多通道特征图中每个像素相匹配的目标像素点,根据各个目标像素点得到所述目标候选区对应的对照特征图;The calculation module 300 is used to calculate the target pixel points on the second multi-channel feature map that match each pixel in the first multi-channel feature map, and obtain the comparison corresponding to the target candidate area based on each target pixel point. feature map;
保存模块400,用于将所述第一多通道特征图和所述对照特征图保存为对照图像组。The saving module 400 is configured to save the first multi-channel feature map and the comparison feature map as a comparison image group.
需要说明的是,前述对像素级别的区域匹配方法实施例的解释说明也适用于该实施例的像素级别的区域匹配装置,此处不再赘述。It should be noted that the foregoing explanation of the pixel-level area matching method embodiment also applies to the pixel-level area matching device of this embodiment, and will not be described again here.
本发明公开一种像素级别的区域匹配方法及装置,所述方法包括:获取目标保护区的第一特征参数信息以及目标候选区的第二特征参数信息;根据所述第一特征参数信息构建第一多通道特征图,以及根据所述第二特征参数信息构建第二多通道特征图;计算所述第二多通道特征图上与所述第一多通道特征图中每个像素相匹配的目标像素点,根据各个目标像素点得到所述目标候选区对应的对照特征图;将所述第一多通道特征图和所述对照特征图保存为对照图像组。本发明通过将区域中的特征像素化,避免了由于过度依赖先验知识而无法进行定量分析的问题,通过构建多通道特征图,从而实现像素级别的区域匹配,得到可比性强且准确的对照图像组,进而提高了目标保护区的评估准确性。The invention discloses a pixel-level area matching method and device. The method includes: obtaining the first characteristic parameter information of the target protected area and the second characteristic parameter information of the target candidate area; constructing the third characteristic parameter information according to the first characteristic parameter information. A multi-channel feature map, and constructing a second multi-channel feature map based on the second feature parameter information; calculating targets on the second multi-channel feature map that match each pixel in the first multi-channel feature map According to each target pixel point, a comparison feature map corresponding to the target candidate area is obtained; and the first multi-channel feature map and the comparison feature map are saved as a comparison image group. This invention avoids the problem of being unable to conduct quantitative analysis due to over-reliance on prior knowledge by pixelating the features in the region. By constructing a multi-channel feature map, it achieves pixel-level regional matching and obtains highly comparable and accurate comparisons. Image sets, thereby improving the accuracy of assessment of target protected areas.
图5为本申请实施例提供的终端的结构示意图。该终端可以包括:Figure 5 is a schematic structural diagram of a terminal provided by an embodiment of the present application. The terminal can include:
存储器501、处理器502及存储在存储器501上并可在处理器502上运行的计算机程序。Memory 501, processor 502, and a computer program stored on memory 501 and executable on processor 502.
处理器502执行程序时实现上述实施例中提供的像素级别的区域匹配方法。When the processor 502 executes the program, it implements the pixel-level area matching method provided in the above embodiment.
进一步地,终端还包括:Furthermore, the terminal also includes:
通信接口503,用于存储器501和处理器502之间的通信。Communication interface 503 is used for communication between the memory 501 and the processor 502.
存储器501,用于存放可在处理器502上运行的计算机程序。Memory 501 is used to store computer programs that can be run on processor 502.
存储器501可能包含高速RAM存储器,也可能还包括非易失性存储器 (non -volatile memory),例如至少一个磁盘存储器。The memory 501 may include high-speed RAM memory, and may also include non-volatile memory (non-volatile memory), such as at least one disk memory.
如果存储器501、处理器502和通信接口503独立实现,则通信接口503、存储器501和处理器502可以通过总线相互连接并完成相互间的通信。总线可以是工业标准体系结构(Industry Standard Architecture,简称为ISA)总线、外部设备互连 (Periphera lComponent,简称为PCI)总线或扩展工业标准体系结构(Extended Industry StandardArchitecture,简称为EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图中仅用一条线表示,但并不表示仅有一根总线或一种类型的总线。If the memory 501, the processor 502 and the communication interface 503 are implemented independently, the communication interface 503, the memory 501 and the processor 502 can be connected to each other through a bus and complete communication with each other. The bus may be an Industry Standard Architecture (ISA) bus, a Peripheral Component (PCI) bus or an Extended Industry Standard Architecture (EISA) bus, etc. The bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one line is used in the figure, but it does not mean that there is only one bus or one type of bus.
可选地,在具体实现上,如果存储器501、处理器502及通信接口503,集成在一块芯片上实现,则存储器501、处理器502及通信接口503可以通过内部接口完成相互间的通信。Optionally, in terms of specific implementation, if the memory 501, the processor 502 and the communication interface 503 are integrated on one chip, the memory 501, the processor 502 and the communication interface 503 can communicate with each other through the internal interface.
处理器502可能是一个中央处理器(Central Processing Unit,简称为CPU),或者是特定集成电路(Application Specific Integrated Circuit,简称为ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路。The processor 502 may be a Central Processing Unit (CPU for short), an Application Specific Integrated Circuit (ASIC for short), or one or more processors configured to implement the embodiments of the present application. integrated circuit.
本实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如上的像素级别的区域匹配方法。This embodiment also provides a computer-readable storage medium on which a computer program is stored. When the program is executed by a processor, the above pixel-level region matching method is implemented.
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或N个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。In the description of this specification, reference to the terms "one embodiment," "some embodiments," "an example," "specific examples," or "some examples" or the like means that specific features are described in connection with the embodiment or example. , structures, materials or features are included in at least one embodiment or example of the present application. In this specification, the schematic expressions of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or N embodiments or examples. Furthermore, those skilled in the art may combine and combine different embodiments or examples and features of different embodiments or examples described in this specification unless they are inconsistent with each other.
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“N个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。In addition, the terms “first” and “second” are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as "first" and "second" may explicitly or implicitly include at least one of these features. In the description of this application, "N" means at least two, such as two, three, etc., unless otherwise clearly and specifically limited.
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或N个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。Any process or method descriptions in flowcharts or otherwise described herein may be understood to represent modules, segments, or portions of code that include one or N executable instructions for implementing customized logical functions or steps of the process, And the scope of the preferred embodiments of the present application includes additional implementations in which functions may be performed out of the order shown or discussed, including performing functions in a substantially simultaneous manner or in the reverse order depending on the functionality involved, which should be considered herein. It is understood by those skilled in the art to which the embodiments of the application belong.
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备读取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,“计算机可读介质”可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或N个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM), 可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器 (CDROM)。另外,计算机可读介质甚至可以是可在其上打印程序的纸或其他合适的介 质,因为可以通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得程序,然后将其存储在计算机存储器中。The logic and/or steps represented in the flowcharts or otherwise described herein, for example, may be considered a sequenced list of executable instructions for implementing the logical functions, and may be embodied in any computer-readable medium, For use with or in conjunction with an instruction execution system, device or device (such as a computer-based system, a system including a processor or other system that can read instructions from an instruction execution system, device or device and execute the instructions), device or equipment. For the purposes of this specification, a "computer-readable medium" may be any device that can contain, store, communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device. More specific examples (non-exhaustive list) of computer readable media include the following: electrical connections with one or N wires (electronic device), portable computer disk cartridge (magnetic device), random access memory (RAM), Read-only memory (ROM), erasable and programmable read-only memory (EPROM or flash memory), fiber optic devices, and portable compact disc read-only memory (CDROM). Additionally, the computer-readable medium may even be paper or other suitable medium on which the program is printed, as the paper or other medium may be optically scanned and subsequently edited, interpreted, or otherwise processed as necessary. to obtain a program electronically and then store it in computer memory.
应当理解,本申请的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,N个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。It should be understood that various parts of the present application can be implemented in hardware, software, firmware, or a combination thereof. In the above embodiments, the N steps or methods may be implemented using software or firmware stored in a memory and executed by a suitable instruction execution system. If implemented in hardware, as in another embodiment, it can be implemented by any one or a combination of the following technologies known in the art: discrete logic circuits having logic gate circuits for implementing logical functions on data signals , application-specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGA), field programmable gate arrays (FPGA), etc.
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。Those of ordinary skill in the art can understand that all or part of the steps involved in implementing the methods of the above embodiments can be completed by instructing relevant hardware through a program. The program can be stored in a computer-readable storage medium. When the program is executed, , including one of the steps of the method embodiment or a combination thereof.
此外,在本申请各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。In addition, each functional unit in various embodiments of the present application can be integrated into a processing module, or each unit can exist physically alone, or two or more units can be integrated into one module. The above integrated modules can be implemented in the form of hardware or software function modules. Integrated modules can also be stored in a computer-readable storage medium if they are implemented in the form of software function modules and sold or used as independent products.
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。The storage media mentioned above can be read-only memory, magnetic disks or optical disks, etc. Although the embodiments of the present application have been shown and described above, it can be understood that the above-mentioned embodiments are illustrative and cannot be understood as limitations of the present application. Those of ordinary skill in the art can make modifications to the above-mentioned embodiments within the scope of the present application. The embodiments are subject to changes, modifications, substitutions and variations.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311499467.0A CN117237684B (en) | 2023-11-13 | 2023-11-13 | A pixel-level area matching method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311499467.0A CN117237684B (en) | 2023-11-13 | 2023-11-13 | A pixel-level area matching method and device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117237684A CN117237684A (en) | 2023-12-15 |
CN117237684B true CN117237684B (en) | 2024-01-16 |
Family
ID=89095203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311499467.0A Active CN117237684B (en) | 2023-11-13 | 2023-11-13 | A pixel-level area matching method and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117237684B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102496067A (en) * | 2011-12-05 | 2012-06-13 | 中国科学院地理科学与资源研究所 | Lake nutrient partition control technique |
CN114494896A (en) * | 2021-12-22 | 2022-05-13 | 山东土地集团数字科技有限公司 | Cultivated land state monitoring method, equipment and medium for cultivated land protection |
CN115830354A (en) * | 2022-10-25 | 2023-03-21 | 北京旷视科技有限公司 | Binocular stereo matching method, device and medium |
CN116977674A (en) * | 2022-11-18 | 2023-10-31 | 腾讯科技(深圳)有限公司 | Image matching method, related device, storage medium and program product |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101811718B1 (en) * | 2013-05-31 | 2018-01-25 | 삼성전자주식회사 | Method and apparatus for processing the image |
KR102696652B1 (en) * | 2017-01-26 | 2024-08-21 | 삼성전자주식회사 | Stero matching method and image processing apparatus |
CN107563438B (en) * | 2017-08-31 | 2019-08-30 | 西南交通大学 | A Fast and Robust Multimodal Remote Sensing Image Matching Method and System |
-
2023
- 2023-11-13 CN CN202311499467.0A patent/CN117237684B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102496067A (en) * | 2011-12-05 | 2012-06-13 | 中国科学院地理科学与资源研究所 | Lake nutrient partition control technique |
CN114494896A (en) * | 2021-12-22 | 2022-05-13 | 山东土地集团数字科技有限公司 | Cultivated land state monitoring method, equipment and medium for cultivated land protection |
CN115830354A (en) * | 2022-10-25 | 2023-03-21 | 北京旷视科技有限公司 | Binocular stereo matching method, device and medium |
CN116977674A (en) * | 2022-11-18 | 2023-10-31 | 腾讯科技(深圳)有限公司 | Image matching method, related device, storage medium and program product |
Non-Patent Citations (3)
Title |
---|
基于 PSM 的湿地自然保护区保护效果分析;刘子刚 等;《西北大学学报( 自然科学版)》;第50卷(第2期);241-249 * |
基于倾向评分配比法评估苍山自然保护区的森林保护成效;陈冰 等;生物多样性(第09期);89-97 * |
生态补偿有利于减贫吗?――基于倾向得分匹配法对贵州省三县的实证分析;吴乐 等;农村经济(第09期);48-55 * |
Also Published As
Publication number | Publication date |
---|---|
CN117237684A (en) | 2023-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110874594B (en) | Human body appearance damage detection method and related equipment based on semantic segmentation network | |
US20200093460A1 (en) | Method, device, ultrasonic probe and terminal for adjusting detection position | |
CN110910343A (en) | Method and device for detecting pavement cracks and computer equipment | |
CN110008947B (en) | A method and device for monitoring grain quantity in granary based on convolutional neural network | |
CN109858441A (en) | A kind of monitoring abnormal state method and apparatus for construction site | |
CN113706472B (en) | Highway pavement disease detection method, device, equipment and storage medium | |
CN111325217B (en) | Data processing method, device, system and medium | |
CN110140146A (en) | Land use decision-making system, land use determination method and program | |
CN111325738A (en) | Intelligent detection method and system for peripheral cracks of transverse hole | |
CN114170303A (en) | Combined calibration method, device, system, equipment and medium for radar and camera | |
CN114332182A (en) | SAR image registration method, equipment and medium based on multi-feature constraints | |
CN112836850A (en) | Search and rescue site division method, device, electronic equipment and storage medium | |
CN113409583B (en) | A method and device for determining lane line information | |
CN118115530A (en) | Vehicle track generation method and device, electronic equipment and storage medium | |
CN116912706A (en) | Sampling point determination, vegetation remote sensing product authenticity verification methods, devices and equipment | |
CN116645612A (en) | Forest resource asset determination method and system | |
CN117237684B (en) | A pixel-level area matching method and device | |
CN113255405A (en) | Parking space line identification method and system, parking space line identification device and storage medium | |
JP2020095668A (en) | Method and system for road image reconstruction and vehicle positioning | |
CN109889977B (en) | Bluetooth positioning method, device, equipment and system based on Gaussian regression | |
CN112183382A (en) | Unmanned traffic light detection and classification method and device | |
CN114399669B (en) | Target detection method and device | |
CN116740145A (en) | Multi-target tracking method, device, vehicle and storage medium | |
CN115393352A (en) | Crop included angle measuring method based on image recognition and application thereof | |
CN110555344A (en) | Lane line recognition method, lane line recognition device, electronic device, and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |