CN117174876A - A kind of cathode precursor material and its preparation method and application - Google Patents
A kind of cathode precursor material and its preparation method and application Download PDFInfo
- Publication number
- CN117174876A CN117174876A CN202311296558.4A CN202311296558A CN117174876A CN 117174876 A CN117174876 A CN 117174876A CN 202311296558 A CN202311296558 A CN 202311296558A CN 117174876 A CN117174876 A CN 117174876A
- Authority
- CN
- China
- Prior art keywords
- solution
- precursor material
- stage
- cathode
- main metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 78
- 239000002243 precursor Substances 0.000 title claims abstract description 68
- 238000002360 preparation method Methods 0.000 title claims abstract description 26
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 64
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims abstract description 21
- 239000007774 positive electrode material Substances 0.000 claims abstract description 5
- 239000000243 solution Substances 0.000 claims description 64
- 238000006243 chemical reaction Methods 0.000 claims description 63
- 238000000975 co-precipitation Methods 0.000 claims description 49
- 229910052751 metal Inorganic materials 0.000 claims description 43
- 239000010406 cathode material Substances 0.000 claims description 34
- 239000002184 metal Substances 0.000 claims description 32
- 239000012266 salt solution Substances 0.000 claims description 27
- 239000002245 particle Substances 0.000 claims description 26
- 239000007788 liquid Substances 0.000 claims description 20
- 239000008139 complexing agent Substances 0.000 claims description 17
- 239000002019 doping agent Substances 0.000 claims description 13
- 239000000126 substance Substances 0.000 claims description 12
- 229910052782 aluminium Inorganic materials 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 10
- 238000005245 sintering Methods 0.000 claims description 8
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 7
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 7
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 7
- 229910001416 lithium ion Inorganic materials 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 5
- 239000003513 alkali Substances 0.000 claims description 5
- 229910052744 lithium Inorganic materials 0.000 claims description 5
- 229910052749 magnesium Inorganic materials 0.000 claims description 5
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 239000012670 alkaline solution Substances 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 239000002904 solvent Substances 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 230000007704 transition Effects 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 3
- 239000011162 core material Substances 0.000 description 29
- 239000011248 coating agent Substances 0.000 description 10
- 238000000576 coating method Methods 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 239000011572 manganese Substances 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 6
- 229910001429 cobalt ion Inorganic materials 0.000 description 6
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 229910001437 manganese ion Inorganic materials 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 229910001453 nickel ion Inorganic materials 0.000 description 6
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 229910052726 zirconium Inorganic materials 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 239000011258 core-shell material Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 229910016739 Ni0.5Co0.2Mn0.3(OH)2 Inorganic materials 0.000 description 2
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 2
- 230000005347 demagnetization Effects 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 238000007873 sieving Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 229910013716 LiNi Inorganic materials 0.000 description 1
- 229910017071 Ni0.6Co0.2Mn0.2(OH)2 Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- HFCVPDYCRZVZDF-UHFFFAOYSA-N [Li+].[Co+2].[Ni+2].[O-][Mn]([O-])(=O)=O Chemical compound [Li+].[Co+2].[Ni+2].[O-][Mn]([O-])(=O)=O HFCVPDYCRZVZDF-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical group [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000006257 cathode slurry Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
技术领域Technical field
本发明属于锂离子电池技术领域,涉及一种正极前驱体材料及其制备方法和应用。The invention belongs to the technical field of lithium ion batteries and relates to a positive electrode precursor material and its preparation method and application.
背景技术Background technique
随着能源需求的不断增加,锂离子电池已成为电动车、智能手机、笔记本电脑等的主要电源,同时也在储能领域得到广泛应用。作为锂离子电池的核心组件,正极材料的性能直接影响到电池的能量密度、循环寿命和安全性能等关键指标。As energy demand continues to increase, lithium-ion batteries have become the main power source for electric vehicles, smartphones, laptops, etc., and are also widely used in the field of energy storage. As the core component of lithium-ion batteries, the performance of cathode materials directly affects key indicators such as energy density, cycle life and safety performance of the battery.
为了提高三元镍钴锰酸锂正极材料的容量,镍元素的比例不断提高,从最初的33%一路增加到80%以上,近年来甚至进步增加到90%以上,形成了超高镍正极材料。超高镍正极材料被认为是最具有开发前景的正极材料,研究表明其容量高,但是循环稳定性较差,材料导电性较低。目前对锂离子电池正极材料进行表面包覆是最有效的改性方法之一,但是传统包覆工艺复杂,包覆不均匀,同时降低了材料的导电性,包覆效果不佳,正极材料容易和电解液接触发生副反应,严重影响材料的使用寿命,同时会降低材料的导电性。In order to increase the capacity of the ternary nickel cobalt lithium manganate cathode material, the proportion of nickel element has been continuously increased, from the initial 33% to more than 80%. In recent years, it has even increased to more than 90%, forming an ultra-high nickel cathode material. . Ultra-high nickel cathode materials are considered to be the most promising cathode materials. Research shows that they have high capacity, but poor cycle stability and low material conductivity. At present, surface coating of lithium-ion battery cathode materials is one of the most effective modification methods. However, the traditional coating process is complex, the coating is uneven, and the conductivity of the material is reduced. The coating effect is poor, and the cathode material is easily Side reactions occur when in contact with the electrolyte, seriously affecting the service life of the material and reducing the conductivity of the material.
CN112310389A公开了一种超高镍单晶正极材料的制备方法,包括下列步骤:S1.将三元前驱体与氢氧化锂以锂与金属摩尔比为1.01~1.10:1进行混合,并加入掺杂剂,在氧气气氛下煅烧,得一次煅烧料;S2.将一次煅烧料通过粗破碎、精破碎、过筛、除磁得粉碎料;S3.将粉碎料与水以水料比为0.5:1~5:1加入反应釜中,控制反应釜温度,再加入试剂反应,待反应完毕后进行干燥,得混料;S4.将混料与改性包覆剂混合后置于气氛炉中进行二次煅烧,再经粗破碎、精破碎、过筛、除磁,即得三元正极材料。该文献中为常规金属包覆,其包覆效果较差,且超高镍正极材料为单晶材料。CN112310389A discloses a method for preparing an ultra-high nickel single crystal cathode material, which includes the following steps: S1. Mix the ternary precursor and lithium hydroxide at a lithium to metal molar ratio of 1.01 to 1.10:1, and add doping Agent, calcined in an oxygen atmosphere to obtain primary calcined material; S2. Pass the primary calcined material through coarse crushing, fine crushing, sieving, and demagnetization to obtain pulverized material; S3. Combine the pulverized material with water at a water-to-material ratio of 0.5:1 ~5:1 is added to the reaction kettle, the temperature of the reaction kettle is controlled, and then the reagent is added for reaction. After the reaction is completed, dry it to obtain a mixture; S4. Mix the mixture with the modified coating agent and place it in an atmosphere furnace for secondary Calcined once, and then subjected to coarse crushing, fine crushing, sieving, and demagnetization, the ternary cathode material is obtained. In this document, conventional metal coating is used, but the coating effect is poor, and the ultra-high nickel cathode material is a single crystal material.
CN113809320A一种四元多晶正极材料、其制备方法和用途,所述四元多晶正极材料的化学式为LiNiaCobMncAldTa(1-a-b-c-d)O2,其中,0.9≤a<1,0<b<0.07,0<c<0.03,0<d≤0.002,所述制备方法包括:镍钴锰铝四元前驱体、锂源、钽源和钴源混合得到混合物,对混合物煅烧后制备得到所述四元多晶正极材料。该文献中未进行包覆,且为单晶正极材料。CN113809320A A quaternary polycrystalline cathode material, its preparation method and use. The chemical formula of the quaternary polycrystalline cathode material is LiNi a Co b Mn c Al d Ta (1-abcd) O 2 , where 0.9≤a< 1.0 The quaternary polycrystalline cathode material is then prepared. In this document, there is no coating and it is a single crystal cathode material.
同时,包覆后得到的核壳类超高镍正极材料当前在循环性能等方面仍然有诸多问题,因此商业化应用进程较慢。At the same time, the core-shell ultra-high nickel cathode materials obtained after coating still have many problems in terms of cycle performance, so the commercial application process is slow.
因此,如何提升镍含量较高的正极材料的电化学性能,是亟待解决的技术问题。Therefore, how to improve the electrochemical performance of cathode materials with high nickel content is an urgent technical problem that needs to be solved.
发明内容Contents of the invention
针对现有技术存在的不足,本发明的目的在于提供一种正极前驱体材料及其制备方法和应用。本发明在前驱体材料中加入掺杂元素的中间层,起到了内核与外壳层的过渡作用,增强了内核与外壳之间的结合,有效地防止了外壳脱离,提升了结构的稳定性,从而提升了正极材料的结构稳定性,得到了具有优异的循环性能和倍率性能的正极材料。In view of the shortcomings of the existing technology, the purpose of the present invention is to provide a cathode precursor material and its preparation method and application. In the present invention, an intermediate layer of doped elements is added to the precursor material, which serves as a transition between the core and the outer shell layer, enhances the bonding between the core and the outer shell, effectively prevents the outer shell from detaching, and improves the stability of the structure, thus The structural stability of the cathode material is improved, and a cathode material with excellent cycle performance and rate performance is obtained.
为达此目的,本发明采用以下技术方案:To achieve this goal, the present invention adopts the following technical solutions:
第一方面,本发明提供一种正极前驱体材料,所述正极前驱体材料由内至外依次包覆内核、中间层和外壳层;所述内核包括第一氢氧化物前驱体材料;所述中间层包括掺杂元素的氢氧化物材料,所述外壳包括第二氢氧化物前驱体;所述第二氢氧化物前驱体材料中的镍的摩尔含量小于所述第一氢氧化物前驱体中的镍的摩尔含量。In a first aspect, the present invention provides a cathode precursor material, which sequentially covers an inner core, an intermediate layer and an outer shell layer from the inside to the outside; the inner core includes a first hydroxide precursor material; the The middle layer includes a hydroxide material doped with elements, the shell includes a second hydroxide precursor; the molar content of nickel in the second hydroxide precursor material is less than that of the first hydroxide precursor. The molar content of nickel in .
本发明提供的前驱体材料中,除了镍元素外,还可包括钴和/或锰,依据实际需求进行适应性调整即可。In addition to nickel, the precursor material provided by the present invention may also include cobalt and/or manganese, which can be adjusted appropriately according to actual needs.
本发明提供的正极材料中,内核的镍含量高于外壳的镍含量,实现了镍的梯度分布,起到提高电池容量的作用;同时协同配合掺杂元素的中间层,中间层与内核和外壳之间的结合紧密,起到了内核与外壳层的过渡作用,增强了内核与外壳之间的结合,有效地防止了外壳脱离,提升了结构的稳定性,从而提升了正极材料的结构稳定性,得到了具有优异的循环性能和倍率性能的正极材料。In the cathode material provided by the invention, the nickel content of the core is higher than that of the outer shell, realizing the gradient distribution of nickel and improving the battery capacity; at the same time, the middle layer of the doped element is coordinated with the middle layer, the inner core and the outer shell. The tight connection between them serves as a transition between the core and the outer shell layer, strengthens the bond between the core and the outer shell, effectively prevents the outer shell from detaching, and improves the structural stability, thereby improving the structural stability of the cathode material. A cathode material with excellent cycle performance and rate performance was obtained.
本发明中,如果不设置中间层,则无法隔绝随着循环外壳裂纹逐渐向内部侵蚀,影响电池的循环性能;而如果内核与外壳之间的镍含量保持一致,则会导致电池容量较低。In the present invention, if an intermediate layer is not provided, it is impossible to isolate the cracks in the outer casing from gradually eroding into the interior due to cycles, affecting the cycle performance of the battery; and if the nickel content between the core and the outer casing remains consistent, the battery capacity will be low.
优选地,所述第一氢氧化物前驱体材料的化学通式为NixCoyMn1-x-y(OH)2,其中,0.8<x≤0.99,0≤y≤0.2。Preferably, the general chemical formula of the first hydroxide precursor material is Nix Co y Mn 1-xy (OH) 2 , where 0.8<x≤0.99 and 0≤y≤0.2.
例如,所述x可以为0.8、0.83、0.85、0.9、0.91、0.92、0.93、0.94、0.95、0.96、0.97、0.98或0.99等,所述y可以为0、0.001、0.002、0.003、0.004、0.005、0.006、0.007、0.008、0.009、0.01、0.13、0.15、0.18或0.2等。For example, the x can be 0.8, 0.83, 0.85, 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98 or 0.99, etc., and the y can be 0, 0.001, 0.002, 0.003, 0.004, 0.005 , 0.006, 0.007, 0.008, 0.009, 0.01, 0.13, 0.15, 0.18 or 0.2, etc.
本发明中,内核为高镍正极材料,提升了电池容量。In the present invention, the core is made of high-nickel positive electrode material, which increases the battery capacity.
优选地,所述掺杂元素的摩尔量为所述正极前驱体材料中总金属元素的总摩尔量的0.01~0.1%,例如0.01%、0.02%、0.03%、0.04%、0.05%、0.06%、0.07%、0.08%、0.09%或0.1%等。Preferably, the molar amount of the doping element is 0.01 to 0.1% of the total molar amount of the total metal elements in the cathode precursor material, such as 0.01%, 0.02%, 0.03%, 0.04%, 0.05%, 0.06% , 0.07%, 0.08%, 0.09% or 0.1%, etc.
本发明中,掺杂元素的摩尔量过小,无法实现中间层的作用,而过多,又会影响电池性能。In the present invention, if the molar amount of the doping element is too small, the function of the intermediate layer cannot be achieved, while if too much, the battery performance will be affected.
优选地,所述掺杂元素包括Al、Mg、Zn、Ti、Na、Li、Sn或Nb中的任意一种或至少两种的组合。Preferably, the doping element includes any one or a combination of at least two of Al, Mg, Zn, Ti, Na, Li, Sn or Nb.
优选地,所述第二氢氧化物前驱体材料的化学通式为NiaCobMn1-a-b(OH)2,其中,0.2<a≤0.6,0≤b≤0.2。Preferably, the general chemical formula of the second hydroxide precursor material is Ni a Co b Mn 1-ab (OH) 2 , where 0.2<a≤0.6, 0≤b≤0.2.
例如,所述a可以为0.21、0.23、0.25、0.28、0.3、0.33、0.35、0.38、0.4、0.43、0.45、0.48、0.5、0.53、0.55、0.58或0.6等,所述b可以为0、0.03、0.05、0.08、0.1、0.13、0.15、0.18或0.2等。For example, the a can be 0.21, 0.23, 0.25, 0.28, 0.3, 0.33, 0.35, 0.38, 0.4, 0.43, 0.45, 0.48, 0.5, 0.53, 0.55, 0.58 or 0.6, etc., and the b can be 0, 0.03 , 0.05, 0.08, 0.1, 0.13, 0.15, 0.18 or 0.2, etc.
本发明中,内核为高镍前驱体材料,外壳为中低镍前驱体材料,可使得外壳保持高循环性能、内核提供更高容量,实现容量和循环性能的协同提升。In the present invention, the core is made of a high-nickel precursor material, and the outer shell is made of a medium-low nickel precursor material, which allows the outer shell to maintain high cycle performance and the core to provide higher capacity, achieving synergistic improvement in capacity and cycle performance.
第二方面,本发明提供一种如第一方面所述的正极前驱体材料的制备方法,所述制备方法包括以下步骤:In a second aspect, the present invention provides a method for preparing the cathode precursor material as described in the first aspect, the preparation method comprising the following steps:
将第一主金属混合盐溶液、沉淀剂溶液和络合剂溶剂并流加入底液中,进行第一阶段的共沉淀反应,达到第一目标粒径后,将第一主金属混合盐溶液替换为掺杂剂溶液,进行第二阶段的共沉淀反应;The first main metal mixed salt solution, the precipitant solution and the complexing agent solvent are added to the bottom liquid in parallel flow to perform the first stage of co-precipitation reaction. After reaching the first target particle size, the first main metal mixed salt solution is replaced. For the dopant solution, perform the second stage of co-precipitation reaction;
第二阶段共沉淀反应结束后,将掺杂剂溶液替换为第二主金属混合盐溶液,继续进行第三阶段共沉淀法反应,达到最终目标粒径后,反应结束,得到所述正极前驱体材料;After the second stage co-precipitation reaction is completed, the dopant solution is replaced with the second main metal mixed salt solution, and the third stage co-precipitation reaction is continued. After reaching the final target particle size, the reaction is completed and the cathode precursor is obtained. Material;
所述第二主金属混合盐溶液中的镍的摩尔含量小于所述第一主金属混合盐溶液中的摩尔含量。The molar content of nickel in the second main metal mixed salt solution is less than the molar content of the first main metal mixed salt solution.
本发明提供的制备方法,经过三个阶段的共沉淀反应,得到了结构稳定的正极前驱体材料,且制备方法简单,易于操作,适用于大规模生产。The preparation method provided by the invention obtains a cathode precursor material with a stable structure through a three-stage co-precipitation reaction. The preparation method is simple, easy to operate, and is suitable for large-scale production.
优选地,所述第一主金属混合盐溶液中主金属元素的摩尔浓度与第二主金属混合盐溶液中主金属元素的摩尔浓度各自独立地为1.6~2.4mol/L,例如1.6mol/L、1.7mol/L、1.8mol/L、1.9mol/L、2mol/L、2.1mol/L、2.2mol/L、2.3mol/L或2.4mol/L等。Preferably, the molar concentration of the main metal element in the first main metal mixed salt solution and the molar concentration of the main metal element in the second main metal mixed salt solution are each independently 1.6 to 2.4 mol/L, such as 1.6 mol/L. , 1.7mol/L, 1.8mol/L, 1.9mol/L, 2mol/L, 2.1mol/L, 2.2mol/L, 2.3mol/L or 2.4mol/L, etc.
优选地,所述沉淀剂溶液的浓度为9~12mol/L,例如9mol/L、10mol/L、11mol/L或12mol/L等。Preferably, the concentration of the precipitant solution is 9 to 12 mol/L, such as 9 mol/L, 10 mol/L, 11 mol/L or 12 mol/L, etc.
优选地,所述沉淀剂溶液包括碱溶液。Preferably, the precipitant solution includes an alkaline solution.
优选地,所述络合剂溶液的浓度为7~10mol/L,例如7mol/L、8mol/L、9mol/L或10mol/L等。Preferably, the concentration of the complexing agent solution is 7 to 10 mol/L, such as 7 mol/L, 8 mol/L, 9 mol/L or 10 mol/L, etc.
优选地,所述络合剂溶液包括氨水溶液。Preferably, the complexing agent solution includes an ammonia solution.
优选地,所述第一目标粒径为3~9μm,例如3μm、3.5μm、4μm、4.5μm、5μm、5.5μm、6μm、6.5μm、7μm、8μm、9μm等。Preferably, the first target particle size is 3 to 9 μm, such as 3 μm, 3.5 μm, 4 μm, 4.5 μm, 5 μm, 5.5 μm, 6 μm, 6.5 μm, 7 μm, 8 μm, 9 μm, etc.
本发明中,第一目标粒径过大,不利于中间层的包覆;而过小,又会影响前驱体材料整体的镍含量。In the present invention, if the first target particle size is too large, it is not conducive to the coating of the intermediate layer; if it is too small, it will affect the overall nickel content of the precursor material.
优选地,所述掺杂剂中的掺杂元素的摩尔量为所述正极前驱体材料中总金属元素的总摩尔量的0.05~0.1%时,,例如0.05%、0.06%、0.07%、0.08%、0.09%或0.1%等,第二阶段的共沉淀反应结束。Preferably, when the molar amount of the doping element in the dopant is 0.05 to 0.1% of the total molar amount of the total metal elements in the cathode precursor material, for example, 0.05%, 0.06%, 0.07%, 0.08 %, 0.09% or 0.1%, etc., the second stage of co-precipitation reaction ends.
本发明中,第一阶段的共沉淀过程中,掺杂元素的掺杂量过多,反倒会影响电池容量;而掺杂量过少,又无法实现内核和外壳的衔接作用。In the present invention, during the co-precipitation process in the first stage, if the doping amount of the doping element is too much, it will affect the battery capacity; if the doping amount is too little, the connection between the core and the outer shell cannot be realized.
优选地,所述最终目标粒径为9~14μm,例如9μm、9.5μm、10μm、10.5μm、11μm、11.5μm、12μm、12.5μm、13μm、13.5μm或14μm等。Preferably, the final target particle size is 9 to 14 μm, such as 9 μm, 9.5 μm, 10 μm, 10.5 μm, 11 μm, 11.5 μm, 12 μm, 12.5 μm, 13 μm, 13.5 μm or 14 μm, etc.
优选地,所述共沉淀反应过程中的pH值为9~13,例如9、9.3、9.5、9.8、10、10.3、10.5、10.8、11、11.3、11.5、11.8、12、12.3、12.5、12.8或13等。Preferably, the pH value during the coprecipitation reaction is 9 to 13, such as 9, 9.3, 9.5, 9.8, 10, 10.3, 10.5, 10.8, 11, 11.3, 11.5, 11.8, 12, 12.3, 12.5, 12.8 Or 13 etc.
作为优选的技术方案,所述制备方法包括以下步骤:As a preferred technical solution, the preparation method includes the following steps:
将第一主金属混合盐溶液、液碱溶液和氨水溶液并流加入底液中,进行第一阶段的共沉淀反应,达到第一目标粒径3~9μm后,将第一主金属混合盐溶液替换为掺杂剂溶液,进行第二阶段的共沉淀反应,所述掺杂剂中的掺杂元素的摩尔量为所述正极前驱体材料中总金属元素的总摩尔量的0.05~0.1%时,第二阶段的共沉淀反应结束;Add the first main metal mixed salt solution, liquid alkali solution and ammonia solution into the bottom liquid in parallel flow to perform the first stage of co-precipitation reaction. After reaching the first target particle size of 3 to 9 μm, add the first main metal mixed salt solution Replace it with a dopant solution and perform the second stage co-precipitation reaction. When the molar amount of the doping element in the dopant is 0.05 to 0.1% of the total molar amount of the total metal elements in the cathode precursor material. , the second stage of co-precipitation reaction ends;
第二阶段共沉淀反应结束后,将掺杂剂溶液替换为第二主金属混合盐溶液,继续进行第三阶段共沉淀法反应,达到最终目标粒径9~14μm后,反应结束,得到所述正极前驱体材料;After the second-stage co-precipitation reaction is completed, the dopant solution is replaced with the second main metal mixed salt solution, and the third-stage co-precipitation reaction is continued. After reaching the final target particle size of 9 to 14 μm, the reaction is completed and the above-mentioned Cathode precursor materials;
所述第二主金属混合盐溶液中的镍的摩尔含量小于所述第一主金属混合盐溶液中的摩尔含量;所述共沉淀反应过程中的pH值为9~13。The molar content of nickel in the second main metal mixed salt solution is less than the molar content in the first main metal mixed salt solution; the pH value during the coprecipitation reaction is 9-13.
需要说明,本发明提供的共沉淀反应的全程均在保护性气氛下进行,且本发明中底液的配制以及各个阶段的共沉淀反应过程的参数,均为常规技术选择。It should be noted that the entire co-precipitation reaction provided by the present invention is performed under a protective atmosphere, and the preparation of the bottom liquid in the present invention and the parameters of the co-precipitation reaction process at each stage are all conventional technical choices.
可选地,调控水、沉淀剂溶液和络合剂溶液,混合后得到底液,其中底液中pH控制在9~13,底液中的络合剂溶液浓度1~8g/L,底液中的温度为30~80℃;Optionally, water, precipitant solution and complexing agent solution are adjusted and mixed to obtain a bottom liquid, wherein the pH in the bottom liquid is controlled at 9 to 13, and the concentration of the complexing agent solution in the bottom liquid is 1 to 8 g/L. The temperature in it is 30~80℃;
可选地,共沉淀反应过程中的反应温度为30~80℃,搅拌速率为200~500rpm;且各个阶段的pH值在可选范围内进行适应性调整即可。Optionally, the reaction temperature during the co-precipitation reaction is 30-80°C, and the stirring rate is 200-500 rpm; and the pH value of each stage can be adaptively adjusted within the optional range.
第三方面,本发明提供一种正极材料,所述正极由如第一方面所述的正极前驱体材料与锂源混合烧结后得到。In a third aspect, the present invention provides a cathode material, which is obtained by mixing and sintering the cathode precursor material as described in the first aspect and a lithium source.
本发明中,锂源的选择以及烧结次数、烧结时间和烧结温度均为本领域技术人员的常规选择;本领域技术人员可依据实际需求选择一次烧结或多次烧结,同时进行适应性的掺杂和包覆。In the present invention, the selection of lithium source, the number of sintering times, the sintering time and the sintering temperature are all routine choices for those skilled in the art; those skilled in the art can choose one sintering or multiple sinterings according to actual needs, and at the same time perform adaptive doping and cladding.
优选地,对所述烧结后的物质进行碳包覆。Preferably, the sintered material is carbon coated.
本发明中,在烧结得到的正极材料表面再进行碳包覆,可提升正极材料的循环性能和倍率性能。In the present invention, carbon coating is performed on the surface of the cathode material obtained by sintering, which can improve the cycle performance and rate performance of the cathode material.
第四方面,本发明还提供一种锂离子电池,所述锂离子电池包括如第三方面所述的正极材料。In a fourth aspect, the present invention also provides a lithium ion battery, which includes the cathode material as described in the third aspect.
与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
本发明提供的正极材料中,内核的的镍含量高于外壳的镍含量,实现了镍的梯度分布,同时协同配合掺杂元素的中间层,中间层与内核和外壳之间的结合紧密,起到了内核与外壳层的过渡作用,增强了内核与外壳之间的结合,有效地防止了外壳脱离,提升了结构的稳定性,从而提升了正极材料的结构稳定性,得到了具有优异的循环性能和倍率性能的正极材料。In the cathode material provided by the present invention, the nickel content of the core is higher than that of the outer shell, achieving a gradient distribution of nickel. At the same time, the middle layer of the doped element is synergistically matched, and the middle layer is closely combined with the core and the outer shell. The transition between the core and the shell layer strengthens the bond between the core and the shell, effectively prevents the shell from detaching, and improves the structural stability, thus improving the structural stability of the cathode material and obtaining excellent cycle performance. and rate performance cathode materials.
具体实施方式Detailed ways
下面通过具体实施例来进一步说明本发明的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。The technical solution of the present invention will be further described below through specific examples. Those skilled in the art should understand that the embodiments are only to help understand the present invention and should not be regarded as specific limitations of the present invention.
实施例1Example 1
本实施例提供一种正极前驱体材料,所述正极前驱体材料由内至外依次包覆内核、中间层和外壳层;内核的化学式为Ni0.96Co0.03Mn0.01(OH)2,中间层为铝的氢氧化物,外壳的化学式为Ni0.5Co0.2Mn0.3(OH)2;其中,铝的摩尔量为正极前驱体材料中总金属元素的总摩尔量的0.05%。This embodiment provides a cathode precursor material that sequentially covers the core, the middle layer and the outer shell layer from the inside to the outside; the chemical formula of the core is Ni 0.96 Co 0.03 Mn 0.01 (OH) 2 and the middle layer is Aluminum hydroxide, the chemical formula of the outer shell is Ni 0.5 Co 0.2 Mn 0.3 (OH) 2 ; where the molar amount of aluminum is 0.05% of the total molar amount of the total metal elements in the cathode precursor material.
所述正极前驱体材料的制备方法如下:The preparation method of the positive electrode precursor material is as follows:
步骤1:配置总离子浓度为2mol/L硫酸盐溶液的A,其中镍离子、钴离子、锰离子的摩尔比为96:3:1,配置总离子浓度为2mol/L的硫酸盐溶液B,其中镍离子、钴离子、锰离子的摩尔比为5:2:3,采用浓度10mol/L的工业液碱作为沉淀剂溶液C,采用9mol/L的氨水作为络合剂溶液D,配置2mol/L的硫酸铝溶液E;Step 1: Configure sulfate solution A with a total ion concentration of 2mol/L, in which the molar ratio of nickel ions, cobalt ions, and manganese ions is 96:3:1, and configure sulfate solution B with a total ion concentration of 2mol/L. The molar ratio of nickel ions, cobalt ions, and manganese ions is 5:2:3. Industrial liquid alkali with a concentration of 10 mol/L is used as the precipitant solution C, and 9 mol/L ammonia water is used as the complexing agent solution D. The configuration is 2 mol/L. L aluminum sulfate solution E;
步骤2:在反应釜中配置含有一定沉淀剂溶液和络合剂溶液的底液F,F的pH控制在10,F中氨水浓度为2g/L,F的温度为40℃;并通入氮气作为保护气,将混合盐溶液A、沉淀剂溶液B和络合剂溶液C并流加入上述反应釜的底液F中,保证pH值为10的环境中,采用普通搅拌桨以300rpm的转速进行第一阶段共沉淀反应,得到第一目标粒径D50为7.5μm的晶种颗粒,停止注入混合溶液A;然后加入溶液E进行第二阶段的共沉淀反应,待铝摩尔量为0.05%时停止加入溶液E;加入溶液B,进行第三阶段的共沉淀反应,待粒径D50生长至12μm时,结束共沉淀反应;Step 2: Configure the bottom liquid F containing a certain precipitant solution and complexing agent solution in the reaction kettle. The pH of F is controlled at 10. The ammonia concentration in F is 2g/L. The temperature of F is 40°C; and nitrogen gas is introduced. As a protective gas, add mixed salt solution A, precipitant solution B and complexing agent solution C into the bottom liquid F of the above reaction kettle in parallel to ensure a pH value of 10. Use an ordinary stirring paddle at a rotation speed of 300 rpm. In the first stage of the co-precipitation reaction, seed particles with a first target particle size D50 of 7.5 μm are obtained. Stop injecting mixed solution A; then add solution E to perform the second stage of co-precipitation reaction, and stop when the molar amount of aluminum reaches 0.05%. Add solution E; add solution B to carry out the third stage of co-precipitation reaction. When the particle size D50 grows to 12 μm, the co-precipitation reaction ends;
步骤3:将得到的产物进行离心、洗涤、干燥、除磁性异物等处理后,得到所述正极前驱体材料。Step 3: The obtained product is centrifuged, washed, dried, and magnetic foreign matter removed to obtain the positive electrode precursor material.
实施例2Example 2
本实施例提供一种正极前驱体材料,所述正极前驱体材料由内至外依次包覆内核、中间层和外壳层;内核的化学式为Ni0.96Co0.03Mn0.01(OH)2,中间层为铝的氢氧化物,外壳的化学式为Ni0.5Co0.2Mn0.3(OH)2;其中,铝的摩尔量为正极前驱体材料中总金属元素的总摩尔量的0.1%。This embodiment provides a cathode precursor material that sequentially covers the core, the middle layer and the outer shell layer from the inside to the outside; the chemical formula of the core is Ni 0.96 Co 0.03 Mn 0.01 (OH) 2 and the middle layer is The chemical formula of the hydroxide of aluminum is Ni 0.5 Co 0.2 Mn 0.3 (OH) 2 ; where the molar amount of aluminum is 0.1% of the total molar amount of the total metal elements in the cathode precursor material.
所述正极前驱体材料的制备方法如下:The preparation method of the positive electrode precursor material is as follows:
步骤1:配置总离子浓度为2.4mol/L硫酸盐溶液的A,其中镍离子、钴离子、锰离子的摩尔比为96:3:1,配置总离子浓度为2.4mol/L的硫酸盐溶液B,其中镍离子、钴离子、锰离子的摩尔比为5:2:3,采用浓度10mol/L的工业液碱作为沉淀剂溶液C,采用9mol/L的氨水作为络合剂溶液D,配置2mol/L的硫酸铝溶液E;Step 1: Configure A with a total ion concentration of 2.4mol/L sulfate solution, in which the molar ratio of nickel ions, cobalt ions, and manganese ions is 96:3:1, and configure a sulfate solution with a total ion concentration of 2.4mol/L. B, where the molar ratio of nickel ions, cobalt ions, and manganese ions is 5:2:3, industrial liquid alkali with a concentration of 10 mol/L is used as the precipitant solution C, and 9 mol/L ammonia water is used as the complexing agent solution D. Configuration 2mol/L aluminum sulfate solution E;
步骤2:在反应釜中配置含有一定沉淀剂溶液和络合剂溶液的底液F,F的pH控制在10,F中氨水浓度为2g/L,F的温度为40℃;并通入氮气作为保护气,将混合盐溶液A、沉淀剂溶液B和络合剂溶液C并流加入上述反应釜的底液F中,保证pH值为10的环境中,采用普通搅拌桨以300rpm的转速进行第一阶段共沉淀反应,得到第一目标粒径D50为3μm的晶种颗粒,停止注入混合溶液A;然后加入溶液E进行第二阶段的共沉淀反应,待铝摩尔量为0.1%时停止加入溶液E;加入溶液B,进行第三阶段的共沉淀反应,待粒径D50生长至9μm时,结束共沉淀反应;Step 2: Configure the bottom liquid F containing a certain precipitant solution and complexing agent solution in the reaction kettle. The pH of F is controlled at 10. The ammonia concentration in F is 2g/L. The temperature of F is 40°C; and nitrogen gas is introduced. As a protective gas, add mixed salt solution A, precipitant solution B and complexing agent solution C into the bottom liquid F of the above reaction kettle in parallel to ensure a pH value of 10. Use an ordinary stirring paddle at a rotation speed of 300 rpm. In the first stage of the co-precipitation reaction, seed particles with a first target particle size D50 of 3 μm are obtained. Stop injecting mixed solution A; then add solution E to perform the second stage of co-precipitation reaction. Stop adding when the molar amount of aluminum reaches 0.1%. Solution E; add solution B to carry out the third stage of co-precipitation reaction. When the particle size D50 grows to 9 μm, the co-precipitation reaction ends;
步骤3:将得到的产物进行离心、洗涤、干燥、除磁性异物等处理后,得到所述正极前驱体材料。Step 3: The obtained product is centrifuged, washed, dried, and magnetic foreign matter removed to obtain the positive electrode precursor material.
实施例3Example 3
本实施例提供一种正极前驱体材料,所述正极前驱体材料由内至外依次包覆内核、中间层和外壳层;内核的化学式为Ni0.91Co0.05Mn0.04(OH)2,中间层为镁和锆混合的氢氧化物,外壳的化学式为Ni0.6Co0.2Mn0.2(OH)2;其中,镁和锆的摩尔量之和为正极前驱体材料中总金属元素的总摩尔量的0.08%。This embodiment provides a cathode precursor material that sequentially covers the core, the middle layer and the outer shell layer from the inside to the outside; the chemical formula of the core is Ni 0.91 Co 0.05 Mn 0.04 (OH) 2 , and the middle layer is The chemical formula of the shell of a mixed hydroxide of magnesium and zirconium is Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 ; where the sum of the molar amounts of magnesium and zirconium is 0.08% of the total molar amount of the total metal elements in the cathode precursor material .
所述正极前驱体材料的制备方法如下:The preparation method of the positive electrode precursor material is as follows:
步骤1:配置总离子浓度为1.6mol/L硫酸盐溶液的A,其中镍离子、钴离子、锰离子的摩尔比为91:5:4,配置总离子浓度为1.6mol/L的硫酸盐溶液B,其中镍离子、钴离子、锰离子的摩尔比为6:2:2,采用浓度9mol/L的工业液碱作为沉淀剂溶液C,采用7mol/L的氨水作为络合剂溶液D,配置1.6mol/L的硫酸镁和锆的溶液E(镁和锆的摩尔比为1:1);Step 1: Configure A with a total ion concentration of 1.6 mol/L sulfate solution, in which the molar ratio of nickel ions, cobalt ions, and manganese ions is 91:5:4, and configure a sulfate solution with a total ion concentration of 1.6 mol/L. B, where the molar ratio of nickel ions, cobalt ions, and manganese ions is 6:2:2, industrial liquid alkali with a concentration of 9mol/L is used as the precipitant solution C, and 7mol/L ammonia water is used as the complexing agent solution D. Configuration 1.6 mol/L solution E of magnesium sulfate and zirconium (the molar ratio of magnesium and zirconium is 1:1);
步骤2:在反应釜中配置含有一定沉淀剂溶液和络合剂溶液的底液F,F的pH控制在10.8,F中氨水浓度为2g/L,F的温度为50℃;并通入氮气作为保护气,将混合盐溶液A、沉淀剂溶液B和络合剂溶液C并流加入上述反应釜的底液F中,保证pH值为11的环境中,采用普通搅拌桨以380rpm的转速进行第一阶段共沉淀反应,得到第一目标粒径D50为8.5μm的晶种颗粒,停止注入混合溶液A;然后加入溶液E进行第二阶段的共沉淀反应,待铝摩尔量为0.08%时停止加入溶液E;加入溶液B,进行第三阶段的共沉淀反应,待粒径D50生长至12μm时,结束共沉淀反应;Step 2: Configure the bottom liquid F containing a certain precipitant solution and complexing agent solution in the reaction kettle. The pH of F is controlled at 10.8. The ammonia concentration in F is 2g/L. The temperature of F is 50°C; and nitrogen gas is introduced. As a protective gas, add the mixed salt solution A, precipitant solution B and complexing agent solution C into the bottom liquid F of the above reaction kettle in parallel to ensure a pH value of 11. Use an ordinary stirring paddle at a speed of 380 rpm. In the first stage of the co-precipitation reaction, seed particles with a first target particle size D50 of 8.5 μm are obtained. Stop injecting mixed solution A; then add solution E to perform the second stage of co-precipitation reaction, and stop when the molar amount of aluminum reaches 0.08%. Add solution E; add solution B to carry out the third stage of co-precipitation reaction. When the particle size D50 grows to 12 μm, the co-precipitation reaction ends;
步骤3:将得到的产物进行离心、洗涤、干燥、除磁性异物等处理后,得到所述正极前驱体材料。Step 3: The obtained product is centrifuged, washed, dried, and magnetic foreign matter removed to obtain the positive electrode precursor material.
实施例4Example 4
本实施例与实施例1的区别为,本实施例步骤2中第一目标粒径的D50为2μm。The difference between this embodiment and Example 1 is that the D50 of the first target particle size in step 2 of this embodiment is 2 μm.
其余制备方法与参数与实施例1保持一致。The remaining preparation methods and parameters are consistent with Example 1.
实施例5Example 5
本实施例与实施例1的区别为,本实施例步骤2中第一目标粒径的D50为10μm。The difference between this embodiment and Example 1 is that the D50 of the first target particle size in step 2 of this embodiment is 10 μm.
其余制备方法与参数与实施例1保持一致。The remaining preparation methods and parameters are consistent with Example 1.
实施例6Example 6
本实施例与实施例1的区别为,本实施例步骤2中铝的摩尔量为正极前驱体材料中总金属元素的总摩尔量的1.5%时,第二阶段共沉淀反应结束。The difference between this embodiment and Embodiment 1 is that in step 2 of this embodiment, when the molar amount of aluminum is 1.5% of the total molar amount of the total metal elements in the cathode precursor material, the second stage co-precipitation reaction ends.
其余制备方法与参数与实施例1保持一致。The remaining preparation methods and parameters are consistent with Example 1.
实施例7Example 7
本实施例与实施例1的区别为,本实施例步骤2中铝的摩尔量为正极前驱体材料中总金属元素的总摩尔量的0.03%时,第二阶段共沉淀反应结束。The difference between this embodiment and Example 1 is that in step 2 of this embodiment, when the molar amount of aluminum is 0.03% of the total molar amount of the total metal elements in the cathode precursor material, the second stage co-precipitation reaction ends.
其余制备方法与参数与实施例1保持一致。The remaining preparation methods and parameters are consistent with Example 1.
对比例1Comparative example 1
本对比例与实施例1的区别为,本对比例提供的正极前驱体材料中,不含有中间层,即内核后直接为外壳。The difference between this comparative example and Example 1 is that the positive electrode precursor material provided in this comparative example does not contain an intermediate layer, that is, the core is directly followed by the outer shell.
制备方法中,不配制溶液E,也不进行第二阶段共沉淀反应,第一阶段共沉淀反应结束后,直接进行第三阶段的共沉淀反应。In the preparation method, solution E is not prepared, and the second-stage co-precipitation reaction is not performed. After the first-stage co-precipitation reaction is completed, the third-stage co-precipitation reaction is directly performed.
其余制备方法与参数与实施例1保持一致。The remaining preparation methods and parameters are consistent with Example 1.
对比例2Comparative example 2
本对比例与实施例1的区别为,本对比例的正极前驱体材料的化学式为Ni0.96Co0.03Mn0.01(OH)2(即由内至外均为内核材料)。The difference between this comparative example and Example 1 is that the chemical formula of the cathode precursor material in this comparative example is Ni 0.96 Co 0.03 Mn 0.01 (OH) 2 (that is, it is the core material from the inside to the outside).
制备方法中,不进行第二阶段和第三阶段的共沉淀反应,第一阶段的共沉淀反应直至达到目标粒径12μm。In the preparation method, the co-precipitation reaction in the second stage and the third stage is not performed, and the co-precipitation reaction in the first stage is carried out until the target particle size of 12 μm is reached.
其余制备方法与参数与实施例1保持一致。The remaining preparation methods and parameters are consistent with Example 1.
将实施例1-7与对比例1-2提供的正极前驱体材料与Li2CO3粉末按元素配比(Li:Me(金属元素)的摩尔比为1.05:1.0)均匀混合,在800℃空气气氛进行煅烧得到一烧物料,然后将一烧物料与葡萄糖溶液混合,进行液相碳包覆,得到正极材料。The cathode precursor materials and Li 2 CO 3 powder provided in Examples 1-7 and Comparative Examples 1-2 were evenly mixed according to the element ratio (the molar ratio of Li:Me (metal element) is 1.05:1.0), and the mixture was heated at 800°C. The first-burning material is calcined in an air atmosphere, and then the first-burning material is mixed with a glucose solution and coated with liquid carbon to obtain a positive electrode material.
按8:1:1的质量比将正极材料、乙炔黑、聚偏二氟乙烯混合,加入NMP,得到正极浆料后,均匀涂抹在铝箔上,烘干、冲压制成薄片(正极极片)。将电池极片、金属锂片、聚乙烯隔膜组装成扣式电池。Mix the cathode material, acetylene black, and polyvinylidene fluoride at a mass ratio of 8:1:1, add NMP, and obtain the cathode slurry. Apply it evenly on the aluminum foil, dry it, and stamp it into thin sheets (cathode sheets). . Assemble battery pole pieces, metal lithium sheets, and polyethylene separators into button batteries.
将得到的电池进行性能测试,测试条件为:25℃:电压区间2.5V至3.65V,充放电倍率为0.1C/0.1C,进行容量和循环性能测,同时还进行了0.1C/1C的倍率性能测试,结果如表1所示。The obtained battery was subjected to a performance test. The test conditions were: 25°C: voltage range 2.5V to 3.65V, charge and discharge rate 0.1C/0.1C, capacity and cycle performance were measured, and a rate of 0.1C/1C was also carried out. Performance test, the results are shown in Table 1.
表1Table 1
由表1可以得出:It can be concluded from Table 1:
从实施例1与实施例4和5的数据结果可知,第一目标粒径过小,会影响电池容量,而过大,又会导致循环保持率较低。It can be seen from the data results of Example 1 and Examples 4 and 5 that if the first target particle size is too small, it will affect the battery capacity, and if it is too large, it will lead to a low cycle retention rate.
从实施例1与实施例6和7的数据结果可知,第二阶段的共沉淀反应时,掺杂元素的摩尔量过大,反倒会影响电池容量,而过小,又会导致循环保持率较低。It can be seen from the data results of Example 1 and Examples 6 and 7 that during the second stage of coprecipitation reaction, if the molar amount of doping elements is too large, it will affect the battery capacity, while if it is too small, it will lead to a lower cycle retention rate. Low.
从实施例1与对比例1和2的数据结果可知,本发明中通过镍的梯度分布以及中间层的加入,协同配合,共同起到了提升核壳结构稳定性的作用,外壳不易脱离,从而提升了循环性能和倍率性能。From the data results of Example 1 and Comparative Examples 1 and 2, it can be seen that in the present invention, the gradient distribution of nickel and the addition of the intermediate layer work together to improve the stability of the core-shell structure. The outer shell is not easy to detach, thereby improving the stability of the core-shell structure. Improved cycle performance and rate performance.
综上所述,本发明提供的正极材料中,内核的的镍含量高于外壳的镍含量,实现了镍的梯度分布,同时协同配合掺杂元素的中间层,中间层与内核和外壳之间的结合紧密,起到了内核与外壳层的过渡作用,增强了内核与外壳之间的结合,有效地防止了外壳脱离,提升了结构的稳定性,从而提升了正极材料的结构稳定性,得到了具有优异的循环性能和倍率性能的正极材料。In summary, in the cathode material provided by the present invention, the nickel content of the core is higher than that of the outer shell, achieving a gradient distribution of nickel. At the same time, the intermediate layer of the doping element is synergistically matched, and the intermediate layer is between the core and the outer shell. The tight combination plays a transitional role between the core and the shell layer, strengthens the bond between the core and the shell, effectively prevents the shell from detaching, improves the structural stability, thereby improving the structural stability of the cathode material, and obtains Cathode material with excellent cycle performance and rate capability.
申请人声明,本发明通过上述实施例来说明本发明的详细方法,但本发明并不局限于上述详细方法,即不意味着本发明必须依赖上述详细方法才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。The applicant declares that the present invention illustrates the detailed methods of the present invention through the above embodiments, but the present invention is not limited to the above detailed methods, that is, it does not mean that the present invention must rely on the above detailed methods to be implemented. Those skilled in the art should understand that any improvements to the present invention, equivalent replacement of raw materials of the product of the present invention, addition of auxiliary ingredients, selection of specific methods, etc., all fall within the protection scope and disclosure scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311296558.4A CN117174876A (en) | 2023-10-09 | 2023-10-09 | A kind of cathode precursor material and its preparation method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311296558.4A CN117174876A (en) | 2023-10-09 | 2023-10-09 | A kind of cathode precursor material and its preparation method and application |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117174876A true CN117174876A (en) | 2023-12-05 |
Family
ID=88935534
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311296558.4A Pending CN117174876A (en) | 2023-10-09 | 2023-10-09 | A kind of cathode precursor material and its preparation method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117174876A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103872302A (en) * | 2012-12-13 | 2014-06-18 | 中国科学院宁波材料技术与工程研究所 | Lithium ion battery positive pole material precursor and its preparation method |
CN110620230A (en) * | 2019-08-30 | 2019-12-27 | 恒大新能源科技集团有限公司 | Positive active material, preparation method thereof, positive plate and lithium battery |
CN112968153A (en) * | 2021-02-02 | 2021-06-15 | 天津巴莫科技有限责任公司 | Core-shell structure cathode material and preparation method thereof |
-
2023
- 2023-10-09 CN CN202311296558.4A patent/CN117174876A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103872302A (en) * | 2012-12-13 | 2014-06-18 | 中国科学院宁波材料技术与工程研究所 | Lithium ion battery positive pole material precursor and its preparation method |
CN110620230A (en) * | 2019-08-30 | 2019-12-27 | 恒大新能源科技集团有限公司 | Positive active material, preparation method thereof, positive plate and lithium battery |
CN112968153A (en) * | 2021-02-02 | 2021-06-15 | 天津巴莫科技有限责任公司 | Core-shell structure cathode material and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102569807B (en) | Coated-modified lithium manganese positive electrode material and preparation method thereof | |
WO2020043135A1 (en) | Ternary positive electrode material and preparation method therefor, and lithium-ion battery | |
CN107302087B (en) | A lithium battery nickel cobalt lithium manganate ternary positive electrode material and preparation method thereof | |
CN110931768A (en) | Ternary positive electrode material of high-nickel monocrystal lithium ion battery and preparation method | |
CN108878794B (en) | Spinel structure lithium ion battery cathode material with composite coating layer and preparation method thereof | |
CN110380024A (en) | Sodium transition metal oxide with P3 structure, preparation method thereof and sodium ion battery | |
WO2022007663A1 (en) | Lithium ion battery positive electrode active material and preparation method therefor | |
CN110890541A (en) | Preparation method of surface-modified lithium-rich manganese-based positive electrode material and lithium ion battery | |
WO2023179245A1 (en) | High-nickel ternary positive electrode material and preparation method therefor and application thereof | |
CN113299902B (en) | Preparation of concentration gradient magnesium-doped lithium-rich manganese-based oxide positive electrode material and application of concentration gradient magnesium-doped lithium-rich manganese-based oxide positive electrode material in lithium battery | |
WO2024046046A1 (en) | Positive electrode active material and use thereof | |
CN114843469B (en) | A MgFe2O4 modified P2/O3 type nickel-based layered sodium ion battery cathode material and its preparation method | |
WO2023165160A1 (en) | Positive electrode material, and preparation method therefor and use thereof | |
CN115084506B (en) | Large-particle-size monocrystal ternary positive electrode material, and preparation method and application thereof | |
WO2023160307A1 (en) | Positive electrode lithium replenishment additive, preparation method therefor and use thereof | |
CN114725371A (en) | High-nickel single crystal positive electrode material, preparation method thereof, lithium ion battery and all-solid-state battery | |
CN108878873A (en) | Lithium iron phosphate positive material modified surface structure and its preparation method and application | |
CN116282207A (en) | Dendritic positive electrode material precursor and preparation method thereof, lithium ion battery positive electrode material, lithium ion battery and electrical equipment | |
CN114804235A (en) | High-voltage nickel cobalt lithium manganate positive electrode material and preparation method and application thereof | |
CN111710844B (en) | Modified high-nickel ternary positive electrode material and preparation method and application thereof | |
CN112952056A (en) | Lithium-rich manganese-based composite cathode material and preparation method and application thereof | |
CN115810757B (en) | Positive electrode active material and lithium ion battery containing same | |
CN117446875A (en) | Modified lithium-rich manganese-based positive electrode material and preparation method and application thereof | |
CN116072858B (en) | A niobium-doped nickel-cobalt-manganese-aluminum lithium quaternary material and a preparation method thereof and a lithium-ion battery containing the same | |
CN114927777A (en) | Ultrahigh lithium content material and self-supplementing lithium composite positive electrode material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |