CN117199292A - A kind of preparation method of porous silicon carbon negative electrode material - Google Patents

A kind of preparation method of porous silicon carbon negative electrode material Download PDF

Info

Publication number
CN117199292A
CN117199292A CN202311184077.4A CN202311184077A CN117199292A CN 117199292 A CN117199292 A CN 117199292A CN 202311184077 A CN202311184077 A CN 202311184077A CN 117199292 A CN117199292 A CN 117199292A
Authority
CN
China
Prior art keywords
porous silicon
negative electrode
electrode material
silicon carbon
carbon negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202311184077.4A
Other languages
Chinese (zh)
Inventor
李海
李钊
王子阳
陈鹏
刘松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongren University
Original Assignee
Tongren University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongren University filed Critical Tongren University
Priority to CN202311184077.4A priority Critical patent/CN117199292A/en
Publication of CN117199292A publication Critical patent/CN117199292A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

The invention relates to the technical field of lithium ion batteries, and provides a preparation method of a porous silicon-carbon anode material for a lithium ion battery, which comprises the following steps: (1) For nanometer Si powder and nanometer Al (OH) 3 Ultrasonic dispersion is carried out on the mixed water-based suspension liquid of the (B), and the Si/Al (OH) is obtained through freeze drying 3 Mixing the powder; (2) Adding 4,4' -diaminodiphenyl ether (ODA) and pyromellitic anhydride (PMDA) in dimethylacetamide solution into Si/Al (OH) 3 Mixing the powder, stirring uniformly, placing in a muffle furnace, completely volatilizing dimethylacetamide and synthesizing Polyimide (PI) to obtain Si/Al (OH) 3 PI compositeA material; (3) For Si/Al (OH) under inert atmosphere 3 High temperature carbonization of PI to obtain Si/Al 2 O 3 a/C composite; (4) To Si/Al 2 O 3 Adding excessive diluted hydrochloric acid into the composite material, and carrying out suction filtration, washing and drying to obtain a porous silicon-carbon anode material; the invention utilizes nano Si powder to carry negative charge and nano Al (OH) 3 The porous silicon-carbon anode material is prepared by carbonization cladding of PI and hydrochloric acid etching.

Description

一种多孔硅碳负极材料的制备方法A kind of preparation method of porous silicon carbon negative electrode material

技术领域Technical field

本发明涉及电极材料技术领域,具体为一种用于锂离子电池的多孔硅碳负极材料的制备方法。The present invention relates to the technical field of electrode materials, specifically a method for preparing porous silicon carbon negative electrode materials for lithium ion batteries.

背景技术Background technique

硅材料具有高达4200 mAh/g的理论容量和较低的工作电位,被认为是下一代锂离子电池最有前途的负极材料之一。但是,硅颗粒在嵌锂过程中会发生显著的体积膨胀,导致结构破裂而使电池容量迅速衰减,从而限制了硅在锂离子电池中的实际应用。本发明通过硬模板法制得多孔硅碳材料,有效缓解嵌锂时带来的体积膨胀,保证材料结构的稳定性,从而提高电池的循环性能。Silicon material has a theoretical capacity of up to 4200 mAh/g and a low operating potential, and is considered to be one of the most promising anode materials for next-generation lithium-ion batteries. However, silicon particles undergo significant volume expansion during the lithium intercalation process, causing structural rupture and rapid battery capacity attenuation, thus limiting the practical application of silicon in lithium-ion batteries. The present invention prepares porous silicon carbon materials through a hard template method, which effectively alleviates the volume expansion caused by lithium insertion, ensures the stability of the material structure, and thereby improves the cycle performance of the battery.

发明内容Contents of the invention

本发明要解决的技术问题是克服现有的缺陷,提供一种多孔硅碳负极材料的制备方法,以纳米Si、纳米Al(OH)3、ODA、PMDA为原料,通过超声分散、冷冻干燥、交联固化、高温碳化、盐酸刻蚀、洗涤干燥等工序,制备具有多孔结构的硅碳负极材料,可以有效解决背景技术中的问题。The technical problem to be solved by the present invention is to overcome the existing defects and provide a preparation method of porous silicon carbon negative electrode material, using nano-Si, nano-Al(OH) 3 , ODA, and PMDA as raw materials, through ultrasonic dispersion, freeze-drying, Cross-linking and solidification, high-temperature carbonization, hydrochloric acid etching, washing and drying and other processes are used to prepare silicon-carbon negative electrode materials with porous structures, which can effectively solve the problems in the background technology.

为实现上述目的,本发明提供如下技术方案:一种多孔硅碳负极材料的制备方法,包括以下步骤:In order to achieve the above objects, the present invention provides the following technical solution: a preparation method of porous silicon carbon negative electrode material, including the following steps:

(1)对纳米Si粉与纳米Al(OH)3的混合水系悬浮液进行超声分散,经冷冻干燥得到Si/Al(OH)3混合粉体;(1) The mixed aqueous suspension of nano-Si powder and nano-Al(OH) 3 is ultrasonically dispersed and freeze-dried to obtain Si/Al(OH) 3 mixed powder;

(2) ODA及PMDA的二甲基乙酰胺溶液加入Si/Al(OH)3混合粉体,搅拌均匀后置于马弗炉,将二甲基乙酰胺完全挥发并合成PI,得到Si/Al(OH)3/PI复合材料;(2) Add the Si/Al(OH) 3 mixed powder to the dimethylacetamide solution of ODA and PMDA, stir evenly and place it in a muffle furnace. The dimethylacetamide is completely volatilized and PI is synthesized to obtain Si/Al. (OH) 3 /PI composite materials;

(3)惰性气氛下对Si/Al(OH)3/PI进行高温碳化,制得Si/Al2O3/C复合材料;(3) Carry out high-temperature carbonization of Si/Al(OH) 3 /PI under an inert atmosphere to prepare Si/Al 2 O 3 /C composite material;

(4)往Si/Al2O3/C复合材料中加入过量稀盐酸,最后经抽滤、洗涤、干燥,得到多孔硅碳负极材料。(4) Add excess dilute hydrochloric acid to the Si/Al 2 O 3 /C composite material, and finally undergo suction filtration, washing, and drying to obtain a porous silicon carbon negative electrode material.

所述纳米Si粉纯度≥99.9%、最大粒度≤150 nm;所述纳米Al(OH)3纯度≥99.9%、最大粒度≤200 nm;所述Si与Al(OH)3的质量比为1:1至1:2;所述ODA与PMDA的摩尔比为1:1,溶液浓度为15%;所述Si/Al(OH)3与ODA/PMDA的质量比为1:1至1:2;所述马弗炉温度为250-280℃,加热时间为1-3小时;所述碳化温度为800-1200℃,时间为1-2小时;所述惰性气氛为氮气、氩气、氦气中的至少一种。The purity of the nano-Si powder is ≥99.9% and the maximum particle size is ≤150 nm; the purity of the nano-Al(OH) 3 is ≥99.9% and the maximum particle size is ≤200 nm; the mass ratio of the Si and Al(OH) 3 is 1: 1 to 1:2; the molar ratio of ODA to PMDA is 1:1, and the solution concentration is 15%; the mass ratio of Si/Al(OH) 3 to ODA/PMDA is 1:1 to 1:2; The temperature of the muffle furnace is 250-280°C, and the heating time is 1-3 hours; the carbonization temperature is 800-1200°C, and the time is 1-2 hours; the inert atmosphere is nitrogen, argon, or helium. of at least one.

与现有技术相比,本发明的有益效果是:本多孔硅碳负极材料的制备方法,具有以下好处:Compared with the existing technology, the beneficial effects of the present invention are: the preparation method of the porous silicon carbon negative electrode material has the following benefits:

本发明所制备的硅碳负极材料,其克容量大于750 mAh/g,首次库伦效率大于90%,300周循环后容量保持率大于80%,有效解决了硅基负极材料循环性能较差的难题。The silicon carbon anode material prepared by the present invention has a gram capacity greater than 750 mAh/g, a first Coulombic efficiency greater than 90%, and a capacity retention rate greater than 80% after 300 cycles, effectively solving the problem of poor cycle performance of silicon-based anode materials. .

实施方式Implementation

下面通过具体实施例对本发明进一步说明。The present invention will be further described below through specific examples.

实施例1:将纳米Si粉(纯度≥99.9%、最大粒度≤150 nm)与纳米Al(OH)3(纯度≥99.9%、最大粒度≤200 nm)简单混合,Si粉与Al(OH)3的质量比为1:1,加入适量水后进行超声分散,经冷冻干燥得到Si/Al(OH)3混合粉体;ODA与PMDA以1:1的摩尔比溶于二甲基乙酰胺配成浓度为15%的溶液,后加入Si/Al(OH)3混合粉体,Si/Al(OH)3与ODA/PMDA的质量比为1:1,搅拌均匀后置于260℃的马弗炉保温2小时,将二甲基乙酰胺完全挥发并合成PI,得到Si/Al(OH)3/PI复合材料;氮气气氛下对复合材料在1000℃温度下碳化1小时,制得Si/Al2O3/C复合材料;往Si/Al2O3/C复合材料中加入过量稀盐酸,最后经抽滤、洗涤、干燥,得到多孔硅碳负极材料。Example 1: Simply mix nano-Si powder (purity ≥ 99.9%, maximum particle size ≤ 150 nm) and nano-Al(OH) 3 (purity ≥ 99.9%, maximum particle size ≤ 200 nm), Si powder and Al(OH) 3 The mass ratio is 1:1, add an appropriate amount of water, conduct ultrasonic dispersion, and freeze-dry to obtain Si/Al(OH) 3 mixed powder; ODA and PMDA are dissolved in dimethylacetamide at a molar ratio of 1:1. Solution with a concentration of 15%, then add Si/Al(OH) 3 mixed powder. The mass ratio of Si/Al(OH) 3 to ODA/PMDA is 1:1. Stir evenly and place it in a muffle furnace at 260°C. Keep the temperature for 2 hours, completely volatilize dimethylacetamide and synthesize PI to obtain Si/Al(OH) 3 /PI composite material; carbonize the composite material at 1000°C for 1 hour in a nitrogen atmosphere to obtain Si/Al 2 O 3 /C composite material; add excess dilute hydrochloric acid to the Si/Al 2 O 3 /C composite material, and finally undergo suction filtration, washing, and drying to obtain porous silicon carbon negative electrode material.

实施例2:将纳米Si粉(纯度≥99.9%、最大粒度≤150 nm)与纳米Al(OH)3(纯度≥99.9%、最大粒度≤200 nm)简单混合,Si粉与Al(OH)3的质量比为1:2,加入适量水后进行超声分散,经冷冻干燥得到Si/Al(OH)3混合粉体;ODA与PMDA以1:1的摩尔比溶于二甲基乙酰胺配成浓度为15%的溶液,后加入Si/Al(OH)3混合粉体,Si/Al(OH)3与ODA/PMDA的质量比为1:1,搅拌均匀后置于260℃的马弗炉保温2小时,将二甲基乙酰胺完全挥发并合成PI,得到Si/Al(OH)3/PI复合材料;氮气气氛下对复合材料在1000℃温度下碳化1小时,制得Si/Al2O3/C复合材料;往Si/Al2O3/C复合材料中加入过量稀盐酸,最后经抽滤、洗涤、干燥,得到多孔硅碳负极材料。Example 2: Simply mix nano-Si powder (purity ≥ 99.9%, maximum particle size ≤ 150 nm) and nano-Al(OH) 3 (purity ≥ 99.9%, maximum particle size ≤ 200 nm), Si powder and Al(OH) 3 The mass ratio is 1:2, add an appropriate amount of water, conduct ultrasonic dispersion, and freeze-dry to obtain Si/Al(OH) 3 mixed powder; ODA and PMDA are dissolved in dimethylacetamide at a molar ratio of 1:1. Solution with a concentration of 15%, then add Si/Al(OH) 3 mixed powder. The mass ratio of Si/Al(OH) 3 to ODA/PMDA is 1:1. Stir evenly and place it in a muffle furnace at 260°C. Keep the temperature for 2 hours, completely volatilize dimethylacetamide and synthesize PI to obtain Si/Al(OH) 3 /PI composite material; carbonize the composite material at 1000°C for 1 hour in a nitrogen atmosphere to obtain Si/Al 2 O 3 /C composite material; add excess dilute hydrochloric acid to the Si/Al 2 O 3 /C composite material, and finally undergo suction filtration, washing, and drying to obtain porous silicon carbon negative electrode material.

实施例3:将纳米Si粉(纯度≥99.9%、最大粒度≤150 nm)与纳米Al(OH)3(纯度≥99.9%、最大粒度≤200 nm)简单混合,Si粉与Al(OH)3的质量比为1:1,加入适量水后进行超声分散,经冷冻干燥得到Si/Al(OH)3混合粉体;ODA与PMDA以1:1的摩尔比溶于二甲基乙酰胺配成浓度为15%的溶液,后加入Si/Al(OH)3混合粉体,Si/Al(OH)3与ODA/PMDA的质量比为1:2,搅拌均匀后置于260℃的马弗炉保温2小时,将二甲基乙酰胺完全挥发并合成PI,得到Si/Al(OH)3/PI复合材料;氮气气氛下对复合材料在1000℃温度下碳化1小时,制得Si/Al2O3/C复合材料;往Si/Al2O3/C复合材料中加入过量稀盐酸,最后经抽滤、洗涤、干燥,得到多孔硅碳负极材料。Example 3: Simply mix nano-Si powder (purity ≥ 99.9%, maximum particle size ≤ 150 nm) and nano-Al(OH) 3 (purity ≥ 99.9%, maximum particle size ≤ 200 nm), Si powder and Al(OH) 3 The mass ratio is 1:1, add an appropriate amount of water, conduct ultrasonic dispersion, and freeze-dry to obtain Si/Al(OH) 3 mixed powder; ODA and PMDA are dissolved in dimethylacetamide at a molar ratio of 1:1. Solution with a concentration of 15%, then add Si/Al(OH) 3 mixed powder. The mass ratio of Si/Al(OH) 3 to ODA/PMDA is 1:2. Stir evenly and place it in a muffle furnace at 260°C. Keep the temperature for 2 hours, completely volatilize dimethylacetamide and synthesize PI to obtain Si/Al(OH) 3 /PI composite material; carbonize the composite material at 1000°C for 1 hour in a nitrogen atmosphere to obtain Si/Al 2 O 3 /C composite material; add excess dilute hydrochloric acid to the Si/Al 2 O 3 /C composite material, and finally undergo suction filtration, washing, and drying to obtain porous silicon carbon negative electrode material.

实施例4:将纳米Si粉(纯度≥99.9%、最大粒度≤150 nm)与纳米Al(OH)3(纯度≥99.9%、最大粒度≤200 nm)简单混合,Si粉与Al(OH)3的质量比为1:2,加入适量水后进行超声分散,经冷冻干燥得到Si/Al(OH)3混合粉体;ODA与PMDA以1:1的摩尔比溶于二甲基乙酰胺配成浓度为15%的溶液,后加入Si/Al(OH)3混合粉体,Si/Al(OH)3与ODA/PMDA的质量比为1:2,搅拌均匀后置于260℃的马弗炉保温2小时,将二甲基乙酰胺完全挥发并合成PI,得到Si/Al(OH)3/PI复合材料;氮气气氛下对复合材料在1000℃温度下碳化1小时,制得Si/Al2O3/C复合材料;往Si/Al2O3/C复合材料中加入过量稀盐酸,最后经抽滤、洗涤、干燥,得到多孔硅碳负极材料。Example 4: Simply mix nano-Si powder (purity ≥ 99.9%, maximum particle size ≤ 150 nm) and nano-Al(OH) 3 (purity ≥ 99.9%, maximum particle size ≤ 200 nm), Si powder and Al(OH) 3 The mass ratio is 1:2, add an appropriate amount of water, conduct ultrasonic dispersion, and freeze-dry to obtain Si/Al(OH) 3 mixed powder; ODA and PMDA are dissolved in dimethylacetamide at a molar ratio of 1:1. Solution with a concentration of 15%, then add Si/Al(OH) 3 mixed powder. The mass ratio of Si/Al(OH) 3 to ODA/PMDA is 1:2. Stir evenly and place it in a muffle furnace at 260°C. Keep the temperature for 2 hours, completely volatilize dimethylacetamide and synthesize PI to obtain Si/Al(OH) 3 /PI composite material; carbonize the composite material at 1000°C for 1 hour in a nitrogen atmosphere to obtain Si/Al 2 O 3 /C composite material; add excess dilute hydrochloric acid to the Si/Al 2 O 3 /C composite material, and finally undergo suction filtration, washing, and drying to obtain porous silicon carbon negative electrode material.

将实施例制备的硅碳负极材料用于制备扣式电池,具体如下:The silicon carbon negative electrode material prepared in the example is used to prepare button cells, as follows:

将硅碳负极材料、羧甲基纤维素钠和乙炔黑按质量比80/10/10混合,滴加适量去离子水,研磨成均匀浆状物后涂抹到铜箔上。常温下将水挥发后在100℃的真空干燥箱干燥12 h制成工作电极。CR2016型扣式模拟电池的组装在充有高纯氩气的手套箱内(水氧含量均小于5 ppm)进行。其中,对电极和参比电极为金属锂片,隔膜为多孔聚丙烯薄膜(Celgard2400),电解液为1 mol/L的LiPF6与碳酸亚乙烯酯的混合液(95:5,体积比),LiPF6的溶剂为碳酸亚乙酯和碳酸二甲酯的混合液(1:1,体积比)。用蓝电测试系统(LANDCT2001A,武汉金诺电子)对扣式电池进行恒电流充放电和循环性能测试,电压范围为0.01-2 V vs. Li/Li+,电流密度为200 mA/g。Mix the silicon carbon negative electrode material, sodium carboxymethylcellulose and acetylene black in a mass ratio of 80/10/10, add an appropriate amount of deionized water dropwise, grind it into a uniform slurry and apply it to the copper foil. The water was evaporated at room temperature and dried in a vacuum drying oven at 100°C for 12 h to prepare the working electrode. The CR2016 button analog battery is assembled in a glove box filled with high-purity argon (both water and oxygen content are less than 5 ppm). Among them, the counter electrode and reference electrode are metal lithium sheets, the separator is a porous polypropylene film (Celgard2400), and the electrolyte is a mixture of 1 mol/L LiPF 6 and vinylene carbonate (95:5, volume ratio). The solvent of LiPF 6 is a mixture of ethylene carbonate and dimethyl carbonate (1:1, volume ratio). A blue power test system (LANDCT2001A, Wuhan Jinnuo Electronics) was used to conduct galvanostatic charge-discharge and cycle performance tests on button batteries. The voltage range was 0.01-2 V vs. Li/Li + and the current density was 200 mA/g.

实施例1-4的检测结果如下:The test results of Examples 1-4 are as follows:

实施例Example 克容量(mAh/g)Gram capacity (mAh/g) 首次库伦效率(%)First Coulomb efficiency (%) 300周容量保持率(%)300-week capacity retention rate (%) 11 1524.51524.5 91.991.9 81.281.2 22 1247.91247.9 91.791.7 82.582.5 33 1045.71045.7 91.891.8 83.483.4 44 775.5775.5 91.191.1 84.284.2

以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。The above are only examples of the present invention, and do not limit the patent scope of the present invention. Any equivalent structure or equivalent process transformation made by using the description of the present invention, or directly or indirectly applied in other related technical fields, shall be regarded as Likewise, it is included in the patent protection scope of the present invention.

Claims (8)

1.一种多孔硅碳负极材料的制备方法,其特征在于:包括以下步骤:1. A method for preparing porous silicon carbon negative electrode material, which is characterized in that it includes the following steps: (1)对纳米Si粉与纳米Al(OH)3的混合水系悬浮液进行超声分散,经冷冻干燥得到Si/Al(OH)3混合粉体;(1) The mixed aqueous suspension of nano-Si powder and nano-Al(OH) 3 is ultrasonically dispersed and freeze-dried to obtain Si/Al(OH) 3 mixed powder; (2)将4,4'-二氨基二苯醚ODA与均苯四甲酸酐PMDA的二甲基乙酰胺溶液中加入Si/Al(OH)3混合粉体,搅拌均匀后置于马弗炉,将二甲基乙酰胺完全挥发并合成聚酰亚胺PI,得到Si/Al(OH)3/PI复合材料;(2) Add the Si/Al(OH) 3 mixed powder to the dimethylacetamide solution of 4,4'-diaminodiphenyl ether ODA and pyromellitic anhydride PMDA, stir evenly and place it in the muffle furnace , completely volatilize dimethylacetamide and synthesize polyimide PI to obtain Si/Al(OH) 3 /PI composite material; (3) 在惰性气氛下对Si/Al(OH)3/PI进行高温碳化,制得Si/Al2O3/C复合材料;(3) Carry out high-temperature carbonization of Si/Al(OH) 3 /PI under an inert atmosphere to prepare Si/Al 2 O 3 /C composite material; (4) 往Si/Al2O3/C复合材料中加入过量稀盐酸,最后经抽滤、洗涤、干燥,得到多孔硅碳负极材料。(4) Add excess dilute hydrochloric acid to the Si/Al 2 O 3 /C composite material, and finally undergo suction filtration, washing, and drying to obtain a porous silicon carbon negative electrode material. 2.根据权利要求1所述的一种多孔硅碳负极材料的制备方法,其特征在于:所述步骤(1)中的纳米Si粉纯度≥99.9%、最大粒度≤150 nm;纳米Al(OH)3纯度≥99.9%、最大粒度≤200 nm。2. The preparation method of a kind of porous silicon carbon negative electrode material according to claim 1, characterized in that: the purity of the nano-Si powder in the step (1) is ≥99.9% and the maximum particle size is ≤150 nm; nano-Al(OH ) 3Purity ≥99.9%, maximum particle size ≤200 nm. 3.根据权利要求1所述的一种多孔硅碳负极材料的制备方法,其特征在于:所述步骤(1)中的Si与Al(OH)3的质量比为1:1-1:2。3. The preparation method of a porous silicon carbon negative electrode material according to claim 1, characterized in that: the mass ratio of Si and Al(OH) in the step (1) is 1:1-1:2 . 4.根据权利要求1所述的一种多孔硅碳负极材料的制备方法,其特征在于:所述步骤(2)中ODA与PMDA的摩尔比为1:1,溶液浓度为15%。4. The preparation method of a porous silicon carbon negative electrode material according to claim 1, characterized in that: in the step (2), the molar ratio of ODA to PMDA is 1:1, and the solution concentration is 15%. 5.根据权利要求1所述的一种多孔硅碳负极材料的制备方法,其特征在于:所述步骤(2)中Si/Al(OH)3与ODA/PMDA的质量比为1:1至1:2。5. The preparation method of a kind of porous silicon carbon negative electrode material according to claim 1, characterized in that: in the step (2), the mass ratio of Si/Al(OH) 3 to ODA/PMDA is 1:1 to 1:2. 6.根据权利要求1所述的一种多孔硅碳负极材料的制备方法,其特征在于:所述步骤(2)中马弗炉温度为250-280℃,加热时间为1-3小时。6. The method for preparing porous silicon carbon negative electrode material according to claim 1, characterized in that: in step (2), the temperature of the muffle furnace is 250-280°C, and the heating time is 1-3 hours. 7.根据权利要求1所述的一种多孔硅碳负极材料的制备方法:其特征在于,所述步骤(3)中碳化温度为800-1200℃,时间为1-2小时。7. The preparation method of a porous silicon carbon negative electrode material according to claim 1: characterized in that in step (3), the carbonization temperature is 800-1200°C and the time is 1-2 hours. 8.根据权利要求1所述的一种多孔硅碳负极材料的制备方法,其特征在于:所述步骤(3)中惰性气氛为氮气、氩气、氦气中的至少一种。8. The method for preparing a porous silicon carbon negative electrode material according to claim 1, wherein the inert atmosphere in step (3) is at least one of nitrogen, argon, and helium.
CN202311184077.4A 2023-09-14 2023-09-14 A kind of preparation method of porous silicon carbon negative electrode material Withdrawn CN117199292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311184077.4A CN117199292A (en) 2023-09-14 2023-09-14 A kind of preparation method of porous silicon carbon negative electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311184077.4A CN117199292A (en) 2023-09-14 2023-09-14 A kind of preparation method of porous silicon carbon negative electrode material

Publications (1)

Publication Number Publication Date
CN117199292A true CN117199292A (en) 2023-12-08

Family

ID=89004851

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311184077.4A Withdrawn CN117199292A (en) 2023-09-14 2023-09-14 A kind of preparation method of porous silicon carbon negative electrode material

Country Status (1)

Country Link
CN (1) CN117199292A (en)

Similar Documents

Publication Publication Date Title
CN102832379B (en) Preparation method of positive material for lithium-sulfur battery
CN111952570A (en) A cobalt-nitrogen-carbon composite material containing single-atom active sites and its preparation method and application
CN108511735A (en) A kind of modified lithium titanate composite material and preparation method and lithium ion battery
CN108539133A (en) Li3V2(PO4)3The preparation method of nanocrystalline/conducting polymer anode material for lithium-ion batteries
CN105244500A (en) Preparation method and application of a b-axis LiFePO4/C nanosheet material
CN108807899B (en) A kind of preparation method of multi-level spherical sodium vanadium phosphate composite cathode material
CN108807895B (en) Sodium vanadium phosphate/carbon composite material with quantum dot structure and preparation method thereof
CN110350175B (en) Porous carbon @ graphene sulfur-loaded composite material, preparation method and application thereof
CN112133916A (en) A lithium-ion battery silicon-based negative electrode material binder and its preparation method and application
CN104362318A (en) Method for preparing ferrous silicate lithium/carbon composite positive pole material with micropore spherical structure
CN107123802A (en) A kind of preparation method of graphene modified phosphate iron lithium material
CN108539158B (en) A kind of preparation method of rGO/WS2 composite material and its application in lithium-sulfur battery cathode material
WO2017197675A1 (en) Lithium titanate-modified material and manufacturing method thereof
CN106252640A (en) A kind of mixing polyanionic lithium manganese silicate anode material and preparation method thereof
CN114497556A (en) Graphene modified-carbon coated lithium iron phosphate material, preparation method thereof and solid-state lithium ion battery
CN113363482A (en) Composite binder for silicon-based negative electrode of lithium ion battery and preparation method and application thereof
CN108417833B (en) Positive electrode material lithium manganese fluosilicate and preparation method thereof
CN116799177A (en) Carbon-coated CNT/Fe 3 O 4 Lithium ion battery cathode material
CN117199292A (en) A kind of preparation method of porous silicon carbon negative electrode material
CN110828821B (en) Composite positive electrode material of lithium ion battery and preparation method thereof
CN107221669A (en) Method for improving electrochemical performance of silicon-based negative electrode material
CN115377381A (en) Porous silicon-carbon composite electrode material for lithium ion battery and preparation method thereof
CN109671927B (en) Lithium-rich manganese-based composite material, preparation method and application thereof
CN108987689B (en) Preparation method of silicon-carbon negative electrode material
CN112520787A (en) Preparation method of solution of beta-phase sodium metavanadate and application of solution in lithium ion battery

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20231208

WW01 Invention patent application withdrawn after publication