CN117233223A - Multichannel detection circuit, device and method - Google Patents
Multichannel detection circuit, device and method Download PDFInfo
- Publication number
- CN117233223A CN117233223A CN202311008740.5A CN202311008740A CN117233223A CN 117233223 A CN117233223 A CN 117233223A CN 202311008740 A CN202311008740 A CN 202311008740A CN 117233223 A CN117233223 A CN 117233223A
- Authority
- CN
- China
- Prior art keywords
- circuit
- module
- channel
- chip
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 85
- 238000000034 method Methods 0.000 title abstract description 20
- 238000012360 testing method Methods 0.000 claims abstract description 95
- 238000012545 processing Methods 0.000 claims abstract description 49
- 230000002452 interceptive effect Effects 0.000 claims abstract description 16
- 230000001681 protective effect Effects 0.000 claims description 10
- 238000013480 data collection Methods 0.000 claims description 8
- 230000004308 accommodation Effects 0.000 claims description 7
- 238000009434 installation Methods 0.000 claims description 7
- 230000003993 interaction Effects 0.000 claims description 4
- 238000010998 test method Methods 0.000 claims description 2
- 230000008569 process Effects 0.000 abstract description 11
- 238000005516 engineering process Methods 0.000 abstract description 2
- 238000004365 square wave voltammetry Methods 0.000 description 24
- 238000010586 diagram Methods 0.000 description 19
- 230000005540 biological transmission Effects 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000002484 cyclic voltammetry Methods 0.000 description 8
- 230000008676 import Effects 0.000 description 6
- 238000012544 monitoring process Methods 0.000 description 6
- 238000005070 sampling Methods 0.000 description 6
- 238000007599 discharging Methods 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000001915 proofreading effect Effects 0.000 description 2
- 238000011897 real-time detection Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000013475 authorization Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000000835 electrochemical detection Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
本发明涉及芯片检测技术领域,特别是一种多通道检测电路、装置及方法,包括,数据采集单元,包括处理模块、通道选择模块和第一电源模块,所述处理模块与通道选择模块相连,所述第一电源模块分别与所述处理模块和通道选择模块相连;交互单元,分别与所述处理模块和第一电源模块连接;所述通道选择模块包括跨阻前置放大器电路以及与所述跨阻前置放大器电路连接的恒电位电路;本发明通过处理模块、通道选择模块、第一电源模块和交互单元之间的相互配合,能实现单通道连接多通道检测的功能,避免了测试过程需要更换不同的测试接口才能实现多通道测试的繁琐。
The invention relates to the field of chip detection technology, in particular to a multi-channel detection circuit, device and method, which includes a data acquisition unit including a processing module, a channel selection module and a first power supply module. The processing module is connected to the channel selection module. The first power module is connected to the processing module and the channel selection module respectively; the interactive unit is connected to the processing module and the first power module respectively; the channel selection module includes a transimpedance preamplifier circuit and the A constant potential circuit connected by a transimpedance preamplifier circuit; through the cooperation between the processing module, the channel selection module, the first power module and the interactive unit, the present invention can realize the function of single-channel connection and multi-channel detection, and avoid the testing process It is cumbersome to replace different test interfaces to achieve multi-channel testing.
Description
技术领域Technical field
本发明涉及芯片检测技术领域,特别是一种多通道检测电路、装置及方法。The invention relates to the field of chip detection technology, in particular to a multi-channel detection circuit, device and method.
背景技术Background technique
电化学工作站分为单通道工作站和多通道工作站;单通道工作站一次只能进行一个样品的测试,而多通道工作站相当于多个单通道电化学工作站组装到一起,能够同时进行多个样品的测试,因此具有更高的测试效率;多通道工作站适用于需要进行大规模研发测试的场景,能够显著加快研发速度;然而,目前市面上的电化学工作站主要是单通道工作站,而多通道工作站测试设备非集成,体积较大,信息传输有所打扰,测试过程需要更换不同的测试接口才能实现多通道测试,且测试过程和方法繁琐,多通道检测采集的数据需要传输到电脑才能进行输出。Electrochemical workstations are divided into single-channel workstations and multi-channel workstations; single-channel workstations can only test one sample at a time, while multi-channel workstations are equivalent to multiple single-channel electrochemical workstations assembled together and can test multiple samples at the same time. , so it has higher testing efficiency; multi-channel workstations are suitable for scenarios that require large-scale R&D testing, and can significantly speed up R&D; however, the electrochemical workstations currently on the market are mainly single-channel workstations, and multi-channel workstation test equipment Non-integrated, large in size, and disruptive to information transmission. The test process requires replacing different test interfaces to achieve multi-channel testing. The test process and methods are cumbersome. The data collected by multi-channel testing needs to be transferred to a computer for output.
发明内容Contents of the invention
本部分的目的在于概述本发明的实施例的一些方面以及简要介绍一些较佳实施例。在本部分以及本申请的说明书摘要和发明名称中可能会做些简化或省略以避免使本部分、说明书摘要和发明名称的目的模糊,而这种简化或省略不能用于限制本发明的范围。The purpose of this section is to outline some aspects of embodiments of the invention and to briefly introduce some preferred embodiments. Some simplifications or omissions may be made in this section, the abstract and the title of the invention to avoid obscuring the purpose of this section, the abstract and the title of the invention, and such simplifications or omissions cannot be used to limit the scope of the invention.
鉴于上述或现有技术中存在测试过程需要更换不同的测试接口才能实现多通道测试的问题,提出了本发明。In view of the above-mentioned or existing problems in the prior art that the test process requires replacing different test interfaces to achieve multi-channel testing, the present invention is proposed.
因此,本发明的目的是提供一种多通道检测电路。Therefore, an object of the present invention is to provide a multi-channel detection circuit.
为解决上述技术问题,本发明提供如下技术方案:一种多通道检测电路,包括,In order to solve the above technical problems, the present invention provides the following technical solution: a multi-channel detection circuit, including,
数据采集单元,包括处理模块、通道选择模块和第一电源模块,所述处理模块与通道选择模块相连,所述第一电源模块分别与所述处理模块和通道选择模块相连;The data acquisition unit includes a processing module, a channel selection module and a first power supply module. The processing module is connected to the channel selection module, and the first power supply module is connected to the processing module and the channel selection module respectively;
交互单元,分别与所述处理模块和第一电源模块连接。The interactive unit is respectively connected to the processing module and the first power module.
作为本发明多通道检测电路的一种优选方案,其中:所述通道选择模块包括跨阻前置放大器电路以及与所述跨阻前置放大器电路连接的恒电位电路;As a preferred solution of the multi-channel detection circuit of the present invention, the channel selection module includes a transimpedance preamplifier circuit and a constant potential circuit connected to the transimpedance preamplifier circuit;
其中,所述跨阻前置放大器电路和恒电位电路分别与所述第一电源模块连接。Wherein, the transimpedance preamplifier circuit and the constant potential circuit are respectively connected to the first power module.
作为本发明多通道检测电路的一种优选方案,其中:所述跨阻前置放大器电路的电阻网络电路与所述处理模块连接。As a preferred solution of the multi-channel detection circuit of the present invention, the resistor network circuit of the transimpedance preamplifier circuit is connected to the processing module.
作为本发明多通道检测电路的一种优选方案,其中:所述跨阻前置放大器电路还包括参比电极测试端口和对电极测试端口;As a preferred solution of the multi-channel detection circuit of the present invention, the transimpedance preamplifier circuit also includes a reference electrode test port and a counter electrode test port;
其中,所述对电极测试端口向所述参比电极测试端口连接。Wherein, the counter electrode test port is connected to the reference electrode test port.
作为本发明多通道检测电路的一种优选方案,其中:所述交互单元包括操控模块、第一USB接口和第二电源模块,所述操控模块通过第一USB接口分别与所述处理模块和第一电源模块连接。As a preferred solution of the multi-channel detection circuit of the present invention, the interaction unit includes a control module, a first USB interface and a second power supply module, and the control module communicates with the processing module and the third power supply module through the first USB interface respectively. One power module connection.
本发明的多通道检测电路有益效果:本发明通过处理模块、通道选择模块、第一电源模块和交互单元之间的相互配合,能实现单通道连接多通道检测的功能,避免了测试过程需要更换不同的测试接口才能实现多通道测试的繁琐。Beneficial effects of the multi-channel detection circuit of the present invention: through the cooperation between the processing module, the channel selection module, the first power module and the interactive unit, the present invention can realize the function of single-channel connection and multi-channel detection, avoiding the need for replacement during the test process Different test interfaces can make multi-channel testing cumbersome.
鉴于在实际使用过程中,还存在多通道工作站测试设备非集成,体积较大,信息传输有所打扰问题。In view of the fact that during actual use, there are still problems such as non-integration of multi-channel workstation test equipment, large size, and interference with information transmission.
为解决上述技术问题,本发明还提供如下技术方案:一种多通道检测装置包括一种多通道检测装置,包括所述的多通道检测电路;以及,In order to solve the above technical problems, the present invention also provides the following technical solutions: a multi-channel detection device includes a multi-channel detection device including the multi-channel detection circuit; and,
承载壳体,包括芯片电极卡槽以及安装槽,所述操控模块嵌入设置于所述安装槽内;The carrying shell includes a chip electrode slot and an installation slot, and the control module is embedded in the installation slot;
芯片电极连接单元,包括芯片电极连接电路板以及分别连接在所述芯片电极连接电路板两面的电极弹片和弹簧式接线端子;The chip electrode connection unit includes a chip electrode connection circuit board and electrode spring pieces and spring terminals respectively connected to both sides of the chip electrode connection circuit board;
其中,所述参比电极测试端口、对电极测试端口和所述恒电位电路的工作电机端口均与所述弹簧式接线端子连接;Wherein, the reference electrode test port, the counter electrode test port and the working motor port of the constant potential circuit are all connected to the spring-type terminal;
其中,所述电极弹片嵌入设置于所述芯片电极连接单元的防护壳体内,所述芯片电极连接电路板和弹簧式接线端子设置在防护壳体内,所述防护壳体的一端嵌入与所述芯片电极卡槽内转动连接。Wherein, the electrode elastic piece is embedded in the protective shell of the chip electrode connection unit, the chip electrode connection circuit board and the spring terminal are provided in the protective shell, and one end of the protective shell is embedded with the chip Rotate the connection in the electrode slot.
作为本发明多通道检测装置的一种优选方案,其中:所述承载壳体内设置有容置空间;As a preferred solution of the multi-channel detection device of the present invention, wherein: an accommodation space is provided in the carrying case;
其中,所述数据采集单元设置于所述容置空间内。Wherein, the data collection unit is arranged in the accommodation space.
作为本发明多通道检测装置的一种优选方案,其中:所述芯片电极卡槽内设置有待测芯片;As a preferred solution of the multi-channel detection device of the present invention, a chip to be tested is provided in the chip electrode slot;
其中,所述电极弹片与所述待测芯片连接。Wherein, the electrode elastic piece is connected to the chip to be tested.
本发明的多通道检测装置有益效果:本发明将数据采集单元、交互单元、承载壳体和芯片电极连接单元集成为一体,大大减少了检测体积,降低了信息传输抗干扰问题,提高了检测速度和准确性。The beneficial effects of the multi-channel detection device of the present invention: the present invention integrates the data collection unit, the interaction unit, the carrying shell and the chip electrode connection unit into one body, which greatly reduces the detection volume, reduces the anti-interference problem of information transmission, and improves the detection speed. and accuracy.
鉴于在实际使用过程中,还存在测试方法,多通道检测采集的数据需要传输到校对电脑才能进行输出问题。In view of the actual use process, there are still testing methods, and the data collected by multi-channel detection needs to be transferred to the proofreading computer for output.
为解决上述技术问题,本发明还提供如下技术方案:一种多通道检测方法包括多通道检测装置,所述多通道检测方法步骤包括,In order to solve the above technical problems, the present invention also provides the following technical solution: a multi-channel detection method includes a multi-channel detection device, and the steps of the multi-channel detection method include:
开启交互单元,设定采集测试方式;Open the interactive unit and set the collection test method;
将芯片电极连接模块与放置在芯片电极卡槽内的待测芯片进行连接;Connect the chip electrode connection module to the chip under test placed in the chip electrode card slot;
对待测芯片进行四阶段生命周期测试,获取采集测试数据;Conduct four-stage life cycle testing of the chip under test to obtain and collect test data;
采集测试数据传输至操控模块计算出峰高并绘制成峰高循环次数图。The test data is collected and transmitted to the control module to calculate the peak height and draw a peak height cycle number chart.
作为本发明多通道检测方法的一种优选方案,其中:所述四阶段生命周期包括采集界面生命周期、传感器界面生命周期、曲线界面生命周期和历史数量生命周期。As a preferred solution of the multi-channel detection method of the present invention, the four-stage life cycle includes the collection interface life cycle, the sensor interface life cycle, the curve interface life cycle and the historical quantity life cycle.
本发明的多通道检测方法有益效果:本发明通过电路与软件操作结合,实现芯片电极多通道控制的电化学工作站循环伏安法(CV)和方波伏安法(SWV),并且通过利用处理模块导入方波伏安法(SWV)数据进行处理,实现多通道芯片电极的高通量采集及数据处理功能。The beneficial effects of the multi-channel detection method of the present invention: the present invention realizes cyclic voltammetry (CV) and square wave voltammetry (SWV) of electrochemical workstations with multi-channel control of chip electrodes by combining circuit and software operations, and by utilizing processing The module imports square wave voltammetry (SWV) data for processing, realizing high-throughput acquisition and data processing functions of multi-channel chip electrodes.
附图说明Description of drawings
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。其中:In order to explain the technical solutions of the embodiments of the present invention more clearly, the drawings needed to be used in the description of the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some embodiments of the present invention. Those of ordinary skill in the art can also obtain other drawings based on these drawings without exerting any creative effort. in:
图1为多通道检测电路的整体示意图。Figure 1 is an overall schematic diagram of a multi-channel detection circuit.
图2为多通道检测电路的处理模块示意图。Figure 2 is a schematic diagram of the processing module of the multi-channel detection circuit.
图3为多通道检测电路的通道选择模块示意图。Figure 3 is a schematic diagram of the channel selection module of the multi-channel detection circuit.
图4为多通道检测电路的供电显示电路示意图。Figure 4 is a schematic diagram of the power supply display circuit of the multi-channel detection circuit.
图5为多通道检测电路的电池充放电路示意图。Figure 5 is a schematic diagram of the battery charging and discharging circuit of the multi-channel detection circuit.
图6为多通道检测电路的电量监测电路示意图。Figure 6 is a schematic diagram of the power monitoring circuit of the multi-channel detection circuit.
图7为多通道检测电路的电压转换电路示意图。Figure 7 is a schematic diagram of the voltage conversion circuit of the multi-channel detection circuit.
图8为多通道检测电路的串口转UAB电路示意图。Figure 8 is a schematic diagram of the serial port to UAB circuit of the multi-channel detection circuit.
图9为多通道检测电路的蜂鸣器电路示意图。Figure 9 is a schematic diagram of the buzzer circuit of the multi-channel detection circuit.
图10为多通道检测电路的采集连接显示电路示意图。Figure 10 is a schematic diagram of the acquisition connection display circuit of the multi-channel detection circuit.
图11为多通道检测装置的整体示意图。Figure 11 is an overall schematic diagram of the multi-channel detection device.
图12为多通道检测装置的芯片电极连接单元示意图。Figure 12 is a schematic diagram of the chip electrode connection unit of the multi-channel detection device.
图13为多通道检测方法的检测步骤流程示意图。Figure 13 is a schematic flow chart of the detection steps of the multi-channel detection method.
图14为多通道检测方法的APP界面示意图。Figure 14 is a schematic diagram of the APP interface of the multi-channel detection method.
图15为多通道检测方法的菜单栏-设备界面示意图。Figure 15 is a schematic diagram of the menu bar-device interface of the multi-channel detection method.
图16为多通道检测方法的软件页面-菜单栏-循环伏安法模式设置界面示意图。Figure 16 is a schematic diagram of the software page-menu bar-cyclic voltammetry mode setting interface of the multi-channel detection method.
图17为多通道检测方法的软件页面-菜单栏-方波伏安法模式设置界面示意图。Figure 17 is a schematic diagram of the software page-menu bar-square wave voltammetry mode setting interface for the multi-channel detection method.
图18为多通道检测方法的软件页面-菜单栏-导入界面示意图。Figure 18 is a schematic diagram of the software page-menu bar-import interface of the multi-channel detection method.
具体实施方式Detailed ways
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合说明书附图对本发明的具体实施方式做详细的说明。In order to make the above objects, features and advantages of the present invention more obvious and understandable, the specific implementation modes of the present invention will be described in detail below with reference to the accompanying drawings.
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。Many specific details are set forth in the following description to fully understand the present invention. However, the present invention can also be implemented in other ways different from those described here. Those skilled in the art can do so without departing from the connotation of the present invention. Similar generalizations are made, and therefore the present invention is not limited to the specific embodiments disclosed below.
其次,此处所称的“一个实施例”或“实施例”是指可包含于本发明至少一个实现方式中的特定特征、结构或特性。在本说明书中不同地方出现的“在一个实施例中”并非均指同一个实施例,也不是单独的或选择性的与其他实施例互相排斥的实施例。Second, reference herein to "one embodiment" or "an embodiment" refers to a specific feature, structure, or characteristic that may be included in at least one implementation of the present invention. "In one embodiment" appearing in different places in this specification does not all refer to the same embodiment, nor is it a separate or selective embodiment that is mutually exclusive with other embodiments.
实施例1Example 1
参照图1和2,为本发明第一个实施例,该实施例提供了一种多通道检测电路,其包括数据采集单元100,实现工作电极(WE)/参比电极(CE)/对电极(RE)的精确采集和底层计算,同时用于与交互单元200传输采集数据,其中,数据采集单元100包括处理模块101、通道选择模块102和第一电源模块103,处理模块101能够接收交互单元200发出的指令信号、执行启动通道选择模块102进行检测,以及将采集到的待测芯片数据传输至交互单元200,通道选择模块102提供了工作电极(WE)、参比电极(CE)和对电极(RE)等多电路通路,实现了工作电极(WE)、参比电极(CE)和对电极(RE)的多个通道选通功能,其处理模块101与通道选择模块102连接,为不同类型的芯片配备相应的电路导通,实现多通道电极的选择采集或依次轮流采集;第一电源模块103为处理模块101和通道选择模块102供电,第一电源模块103分别单向输电与处理模块101和通道选择模块102连接;交互单元200起到启动检测程序、发送指令信号、接收采集数据及校对的作用,其分别与处理模块101和第一电源模块103连接,具体的,处理模块101型号为STM32H750。Referring to Figures 1 and 2, a first embodiment of the present invention is provided. This embodiment provides a multi-channel detection circuit, which includes a data acquisition unit 100 to implement working electrode (WE)/reference electrode (CE)/counter electrode (RE) accurate collection and underlying calculation, and is used to transmit the collection data with the interactive unit 200. The data collection unit 100 includes a processing module 101, a channel selection module 102 and a first power supply module 103. The processing module 101 can receive the interactive unit 200 sends the command signal, executes the startup channel selection module 102 for detection, and transmits the collected chip data under test to the interactive unit 200. The channel selection module 102 provides the working electrode (WE), the reference electrode (CE) and the counter electrode. Electrode (RE) and other multiple circuit paths realize multiple channel gating functions of the working electrode (WE), the reference electrode (CE) and the counter electrode (RE). The processing module 101 is connected to the channel selection module 102 for different The type of chip is equipped with corresponding circuit conduction to realize the selective collection or sequential collection of multi-channel electrodes; the first power module 103 supplies power to the processing module 101 and the channel selection module 102, and the first power module 103 transmits one-way power to the processing module respectively. 101 is connected to the channel selection module 102; the interactive unit 200 plays the role of starting the detection program, sending instruction signals, receiving collected data and proofreading, and is connected to the processing module 101 and the first power module 103 respectively. Specifically, the processing module 101 model for STM32H750.
进一步的,如图3,通道选择模块102包括跨阻前置放大器电路102a以及与跨阻前置放大器电路102a连接的恒电位电路102b,跨阻前置放大器电路102a提供了参比电极(CE)和对电极(RE)电路通路,恒电位电路102b提供了工作电极(WE)电路通道,跨阻前置放大器电路102a和恒电位电路102b之间的相互配合,为待检测芯片提供了多通道电极的选择采集或依次轮流采集基础。Further, as shown in Figure 3, the channel selection module 102 includes a transimpedance preamplifier circuit 102a and a constant potential circuit 102b connected to the transimpedance preamplifier circuit 102a. The transimpedance preamplifier circuit 102a provides a reference electrode (CE) and the counter electrode (RE) circuit path, the constant potential circuit 102b provides a working electrode (WE) circuit channel, and the cooperation between the transimpedance preamplifier circuit 102a and the constant potential circuit 102b provides a multi-channel electrode for the chip to be detected Choose to collect or collect the basics in turn.
其中,跨阻前置放大器电路102a与处理模块101相连,跨阻前置放大器电路102a的电阻网络电路102a-1与处理模块101的相连,能实现启动采集参比电极(CE)和对电极(RE)电路通路对芯片进行数据采集及采集数据传输的双向信息信号传输;具体的,跨阻前置放大器电路102a的单片机U9的引脚8(D)、引脚1(A0)、引脚16(A1)及引脚15(A2)分别与处理模块101的引脚55(RE)、引脚24(PA3)、引脚20(PA1)及引脚22(PA2)对应相连,电阻网络电路102a-1的单片机U10的引脚8(D)、引脚1(A0)、引脚16(A1)及引脚15(A2)分别与处理模块101的引脚54(CE)、引脚24(PA3)、引脚20(PA1)及引脚22(PA2)对应相连。Among them, the transimpedance preamplifier circuit 102a is connected to the processing module 101, and the resistance network circuit 102a-1 of the transimpedance preamplifier circuit 102a is connected to the processing module 101, which can realize the startup of collecting the reference electrode (CE) and the counter electrode ( RE) circuit path performs two-way information signal transmission for data collection and collection data transmission on the chip; specifically, pin 8 (D), pin 1 (A0), and pin 16 of the microcontroller U9 of the transimpedance preamplifier circuit 102a (A1) and pin 15 (A2) are respectively connected to pin 55 (RE), pin 24 (PA3), pin 20 (PA1) and pin 22 (PA2) of the processing module 101, and the resistor network circuit 102a The pin 8 (D), pin 1 (A0), pin 16 (A1) and pin 15 (A2) of the -1 microcontroller U10 are respectively connected with the pin 54 (CE) and pin 24 ( PA3), pin 20 (PA1) and pin 22 (PA2) are connected correspondingly.
其中,恒电位电路102b用于接收跨阻前置放大器电路102a的启动采集信号,并将工作电极(WE)电路通路采集芯片数据单向传输给处理模块101和跨阻前置放大器电路102a,其恒电位电路102b单向传输与处理模块101连接;具体的,恒电位电路102b的单片机U7的引脚8(D)、引脚1(A0)、引脚16(A1)及引脚15(A2)分别与处理模块101的引脚53(WE)、引脚24(PA3)、引脚20(PA1)及引脚22(PA2)对应相连;需说明的是,单片机U9、单片机U10和单片机U7的型号为ADG1408YRUZ。Among them, the constant potential circuit 102b is used to receive the startup acquisition signal of the transimpedance preamplifier circuit 102a, and unidirectionally transmit the working electrode (WE) circuit path acquisition chip data to the processing module 101 and the transimpedance preamplifier circuit 102a. The one-way transmission of the constant potential circuit 102b is connected to the processing module 101; specifically, pin 8 (D), pin 1 (A0), pin 16 (A1) and pin 15 (A2) of the microcontroller U7 of the constant potential circuit 102b ) are respectively connected to pin 53 (WE), pin 24 (PA3), pin 20 (PA1) and pin 22 (PA2) of the processing module 101; it should be noted that the microcontroller U9, the microcontroller U10 and the microcontroller U7 The model number is ADG1408YRUZ.
需说明的是,跨阻前置放大器电路102a还包括参比电极测试端口102a-2和对电极测试端口102a-3;其中,对电极测试端口102a-3向参比电极测试端口102a-2单向连接传输对电极采集数据,恒电位电路102b包括工作电极测试端口102b-1,参比电极测试端口102a-2和对电极测试端口102a-3通过电线集成连接芯片电极连接电路板上,需说明的是,工作电极测试端口102b-1、参比电极测试端口102a-2和对电极测试端口102a-3分别设置有引脚4(S1)、引脚5(S2)、引脚6(S3)、引脚7(S4)、引脚12(S5)、引脚11(S6)、引脚10(S7)、引脚9(S8)8个电路通道(根据检测,不限于8个),工作电极测试端口102b-1、参比电极测试端口102a-2和对电极测试端口102a-3的8个端口分别对应连接到8个芯片电极连接电路板,其通过三个ADG1408YRUZ数模转换器分成8个三电极通道,进而可针对不同的微流控芯片(即待测芯片)进行芯片电极连接模块的设计更换,并且可对8个电极的八通道芯片同时进行检测,加快了检测采集效率。It should be noted that the transimpedance preamplifier circuit 102a also includes a reference electrode test port 102a-2 and a counter electrode test port 102a-3; wherein the counter electrode test port 102a-3 is connected to the reference electrode test port 102a-2. The counter electrode collection data is transmitted to the connection. The potentiostatic circuit 102b includes a working electrode test port 102b-1, a reference electrode test port 102a-2 and a counter electrode test port 102a-3. The chip electrodes are connected to the circuit board through integrated wires. It needs to be explained. It is noted that the working electrode test port 102b-1, the reference electrode test port 102a-2 and the counter electrode test port 102a-3 are respectively provided with pin 4 (S1), pin 5 (S2) and pin 6 (S3). , pin 7 (S4), pin 12 (S5), pin 11 (S6), pin 10 (S7), pin 9 (S8) 8 circuit channels (according to testing, not limited to 8), working The 8 ports of the electrode test port 102b-1, the reference electrode test port 102a-2 and the counter electrode test port 102a-3 are respectively connected to 8 chip electrode connection circuit boards, which are divided into 8 by three ADG1408YRUZ digital-to-analog converters. With a three-electrode channel, the chip electrode connection module can be designed and replaced for different microfluidic chips (i.e., the chip to be tested), and an eight-channel chip with 8 electrodes can be tested at the same time, speeding up the detection and collection efficiency.
进一步的,跨阻前置放大器电路102a和恒电位电路102b分别与第一电源模块103连接;具体的,第一电源模块103包括供电显示电路103a、电池充放电路103b、电量监测电路103c和电压转换电路103d;具体的,如图4所示,供电显示电路103a用于显示外部12V电是否正常接入(若连通,绿灯亮;若为连接,绿灯不亮);如图5所示,电池充放电路103b能充电存储以及供电给电压转换电路103d,图中B1和B6是电池的串并联,Q1到Q3是绝缘栅场效应管(MOSFET)电路用于平衡电池组充放电,让电池之间充电平衡;如图6所示,电量监测电路103c为分压电路,用来给ADC采集电压,判断电池电量,电量监测电路103c的引脚ADC-CH1与处理模块101的引脚18(PA0)相连;如图7所示,电压转换电路103d起到用来稳压、转换电压,从而提供处理模块101和通道选择模块102检测采集所需的隔离稳压的直流±6V运放模拟电源、+3.3V模拟和数字电源、+5V和+5.5V数字电源,其中,电压转换电路103d输入的A+6V电压分别与处理模块101的引脚7(A+6V)和引脚9(A+6V)、以及跨阻前置放大器电路102a、恒电位电路102b和电阻网络电路102a-1的单片机引脚2(EN)和引脚13(VDD)并联连接,电压转换电路103d输入的A+6V电压分别与处理模块101的引脚8(A-6V)、引脚10(A-6V)以及跨阻前置放大器电路102a、恒电位电路102b和电阻网络电路102a-1的单片机引脚3(VSS)并联连接,电压转换电路103d输入的D+3.3V电压分别与处理模块101的引脚39(D+3.3V)和引脚41(D+3.3V)等;需说明的是,12V外部供电分别与供电显示电路103a、电池充放电路103b、电量监测电路103c和电压转换电路103d连接。Further, the transimpedance preamplifier circuit 102a and the constant potential circuit 102b are respectively connected to the first power supply module 103; specifically, the first power supply module 103 includes a power supply display circuit 103a, a battery charging and discharging circuit 103b, a power monitoring circuit 103c and a voltage monitoring circuit 103c. Conversion circuit 103d; Specifically, as shown in Figure 4, the power supply display circuit 103a is used to display whether the external 12V power is normally connected (if connected, the green light is on; if connected, the green light is off); as shown in Figure 5, the battery The charging and discharging circuit 103b can charge, store and supply power to the voltage conversion circuit 103d. In the figure, B1 and B6 are series and parallel connections of batteries, and Q1 to Q3 are insulated gate field effect transistor (MOSFET) circuits used to balance the charging and discharging of the battery pack, allowing the battery to balance. Charging balance between; As shown in Figure 6, the power monitoring circuit 103c is a voltage dividing circuit, used to collect voltage for the ADC to determine the battery power. The pin ADC-CH1 of the power monitoring circuit 103c and the pin 18 (PA0) of the processing module 101 ) are connected; as shown in Figure 7, the voltage conversion circuit 103d is used to stabilize and convert the voltage, thereby providing the isolated and regulated DC ±6V operational amplifier analog power supply required for the processing module 101 and the channel selection module 102 to detect and collect. +3.3V analog and digital power supply, +5V and +5.5V digital power supply. Among them, the A+6V voltage input by the voltage conversion circuit 103d is connected to pin 7 (A+6V) and pin 9 (A+) of the processing module 101 respectively. 6V), and the microcontroller pin 2 (EN) and pin 13 (VDD) of the transimpedance preamplifier circuit 102a, the constant potential circuit 102b and the resistor network circuit 102a-1 are connected in parallel, and the voltage conversion circuit 103d inputs A+6V The voltages are respectively connected with pin 8 (A-6V) and pin 10 (A-6V) of the processing module 101 and the microcontroller pin 3 (of the transimpedance preamplifier circuit 102a, the constant potential circuit 102b and the resistor network circuit 102a-1 VSS) are connected in parallel, and the D+3.3V voltage input by the voltage conversion circuit 103d is respectively connected with pin 39 (D+3.3V) and pin 41 (D+3.3V) of the processing module 101; it should be noted that the 12V external The power supply is respectively connected to the power supply display circuit 103a, the battery charging and discharging circuit 103b, the power monitoring circuit 103c and the voltage conversion circuit 103d.
进一步的,交互单元200包括操控模块201、第一USB接口202和第二电源模块203,操控模块201通过第一USB接口202分别与处理模块101和第一电源模块103连接,第二电源模块203与外部电路模板连接,其中,操控模块201起到发送多通道采集信号、接收采集数据以及对采集数据进行校准对比的作用,具体可为触摸显示平(性能:Cortex A9,1GB DDR3,8GB eMMC,Android5.1),其具体人机界面软件、支持芯片采样参数编辑、支持采样过程动态图文显示、支持采样过程数据实时存储以及支持采样数据表格显示等功能,而第二电源模块203,其包括220C交流转12V直流电源适配器、12V直流锂电池(容量5000ma/h)和12V直流电路,20C交流转12V直流电源适配器通过12V直流锂电池(容量5000ma/h)与12V直流电路连接;其中,第一USB接口202通过数据采集单元100的转接模块104与处理模块101的串口连接,传输接口202;具体的,转接模块104的第二USB接口104a分别与第一USB接口202、串口转UAB电路104b和第一电源模块103连接,串口转UAB电路104b为处理模块101传输采集数据与操控模块201检测采集通信接口,其中,如图8所示,串口转UAB电路104b的引脚NC和引脚CH-RXD均与处理模块101的引脚36(PA9)连接,串口转UAB电路104b的引脚CH-TXD和引脚NC均与引脚38(PA10)连接。Further, the interactive unit 200 includes a control module 201, a first USB interface 202 and a second power module 203. The control module 201 is connected to the processing module 101 and the first power module 103 through the first USB interface 202. The second power module 203 Connected to an external circuit template, the control module 201 plays the role of sending multi-channel acquisition signals, receiving acquisition data, and calibrating and comparing the acquisition data. Specifically, it can be a touch display flat panel (performance: Cortex A9, 1GB DDR3, 8GB eMMC, Android5.1), its specific human-machine interface software supports chip sampling parameter editing, supports dynamic graphic and text display of the sampling process, supports real-time storage of sampling process data, and supports sampling data table display and other functions, and the second power module 203 includes 220C AC to 12V DC power adapter, 12V DC lithium battery (capacity 5000ma/h) and 12V DC circuit. The 20C AC to 12V DC power adapter is connected to the 12V DC circuit through a 12V DC lithium battery (capacity 5000ma/h); among them, the first A USB interface 202 is connected to the serial port of the processing module 101 through the transfer module 104 of the data acquisition unit 100, and the transmission interface 202; specifically, the second USB interface 104a of the transfer module 104 is connected to the first USB interface 202 and the serial port to UAB respectively. The circuit 104b is connected to the first power module 103. The serial port to UAB circuit 104b is a communication interface for the processing module 101 to transmit and collect data and the control module 201 to detect and collect communication interfaces. As shown in Figure 8, the pins NC and pins of the serial port to UAB circuit 104b are Pins CH-RXD are both connected to pin 36 (PA9) of the processing module 101, and pins CH-TXD and pin NC of the serial port to UAB circuit 104b are both connected to pin 38 (PA10).
进一步的,数据采集单元100还包括警示模板105,警示模板105包括蜂鸣器电路105a和采集连接显示电路105b,蜂鸣器电路105a起到采集完成提示声,如图9所示,蜂鸣器电路105a的引脚与处理模块101的引脚48(PA15)连接,而采集连接显示电路105b中设有绿色、黄色和蓝色提示灯,当待检测芯片分别与工作电极测试端口102b-1,参比电极测试端口102a-2、对电极测试端口102a-3连接后,绿色、黄色和蓝色提示灯将分别亮,表示多通道已正常连接,具体的,如图10所示,采集连接显示电路105b的引脚LED-SYS、引脚LED-CH1和引脚LED--CH2分别与处理模块101的引脚45(PC13)、引脚47(PC14)和引脚49(PC15)对应连接。Further, the data collection unit 100 also includes a warning template 105. The warning template 105 includes a buzzer circuit 105a and a collection connection display circuit 105b. The buzzer circuit 105a plays a prompt sound for collection completion. As shown in Figure 9, the buzzer The pin of the circuit 105a is connected to the pin 48 (PA15) of the processing module 101, and the acquisition connection display circuit 105b is provided with green, yellow and blue prompt lights. When the chip to be detected is connected to the working electrode test port 102b-1, After the reference electrode test port 102a-2 and the counter electrode test port 102a-3 are connected, the green, yellow and blue indicator lights will light up respectively, indicating that the multi-channel has been connected normally. Specifically, as shown in Figure 10, the acquisition connection display The pin LED-SYS, the pin LED-CH1 and the pin LED--CH2 of the circuit 105b are respectively connected to the pin 45 (PC13), the pin 47 (PC14) and the pin 49 (PC15) of the processing module 101.
进一步的,在此提供数据采集单元100的主要硬件参数范围:Further, the main hardware parameter range of the data acquisition unit 100 is provided here:
电压范围:±10V;Voltage range: ±10V;
槽压:±10V(Max);Tank voltage: ±10V(Max);
电流范围:±100mA/±200mA/±400mA;Current range: ±100mA/±200mA/±400mA;
参比电极输入阻抗:1MΩ;Reference electrode input impedance: 1MΩ;
灵敏度量程:4×10-8—0.1/0.2/0.4A共八档;Sensitivity range: 4×10-8—0.1/0.2/0.4A, eight levels in total;
输入偏置电流:<10pA;Input bias current: <10pA;
电流测量分辨率:<1pA;Current measurement resolution: <1pA;
数据采集系统:16位采样,最大100KHz;Data acquisition system: 16-bit sampling, maximum 100KHz;
供电:DC12V/1.5A。Power supply: DC12V/1.5A.
本发明通过处理模块、通道选择模块、第一电源模块和交互单元之间的相互配合,能实现单通道(单电极)连接多通道检测的功能,避免了测试过程需要更换不同的测试接口才能实现多通道测试的繁琐。Through the cooperation between the processing module, the channel selection module, the first power module and the interactive unit, the present invention can realize the function of single-channel (single electrode) connection to multi-channel detection, and avoids the need to replace different test interfaces during the test process. Multi-channel testing is cumbersome.
实施例2Example 2
参照图11~图12,为本发明第二个实施例,与上个实施例不同的是,该实施例提供了一种多通道检测装置,解决了多通道工作站测试设备非集成,体积较大,信息传输有所打扰问题,其包括多通道检测电路;以及,承载壳体300,包括芯片电极卡槽301以及安装槽302,芯片电极卡槽301为待测试芯片提供了容置空间,安装槽302用于操控模块201嵌入安装在多通道检测装置上,进而实现检测设备集成化,操控模块201嵌入设置于安装槽302内;芯片电极连接单元400,包括芯片电极连接电路板401以及分别提供焊接连接在芯片电极连接电路板401两面的电极弹片402和弹簧式接线端子403;其中,参比电极测试端口102a-2、对电极测试端口102a-3和恒电位电路102b的工作电机端口102b-1均提供导线与弹簧式接线端子403焊接连接,进而实现了对多通道电化学芯片(即待测芯片)的检测,并且检测数据可直接通过设备完成处理。同时本设备还可针对不同的种类芯片电极,配备相应的电路导通模块,实现多通道电极的选择采集或依次轮流采集。Referring to Figures 11 to 12, a second embodiment of the present invention is shown. Different from the previous embodiment, this embodiment provides a multi-channel detection device, which solves the problem of non-integration and large volume of multi-channel workstation test equipment. , the problem of interference in information transmission, which includes a multi-channel detection circuit; and, the carrying case 300 includes a chip electrode slot 301 and an installation slot 302. The chip electrode slot 301 provides accommodating space for the chip to be tested, and the installation slot 302 is used for the control module 201 to be embedded and installed on the multi-channel detection device, thereby realizing the integration of the detection equipment. The control module 201 is embedded in the installation slot 302; the chip electrode connection unit 400 includes a chip electrode connection circuit board 401 and a welding circuit board 401. The electrode elastic pieces 402 and spring terminals 403 are connected to both sides of the chip electrode connection circuit board 401; among them, the reference electrode test port 102a-2, the counter electrode test port 102a-3 and the working motor port 102b-1 of the constant potential circuit 102b All provide soldering connections between wires and spring-loaded terminals 403, thereby enabling the detection of multi-channel electrochemical chips (i.e., chips under test), and the detection data can be processed directly through the equipment. At the same time, this equipment can also be equipped with corresponding circuit conduction modules for different types of chip electrodes to achieve selective collection or sequential collection of multi-channel electrodes.
具体的,电极弹片402用于与待测芯片电极电路连接,电极弹片402嵌入设置于芯片电极连接单元400的防护壳体404内,芯片电极连接电路板401和弹簧式接线端子403设置在防护壳体404内,防护壳体404的一端两侧的转轴嵌入与芯片电极卡槽301内通过转动连接,检测采集时,转动防护壳体404,电极弹片402将嵌入待测试芯片的测量孔内。Specifically, the electrode spring piece 402 is used to connect to the electrode circuit of the chip under test. The electrode spring piece 402 is embedded in the protective shell 404 of the chip electrode connection unit 400. The chip electrode connection circuit board 401 and the spring terminal 403 are provided in the protective shell. In the body 404, the rotating shafts on both sides of one end of the protective housing 404 are embedded in the chip electrode slot 301 and connected through rotation. When detecting and collecting, rotate the protective housing 404, and the electrode shrapnel 402 will be embedded in the measurement hole of the chip to be tested.
需说明的事,承载壳体300内设置有容置空间,其中,数据采集单元100、第一USB接口202和第二电源模块203均设置于容置空间内,承载壳体300的容置空间起到承载和防护数据采集单元100、第一USB接口202和第二电源模块203的作用,为集成一体化检测提供了基础。It should be noted that there is an accommodation space provided in the carrying case 300, in which the data acquisition unit 100, the first USB interface 202 and the second power module 203 are all arranged in the accommodation space. The accommodation space of the carrying case 300 It plays the role of carrying and protecting the data collection unit 100, the first USB interface 202 and the second power module 203, and provides a basis for integrated detection.
进一步的,芯片电极卡槽301内设置有待测芯片;其中,电极弹片402与待测芯片连接,具体的,芯片电极卡槽301设置有1个卡槽,待测芯片卡合在卡槽内,待测芯片为含有8个电极的八通道芯片,电极弹片402的弹片与待测芯片的测量脚接触连接。Further, the chip electrode card slot 301 is provided with a chip to be tested; the electrode spring piece 402 is connected to the chip to be tested. Specifically, the chip electrode card slot 301 is provided with a card slot, and the chip to be tested is engaged in the card slot. , the chip to be tested is an eight-channel chip containing 8 electrodes, and the elastic piece of the electrode elastic piece 402 is in contact with the measuring pin of the chip to be tested.
芯片电极连接单元400可以根据不同类型的电极做修改的,可以连接芯片电极,也可以将电极连接模块换成普通的电极夹,用于普通电极(非芯片电极)的连接,其连接方式不影响程序使用。The chip electrode connection unit 400 can be modified according to different types of electrodes. It can connect chip electrodes, or the electrode connection module can be replaced with an ordinary electrode clip for the connection of ordinary electrodes (non-chip electrodes). The connection method does not affect program use.
本发明将数据采集单元、交互单元、承载壳体和芯片电极连接单元集成为一体,大大减少了检测体积,降低了信息传输抗干扰问题,提高了检测速度和准确性。The invention integrates the data acquisition unit, the interaction unit, the carrying shell and the chip electrode connection unit into one body, which greatly reduces the detection volume, reduces the anti-interference problem of information transmission, and improves the detection speed and accuracy.
实施例3Example 3
参照图13,为本发明第三个实施例,与上个实施例不同的是,该实施例提供了多通道检测方法,包括多通道检测装置,多通道检测方法步骤包括:开启交互单元200,设定采集测试方式;将芯片电极连接单元400与放置在芯片电极卡槽301内的待测芯片进行连接;对待测芯片进行四阶段生命周期测试,获取采集测试数据;采集测试数据传输至操控模块201计算出峰高并绘制成峰高-循环次数图。Referring to Figure 13, a third embodiment of the present invention is shown. Different from the previous embodiment, this embodiment provides a multi-channel detection method, including a multi-channel detection device. The steps of the multi-channel detection method include: turning on the interactive unit 200, Set the collection test mode; connect the chip electrode connection unit 400 to the chip under test placed in the chip electrode card slot 301; conduct a four-stage life cycle test on the chip under test to obtain the collection test data; transmit the collection test data to the control module 201 Calculate the peak height and plot it as a peak height-cycle number graph.
进一步的,开启交互单元200,设定采集测试方式的步骤包括:Further, the steps of starting the interactive unit 200 and setting the collection test mode include:
打开交互单元200的操控模块201开关;Turn on the control module 201 switch of the interactive unit 200;
启动操控模块201的多通道检测APP;Start the multi-channel detection APP of the control module 201;
主程序启动;The main program starts;
主程序创建;Main program creation;
绑定界面到记载页面;Bind the interface to the record page;
初始化USB授权状态为未知;The initial USB authorization status is unknown;
初始化广播接收器监听USB插入;Initialize the broadcast receiver to listen for USB insertion;
绑定状态控件。Bind state control.
需说明的是,如图14所示,多通道检测APP软件主要设置菜单栏、实时数据选择框、状态栏;其中,菜单栏包括:设备、模式、开始、停止、校准、导出、导入、关于;具体的,如图15所示,设备菜单栏用于显示设备是否与电化学工作站即数据采集单元100正常连接;模式菜单栏中有两个电化学检测方法选择,即2种模式可选择,如图16和17所示,循环伏安法(CV)和方波伏安法(SWV),在循环伏安法选择页面可以设置相关的检测参数,包括量程范围(Range)、起始电压(Init E)、最高电圧(High E)、最低电压(Low E)、扫描速率(ScanRate)、静态时间(Quiet Time)、取样间隔(Sample Int)、扫描次数(Sweep Segment)和电极通道选择(Channel Switch);方波伏安法选择页面可以设置相关的检测参数,包括量程范围(Range)、起始电压(Init E)、终点电圧(Final E)、增量电压(Incr E)、振幅(Amplitude)、频率(Frequency)、静态时间(Quiet Time)、循环次数(Sycle Times)、循环间隔时间(Cycle Interval)、循环开始电极通道选择(Start Channel)和循环终止电极通道选择(End Channel);开始菜单栏用于控制检测开始;停止菜单栏用于控制检测停止;校准菜单栏用于检测状态校准;导出菜单栏用于当前检测结果数据导出;导入菜单栏用于导入方波伏安法数据,导入后可直接根据每个通道的方波伏安实时检测计算出峰高并绘制成峰高-循环次数图,如图18所示;导入菜单栏中记载软件的基本性能;界面还设置一个实时数据选择框,勾选时显示正在检测的数据,未勾选则显示导入数据的结果图;软件界面还设置一个状态栏,包括停止状态显示(Stop)、超出量程显示(Overflow)和荷电状态(SOC)。It should be noted that, as shown in Figure 14, the multi-channel detection APP software mainly sets the menu bar, real-time data selection box, and status bar; among them, the menu bar includes: device, mode, start, stop, calibration, export, import, about ; Specifically, as shown in Figure 15, the equipment menu bar is used to display whether the equipment is normally connected to the electrochemical workstation, that is, the data acquisition unit 100; there are two electrochemical detection method options in the mode menu bar, that is, 2 modes are selectable. As shown in Figures 16 and 17, for cyclic voltammetry (CV) and square wave voltammetry (SWV), the relevant detection parameters can be set on the cyclic voltammetry selection page, including range (Range), starting voltage ( Init E), highest voltage (High E), lowest voltage (Low E), scan rate (ScanRate), quiescent time (Quiet Time), sampling interval (Sample Int), number of scans (Sweep Segment) and electrode channel selection ( Channel Switch); the square wave voltammetry selection page can set relevant detection parameters, including range (Range), starting voltage (Init E), end voltage (Final E), incremental voltage (Incr E), amplitude (Amplitude), frequency (Frequency), quiescent time (Quiet Time), cycle times (System Times), cycle interval time (Cycle Interval), cycle start electrode channel selection (Start Channel) and cycle end electrode channel selection (End Channel) ; The start menu bar is used to control the start of detection; the stop menu bar is used to control the stop of detection; the calibration menu bar is used to calibrate detection status; the export menu bar is used to export the current detection result data; the import menu bar is used to import square wave voltammetry After importing the data, the peak height can be calculated directly based on the real-time detection of square wave voltammetry of each channel and drawn into a peak height-cycle number graph, as shown in Figure 18; the basic performance of the software is recorded in the import menu bar; the interface also sets A real-time data selection box, which displays the data being detected when checked, and displays the result graph of the imported data when unchecked; the software interface also has a status bar, including stop status display (Stop), over-range display (Overflow) and load electrical status (SOC).
进一步的,通过芯片电极连接单元400的电极弹片402将芯片电极连接单元400与放置在芯片电极卡槽301内的待测芯片进行嵌入插入连接。Further, the chip electrode connection unit 400 is inserted into and connected to the chip under test placed in the chip electrode slot 301 through the electrode elastic pieces 402 of the chip electrode connection unit 400 .
进一步的,对待测芯片进行四阶段生命周期测试,获取采集测试数据的步骤包括:Further, a four-stage life cycle test is performed on the chip under test. The steps to obtain and collect test data include:
开启自动刷新状态栏的定时任务;Enable a scheduled task that automatically refreshes the status bar;
主程序通路状态;Main program path status;
主程序恢复初始化;The main program resumes initialization;
注册广播接收器;Register broadcast receiver;
检测待测试芯片是否连接;Check whether the chip under test is connected;
连接待测试芯片;Connect the chip to be tested;
连接后开始运行主程序;After connecting, start running the main program;
对待测芯片进行四阶段生命周期测试;Conduct four-stage life cycle testing on the chip under test;
蜂鸣器电路105发出警示声,注销广播接收器;The buzzer circuit 105 emits a warning sound to log out the broadcast receiver;
获取采集测试数据。Get the collected test data.
需说明的是,检测待测芯片是否连接通过采集连接显示电路105b中设有绿色、黄色和蓝色提示灯,当待检测芯片分别与工作电极测试端口102b-1,参比电极测试端口102a-2、对电极测试端口102a-3连接后,绿色、黄色和蓝色提示灯将分别亮,表示多通道已正常连接;若绿色、黄色和蓝色灯未亮或未亮全,查询USB未未知或已授权状态,若是,连接待侧芯片;若否,主程序开始运行。It should be noted that, to detect whether the chip to be tested is connected to the acquisition connection display circuit 105b, there are green, yellow and blue prompt lights. When the chip to be tested is connected to the working electrode test port 102b-1 and the reference electrode test port 102a- 2. After connecting to the electrode test port 102a-3, the green, yellow and blue prompt lights will light up respectively, indicating that the multi-channel is connected normally; if the green, yellow and blue lights do not light up or not all light up, check that the USB is not unknown Or authorized status, if yes, connect the standby chip; if not, the main program starts running.
需说明的是,四阶段生命周期包括采集界面生命周期、传感器界面生命周期、曲线界面生命周期和历史数量生命周期,采集界面生命周期、传感器界面生命周期、曲线界面生命周期和历史数量生命周期测试采用程序自动互切方式,可通过编辑程序代码实现。It should be noted that the four-stage life cycle includes the collection interface life cycle, sensor interface life cycle, curve interface life cycle and historical quantity life cycle. The collection interface life cycle, sensor interface life cycle, curve interface life cycle and historical quantity life cycle test The automatic intercutting method of the program is adopted, which can be realized by editing the program code.
需说明的是,注销广播接收器后可结束测试进程,也可以对待测芯片再进行四阶段生命周期测试。It should be noted that the test process can be ended after logging off the broadcast receiver, or the chip under test can be subjected to a four-stage life cycle test.
进一步的,采集测试数据传输至操控模块201计算出峰高并绘制成峰高-循环次数图的步骤包括:Further, the steps of collecting test data and transmitting them to the control module 201 to calculate the peak height and draw the peak height-cycle number diagram include:
停止测试程序,断开待测芯片;Stop the test program and disconnect the chip under test;
采集测试数据通过转接模块104和第一USB接口202传输至操控模块201的APP数据显示界面;The collected test data is transmitted to the APP data display interface of the control module 201 through the transfer module 104 and the first USB interface 202;
导入方波伏安法数据;Import square wave voltammetry data;
根据每个通道的方波伏安实时检测计算出峰高并绘制成峰高-循环次数图。The peak height is calculated based on the real-time detection of square wave voltammetry of each channel and plotted into a peak height-cycle number graph.
将实时检测的方波伏安(SWV)图可通过导入数据直接输出检测结果,实现了对芯片电极从检测到结果输出的功能。The real-time detected square wave voltammetry (SWV) diagram can be directly outputted by importing data, realizing the function of detecting the chip electrode and outputting the results.
对待测芯片进行选择采集或依次轮流采集步骤:在模式菜单栏的方波伏安法选择页面设置相关的检测参数,其中量程范围(Range)、起始电压(Init E)、终点电圧(FinalE)、静态时间(Quiet Time)与循环伏安法参数设置中的意义和设置范围相同,此外,增量电压(Incr E):从起始电位到终止电位过程中电位的步进值,用键盘输入所需电压值即可,设置范围为“1—1000mV”;振幅(Amplitude):代表相邻两次稳定电位的差值,参数设置范围为“1—1000mV”;频率(Frequency)脉冲频率,参数设置范围为“1—500”;循环次数(SycleTimes):指每一个电极通道从起始电位到终止电位的方波伏安法扫描次数,扫描从开始电极通道到终止电极通道算一次循环;循环间隔时间(Cycle Interval):从开始电极通道到下一个电极通道的时间间隔设置,单位为秒;循环开始电极通道选择(Start Channel):方波伏安法进行循环扫描的第一个电极通道;循环终止电极通道选择(End Channel):方波伏安法进行循环扫描的最后一个电极通道。如果将循环开始电极通道选择和循环终止电极通道选择设置为同一个电极通道,那么程序将对该电极通道按循环间隔时间进行循环扫描。To select and collect the chip under test or to collect in turn, set the relevant detection parameters on the square wave voltammetry selection page in the mode menu bar, including range (Range), starting voltage (Init E), and end voltage (FinalE). ), Quiet Time has the same meaning and setting range as in cyclic voltammetry parameter setting. In addition, incremental voltage (Incr E): the step value of the potential from the starting potential to the ending potential, use the keyboard Just enter the required voltage value, the setting range is "1-1000mV"; Amplitude: represents the difference between two adjacent stable potentials, the parameter setting range is "1-1000mV"; Frequency (Frequency) pulse frequency, The parameter setting range is "1-500"; cycle times (SystemTimes): refers to the number of square wave voltammetry scans of each electrode channel from the starting potential to the ending potential. Scanning from the starting electrode channel to the ending electrode channel is counted as one cycle; Cycle Interval: The time interval setting from the starting electrode channel to the next electrode channel, in seconds; Cycle starting electrode channel selection (Start Channel): The first electrode channel for cyclic scanning by square wave voltammetry ; Cycle end electrode channel selection (End Channel): the last electrode channel for cycle scanning using square wave voltammetry. If the cycle start electrode channel selection and cycle end electrode channel selection are set to the same electrode channel, the program will perform cyclic scans on the electrode channel according to the cycle interval.
当在模式菜单栏选择循环伏安法界面后,“选择采集”是指在“Channel Switch”栏选择指定通道进行采集。选择后,触摸屏的指令通过USB接口传递给ARM处理器,使ARM处理器控制ADG1408YRUZ数模转换器选择八通道的一个通道是通路。When selecting the cyclic voltammetry interface in the mode menu bar, "select acquisition" means selecting the specified channel in the "Channel Switch" column for acquisition. After selection, the touch screen instructions are transmitted to the ARM processor through the USB interface, so that the ARM processor controls the ADG1408YRUZ digital-to-analog converter to select one of the eight channels as the channel.
选择方波伏安法界面后,“选择采集”的原理与循环伏安法相同,依次轮流采集”是通过设置循环次数、循环间隔时间、循环开始电极通道选择、循环终止电极通道选择后,触摸屏的指令通过USB接口传递给ARM处理器,ARM处理器控制ADG1408YRUZ数模转换器按照指令按照时间间隔依次轮流打开选定的通道。After selecting the square wave voltammetry interface, the principle of "selecting collection" is the same as that of cyclic voltammetry. "Sequential collection" is done by setting the number of cycles, cycle interval time, cycle start electrode channel selection, cycle end electrode channel selection, touch screen The instructions are passed to the ARM processor through the USB interface, and the ARM processor controls the ADG1408YRUZ digital-to-analog converter to open the selected channels in turn according to the instructions and time intervals.
本发明通过电路与软件操作结合,实现芯片电极多通道控制的电化学工作站循环伏安法(CV)和方波伏安法(SWV),并且通过利用处理模块101对导入方波伏安法(SWV)数据进行处理,实现多通道芯片电极的高通量采集及数据处理功能。其次,通过芯片电极连接模块设计,对高通量芯片数据采集方式提供了新检测方式。The present invention realizes cyclic voltammetry (CV) and square wave voltammetry (SWV) of electrochemical workstations with multi-channel control of chip electrodes by combining circuit and software operation, and introduces square wave voltammetry (SWV) by using the processing module 101. SWV) data are processed to achieve high-throughput acquisition and data processing functions of multi-channel chip electrodes. Secondly, the chip electrode connection module design provides a new detection method for high-throughput chip data collection.
重要的是,应注意,在多个不同示例性实施方案中示出的本申请的构造和布置仅是例示性的。尽管在此公开内容中仅详细描述了几个实施方案,但参阅此公开内容的人员应容易理解,在实质上不偏离该申请中所描述的主题的新颖教导和优点的前提下,许多改型是可能的(例如,各种元件的尺寸、尺度、结构、形状和比例、以及参数值(例如,温度、压力等)、安装布置、材料的使用、颜色、定向的变化等)。例如,示出为整体成形的元件可以由多个部分或元件构成,元件的位置可被倒置或以其它方式改变,并且分立元件的性质或数目或位置可被更改或改变。因此,所有这样的改型旨在被包含在本发明的范围内。可以根据替代的实施方案改变或重新排序任何过程或方法步骤的次序或顺序。在权利要求中,任何“装置加功能”的条款都旨在覆盖在本文中所描述的执行所述功能的结构,且不仅是结构等同而且还是等同结构。在不背离本发明的范围的前提下,可以在示例性实施方案的设计、运行状况和布置中做出其他替换、改型、改变和省略。因此,本发明不限制于特定的实施方案,而是扩展至仍落在所附的权利要求书的范围内的多种改型。It is important to note that the construction and arrangements of the present application shown in various exemplary embodiments are illustrative only. Although only a few embodiments are described in detail in this disclosure, those reviewing this disclosure will readily appreciate that many modifications are possible without materially departing from the novel teachings and advantages of the subject matter described in this application. are possible (e.g. variations in size, scale, structure, shape and proportion of various elements, as well as parameter values (e.g. temperature, pressure, etc.), mounting arrangements, use of materials, colors, orientations, etc.). For example, an element shown as integrally formed may be constructed from multiple parts or elements, the position of elements may be inverted or otherwise altered, and the nature or number or position of discrete elements may be altered or varied. Accordingly, all such modifications are intended to be included within the scope of this invention. The order or sequence of any process or method steps may be changed or reordered according to alternative embodiments. In the claims, any "means-plus-function" clause is intended to cover the structures described herein as performing the recited function and not only structural equivalents but also equivalent structures. Other substitutions, modifications, changes and omissions may be made in the design, operation and arrangement of the exemplary embodiments without departing from the scope of the invention. Therefore, the invention is not limited to particular embodiments, but extends to various modifications which still fall within the scope of the appended claims.
此外,为了提供示例性实施方案的简练描述,可以不描述实际实施方案的所有特征(即,与当前考虑的执行本发明的最佳模式不相关的那些特征,或与实现本发明不相关的那些特征)。Furthermore, in order to provide a concise description of the exemplary embodiments, not all features of an actual implementation may be described (i.e., those features that are not relevant to the best mode presently contemplated for carrying out the invention, or that are not relevant to carrying out the invention) feature).
应理解的是,在任何实际实施方式的开发过程中,如在任何工程或设计项目中,可做出大量的具体实施方式决定。这样的开发努力可能是复杂的且耗时的,但对于那些得益于此公开内容的普通技术人员来说,不需要过多实验,所述开发努力将是一个设计、制造和生产的常规工作。It is understood that numerous implementation-specific decisions may be made during the development of any actual implementation, as in any engineering or design project. Such a development effort might be complex and time consuming, but would be a routine undertaking of design, manufacture and production without undue experimentation to those of ordinary skill having the benefit of this disclosure .
应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。It should be noted that the above embodiments are only used to illustrate the technical solution of the present invention rather than to limit it. Although the present invention has been described in detail with reference to the preferred embodiments, those of ordinary skill in the art should understand that the technical solution of the present invention can be carried out. Modifications or equivalent substitutions without departing from the spirit and scope of the technical solution of the present invention shall be included in the scope of the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311008740.5A CN117233223A (en) | 2023-08-11 | 2023-08-11 | Multichannel detection circuit, device and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311008740.5A CN117233223A (en) | 2023-08-11 | 2023-08-11 | Multichannel detection circuit, device and method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117233223A true CN117233223A (en) | 2023-12-15 |
Family
ID=89095642
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311008740.5A Pending CN117233223A (en) | 2023-08-11 | 2023-08-11 | Multichannel detection circuit, device and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117233223A (en) |
-
2023
- 2023-08-11 CN CN202311008740.5A patent/CN117233223A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102854447B (en) | Portable photovoltaic subassembly power testing instrument and testing method thereof | |
CN103257277B (en) | Multifunctional virtual instrument based on constant flow source and control method | |
CN115372427A (en) | A portable detection device with dual-mode wireless connection | |
CN103675680A (en) | Detector and detection method for locomotive motor optical-electricity encoder | |
CN117233223A (en) | Multichannel detection circuit, device and method | |
CN118329452A (en) | Performance self-testing system and method of engine testing equipment | |
CN112034362A (en) | A power battery multi-channel synchronous detection board | |
US20220099085A1 (en) | Pump performance data logging apparatus | |
CN103162743B (en) | Single-channel detection instrument based on digital signal processor (DSP) | |
CN202002905U (en) | Electrogenerated chemiluminescence transient state analyzer | |
CN211124351U (en) | Multifunctional data acquisition unit based on simulation and digital acquisition | |
CN115436819A (en) | A high-precision multi-channel isolated battery voltage monitoring device | |
CN102222405A (en) | Wireless data acquisition system for acquiring voltages of microbial fuel cells | |
CN201653544U (en) | Laser ageing detection device | |
CN217212526U (en) | Portable little gas volume gas concentration analytical equipment | |
CN204536509U (en) | Based on the button cell capacity checking apparatus of AVR | |
CN220855063U (en) | Electric performance detection tool and system for semiconductor gas sensor | |
CN205750589U (en) | A kind of based on monolithic processor controlled intelligent temperature controller | |
CN216411398U (en) | Vehicle quiescent current detection device | |
CN115372710B (en) | Automatic resistor testing device | |
CN113917203B (en) | Portable waveform test pen | |
CN104237842A (en) | Alternating voltage test verification device for verifying automatic single-phase kilowatt-hour meter production line | |
CN219178592U (en) | Intelligent reading device for dam safety | |
CN203786111U (en) | Calibrating device for optical interference type methane measuring equipment | |
CN220252068U (en) | Measuring system of connector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |