CN117210020A - 一种鱼精蛋白与镍铁改性的UiO-66-NH2的杂化材料及其制备方法和应用 - Google Patents

一种鱼精蛋白与镍铁改性的UiO-66-NH2的杂化材料及其制备方法和应用 Download PDF

Info

Publication number
CN117210020A
CN117210020A CN202311088939.3A CN202311088939A CN117210020A CN 117210020 A CN117210020 A CN 117210020A CN 202311088939 A CN202311088939 A CN 202311088939A CN 117210020 A CN117210020 A CN 117210020A
Authority
CN
China
Prior art keywords
uio
protamine
ferronickel
hybrid material
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311088939.3A
Other languages
English (en)
Inventor
曲道峰
郭博海
孙允
韩剑众
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Gongshang University
Original Assignee
Zhejiang Gongshang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Gongshang University filed Critical Zhejiang Gongshang University
Priority to CN202311088939.3A priority Critical patent/CN117210020A/zh
Publication of CN117210020A publication Critical patent/CN117210020A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

本发明公开一种鱼精蛋白与镍铁改性的UiO‑66‑NH2的杂化材料及其制备方法和应用,将氯化锆、2‑氨基对苯二甲酸与对苯二甲酸分散至N,N‑二甲基甲酰胺DMF中制得UiO‑66‑NH2,再进行鱼精蛋白与镍铁改性,得到所述杂化材料。本发明所得杂化材料在抗菌性能方面具有极大提升,具有对MRSA在内的耐药菌的抑制作用,能够减少感染风险与抗生素使用。本发明杂化材料使鱼精蛋白能够缓慢释放,并且极大地改善了其化学稳定性,同时提高了其长时间持续抗菌的能力。本发明杂化材料产生较低的细胞毒性,具有良好的生物相容性和医学使用前景。

Description

一种鱼精蛋白与镍铁改性的UiO-66-NH2的杂化材料及其制备 方法和应用
技术领域
本发明涉及纳米药物技术领域,尤其是涉及一种鱼精蛋白与镍铁改性的UiO-66-NH2的杂化材料及其制备方法和应用。
背景技术
细菌污染是食品、医药等众多领域最具挑战性的问题之一,威胁着全球数百万人的生命。抗生素耐药性是其中最大的健康挑战之一,也是对公共卫生的全球性挑战。鉴于现有的抗生素耐药性及其快速产生新耐药表型的能力,迫切需要开发和设计一种或对人类有效且安全的新型抗菌剂。
金属有机框架(MOFs)是一类新型的无机-有机杂化结晶多孔材料,其中金属节点和有机配体通过配位键连接在一起。金属离子或金属离子簇和有机分子(称为连接体)是MOF的两个主要成分,金属离子中心和有机配体之间通过配位键或共价键连接,形成无限网络结构。金属离子和配体具有丰富的几何形状和成键特性。因此,MOFs的物理化学特性可以人为设计和优化,以适应不同的应用场景。但是纯MOFs存在抗菌性不足等缺点,因此迫切需要一种改性和复合方法来弥补这一缺点。
发明内容
本发明的第一个目的是针对现有技术的不足,提供一种具有抗菌活性、治疗多重耐药菌和具有生物相容性的镍铁改性的UiO-66-NH2和鱼精蛋白杂化材料的制备方法,采用的技术方案为:
步骤(1)、UiO-66-NH2的制备
将氯化锆、2-氨基对苯二甲酸与对苯二甲酸分散至N,N-二甲基甲酰胺DMF中,搅拌下加入去离子水,加热反应一段时间;冷却至室温后,离心收集固体产物,置于无水乙醇中一段时间,取出烘干后即得UiO-66-NH2
步骤(2)、镍铁改性的UiO-66-NH2杂化材料的制备
将铁盐、镍盐溶于无水甲醇中,加入步骤(1)所得UiO-66-NH2,分散均匀,常温搅拌12~24h,然后在氮气或氩气等惰性气氛下进行高温煅烧反应,得到所述镍铁改性的UiO-66-NH2杂化材料;所述UiO-66-NH2、铁盐中的铁离子、镍盐中的镍离子与无水甲醇的摩尔比为1:(1.5~2):(1.5~2):(3000~4000);
步骤(3)、鱼精蛋白与镍铁改性的UiO-66-NH2的杂化材料的制备
将鱼精蛋白分散至水中,加入步骤(2)所得镍铁改性的UiO-66-NH2的杂化材料进行浸渍,静置后洗涤干燥得到所述鱼精蛋白与镍铁改性UiO-66-NH2的杂化材料。
作为优选,步骤(1)中氯化锆、2-氨基对苯二甲酸与对苯二甲酸的质量比为5:1:(2.5~2.7)。
作为优选,步骤(1)中加热时间为22~24h,加热温度为118~120℃。
作为优选,步骤(1)中置于乙醇中22~24h。
作为优选,所述的步骤(2)中,铁盐选自二价铁盐、三价铁盐中一种或几种;所述二价铁盐为氯化亚铁、硝酸亚铁、硫酸亚铁、醋酸亚铁中任意一种或几种;所述三价铁盐为氯化铁、硝酸铁、硫酸铁、醋酸铁中任意一种或几种。
作为优选,所述的步骤(2)中,镍盐选自为硝酸镍、氯化镍中任意一种或两种。
作为优选,所述的步骤(2)中,煅烧温度为600-900℃,升温速率为1-10℃/min,煅烧时间为4~16h。
作为优选,步骤(3)中浸渍的时间为4~40h。
本发明的第二个目的是提供一种鱼精蛋白与镍铁改性的UiO-66-NH2的杂化材料,采用上述方法制备得到。
本发明的第三个目的是提供上述杂化材料作为抗菌材料的应用。
本发明的第四个目的是提供上述杂化材料作为催化剂的应用。
与现有技术相比﹐本发明的有益效果在于:
一、本发明采用单一溶剂液相还原法制备了鱼精蛋白与镍铁改性的UiO-66-NH2的杂化材料,本发明制备的镍铁改性后的UIO-66-NH2增强了原本的金属有机框架材料的吸附性能和抗菌活性,同时保持了原有的生物相容性。其中包含镍铁改性的UiO-66-NH2和鱼精蛋白两种主要成分,在抗菌过程中起到协同作用,极大地提高了材料的抗菌性能,使之成为一种有效的纳米协同抗菌剂;鱼精蛋白与镍铁改性的UiO-66-NH2的杂化材料在实验中发现具有对MRSA在内的耐药菌的抑制作用,能够减少感染风险与抗生素使用。
二、本发明制备的鱼精蛋白与镍铁改性的UiO-66-NH2杂化材料,通过加入镍铁获得了更强的吸附性能和催化效率,可用作催化剂。
三、通过将鱼精蛋白负载在镍铁改性的UiO-66-NH2金属有机框架材料中使鱼精蛋白能够缓慢释放,并且极大地改善了其化学稳定性,同时提高了其长时间持续抗菌的能力。
四、鱼精蛋白与镍铁改性的UiO-66-NH2杂化材料产生较低的细胞毒性,具有良好的生物相容性,医学使用前景广阔。
附图说明
图1为各材料抑制MRSA的平板计数图,其中A为镍铁改性的UiO-66-NH2,B为鱼精蛋白,C为鱼精蛋白和镍铁改性的UiO-66-NH2杂化材料。
图2为实施例1制备的鱼精蛋白与镍铁改性的UiO-66-NH2细胞毒性图。
图3为实施例1制备的UiO-66-NH2的傅里叶红外光谱分析(FT-IR图)。
具体实施方式
以下结合附图及实施例对本发明作进一步详细描述。
第一方面,本发明提供一种鱼精蛋白与镍铁改性的UiO-66-NH2的杂化材料的制备方法,包括如下步骤:
步骤(1)、UiO-66-NH2的制备
将氯化锆、2-氨基对苯二甲酸与对苯二甲酸按质量比5:1:(2.5~2.7)分散至N,N-二甲基甲酰胺DMF中,搅拌下加入去离子水,118~120℃加热反应22~24h;冷却至室温后,离心收集固体产物,置于无水乙醇中22~24h,取出烘干后即得UiO-66-NH2
步骤(2)、镍铁改性的UiO-66-NH2杂化材料的制备
将铁盐、镍盐溶于无水甲醇中,加入步骤(1)所得UiO-66-NH2,分散均匀,常温搅拌12~24h,然后在氮气或氩气等惰性气氛中600-900℃高温煅烧4~16h,得到所述镍铁改性的UiO-66-NH2杂化材料;所述UiO-66-NH2、铁离子、镍离子与无水甲醇的摩尔比为1:(1.5~2):(1.5~2):(3000~4000);所述铁盐选自二价铁盐、三价铁盐中一种或几种;所述二价铁盐为氯化亚铁、硝酸亚铁、硫酸亚铁、醋酸亚铁中的一种或几种;所述三价铁盐为氯化铁、硝酸铁、硫酸铁、醋酸铁中一种或几种;所述镍盐为硝酸镍、氯化镍中的一种或两种;
步骤(3)、鱼精蛋白与镍铁改性的UiO-66-NH2的杂化材料的制备
将鱼精蛋白分散至水中,加入步骤(2)所得镍铁改性的UiO-66-NH2的杂化材料进行浸渍4~40h,静置后洗涤干燥得到所述鱼精蛋白与镍铁改性UiO-66-NH2的杂化材料。
第二方面,本发明提供一种鱼精蛋白与镍铁改性的UiO-66-NH2的杂化材料,采用上述方法制备得到。
第三方面,本发明提供上述杂化材料作为抗菌材料的应用。
以下结合若干较佳实施例对本发明的技术方案作进一步的解释说明,但其中的实验条件和设定参数不应视为对本发明基本技术方案的局限,并且本发明的保护范围不限于下述的实施例。
实施例1:制备鱼精蛋白和镍铁改性的UiO-66-NH2杂化材料
(1)UiO-66-NH2的制备
首先称取氯化锆(1.25mmol)、2-氨基对苯二甲酸(0.44mmol)和对苯二甲酸(1.28mmol)分散到100mLN,N-二甲基甲酰胺中,在剧烈搅拌下滴加150μL去离子水,搅拌并分散完全,之后转入不锈钢反应釜中,在120℃温度条件下恒温加热箱中反应24h。冷却至室温后,离心收集固体产物,用无水乙醇索氏提取法洗涤置换高沸点有机溶剂N,N-二甲基甲酰胺24h,80℃真空干燥箱烘干12h,得粉末状产物,即为UiO-66-NH2;所得UiO-66-NH2的傅里叶红外光谱分析(FT-IR图)见图3。
(2)镍铁改性的UiO-66-NH2的制备
将硫酸铁、氯化镍溶于无水甲醇中,加入步骤(1)所得UiO-66-NH2,分散均匀,常温搅拌12~24h,然后在氮气中600℃煅烧16h,得到所述镍铁改性的UiO-66-NH2杂化材料;UiO-66-NH2、Fe3+ (硫酸铁)、Ni2+ (氯化镍)与无水甲醇的摩尔比为1:2:3:4000。
(3)鱼精蛋白和镍铁改性的UiO-66-NH2的杂化材料的制备
采用浸渍法制备鱼精蛋白和镍铁改性的UiO-66-NH2的杂化材料。将鱼精蛋白分散与水中,加入镍铁改性的UiO-66-NH2的杂化材料进行浸渍反应24小时,静置4小时,洗涤,80℃干燥得到鱼精蛋白和镍铁改性的UiO-66-NH2的杂化材料(PS/Ni@Fe/UiO-66-NH2)。
实施例2:制备鱼精蛋白和镍铁改性的UiO-66-NH2杂化材料
(1)UiO-66-NH2的制备
首先称取氯化锆(1.25mmol)、2-氨基对苯二甲酸(0.44mmol)和对苯二甲酸(1.28mmol)分散到100mLN,N-二甲基甲酰胺中,在剧烈搅拌下滴加150μL去离子水,搅拌并分散完全,之后转入不锈钢反应釜中,在120℃温度条件下恒温加热箱中反应24h。冷却至室温后,离心收集固体产物,用无水乙醇索氏提取法洗涤置换高沸点有机溶剂N,N-二甲基甲酰胺24h,80℃真空干燥箱烘干12h,得粉末状产物,即为UiO-66-NH2
(2)镍铁改性的UiO-66-NH2的制备
将醋酸亚铁、硝酸镍溶于无水甲醇中,加入步骤(1)所得UiO-66-NH2,分散均匀,常温搅拌12~24h,然后在氮气中900℃煅烧4h,得到所述镍铁改性的UiO-66-NH2杂化材料;UiO-66-NH2、Fe2+ (醋酸亚铁)、Ni2+ (硝酸镍)与无水甲醇的摩尔比为1:2:2:3500;
(3)鱼精蛋白和镍铁改性的UiO-66-NH2的杂化材料的制备
采用浸渍法制备鱼精蛋白和镍铁改性的UiO-66-NH2的杂化材料。将鱼精蛋白分散与水中,加入镍铁改性的UiO-66-NH2的杂化材料进行浸渍反应24小时,静置2小时,洗涤,80℃干燥得到鱼精蛋白和镍铁改性的UiO-66-NH2的杂化材料。
实施例3:制备鱼精蛋白和镍铁改性的UiO-66-NH2杂化材料
(1)UiO-66-NH2的制备
首先称取氯化锆0.4g、2-氨基对苯二甲酸0.08g和对苯二甲酸0.213g分散到100mLN,N-二甲基甲酰胺中,在剧烈搅拌下滴加150μL去离子水,搅拌并分散完全,之后转入不锈钢反应釜中,在120℃温度条件下恒温加热箱中反应24h。冷却至室温后,离心收集固体产物,用无水乙醇索氏提取法洗涤置换高沸点有机溶剂N,N-二甲基甲酰胺24h,80℃真空干燥箱烘干12h,得粉末状产物,即为UiO-66-NH2
(2)镍铁改性的UiO-66-NH2的制备
将氯化亚铁、硝酸镍溶于无水甲醇中,加入步骤(1)所得UiO-66-NH2,分散均匀,常温搅拌12~24h,然后在氩气中700℃煅烧10h,得到所述镍铁改性的UiO-66-NH2杂化材料;所述UiO-66-NH2、Fe2+ (氯化亚铁)、Ni2+ (硝酸镍)与无水甲醇的摩尔比为1:1.8:1.7:3800;
(3)鱼精蛋白和镍铁改性的UiO-66-NH2的杂化材料的制备
采用浸渍法制备鱼精蛋白和镍铁改性的UiO-66-NH2的杂化材料。将鱼精蛋白分散与水中,加入镍铁改性的UiO-66-NH2的杂化材料进行浸渍反应24小时,静置4小时,洗涤,80℃干燥得到鱼精蛋白和镍铁改性的UiO-66-NH2的杂化材料。
测试例1:表征及抗菌试验
本测试例以实施例1制备的鱼精蛋白和镍铁改性的UiO-66-NH2的杂化材料进行表征及抗菌试验。
1、体外抗菌实验
(1)测定鱼精蛋白和镍铁改性的UiO-66-NH2的杂化材料对大肠杆菌的MBC值
MBC值为最小杀菌浓度,指能够杀灭培养基内细菌(即杀灭99.9%供试微生物)的最小浓度。将250μL的不同浓度样品与250μL 2×106CFU/mL细菌悬浮液依次加入到5mL离心管中,使得样品的终浓度为2、1、0.5、0.25mg/mL,恒温震荡培养后取出10μL各样品于9990μLLB培养液中进行稀释,取100μL各样品最终稀释液于LB固体培养基中进行铺板,37℃恒温培养24h后,记录平板上的菌落数量,平板菌落低于5个的最低浓度即为MBC值。
(2)测定鱼精蛋白和镍铁改性的UiO-66-NH2的杂化材料对大肠杆菌的MIC值
MIC值为最小抑菌浓度,指在体外培养细菌18至24h后能抑制培养基内病原菌生长的最小药物浓度。将100μL不同浓度(16mg/mL~0.05mg/mL)的样品后和100μL的106CFU/mL细菌悬浮液在无菌96孔板中混合并进行梯度稀释。对照组为200μL的纯LB培养液和200μL的0.5×106CFU/mL的细菌悬浮液。将96孔板恒温震荡培养12h后通过测定肉眼判断和OD600值确认没有可见浑浊度的样品的最低浓度,即为鱼精蛋白和镍铁改性的UiO-66-NH2的杂化材料的MIC值。
表1各组对金黄色葡萄球菌(S.aureus)和大肠杆菌(E.coli)的MIC与MBC值
UiO-66-NH2 Ni@Fe/UiO-66-NH2 PS/Ni@Fe/UiO-66-NH2
MIC(E.coli)(mg/mL) 2.0 1.5 1.0
MBC(E.coli)(mg/mL) 4.0 3.0 2.0
MIC(S.aureus)(mg/mL) 8.0 6.0 1.25
MBC(S.aureus)(mg/mL) 16.0 12.0 2.5
试验结果:
如表1所示,鱼精蛋白和镍铁改性的UiO-66-NH2的杂化材料与未改性前及未与鱼精蛋白杂化前的材料的抗菌性能具有明显提升,显著降低了对大肠杆菌和金黄色葡萄球菌的抑制所需浓度,展现出杂化材料的优异协同抗菌特性。
2、MRSA抑制实验
将培养至对数期的MRSA菌悬液与鱼精蛋白和镍铁改性的UiO-66-NH2混合培养3h。孵育后,将悬浮液用生理盐水稀释,取100μL稀释液涂布到LB固体培养基上培养过夜,进行菌落计数。同时设置暗对照,空白对照与只加菌液的阴性对照。
试验结果:
如图1所示,在相同浓度下使用三种材料进行对耐甲氧西林金黄色葡萄球菌抗菌性能的测试,鱼精蛋白和镍铁改性的UiO-66-NH2的杂化材料表现出了对MRSA极大的抑制作用,能够降低耐药菌所带来了耐药性的危害,为治疗耐药菌提供了新的思路。
3、细胞相容性实验
利用细胞毒性检测(MTT)研究了不同浓度的鱼精蛋白和镍铁改性的UiO-66-NH2对人克隆结肠腺癌细胞(Caco2)的毒性。
为了评估细胞毒性,首先将人克隆结肠腺癌细胞(Caco2)用DMEM培养基在96孔板上培养24h,并在添加不同剂量鱼精蛋白和镍铁改性的UiO-66-NH2(0-250μg/mL)后继续培养24h。用MTT法测定,用吸光度结果(A490)定量细胞活力。
试验结果:
如图2所示,鱼精蛋白和镍铁改性的UiO-66-NH2的杂化材料在设置组的浓度梯度中都展现出了良好的细胞相容性,细胞存活率均在80%以上,表明鱼精蛋白和镍铁改性的UiO-66-NH2的杂化材料的细胞毒性较低,具有良好的生物安全性能。
4、吸附性测试
首先在反应管中加入50mL初始浓度为30mg/L的氨苄青霉素钠溶液,称取0.06g各实施例中制备的金属有机框架材料加入到上述100mL溶液中,30min后测定对氨苄青霉素钠溶液的吸附率。
表2各组吸附性实验结果
UiO-66-NH2 Ni@Fe/UiO-66-NH2 PS/Ni@Fe/UiO-66-NH2
吸附率(%)(30min) 93 97 98
试验结果:
如表2所示,鱼精蛋白和镍铁改性的UiO-66-NH2的杂化材料表现出比改性前更强的吸附效率,表明鱼精蛋白和镍铁改性的UiO-66-NH2具有良好的催化性能。
上述说明并非对本发明的限制,本发明也并不限于上述举例。本技术领域的普通技术人员在本发明的实质范围内,做出的变化、改型、添加或替换,也应属于本发明的保护范围。

Claims (10)

1.一种鱼精蛋白与镍铁改性的UiO-66-NH2的杂化材料的制备方法,其特征在于,所述制备方法包括如下步骤:
步骤(1)、UiO-66-NH2的制备
将氯化锆、2-氨基对苯二甲酸与对苯二甲酸分散至N,N-二甲基甲酰胺DMF中,搅拌下加入去离子水,加热反应一段时间;冷却至室温后,离心收集固体产物,置于无水乙醇中一段时间,取出烘干后即得UiO-66-NH2;所述氯化锆、2-氨基对苯二甲酸与对苯二甲酸的质量比为5:1:(2.5~2.7);
步骤(2)、镍铁改性的UiO-66-NH2杂化材料的制备
将铁盐、镍盐溶于无水甲醇中,加入步骤(1)所得UiO-66-NH2,分散均匀,常温搅拌12~24h,然后在惰性气氛中煅烧,得到所述镍铁改性的UiO-66-NH2杂化材料;UiO-66-NH2、铁盐中的铁离子、镍盐中的镍离子与无水甲醇的摩尔比为1:(1.5~2):(1.5~2):(3000~4000);
步骤(3)、鱼精蛋白与镍铁改性的UiO-66-NH2的杂化材料的制备
将鱼精蛋白分散至水中,加入步骤(2)所得镍铁改性的UiO-66-NH2的杂化材料进行浸渍,静置后洗涤干燥得到所述鱼精蛋白与镍铁改性UiO-66-NH2的杂化材料。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中加热时间为22~24h,加热温度为118~120℃。
3.根据权利要求1所述的制备方法,其特征在于,步骤(1)中置于乙醇中22~24h。
4.根据权利要求1所述的制备方法,其特征在于,步骤(2)中水热反应的时间为24h,水热反应的温度为120℃。
5.根据权利要求1所述的制备方法,其特征在于,步骤(2)中铁盐选自二价铁盐、三价铁盐中一种或两种;所述二价铁盐为氯化亚铁、硝酸亚铁、硫酸亚铁、醋酸亚铁中任意一种或几种;所述三价铁盐为氯化铁、硝酸铁、硫酸铁、醋酸铁中一种或几种。
6.根据权利要求1所述的制备方法,其特征在于,步骤(2)中镍盐选自硝酸镍、氯化镍中一种或两种。
7.根据权利要求1所述的制备方法,其特征在于,步骤(2)中煅烧温度为600~900℃,升温速率为1~10℃/min,煅烧时间为4~16h。
8.根据权利要求1所述的制备方法,其特征在于,步骤(3)中浸渍的时间为4~40h。
9.一种鱼精蛋白与镍铁改性的UiO-66-NH2的杂化材料,其特征在于,采用权利要求1-8任一项所述方法制备得到。
10.权利要求9所述的杂化材料作为抗菌材料或催化剂的应用。
CN202311088939.3A 2023-08-28 2023-08-28 一种鱼精蛋白与镍铁改性的UiO-66-NH2的杂化材料及其制备方法和应用 Pending CN117210020A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311088939.3A CN117210020A (zh) 2023-08-28 2023-08-28 一种鱼精蛋白与镍铁改性的UiO-66-NH2的杂化材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311088939.3A CN117210020A (zh) 2023-08-28 2023-08-28 一种鱼精蛋白与镍铁改性的UiO-66-NH2的杂化材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN117210020A true CN117210020A (zh) 2023-12-12

Family

ID=89034379

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311088939.3A Pending CN117210020A (zh) 2023-08-28 2023-08-28 一种鱼精蛋白与镍铁改性的UiO-66-NH2的杂化材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN117210020A (zh)

Similar Documents

Publication Publication Date Title
Cong et al. Mussel-inspired polydopamine coating as a versatile platform for synthesizing polystyrene/Ag nanocomposite particles with enhanced antibacterial activities
Lu et al. Ligand effects on the structural dimensionality and antibacterial activities of silver-based coordination polymers
US20130171228A1 (en) Anti-microbial metal organic framework
Agnihotri et al. Synthesis and antimicrobial activity of aminoglycoside-conjugated silica nanoparticles against clinical and resistant bacteria
Chen et al. Folic acid-modified mesoporous silica nanoparticles with pH-responsiveness loaded with Amp for an enhanced effect against anti-drug-resistant bacteria by overcoming efflux pump systems
Cardoso et al. Antibacterial activity of silver camphorimine coordination polymers
Nakhaei et al. Antibacterial activity of three zinc-terephthalate MOFs and its relation to their structural features
Bykowska et al. Phosphine derivatives of ciprofloxacin and norfloxacin, a new class of potential therapeutic agents
Chrysouli et al. Ciprofloxacin conjugated to diphenyltin (IV): a novel formulation with enhanced antimicrobial activity
Fazary Metal complexes of salicylhydroxamic acid and 1, 10-phen-anthroline; equilibrium and antimicrobial activity studies
Alshima'a et al. Bis 4, 5-diazafluoren-9-one silver (I) nitrate: Synthesis, X-ray structures, solution chemistry, hydrogel loading, DNA coupling and anti-bacterial screening
Edeler et al. SBA-15 mesoporous silica particles loaded with cisplatin induce senescence in B16F10 cells
Hajibabaei et al. Synthesis, characterization and antibacterial activity of imidazole-functionalized Ag/MIL-101 (Cr)
Călinescu et al. Synthesis and characterization of new copper (II) complex compounds with chlorhexidine. Part I
El-Gamel Coordination behaviour and biopotency of metal NN salen complexes
CN114246870A (zh) MIL-101(Fe)-T705及其制备方法和应用
Parsaei et al. Synthesis, characterization and comprehensive study of a 3D Co (II) coordination polymer antibacterial activity
Ramos et al. Linezolid@ MOF-74 as a host–guest system with antimicrobial activity
CN117210020A (zh) 一种鱼精蛋白与镍铁改性的UiO-66-NH2的杂化材料及其制备方法和应用
CN117137892A (zh) 一种香兰素与镍铁改性的UiO-66-NH2的杂化材料及其制备方法和应用
CN117137891A (zh) 一种原儿茶醛与镍铁改性的UiO-66-NH2的杂化材料及其制备方法和应用
He et al. Green Synthesis of MOF-Mediated pH-Sensitive Nanomaterial AgNPs@ ZIF-8 and Its Application in Improving the Antibacterial Performance of AgNPs
Ndukwe et al. Antibacterial assay of two synthesized dithiocarbamate ligands
Ameen et al. Excellent antimicrobial performances of Cu (II) metal organic framework@ Fe3O4 fused cubic particles
Charan et al. Antiviral activity of antimony and arsenic oxides

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination