CN117200329A - 一种离网发电储能供电系统 - Google Patents

一种离网发电储能供电系统 Download PDF

Info

Publication number
CN117200329A
CN117200329A CN202311460429.4A CN202311460429A CN117200329A CN 117200329 A CN117200329 A CN 117200329A CN 202311460429 A CN202311460429 A CN 202311460429A CN 117200329 A CN117200329 A CN 117200329A
Authority
CN
China
Prior art keywords
power generation
coefficient
photovoltaic
cell panel
calculates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202311460429.4A
Other languages
English (en)
Other versions
CN117200329B (zh
Inventor
叶文斌
肖丽军
冯金生
舒名华
李直元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Felicity Solar Technology Co ltd
Original Assignee
Guangzhou Felicity Solar Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Felicity Solar Technology Co ltd filed Critical Guangzhou Felicity Solar Technology Co ltd
Priority to CN202311460429.4A priority Critical patent/CN117200329B/zh
Publication of CN117200329A publication Critical patent/CN117200329A/zh
Application granted granted Critical
Publication of CN117200329B publication Critical patent/CN117200329B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

本发明涉及储能供电系统技术领域,具体涉及一种离网发电储能供电系统,该系统包括信息储存模块、检测模块、控制模块和通信模块;控制模块根据环境参考系数、太阳辐射照度的检测总数、第次检测计算的太阳辐射照度、光伏电池板的面积、光伏电池板光电转换效率参考系数和光伏电池板清洁参考系数计算光伏发电系数,根据光伏发电系数计算光伏发电能量系数的选择函数,根据光伏发电能量系数的选择函数和光伏发电损耗系数计算光伏发电功率并传输至通信模块;通信模块将光伏发电功率的信息传输至用户端。上述能预估产生的电量,则用电者可以适当调整用电的需求。

Description

一种离网发电储能供电系统
技术领域
本发明涉及储能供电系统技术领域,具体涉及一种离网发电储能供电系统。
背景技术
离网型发电系统就是光伏发的电不上网,系统不和电网连接,属于自发自用的一种发电系统,目前具有多种离网型发电模式,比如:
太阳能离网发电系统,其利用太阳能电池板将太阳光转换为电能,经过控制器调节后,存储在蓄电池中供用户使用,太阳能发电系统的主要组件包括太阳能电池板、充电控制器、蓄电池和逆变器;
风能离网发电系统,其通过风力发电机将风能转换为电能,再通过控制器调节并存储在蓄电池中,风能发电系统的主要组件包括风力发电机、风力控制器、蓄电池和逆变器;
水能离网发电系统,其利用水流驱动水轮发电机,将水能转换为电能,水能发电系统的主要组件包括水轮发电机、控制器、蓄电池和逆变器;
混合型离网发电系统,其将多种可再生能源(如太阳能、风能、水能)相结合,提高发电系统的稳定性和可靠性,混合型发电系统的主要组件包括多种能源发电设备、混合型控制器、蓄电池和逆变器。
现在已经开发出了很多供电系统,经过我们大量的检索与参考,发现现有技术的有如公开号为CN111293956A、CN112653150A和CN112713520A所公开的供电系统,这些一般包括:发电模块、控制器、蓄电池组和逆变器,发电模块是整个供电系统的核心,将风能和光能等转化为电能的装置,蓄电池组用于储存发电模块的电能,并在日照亮不足或者夜间为负载供电,控制器和发电模块、蓄电池组和逆变器通信连接,控制器对蓄电池组进行充放电保护,控制器能将直流电直接输出至直流负载或者通过逆变器将直流电转换为交流电输出至交流负载。
由于上述供电系统并不能预估发电模块产生的电量,当用电者的用电需求较大时,会造成电量供不应求的情形。
发明内容
本发明的目的在于能预估发电模块产生的电量,针对上述存在的不足,提出一种离网发电储能供电系统。
本发明采用如下技术方案:
一种离网发电储能供电系统,该系统包括信息储存模块、检测模块、控制模块和通信模块;
所述信息储存模块和控制模块通信连接,所述信息储存模块用于储存光伏电池板的当前使用年长、光伏电池板的面积、光伏发电损耗系数的信息,并传输至控制模块;
所述检测模块和控制模块通信连接,所述检测模块用于检测是否出现降雨且得出太阳辐射照度的检测总数,检测太阳辐射照度且得出每次检测得出的太阳辐射照度,检测灰尘覆盖率且得出补光灯的开启数量、单个补光灯的功率、空间频率和灰尘在光伏电池板上的覆盖率,并将检测到的信息传输至控制模块;
所述控制模块和通信模块通信连接,所述控制模块根据空间频率、灰尘在光伏电池板上的覆盖率、光伏电池板的面积、每次检测得出的太阳辐射照度计算光伏电池板清洁参考系数,根据光伏电池板的当前使用年长和光伏电池板的理论使用年限计算光伏电池板光电转换效率参考系数,根据补光灯的开启数量、单个补光灯的功率计算环境参考系数,根据环境参考系数、太阳辐射照度的检测总数、每次检测计算的太阳辐射照度、光伏电池板的面积、光伏电池板光电转换效率参考系数和光伏电池板清洁参考系数计算光伏发电系数,根据光伏发电系数计算光伏发电能量系数的选择函数,根据光伏发电能量系数的选择函数和光伏发电损耗系数计算光伏发电功率并传输至通信模块;
所述通信模块将光伏发电功率的信息传输至用户端。
可选的,所述控制模块计算光伏发电系数时,满足以下式子:
其中,为光伏发电系数,/>为太阳辐射照度的检测总数,/>分别有以下取值,或/>,当/>为检测当天出现降雨太阳辐射照度的检测总数,/>为检测当天没有降雨太阳辐射照度的检测总数,/>为第/>次检测得出的太阳辐射照度,/>为光伏电池板的面积,/>为光伏电池板光电转换效率参考系数,/>为光伏电池板清洁参考系数,/>为环境参考系数;
为光伏电池板的当前使用年长,/>为光伏电池板的理论使用年限;
为灰尘在光伏电池板上的覆盖率,/>为第/>次检测得出的太阳辐射照度,为空间频率;
为补光灯的开启数量,/>为单个补光灯的功率。
可选的,所述控制模块计算光伏发电系数时,满足以下式子:
其中,为光伏发电功率,/>为光伏发电损耗系数;
为光伏发电能量系数的选择函数,/>至/>为不同的光伏发电能量系数的选择阈值。
可选的,所述信息储存模块还用于储存风力机组质量指数、叶片数量、叶片受风面积和风力发电损耗系数的信息,并传输至控制模块;
所述检测模块还用于检测当日温度最大值、当日温度最小值、环境相对湿度、海拔高度和实际气压的信息,并传输至控制模块;
所述控制模块根据实际气压计算气压指数选择函数,根据海拔高度计算海拔高度指数,根据环境相对湿度、当日温度最大值和当日温度最小值计算相对湿度指数,根据当日温度最大值和当日温度最小值计算环境温度,根据环境温度计算温度指数选择函数,根据温度指数选择函数、相对湿度指数、海拔高度指数和气压指数选择函数计算环境影响系数,根据风力机组质量指数、环境影响系数、叶片数量和叶片受风面积计算风力发电系数,根据风力发电系数计算风力发电能量系数的选择函数,根据风力发电能量系数的选择函数和风力发电损耗系数计算风力发电功率并传输至通信模块;
所述通信模块将风力发电功率的信息传输至用户端。
可选的,所述控制模块计算风力发电系数时,满足以下式子:
其中,为风力发电系数,/>为风力机组质量指数,/>为环境影响系数,/>为叶片数量,/>为叶片受风面积;
为温度指数选择函数,/>为相对湿度指数,/>为海拔高度指数,/>为气压指数选择函数;
至/>为不同的温度指数的选择阈值,/>为环境温度;
为当日温度最大值,/>为当日温度最小值;
为环境相对湿度;
为海拔高度。
可选的,所述控制模块计算风力发电功率时,满足以下式子:
其中,为风力发电功率,/>为风力发电损耗系数;
为风力发电能量系数的选择函数,/>至/>为不同的风力发电能量系数的选择阈值。
本发明所取得的有益效果是:
1、控制模块根据相关参数计算光伏发电功率,则能预估光伏发电产生的电量,用电者根据光伏发电功率适当调节用电的需求,减少出现过度用电的情形;
2、控制模块根据相关参数计算风力发电功率,则能预估风力发电产生的电量,用电者根据光伏发电功率适当调节用电的需求,减少出现过度用电的情形;
3、多次计算太阳辐射照度能提高计算光伏发电系数的准确率,另外,是否降雨也会影响检测太阳辐射照度的准确性,因此针对降雨和不降雨的两种情形分别设置不同的太阳辐射照度的检测总数,以提高计算光伏发电系数的准确率;
为使能更进一步了解本发明的特征及技术内容,请参阅以下有关本发明的详细说明与附图,然而所提供的附图仅用于提供参考与说明,并非用来对本发明加以限制。
附图说明
图1为本发明的整体结构示意图;
图2为本发明中检测模块的结构示意图;
图3为本发明实施例二的整体结构示意图;
图4为本发明实施例二中计算模块的方法流程图。
具体实施方式
以下是通过特定的具体实施例来说明本发明的实施方式,本领域技术人员可由本说明书所公开的内容了解本发明的优点与效果。本发明可通过其他不同的具体实施例加以施行或应用,本说明书中的各项细节也可基于不同观点与应用,在不背离本发明的精神下进行各种修饰与变更。另外,本发明的附图仅为简单示意说明,并非依实际尺寸描绘,事先声明。以下实施方式将进一步详细说明本发明的相关技术内容,但所公开的内容并非用以限制本发明的保护范围。
实施例一:本实施例提供了一种离网发电储能供电系统,结合图1和图2所示。
一种离网发电储能供电系统,该系统包括信息储存模块、检测模块、控制模块和通信模块;
所述信息储存模块和控制模块通信连接,所述信息储存模块用于储存光伏电池板的当前使用年长、光伏电池板的面积、光伏发电损耗系数的信息,并传输至控制模块;
所述检测模块和控制模块通信连接,所述检测模块用于检测是否出现降雨且得出太阳辐射照度的检测总数,检测太阳辐射照度且得出每次检测得出的太阳辐射照度,检测灰尘在光伏电池板上的覆盖情况且得出补光灯的开启数量、单个补光灯的功率、空间频率和灰尘在光伏电池板上的覆盖率,并将检测到的信息传输至控制模块;
所述控制模块和通信模块通信连接,所述控制模块根据空间频率、灰尘在光伏电池板上的覆盖率、光伏电池板的面积、每次检测得出的太阳辐射照度计算光伏电池板清洁参考系数,根据光伏电池板的当前使用年长和光伏电池板的理论使用年限计算光伏电池板光电转换效率参考系数,根据补光灯的开启数量、单个补光灯的功率计算环境参考系数,根据环境参考系数、太阳辐射照度的检测总数、每次检测计算的太阳辐射照度、光伏电池板的面积、光伏电池板光电转换效率参考系数和光伏电池板清洁参考系数计算光伏发电系数,根据光伏发电系数计算光伏发电能量系数的选择函数,根据光伏发电能量系数的选择函数和光伏发电损耗系数计算光伏发电功率并传输至通信模块; 所述通信模块将光伏发电功率的信息传输至用户端。
可选的,所述控制模块计算光伏发电系数时,满足以下式子:
其中,为光伏发电系数,/>为太阳辐射照度的检测总数,/>分别有以下取值,或/>,当/>为检测当天出现降雨太阳辐射照度的检测总数,/>为检测当天没有降雨太阳辐射照度的检测总数,/>为第/>次检测得出的太阳辐射照度,/>为光伏电池板的面积,/>为光伏电池板光电转换效率参考系数,/>为光伏电池板清洁参考系数,/>为环境参考系数;
为光伏电池板的当前使用年长,即从开始使用起至今的总年数,优选的,不足一年但超半年的算一年,不足半年的忽略不计,/>为光伏电池板的理论使用年限;
为灰尘在光伏电池板上的覆盖率,/>为第/>次检测得出的太阳辐射照度,为空间频率;
为补光灯的开启数量,/>为单个补光灯的功率。
具体的,灰尘在光伏电池板上的覆盖率通过现有的视觉检测得出,例如,补光单元根据环境实际情况采取补光的操作,假设需要补光,则补光单元需要在采集单元启动前打开,采集单元采集光伏电板的原始图像和实时图像,原始图像为光伏电池板未被灰尘覆盖前的图像(即原始图像也等同于光伏电池板的出厂图像),实时图像为光伏电池板被灰尘覆盖后的图像,采集单元将实时图像和原始图像传输至筛选单元,筛选单元筛选实时图像中的目标区域(目标区域为光伏电池板未被灰尘覆盖的区域),筛选单元也筛选原始图像中的目标区域,筛选单元将两个目标区域传输至面积计算单元,面积计算单元计算两个目标区域的面积从而得出灰尘在光伏电池板上的覆盖率;另外,空间频率也是通过现有的视觉检测得出,例如,采集单元将原始图像和实时图像传输至融合单元,融合单元利用现有的图像融合技术将原始图像和实时图像进行融合得到融合图像,融合单元将融合图像传输至空间频率计算单元,空间频率计算单元计算融合图像的空间频率,当空间频率越大时表示融合图像越清晰,即原始图像和实时图像的融合程度越好,即实时图像中灰尘覆盖在光伏电池板上越少;需要注意的是,视觉检测过程中补光单元始终保持启动或者不启动的状态,当补光单元启动后,补光单元的补光灯数量保持不变,避免在采集单元工作的过程中切换补光单元的数量,从而影响后续计算的精准度。
可选的,所述控制模块计算光伏发电系数时,满足以下式子:
其中,为光伏发电功率,/>为光伏发电损耗系数;
为光伏发电能量系数的选择函数,/>至/>为不同的光伏发电能量系数的选择阈值。
可选的,所述信息储存模块还用于储存风力机组质量指数、叶片数量、叶片受风面积和风力发电损耗系数的信息,并传输至控制模块;
所述检测模块还用于检测当日温度最大值、当日温度最小值、环境相对湿度、海拔高度和实际气压的信息,并传输至控制模块;
所述控制模块根据实际气压计算气压指数选择函数,根据海拔高度计算海拔高度指数,根据环境相对湿度、当日温度最大值和当日温度最小值计算相对湿度指数,根据当日温度最大值和当日温度最小值计算环境温度,根据环境温度计算温度指数选择函数,根据温度指数选择函数、相对湿度指数、海拔高度指数和气压指数选择函数计算环境影响系数,根据风力机组质量指数、环境影响系数、叶片数量和叶片受风面积计算风力发电系数,根据风力发电系数计算风力发电能量系数的选择函数,根据风力发电能量系数的选择函数和风力发电损耗系数计算风力发电功率并传输至通信模块;
所述通信模块将风力发电功率的信息传输至用户端。
可选的,所述控制模块计算风力发电系数时,满足以下式子:
其中,为风力发电系数,/>为风力机组质量指数,/>为环境影响系数,/>为叶片数量,/>为叶片受风面积;
为温度指数选择函数,/>为相对湿度指数,/>为海拔高度指数,/>为气压指数选择函数;
至/>为不同的温度指数的选择阈值,/>为环境温度;
为当日温度最大值,/>为当日温度最小值;
为环境相对湿度;
为海拔高度。
可选的,所述控制模块计算风力发电功率时,满足以下式子:
其中,为风力发电功率,/>为风力发电损耗系数;
为风力发电能量系数的选择函数,/>至/>为不同的风力发电能量系数的选择阈值。
可选的,检测模块包括降雨检测子模块、太阳辐射照度检测子模块、温度检测子模块、相对湿度检测子模块、海拔高度检测子模块和气压检测子模块,降雨检测子模块、太阳辐射照度检测子模块、温度检测子模块、相对湿度检测子模块、海拔高度检测子模块和气压检测子模块均与控制模块通信连接;
降雨检测子模块用于检测是否出现降雨且得出太阳辐射照度的检测总数,并将太阳辐射照度的检测总数的信息传输至控制模块;
太阳辐射照度检测子模块用于检测太阳辐射照度且得出第次检测得出的太阳辐射照度,并将第/>次检测得出的太阳辐射照度的信息传输至控制模块;
温度检测子模块用于检测当日温度最大值和当日温度最小值,并传输至控制模快;
相对湿度检测子模块用于检测环境相对湿度并传输至控制模块;
海拔高度检测子模块用于检测海拔高度并传输至控制模块;
气压检测子模块用于检测实际气压并传输至控制模块。
本实施例解决了传统的储能供电系统无法提前预估供电量的问题,具体的,本实施例中控制模块根据相关参数计算光伏发电功率,则能预估光伏发电产生的电量,用电者根据光伏发电功率适当调节用电的需求,减少出现过度用电的情形。
另外,控制模块根据相关参数计算风力发电功率,则能预估风力发电产生的电量,用电者根据光伏发电功率适当调节用电的需求,减少出现过度用电的情形。
最后,多次计算太阳辐射照度能提高计算光伏发电系数的准确率,另外,是否降雨也会影响检测太阳辐射照度的准确性,因此针对降雨和不降雨的两种情形分别设置不同的太阳辐射照度的检测总数,以提高计算光伏发电系数的准确率。
实施例二:本实施例包含了实施例一的全部内容,提供了一种离网发电储能供电系统,结合图3和图4。
该系统还包括报警模块,报警模块与控制模块通信连接;
控制模块根据光伏发电功率得出第一报警信息并传输至报警模块,根据风力发电功率得出第二报警信息并传输至报警模块;
报警模块根据第一报警信息和第二报警信息实施报警。
控制模块计算第一报警信息时,满足以下式子:
其中,为第一报警信息,/>为光伏发电功率的选择阈值,当/>时为光伏发电呈正常状态不需要报警,当/>时为光伏发电呈不正常状态需要报警。
控制模块计算第二报警信息时,满足以下式子:
其中,为第二报警信息,/>为风力发电功率的选择阈值,当/>时为光伏发电呈正常状态不需要报警,当/>时为光伏发电呈不正常状态需要报警。
本实施例解决了传统的储能供电系统无法检测光伏发电和风力发电是否异常的问题,具体的,本实施例中根据第一报警信息和第二报警信息实时报警,能反映出光伏发电和风力发电无法满足实际的需求,此时供电方能作出较为及时的调整,以满足用电者的需求。
另外,由于风力发电和光伏发电分别对应第一报警信息和第二报警信息,因此,供电方根据第一报警信息和第二报警信息作出相对应的调整。
以上所公开的内容仅为本发明的优选可行实施例,并非因此局限本发明的保护范围,所以凡是运用本发明说明书及附图内容所做的等效技术变化,均包含于本发明的保护范围内,此外,随着技术发展其中的元素是可以更新的。

Claims (6)

1.一种离网发电储能供电系统,其特征在于,该系统包括信息储存模块、检测模块、控制模块和通信模块;
所述信息储存模块和控制模块通信连接,所述信息储存模块用于储存光伏电池板的当前使用年长、光伏电池板的面积、光伏发电损耗系数的信息,并传输至控制模块;
所述检测模块和控制模块通信连接,所述检测模块用于检测是否出现降雨且得出太阳辐射照度的检测总数,检测太阳辐射照度且得出每次检测得出的太阳辐射照度,检测灰尘覆盖率且得出补光灯的开启数量、单个补光灯的功率、空间频率和灰尘在光伏电池板上的覆盖率,并将检测到的信息传输至控制模块;
所述控制模块和通信模块通信连接,所述控制模块根据空间频率、灰尘在光伏电池板上的覆盖率、光伏电池板的面积、每次检测得出的太阳辐射照度计算光伏电池板清洁参考系数,根据光伏电池板的当前使用年长和光伏电池板的理论使用年限计算光伏电池板光电转换效率参考系数,根据补光灯的开启数量、单个补光灯的功率计算环境参考系数,根据环境参考系数、太阳辐射照度的检测总数、每次检测计算的太阳辐射照度、光伏电池板的面积、光伏电池板光电转换效率参考系数和光伏电池板清洁参考系数计算光伏发电系数,根据光伏发电系数计算光伏发电能量系数的选择函数,根据光伏发电能量系数的选择函数和光伏发电损耗系数计算光伏发电功率并传输至通信模块;
所述通信模块将光伏发电功率的信息传输至用户端。
2.如权利要求1所述的一种离网发电储能供电系统,其特征在于,所述控制模块计算光伏发电系数时,满足以下式子:
其中,为光伏发电系数,/>为太阳辐射照度的检测总数,/>分别有以下取值,/>,当/>为检测当天出现降雨太阳辐射照度的检测总数,/>为检测当天没有降雨太阳辐射照度的检测总数,/>为第/>次检测得出的太阳辐射照度,/>为光伏电池板的面积,为光伏电池板光电转换效率参考系数,/>为光伏电池板清洁参考系数,/>为环境参考系数;
为光伏电池板的当前使用年长,/>为光伏电池板的理论使用年限;
为灰尘在光伏电池板上的覆盖率,/>为第/>次检测得出的太阳辐射照度,/>为空间频率;
为补光灯的开启数量,/>为单个补光灯的功率。
3.如权利要求2所述的一种离网发电储能供电系统,其特征在于,所述控制模块计算光伏发电系数时,满足以下式子:
其中,为光伏发电功率,/>为光伏发电损耗系数;
为光伏发电能量系数的选择函数,/>至/>为不同的光伏发电能量系数的选择阈值。
4.如权利要求3所述的一种离网发电储能供电系统,其特征在于,所述信息储存模块还用于储存风力机组质量指数、叶片数量、叶片受风面积和风力发电损耗系数的信息,并传输至控制模块;
所述检测模块还用于检测当日温度最大值、当日温度最小值、环境相对湿度、海拔高度和实际气压的信息,并传输至控制模块;
所述控制模块根据实际气压计算气压指数选择函数,根据海拔高度计算海拔高度指数,根据环境相对湿度、当日温度最大值和当日温度最小值计算相对湿度指数,根据当日温度最大值和当日温度最小值计算环境温度,根据环境温度计算温度指数选择函数,根据温度指数选择函数、相对湿度指数、海拔高度指数和气压指数选择函数计算环境影响系数,根据风力机组质量指数、环境影响系数、叶片数量和叶片受风面积计算风力发电系数,根据风力发电系数计算风力发电能量系数的选择函数,根据风力发电能量系数的选择函数和风力发电损耗系数计算风力发电功率并传输至通信模块;
所述通信模块将风力发电功率的信息传输至用户端。
5.如权利要求4所述的一种离网发电储能供电系统,其特征在于,所述控制模块计算风力发电系数时,满足以下式子:
其中,为风力发电系数,/>为风力机组质量指数,/>为环境影响系数,/>为叶片数量,为叶片受风面积;
为温度指数选择函数,/>为相对湿度指数,/>为海拔高度指数,/>为气压指数选择函数;
至/>为不同的温度指数的选择阈值,/>为环境温度;
为当日温度最大值,/>为当日温度最小值;
为环境相对湿度;
为海拔高度。
6.如权利要求5所述的一种离网发电储能供电系统,其特征在于,所述控制模块计算风力发电功率时,满足以下式子:
其中,为风力发电功率,/>为风力发电损耗系数;
为风力发电能量系数的选择函数,/>至/>为不同的风力发电能量系数的选择阈值。
CN202311460429.4A 2023-11-06 2023-11-06 一种离网发电储能供电系统 Active CN117200329B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311460429.4A CN117200329B (zh) 2023-11-06 2023-11-06 一种离网发电储能供电系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311460429.4A CN117200329B (zh) 2023-11-06 2023-11-06 一种离网发电储能供电系统

Publications (2)

Publication Number Publication Date
CN117200329A true CN117200329A (zh) 2023-12-08
CN117200329B CN117200329B (zh) 2024-03-22

Family

ID=88989029

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311460429.4A Active CN117200329B (zh) 2023-11-06 2023-11-06 一种离网发电储能供电系统

Country Status (1)

Country Link
CN (1) CN117200329B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104218875A (zh) * 2014-09-10 2014-12-17 中铁第一勘察设计院集团有限公司 独立式光伏发电铁路供电控制系统及其控制方法
WO2017197437A1 (en) * 2016-05-17 2017-11-23 Catch Energy Limited Solar energy collection system
CN113676135A (zh) * 2021-09-08 2021-11-19 国能日新科技股份有限公司 基于神经网络及光学污染测量的光伏能效监测方法及系统
CN113794444A (zh) * 2021-07-26 2021-12-14 大唐陕西发电有限公司 一种光伏板清洁度检测与报警方法及装置
CN114928332A (zh) * 2022-04-20 2022-08-19 江苏启翔光电科技有限公司 一种高效太阳能光伏电池系统
CN116667783A (zh) * 2023-06-14 2023-08-29 巢湖学院 一种分布式光伏电站维护系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104218875A (zh) * 2014-09-10 2014-12-17 中铁第一勘察设计院集团有限公司 独立式光伏发电铁路供电控制系统及其控制方法
WO2017197437A1 (en) * 2016-05-17 2017-11-23 Catch Energy Limited Solar energy collection system
CN113794444A (zh) * 2021-07-26 2021-12-14 大唐陕西发电有限公司 一种光伏板清洁度检测与报警方法及装置
CN113676135A (zh) * 2021-09-08 2021-11-19 国能日新科技股份有限公司 基于神经网络及光学污染测量的光伏能效监测方法及系统
CN114928332A (zh) * 2022-04-20 2022-08-19 江苏启翔光电科技有限公司 一种高效太阳能光伏电池系统
CN116667783A (zh) * 2023-06-14 2023-08-29 巢湖学院 一种分布式光伏电站维护系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
谭放: "分布式光伏发电系统的并网技术应用分析", 《城市建设理论研究》, pages 79 - 81 *

Also Published As

Publication number Publication date
CN117200329B (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
US10856380B2 (en) Photovoltaic lighting system having integrated control board, and monitoring system using same
CN103280846B (zh) 一种柔性光伏一体化电源系统
Misak et al. Off-grid power systems
CN116454951A (zh) 一种光储能控制系统及方法
Zeman Photovoltaic systems
CN102170168A (zh) 一种风光柴发电系统的控制方法
CN107171640B (zh) 一种光伏组件监测装置及光伏发电系统
CN103560571A (zh) 一种智能控制的多能源模块化移动电源供电方法及系统
CN104348245A (zh) 一种高效太阳能混合动力车充电站
KR102421893B1 (ko) 에너지 저장 시스템
WO2014140962A1 (en) Solar power supply system
Panajotovic et al. Design and “inteligent” control of hybrid power system in telecommunication
CN117200329B (zh) 一种离网发电储能供电系统
CN211606120U (zh) 一种新型风光气储多能源互补发电系统
CN112696723A (zh) 一种电能代替的分布式清洁供暖系统及其评价方法
CN208983207U (zh) 快速公路太阳能通道
CN101833864A (zh) 一种太阳能和风能互补发电为电源的交通信号控制装置
GB2478695A (en) Combined wind turbine and street light including a power regulator allowing electrical connection on the mains power supply side of an electricity meter.
CN211873599U (zh) 装配式光伏发电屋
CN114336728A (zh) 一种基于光储互补发电供暖系统
KR101289784B1 (ko) 일출 일몰 시간을 이용한 분산 전원 계통연계 배전 시스템 및 이를 이용한 분산전원의 계통연계 방법
CN102983617A (zh) 具有适应性电能控制的太阳光伏发电系统及其操作方法
KR101133774B1 (ko) 자가발전 시설물 관리 시스템 및 그 방법
CN111295001A (zh) 一种用于太阳能户外路灯的高频放电系统
Odadzic et al. Energy efficiency and renewable energy solution in telecommunication

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Country or region after: China

Address after: 510000, No. 2, 4, 6, 8, 10, and 12 Donghua Huaye Road, Renhe Town, Baiyun District, Guangzhou City, Guangdong Province (Airport Baiyun)

Applicant after: GUANGZHOU FELICITY SOLAR TECHNOLOGY Co.,Ltd.

Address before: 510000 airport Baiyun, No. 23, Xingfu street, Donghua, Renhe Town, Baiyun District, Guangzhou, Guangdong

Applicant before: GUANGZHOU FELICITY SOLAR TECHNOLOGY Co.,Ltd.

Country or region before: China

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant