CN117165549A - Cystathionine-gamma-synthase mutant and application thereof - Google Patents

Cystathionine-gamma-synthase mutant and application thereof Download PDF

Info

Publication number
CN117165549A
CN117165549A CN202311111182.5A CN202311111182A CN117165549A CN 117165549 A CN117165549 A CN 117165549A CN 202311111182 A CN202311111182 A CN 202311111182A CN 117165549 A CN117165549 A CN 117165549A
Authority
CN
China
Prior art keywords
cystathionine
metb
synthase
methionine
mutant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311111182.5A
Other languages
Chinese (zh)
Inventor
张成林
闫倩玉
芦楠
孙浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Science and Technology
Original Assignee
Tianjin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Science and Technology filed Critical Tianjin University of Science and Technology
Priority to CN202311111182.5A priority Critical patent/CN117165549A/en
Publication of CN117165549A publication Critical patent/CN117165549A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Enzymes And Modification Thereof (AREA)

Abstract

本发明涉及一种高活性胱硫醚‑γ‑合酶突变体及其应用。为了克服胱硫醚‑γ‑合酶活性低引起的L‑甲硫氨酸合成效率低等不足的问题,本发明将提供一种高活性胱硫醚‑γ‑合酶突变体,并将该酶应用于L‑甲硫氨酸生物合成。所述胱硫醚‑γ‑合酶突变体MetBM是在大肠杆菌W3110来源的野生型胱硫醚‑γ‑合酶的基础上发生Q5R、F87I、E136G、V231E、F321V及A346T突变获得。该酶Km和Kcat分别为0.13mmol/L和138.2s‑1,Kcat/Km为1063.1(mmol/L)‑1S‑1,比活力为195.3U/mg。底物结合效率及酶活力均高于野生型MetB。将胱硫醚‑γ‑合酶突变体应用于L‑甲硫氨酸合成,使其产量提高11倍,可广泛用于L‑甲硫氨酸的生产。

The present invention relates to a highly active cystathionine-γ-synthase mutant and its application. In order to overcome the problem of low L-methionine synthesis efficiency caused by low cystathionine-γ-synthase activity, the present invention will provide a highly active cystathionine-γ-synthase mutant, and Enzymes for L‑methionine biosynthesis. The cystathionine-γ-synthase mutant MetB M is obtained by mutating Q5R, F87I, E136G, V231E, F321V and A346T on the basis of wild-type cystathionine-γ-synthase derived from Escherichia coli W3110. The Km and Kcat of the enzyme are 0.13mmol/L and 138.2s ‑1 respectively, the Kcat/Km is 1063.1 (mmol/L) ‑1 S ‑1 , and the specific activity is 195.3U/mg. Substrate binding efficiency and enzyme activity are higher than wild-type MetB. The cystathionine-γ-synthase mutant was applied to the synthesis of L-methionine, which increased its yield 11 times and can be widely used in the production of L-methionine.

Description

一种胱硫醚-γ-合酶突变体及其应用A kind of cystathionine-γ-synthase mutant and its application

技术领域:Technical areas:

本发明涉及一种高活性胱硫醚-γ-合酶突变体及其应用,属于代谢工程领域。The invention relates to a highly active cystathionine-γ-synthase mutant and its application, and belongs to the field of metabolic engineering.

背景技术:Background technique:

L-蛋氨酸,又称“L-甲硫氨酸”,是八种必需氨基酸中唯一的含硫氨基酸,与L-苏氨酸、L-异亮氨酸和L-赖氨酸同属于天冬氨酸家族氨基酸。L-甲硫氨酸在许多机体功能中扮演了极其重要角色。除了其在蛋白质生物合成中起作用以外,也可参与甲基的转移、磷的代谢以及硒和锌的生物利用。L-甲硫氨酸也可被直接用于治疗医学疾病,如过敏和风湿热。但L-甲硫氨酸在高等动物体内无法自身合成,需从外界摄取。如今,工业生产的L-甲硫氨酸大多数被添加至动物饲料中,以促进动物生长繁殖,降低生产成本。正是由于L-甲硫氨酸及其衍生物特殊的生物、化学活性,使其被广泛应用于食品、医药、农业、化妆品以及饲料添加等行业。目前L-甲硫氨酸主要通过化学法合成,但是存在合成原料有毒,能耗高,反应条件苛刻,提取过程复杂以及污染环境等问题。相比之下,微生物发酵法生产成本低,条件温和,并且绿色环保,近年来该法被广泛应用于生产各种氨基酸。L-methionine, also known as "L-methionine", is the only sulfur-containing amino acid among the eight essential amino acids. It belongs to Asparagus together with L-threonine, L-isoleucine and L-lysine. Acid family of amino acids. L-methionine plays an important role in many body functions. In addition to its role in protein biosynthesis, it is also involved in the transfer of methyl groups, phosphorus metabolism, and the bioavailability of selenium and zinc. L-methionine can also be used directly to treat medical conditions such as allergies and rheumatic fever. However, L-methionine cannot be synthesized by itself in the body of higher animals and needs to be ingested from the outside. Today, most industrially produced L-methionine is added to animal feed to promote animal growth and reproduction and reduce production costs. It is precisely because of the special biological and chemical activities of L-methionine and its derivatives that they are widely used in food, medicine, agriculture, cosmetics, feed additives and other industries. At present, L-methionine is mainly synthesized through chemical methods, but there are problems such as toxic synthetic raw materials, high energy consumption, harsh reaction conditions, complex extraction processes, and environmental pollution. In contrast, microbial fermentation has low production costs, mild conditions, and is green and environmentally friendly. In recent years, this method has been widely used to produce various amino acids.

在L-甲硫氨酸生物合成途径中,metB编码的胱硫醚-γ-合酶是关键酶。该酶催化L-半胱氨酸和O-琥珀酰-高丝氨酸生成胱硫醚和琥珀酸。胱硫醚在β-胱硫醚酶作用下形成L-高半胱氨酸,接着L-高半胱氨酸在高半胱氨酸甲基转移酶催化下形成L-甲硫氨酸。胱硫醚-γ-合酶活性不足在很大程度上限制了L-甲硫氨酸高效合成。In the L-methionine biosynthetic pathway, cystathionine-γ-synthase encoded by metB is a key enzyme. This enzyme catalyzes L-cysteine and O-succinyl-homoserine to generate cystathionine and succinic acid. Cystathionine forms L-homocysteine under the action of β-cystathionase, and then L-homocysteine forms L-methionine under the catalysis of homocysteine methyltransferase. Insufficient cystathionine-γ-synthase activity limits the efficient synthesis of L-methionine to a great extent.

发明内容:Contents of the invention:

为了克服胱硫醚-γ-合酶活性低引起的L-甲硫氨酸合成效率低等不足的问题,本发明将提供一种高活性胱硫醚-γ-合酶突变体,并将该酶应用于L-甲硫氨酸生物合成。In order to overcome the problem of low L-methionine synthesis efficiency caused by low cystathionine-γ-synthase activity, the present invention will provide a highly active cystathionine-γ-synthase mutant, and Enzyme used in L-methionine biosynthesis.

本发明解决上述问题的技术方案之一是:提供一种高活性胱硫醚-γ-合酶突变体MetBM,氨基酸序列如SEQ ID NO.1所示,所述胱硫醚-γ-合酶突变体MetBM是在SEQ ID NO.3所示的大肠杆菌(Escherichia coli)W3110来源的野生型胱硫醚-γ-合酶的基础上发生Q5R、F87I、E136G、V231E、F321V及A346T突变获得。One of the technical solutions of the present invention to solve the above problems is to provide a highly active cystathionine-γ-synthase mutant MetB M , the amino acid sequence of which is shown in SEQ ID NO. 1, and the cystathionine-γ-synthase mutant MetB M The enzyme mutant MetB M is based on the wild-type cystathionine-γ-synthase derived from Escherichia coli W3110 shown in SEQ ID NO. 3, with Q5R, F87I, E136G, V231E, F321V and A346T mutations. get.

本发明提供的技术方案之二,是所述胱硫醚-γ-合酶突变体MetBM的编码基因;The second technical solution provided by the present invention is the encoding gene of the cystathionine-γ-synthase mutant MetB M ;

进一步地,所述胱硫醚-γ-合酶突变体的编码基因为metBM,核苷酸序列如序列表SEQ ID NO.2所示。Further, the encoding gene of the cystathionine-γ-synthase mutant is metB M , and the nucleotide sequence is shown in the sequence list SEQ ID NO. 2.

本发明提供的技术方案之三,是所述胱硫醚-γ-合酶突变体MetBM的应用,特别是在生产L-甲硫氨酸中的应用。The third technical solution provided by the present invention is the application of the cystathionine-γ-synthase mutant MetB M , especially in the production of L-methionine.

有益效果:Beneficial effects:

本发明所述metBM基因编码的胱硫醚-γ-合酶MetBM具有如下特点:该酶Km和Kcat分别为0.13mmol/L和138.2s-1,Kcat/Km为1063.1(mmol/L)-1S-1,比活力为195.3U/mg。底物结合效率及酶活力均高于野生型MetB。The cystathionine-γ-synthase MetB M encoded by the metB M gene of the present invention has the following characteristics: the Km and Kcat of the enzyme are 0.13mmol/L and 138.2s -1 respectively, and the Kcat/Km is 1063.1 (mmol/L) -1 S -1 , specific activity is 195.3U/mg. Substrate binding efficiency and enzyme activity are higher than wild-type MetB.

附图说明:Picture description:

图1高活性胱硫醚-γ-合酶突变体筛选原理示意图;Figure 1 Schematic diagram of the screening principle of highly active cystathionine-γ-synthase mutants;

图2菌株生物量。Figure 2 Strain biomass.

具体实施方式:Detailed ways:

为了使本专利的目的、技术方案及优点更加清楚明白,以下结合具体实施例,对本专利进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本专利,并不用于限定本发明。In order to make the purpose, technical solutions and advantages of this patent more clear, this patent will be further described in detail below in conjunction with specific embodiments. It should be understood that the specific embodiments described here are only used to explain the patent and are not intended to limit the invention.

本发明中,所述突变体MetBM筛选过程如下:In the present invention, the screening process of the mutant MetB M is as follows:

利用易错PCR获得胱硫醚-γ-合酶编码基因metB突变体库,将其连接至pUC19,获得含metB突变体的重组质粒库(命名为pUC-metBs)。然后以大肠杆菌Escherichia coliW3110为出发菌株,依次敲除其胱硫醚-γ-合酶编码基因metB及琥珀酰-CoA编码基因sucCD(获得菌株MET02)。将pUC-metBs库转化至MET02,涂布于固体筛选培养基。挑选较大的菌落并接种于96孔细胞培养板液体筛选培养基。选取生长快的菌株,提取质粒,PCR扩增胱硫醚-γ-合酶突变体编码基因。将PCR产物回收后进行测序,发现该酶相对于来自大肠杆菌E.coli W3110的野生型胱硫醚-γ-合酶发生如下氨基酸突变:Q5R、F87I、E136G、V231E、F321V、A346T。Error-prone PCR was used to obtain a metB mutant library of the cystathionine-γ-synthase encoding gene, which was connected to pUC19 to obtain a recombinant plasmid library containing metB mutants (named pUC-metBs). Then, Escherichia coli W3110 was used as the starting strain, and its cystathionine-γ-synthase encoding gene metB and succinyl-CoA encoding gene sucCD were sequentially deleted (strain MET02 was obtained). The pUC-metBs library was transformed into MET02 and spread on solid selection medium. Larger colonies were picked and inoculated into 96-well cell culture plates in liquid screening medium. The fast-growing strain was selected, the plasmid was extracted, and the gene encoding the cystathionine-γ-synthase mutant was amplified by PCR. The PCR product was recovered and sequenced, and it was found that the enzyme had the following amino acid mutations relative to the wild-type cystathionine-γ-synthase from E. coli W3110: Q5R, F87I, E136G, V231E, F321V, and A346T.

在本发明中采用如下定义:The following definitions are used in this invention:

1、氨基酸和DNA核酸序列的命名法1. Nomenclature of amino acids and DNA nucleic acid sequences

使用氨基酸残基的公认IUPAC命名法,采用三字母/单字母代码形式。DNA核酸序列采用公认IUPAC命名法。Use the accepted IUPAC nomenclature for amino acid residues in three-letter/single-letter code format. DNA nucleic acid sequences adopt the recognized IUPAC nomenclature.

2、胱硫醚-γ-合酶突变体的标识2. Identification of cystathionine-γ-synthase mutants

采用“原始氨基酸+位置+替换的氨基酸”来表胱硫醚-γ-合酶突变体中突变的氨基酸。如Q5R,表示位置5的氨基酸由野生型胱硫醚-γ-合酶的Gln替换成Arg,Q5表示第5位的氨基酸为Gln,位置的编号对应于SEQ ID NO.3中野生型胱硫醚-γ-合酶的氨基酸序列编号。“Original amino acid + position + substituted amino acid” is used to represent the mutated amino acids in cystathionine-γ-synthase mutants. For example, Q5R means that the amino acid at position 5 is replaced by Arg from Gln of wild-type cystathionine-γ-synthase. Q5 means that the amino acid at position 5 is Gln. The number of the position corresponds to the wild-type cystathionine in SEQ ID NO.3. Amino acid sequence number of ether-gamma-synthase.

本发明中,metB代表野生型胱硫醚-γ-合酶合成酶编码基因(SEQ ID NO.4所示),MetB代表野生型胱硫醚-γ-合酶(SEQ ID NO.3所示);metBM为胱硫醚-γ-合酶突变体基因(SEQ ID NO.2所示);MetBM为胱硫醚-γ-合酶突变体(SEQ ID NO.1所示)。突变前后的氨基酸对照如下表:In the present invention, metB represents the wild-type cystathionine-γ-synthase synthase encoding gene (shown in SEQ ID NO. 4), and MetB represents the wild-type cystathionine-γ-synthase (shown in SEQ ID NO. 3). ); metB M is a cystathionine-γ-synthase mutant gene (shown in SEQ ID NO. 2); MetB M is a cystathionine-γ-synthase mutant (shown in SEQ ID NO. 1). The comparison of amino acids before and after mutation is as follows:

胱硫醚-γ-合酶cystathionine-gamma-synthase 氨基酸amino acids MetBMetB Q5、F87、E136、V231、F321、A346Q5, F87, E136, V231, F321, A346 MetBM M Q5R、F87I、E136G、V231E、F321V、A346TQ5R, F87I, E136G, V231E, F321V, A346T

所述胱硫醚-γ-合酶突变体MetBM,具有如下酶学特性:Km、Kcat及比活力分别为0.13mmol/L、138.2s-1及195.3U/mg,Kcat/Km为1063.1(mmol/L)-1S-1The cystathionine-γ-synthase mutant MetB M has the following enzymatic properties: Km, Kcat and specific activity are 0.13mmol/L, 138.2s -1 and 195.3U/mg respectively, Kcat/Km is 1063.1 ( mmol/L) -1 S -1 .

本发明涉及的部分基因或氨基酸序列如下:Part of the genes or amino acid sequences involved in the present invention are as follows:

胱硫醚-γ-合酶合成酶突变体MetBM,SEQ ID NO.1:Cystathionine-γ-synthase synthase mutant MetB M , SEQ ID NO. 1:

MTRKRATIAVRSGLNDDEQYGCVVPPIHLSSTYNFTGFNEPRAHDYSRRGNPTRDVVQRALAELEGGAGAVLTNTGMSAIHLVTTVILKPGDLLVAPHDCYGGSYRLFDSLAKRGCYRVLFVDQGDEQALRAALAGKPKLVLVESPSNPLLRVVDIAKICHLAREVGAVSVVDNTFLSPALQNPLALGADLVLHSCTKYLNGHSDVVAGVVIAKDPDVVTELAWWANNIGETGGAFDSYLLLRGLRTLVPRMELAQRNAQAIVKYLQTQPLVKKLYHPSLPENQGHEIAARQQKGFGAMLSFELDGDEQTLRRFLGGLSLVTLAESLGGVESLISHAATMTHAGMTPEARAAAGISETLLRISTGIEDGEDLIADLENGFRAANKG。MTRKRATIAVRSGLNDDEQYGCVVPPIHLSSTYNFTGFNEPRAHDYSRRGNPTRDVVQRALAELEGGAGAVLTNTGMSAIHLVTTVILKPGDLLVAPHDCYGGSYRLFDSLAKRGCYRVLFVDQGDEQALRAALAGKPKLVLVESPSNPLLRVVDIAKICHLAREVGAVSVVDNTFLSPALQNPLALGADLVLHSCTKYLNGHSDVVAG VVIAKDPDVVTELAWWANNIGETGGAFDSYLLLRGLRTLVPRMELAQRNAQAIVKYLQTQPLVKKLYHPSLPENQGHEIAARQQKGFGAMLSFELDGDEQTLRRFLGGLSLVTLAESLGGVESLISHAATMTHAGMTPEARAAAGISETLLRISTGIEDGEDLIADLENGFRAANKG.

胱硫醚-γ-合酶突变体基因metBM,SEQ ID NO.2:Cystathionine-γ-synthase mutant gene metB M , SEQ ID NO.2:

ATGACGCGTAAACGGGCCACCATCGCAGTGCGTAGCGGGTTAAATGACGACGAACAGTATGGTTGCGTTGTCCCACCGATCCATCTTTCCAGCACCTATAACTTTACCGGATTTAATGAACCGCGCGCGCATGATTACTCGCGTCGCGGCAACCCAACGCGCGATGTGGTTCAGCGTGCGCTGGCAGAACTGGAAGGTGGTGCTGGTGCAGTACTTACTAATACCGGCATGTCCGCGATTCACCTGGTAACGACCGTCATTTTGAAACCTGGCGATCTGCTGGTTGCGCCGCACGACTGCTACGGCGGTAGCTATCGCCTGTTCGACAGTCTGGCGAAACGCGGTTGCTATCGCGTGTTGTTTGTTGATCAAGGCGATGAACAGGCATTACGGGCAGCGCTGGCAGGAAAACCCAAACTGGTACTGGTAGAAAGCCCAAGTAATCCATTGTTACGCGTCGTGGATATTGCGAAAATCTGCCATCTGGCAAGGGAAGTCGGGGCGGTGAGCGTGGTGGATAACACCTTCTTAAGCCCGGCATTACAAAATCCGCTGGCATTAGGTGCCGATCTGGTGTTGCATTCATGCACGAAATATCTGAACGGTCACTCAGACGTAGTGGCCGGCGTGGTGATTGCTAAAGACCCGGACGTTGTCACTGAACTGGCCTGGTGGGCAAACAATATTGGCGAGACGGGCGGCGCGTTTGACAGCTATCTGCTGCTACGTGGGTTGCGAACGCTGGTGCCGCGTATGGAGCTGGCGCAGCGCAACGCGCAGGCGATTGTGAAATACCTGCAAACCCAGCCGTTGGTGAAAAAACTGTATCACCCGTCGTTGCCGGAAAATCAGGGGCATGAAATTGCCGCGCGCCAGCAAAAAGGCTTTGGCGCAATGTTGAGTTTTGAACTGGATGGCGATGAGCAGACGCTGCGTCGTTTCCTGGGCGGGCTGTCGTTGGTTACGCTGGCGGAATCATTAGGGGGAGTGGAAAGTTTAATCTCTCACGCCGCAACCATGACACATGCAGGCATGACACCAGAAGCGCGTGCTGCCGCCGGGATCTCCGAGACGCTGCTGCGTATCTCCACCGGTATTGAAGATGGCGAAGATTTAATTGCCGACCTGGAAAATGGCTTCCGGGCTGCAAACAAGGGGTAA。ATGACGCGTAAACGGGCCACCATCGCAGTGCGTAGCGGGTTAAATGACGACGAACAGTATGGTTGCGTTGTCCCACCGATCCATCTTTCCAGCACCTATAACTTTACCGGATTTAATGAACCGCGCGCGCATGATTACTCGCGTCGCGGCAACCCAACGCGCGATGTGGTTCAGCGTGCGCTGGCAGAACTGGAAGGTGGTGCTGGTGCAGTACTTACTAATACCGGCATGTCCGCGATTCACCTGGTAACGACCGT CATTTTGAAACCTGGCGATCTGCTGGTTGCGCCGCACGACTGCTACGGCGGTAGCTATCGCCTGTTCGACAGTCTGGCGAAACGCGGTTGCTATCGCGTGTTGTTTGTTGATCAAGGCGATGAACAGGCATTACGGGCAGCGCTGGCAGGAAAACCCAAACTGGTACTGGTAGAAAGCCCAAGTAATCCATTGTTACGCGTCGTGGATATTGCGAAAATCTGCCATCTGGCAAGGGAAGTCGGGGCGGTGAGCGTGGT GGATAACACCTTCTTAAGCCCGGCATTACAAAATCCGCTGGCATTAGGTGCCGATCTGGTGTTGCATTCATGCACGAAATATCTGAACGGTCACTCAGACGTAGTGGCCGGCGTGGTGATTGCTAAAGACCCGGACGTTGTCACTGAACTGGCCTGGTGGGCAAACAATATTGGCGAGACGGGGCGCGTTTGACAGCTATCTGCTGCTACGTGGGTTGCGAACGCTGGTGCCGCGTATGGAGCTGGCGCAGCGCAACG CGCAGGCGATTGTGAAATACCTGCAAACCCAGCCGTTGGTGAAAAAAACTGTATCACCCGTCGTTGCCGGAAAATCAGGGGCATGAAATTGCCGCGCGCCAGCAAAAAGGCTTTGGCGCAATGTTGAGTTTTGAACTGGATGGCGATGAGCAGACGCTGCGTCGTTTCCTGGGCGGGCTGTCGTTGGTTACGCTGGCGGAATCATTAGGGGGAGTGGAAAGTTTAATCTCTCACGCCGCAACCATGACACATGCAGGCAT GACACCAGAAGCGCGTGCTGCCGCCGGGATCTCCGAGACGCTGCTGCGTATCTCCACCGGTATTGAAGATGGCGAAGATTTAATTGCCGACCTGGAAAATGGCTTCCGGGCTGCAAACAAGGGGTAA.

野生型胱硫醚-γ-合酶MetB,SEQ ID NO.3:Wild-type cystathionine-γ-synthase MetB, SEQ ID NO.3:

MTRKQATIAVRSGLNDDEQYGCVVPPIHLSSTYNFTGFNEPRAHDYSRRGNPTRDVVQRALAELEGGAGAVLTNTGMSAIHLVTTVFLKPGDLLVAPHDCYGGSYRLFDSLAKRGCYRVLFVDQGDEQALRAALAEKPKLVLVESPSNPLLRVVDIAKICHLAREVGAVSVVDNTFLSPALQNPLALGADLVLHSCTKYLNGHSDVVAGVVIAKDPDVVTELAWWANNIGVTGGAFDSYLLLRGLRTLVPRMELAQRNAQAIVKYLQTQPLVKKLYHPSLPENQGHEIAARQQKGFGAMLSFELDGDEQTLRRFLGGLSLFTLAESLGGVESLISHAATMTHAGMAPEARAAAGISETLLRISTGIEDGEDLIADLENGFRAANKG。MTRKQATIAVRSGLNDDEQYGCVVPPIHLSSTYNFTGFNEPRAHDYSRRGNPTRDVVQRALAELEGGAGAVLTNTGMSAIHLVTTVFLKPGDLLVAPHDCYGGSYRLFDSLAKRGCYRVLFVDQGDEQALRAALAEKPKLVLVESPSNPLLRVVDIAKICHLAREVGAVSVVDNTFLSPALQNPLALGADLVLHSCTKYLNGHSDVVAG VVIAKDPDVVTELAWWANNIGVTGGAFDSYLLLRGLRTLVPRMELAQRNAQAIVKYLQTQPLVKKLYHPSLPENQGHEIAARQQKGFGAMLSFELDGDEQTLRRFLGGLSLFTLAESLGGVESLISHAATMTHAGMAPEARAAAGISETLLRISTGIEDGEDLIADLENGFRAANKG.

野生型胱硫醚-γ-合酶合成酶编码基因metB,SEQ ID NO.4:Wild-type cystathionine-γ-synthase synthetase encoding gene metB, SEQ ID NO.4:

ATGACGCGTAAACAGGCCACCATCGCAGTGCGTAGCGGGTTAAATGACGACGAACAGTATGGTTGCGTTGTCCCACCGATCCATCTTTCCAGCACCTATAACTTTACCGGATTTAATGAACCGCGCGCGCATGATTACTCGCGTCGCGGCAACCCAACGCGCGATGTGGTTCAGCGTGCGCTGGCAGAACTGGAAGGTGGTGCTGGTGCAGTACTTACTAATACCGGCATGTCCGCGATTCACCTGGTAACGACCGTCTTTTTGAAACCTGGCGATCTGCTGGTTGCGCCGCACGACTGCTACGGCGGTAGCTATCGCCTGTTCGACAGTCTGGCGAAACGCGGTTGCTATCGCGTGTTGTTTGTTGATCAAGGCGATGAACAGGCATTACGGGCAGCGCTGGCAGAAAAACCCAAACTGGTACTGGTAGAAAGCCCAAGTAATCCATTGTTACGCGTCGTGGATATTGCGAAAATCTGCCATCTGGCAAGGGAAGTCGGGGCGGTGAGCGTGGTGGATAACACCTTCTTAAGCCCGGCATTACAAAATCCGCTGGCATTAGGTGCCGATCTGGTGTTGCATTCATGCACGAAATATCTGAACGGTCACTCAGACGTAGTGGCCGGCGTGGTGATTGCTAAAGACCCGGACGTTGTCACTGAACTGGCCTGGTGGGCAAACAATATTGGCGTGACGGGCGGCGCGTTTGACAGCTATCTGCTGCTACGTGGGTTGCGAACGCTGGTGCCGCGTATGGAGCTGGCGCAGCGCAACGCGCAGGCGATTGTGAAATACCTGCAAACCCAGCCGTTGGTGAAAAAACTGTATCACCCGTCGTTGCCGGAAAATCAGGGGCATGAAATTGCCGCGCGCCAGCAAAAAGGCTTTGGCGCAATGTTGAGTTTTGAACTGGATGGCGATGAGCAGACGCTGCGTCGTTTCCTGGGCGGGCTGTCGTTGTTTACGCTGGCGGAATCATTAGGGGGAGTGGAAAGTTTAATCTCTCACGCCGCAACCATGACACATGCAGGCATGGCACCAGAAGCGCGTGCTGCCGCCGGGATCTCCGAGACGCTGCTGCGTATCTCCACCGGTATTGAAGATGGCGAAGATTTAATTGCCGACCTGGAAAATGGCTTCCGGGCTGCAAACAAGGGGTAA。ATGACGCGTAAACAGGCCACCATCGCAGTGCGTAGCGGGTTAAATGACGACGAACAGTATGGTTGCGTTGTCCCACCGATCCATCTTTCCAGCACCTATAACTTTACCGGATTTAATGAACCGCGCGCGCATGATTACTCGCGTCGCGGCAACCCAACGCGCGATGTGGTTCAGCGTGCGCTGGCAGAACTGGAAGGTGGTGCTGGTGCAGTACTTACTAATACCGGCATGTCCGCGATTCACCTGGTAACGACCGT CTTTTTGAAACCTGGCGATCTGCTGGTTGCGCCGCACGACTGCTACGGCGGTAGCTATCGCCTGTTCGACAGTCTGGCGAAACGCGGTTGCTATCGCGTGTTGTTTGTTGATCAAGGCGATGAACAGGCATTACGGGCAGCGCTGGCAGAAAAACCCAAACTGGTACTGGTAGAAAGCCCAAGTAATCCATTGTTACGCGTCGTGGATATTGCGAAAATCTGCCATCTGGCAAGGGAAGTCGGGGCGGTGAGCGTGG TGGATAACACCTTCTTAAGCCCGGCATTACAAAATCCGCTGGCATTAGGTGCCGATCTGGTGTTGCATTCATGCACGAAATATCTGAACGGTCACTCAGACGTAGTGGCCGGCGTGGTGATTGCTAAAGACCCGGACGTTGTCACTGAACTGGCCTGGTGGGCAAACAATATTGGCGTGACGGGCGGCGCGTTTGACAGCTATCTGCTGCTACGTGGGTTGCGAACGCTGGTGCCGCGTATGGAGCTGGCGCAGCGCAA CGCGCAGGCGATTGTGAAATACCTGCAAACCCAGCCGTTGGTGAAAAAAACTGTATCACCCGTCGTTGCCGGAAAATCAGGGGCATGAAATTGCCGCGCGCCAGCAAAAAGGCTTTGGCGCAATGTTGAGTTTTGAACTGGATGGCGATGAGCAGACGCTGCGTCGTTTCCTGGGCGGGCTGTCGTTGTTTACGCTGGCGGAATCATTAGGGGGAGTGGAAAGTTTAATCTCTCACGCCGCAACCATGACACATGCAGG CATGGCACCAGAAGCGCGTGCTGCCGCCGGGATCTCCGAGACGCTGCTGCGTATCTCCACCGGTATTGAAGATGGCGAAGATTTAATTGCCGACCTGGAAAATGGCTTCCGGGCTGCAAACAAGGGGTAA.

以下通过具体实施例对本发明作进一步地解释说明。The present invention will be further explained below through specific examples.

实施例1:metB敲除菌MET01的构建Example 1: Construction of metB knockout strain METO1

(1)重叠片段UmetB-DmetB的构建(1) Construction of overlapping fragments U metB -D metB

以野生型大肠杆菌W3110基因组为模板,分别利用引物metB-1/metB-2及metB-3/metB-4扩增metB的上下游同源臂,然后利用重叠PCR获得metB上下游同源臂融合片段UmetB-DmetBUsing the wild-type E. coli W3110 genome as a template, primers metB-1/metB-2 and metB-3/metB-4 were used to amplify the upstream and downstream homology arms of metB, and then overlapping PCR was used to obtain the fusion of the upstream and downstream homology arms of metB. Fragment U metB -D metB .

(2)pGRB-metB质粒的构建(2)Construction of pGRB-metB plasmid

根据metB序列设计并合成gRNA20bp正向和反向序列pG-metB-1/pG-metB-2,二者退火后利用重组试剂盒ClonExpress IIOne Step Cloning Kit(南京诺唯赞医疗科技有限公司)连接至质粒pGRB,经转化E.coli DH5α、含100μg/mL氨苄青霉素的LB固体培养基筛选、测序鉴定获得重组质粒pGRB-metB。The gRNA 20bp forward and reverse sequences pG-metB-1/pG-metB-2 were designed and synthesized based on the metB sequence. After annealing, the two were connected to Plasmid pGRB was transformed into E.coli DH5α, screened in LB solid medium containing 100 μg/mL ampicillin, and sequenced to identify the recombinant plasmid pGRB-metB.

(3)metB敲除菌MET01的构建(3) Construction of metB knockout strain MET01

将重组质粒pGRB-metB和融合片段UmetB-DmetB电转化至含有pREDcas9质粒的E.coliW3110感受态细胞中,复苏后涂布于含100μg/mL壮观霉素、氨苄青霉素的LB固体培养上,32℃恒温过夜培养。次日用引物metB-1/metB-4进行菌落PCR鉴定,筛选阳性转化子。活化转化子,并添加终浓度为0.2mmol/L的阿拉伯糖,32℃振荡培养过夜,使pGRB-metB丢失;然后42℃振荡培养过夜,使pREDcas9质粒丢失,获得metB敲除菌株MET01。The recombinant plasmid pGRB-metB and the fusion fragment U metB -D metB were electrotransformed into E.coliW3110 competent cells containing the pREDcas9 plasmid, and after recovery, spread on LB solid culture containing 100 μg/mL spectinomycin and ampicillin. Incubate at 32°C overnight. The next day, colony PCR was used to identify the colonies using primers metB-1/metB-4, and positive transformants were screened. Activate the transformant, add arabinose at a final concentration of 0.2 mmol/L, and culture with shaking at 32°C overnight to cause the loss of pGRB-metB; then culture with shaking at 42°C overnight to lose the pREDcas9 plasmid and obtain the metB knockout strain MET01.

实施例2:sucCD敲除菌MET02的构建Example 2: Construction of sucCD knockout strain MET02

如图1所示,由sucCD编码的琥珀酰-CoA合成酶催化琥珀酸-CoA生成琥珀酸。因此,敲除菌株MET01的sucCD基因后,菌株因琥珀酸缺陷而无法在筛选培养基上生长。胱硫醚-γ-合酶催化L-半胱氨酸和O-琥珀酰-高丝氨酸生成胱硫醚和琥珀酸,故若在敲除sucCD基因的MET01菌株中回补metB,则能够为TCA循环提供琥珀酸,菌株恢复生长。且胱硫醚-γ-合酶活性越高,则琥珀酸生成量越大,菌株生长越快。利用此原理,通过筛选生长快(菌落大)的菌株来获得活性高的胱硫醚-γ-合酶突变体。As shown in Figure 1, succinyl-CoA synthase encoded by sucCD catalyzes succinate-CoA to generate succinate. Therefore, after knocking out the sucCD gene of strain MET01, the strain cannot grow on the selection medium due to succinic acid deficiency. Cystathionine-γ-synthase catalyzes L-cysteine and O-succinyl-homoserine to generate cystathionine and succinic acid. Therefore, if metB is restored in the MET01 strain with the sucCD gene knocked out, it can produce TCA. The cycle provides succinic acid and the strain resumes growth. And the higher the cystathionine-γ-synthase activity, the greater the amount of succinic acid produced and the faster the strain grows. Using this principle, cystathionine-γ-synthase mutants with high activity are obtained by screening strains that grow quickly (large colonies).

(1)重叠片段UsucCD-DsucCD的构建(1) Construction of overlapping fragment U sucCD -D sucCD

以野生型大肠杆菌W3110基因组为模板,分别利用引物sucCD-1/sucCD-2及sucCD-3/sucCD-4扩增sucCD的上下游同源臂,然后利用重叠PCR获得sucCD上下游同源臂融合片段UsucCD-DsucCDUsing the wild-type E. coli W3110 genome as a template, primers sucCD-1/sucCD-2 and sucCD-3/sucCD-4 were used to amplify the upstream and downstream homology arms of sucCD, and then overlapping PCR was used to obtain sucCD upstream and downstream homology arm fusion. Fragment U sucCD -D sucCD .

(2)pGRB-sucCD质粒的构建(2) Construction of pGRB-sucCD plasmid

根据sucCD序列设计并合成gRNA20bp正向和反向序列pG-sucCD-1/pG-sucCD-2,二者退火后利用重组试剂盒ClonExpress IIOne Step Cloning Kit(南京诺唯赞医疗科技有限公司)连接至质粒pGRB,经转化E.coli DH5α、含100μg/mL氨苄青霉素的LB固体培养基筛选、测序鉴定获得重组质粒pGRB-sucCD。The gRNA 20bp forward and reverse sequences pG-sucCD-1/pG-sucCD-2 were designed and synthesized based on the sucCD sequence. After annealing, the two were connected using the recombination kit ClonExpress IIOne Step Cloning Kit (Nanjing Novozan Medical Technology Co., Ltd.) Plasmid pGRB was transformed into E.coli DH5α, screened in LB solid medium containing 100 μg/mL ampicillin, and sequenced to identify the recombinant plasmid pGRB-sucCD.

(3)sucCD敲除菌MET02的构建(3) Construction of sucCD knockout strain MET02

将重组质粒pGRB-sucCD和融合片段UsucCD-DsucCD电转化至含有pREDcas9质粒的MET01感受态细胞中,复苏后涂布于含100μg/mL壮观霉素、氨苄青霉素的LB固体培养上,32℃恒温过夜培养。次日用引物sucCD-1/sucCD-4进行菌落PCR鉴定,筛选阳性转化子。活化转化子,并添加终浓度为0.2mmol/L的阿拉伯糖,32℃振荡培养过夜,使pGRB-sucCD丢失;然后42℃振荡培养过夜,使pREDcas9质粒丢失,获得菌株MET02。The recombinant plasmid pGRB-sucCD and the fusion fragment U sucCD -D sucCD were electrotransformed into MET01 competent cells containing the pREDcas9 plasmid. After recovery, they were spread on LB solid culture containing 100 μg/mL spectinomycin and ampicillin at 32°C. Incubate at constant temperature overnight. The next day, colony PCR identification was performed using primers sucCD-1/sucCD-4 to screen positive transformants. Activate the transformant, add arabinose at a final concentration of 0.2 mmol/L, and culture with shaking at 32°C overnight to cause the loss of pGRB-sucCD; then culture with shaking at 42°C overnight to lose the pREDcas9 plasmid and obtain strain MET02.

实施例3:metBM的筛选Example 3: Screening of metB M

以野生型大肠杆菌W3110基因组为模板,利用引物ER-1/ER-2来进行易错PCR(即用型易错PCR试剂盒,北京天恩泽基因科技有限公司)扩增获得metB突变体库。易错PCR反应体系为30μL:易错PCR Mix 3μL,dNTP 3μL,5mmol/LMnCl2 3μL,模板1μL,ER-1和ER-2各10μL,Taq DNA聚合酶1μL,去离子水补足至30μL。PCR条件为:94℃3min,1个循环;94℃1min s、45℃90s、72℃1min,30个循环。The wild-type E. coli W3110 genome was used as a template, and the primers ER-1/ER-2 were used to perform error-prone PCR (ready-to-use error-prone PCR kit, Beijing Tianenze Gene Technology Co., Ltd.) to amplify the metB mutant library. The error-prone PCR reaction system is 30 μL: 3 μL error-prone PCR Mix, 3 μL dNTP, 3 μL 5mmol/LMnCl 2 , 1 μL template, 10 μL each of ER-1 and ER-2, 1 μL Taq DNA polymerase, and deionized water to make up to 30 μL. PCR conditions were: 94°C for 3 min, 1 cycle; 94°C for 1 min s, 45°C for 90 s, and 72°C for 1 min, 30 cycles.

随后将扩增出的metB突变体与表达质粒pUC19(经Hind III酶切)重组连接,获得含metB突变体的重组质粒库(命名为pUC-metBs)。The amplified metB mutant was then recombinantly ligated with the expression plasmid pUC19 (digested by Hind III) to obtain a recombinant plasmid library containing the metB mutant (named pUC-metBs).

将pUC-metBs转化至MET02感受细胞中。以转化有含野生型metB的pUC质粒(命名为pUC-metB)的MET02为对照(命名为CK)。复苏后涂布于含100μg/mL氨苄青霉素的固体筛选培养基上,37℃恒温培养。次日挑取平板上较大的单菌落480个转接于96孔细胞培养板含氨苄青霉素(100μg/mL)的液体筛选培养基,于37℃振荡培养24h。采用酶标仪测定OD600。选取OD600最高的20个菌株(分别命名为M1-M20),以1%的接种量接种于含5mL液体筛选培养基的摇管中进行复筛,于37℃振荡培养24h后采用分光光度计测定OD600,结果如图2所示。其中M4的OD600值最高(1.89),比对照菌株高1.17倍。pUC-metBs was transformed into MET02 sensor cells. MET02 transformed with pUC plasmid containing wild-type metB (named pUC-metB) was used as a control (named CK). After recovery, the cells were spread on solid screening medium containing 100 μg/mL ampicillin and cultured at a constant temperature of 37°C. The next day, 480 larger single colonies on the plate were picked and transferred to a 96-well cell culture plate in a liquid selection medium containing ampicillin (100 μg/mL), and cultured with shaking at 37°C for 24 hours. Use a microplate reader to measure OD 600 . Select the 20 strains with the highest OD 600 (named M1-M20 respectively), inoculate them into shake tubes containing 5 mL liquid screening medium at an inoculum volume of 1% for re-screening, and use a spectrophotometer after shaking culture at 37°C for 24 hours. OD 600 was measured and the results are shown in Figure 2. Among them, M4 had the highest OD 600 value (1.89), which was 1.17 times higher than the control strain.

提取M4中的质粒,对其突变体metBM进行测序(该质粒命名为pUC-metBM)。核苷酸序列结果SEQ ID NO.2所示,对应的氨基酸序列如SEQ ID NO.1所示。The plasmid in M4 was extracted and its mutant metB M was sequenced (the plasmid was named pUC-metB M ). The nucleotide sequence result is shown in SEQ ID NO.2, and the corresponding amino acid sequence is shown in SEQ ID NO.1.

发现该酶相对于来自大肠杆菌Escherichia coli W3110的野生型胱硫醚-γ-合酶发生如下氨基酸突变:Q5R、F87I、E136G、V231E、F321V、A346T。This enzyme was found to have the following amino acid mutations relative to wild-type cystathionine-γ-synthase from Escherichia coli W3110: Q5R, F87I, E136G, V231E, F321V, A346T.

固体筛选培养基:葡萄糖10g/L,MgSO4 0.24g/L,KH2PO4 2.5g/L,(NH4)2SO45g/L,FeSO4 2g/L,琼脂20g/L,去离子水1000mL,pH 6.5-7.0。Solid screening medium: glucose 10g/L, MgSO 4 0.24g/L, KH 2 PO 4 2.5g/L, (NH 4 ) 2 SO 4 5g/L, FeSO 4 2g/L, agar 20g/L, deionized 1000mL of water, pH 6.5-7.0.

液体筛选培养基:葡萄糖10g/L,MgSO4 0.24g/L,KH2PO4 2.5g/L,(NH4)2SO45g/L,FeSO4 2g/L,去离子水1000mL,pH 6.5-7.0。Liquid screening medium: glucose 10g/L, MgSO 4 0.24g/L, KH 2 PO 4 2.5g/L, (NH 4 ) 2 SO 4 5g/L, FeSO 4 2g/L, deionized water 1000mL, pH 6.5 -7.0.

实施例4:胱硫醚-γ-合酶的酶学特性分析Example 4: Analysis of enzymatic properties of cystathionine-γ-synthase

分别以pUC-metB和pUC-metBM为模板,利用引物CGS-1和CGS-2PCR扩增metB和metBM,电泳回收后利用重组试剂盒ClonExpress IIOne Step Cloning Kit(南京诺唯赞医疗科技有限公司)连接至经Sac I酶切后的表达载体pET-28a,获得质粒p28-metB和p28-metBM。分别将其转化至E.coli BL21(DE3)感受态细胞中获得重组菌株DE-CGS和DE-CGSMUsing pUC-metB and pUC-metB M as templates respectively, primers CGS-1 and CGS-2 were used to PCR amplify metB and metB M. After electrophoresis recovery, the recombination kit ClonExpress IIOne Step Cloning Kit (Nanjing Novozan Medical Technology Co., Ltd. ) was connected to the expression vector pET-28a digested by Sac I to obtain plasmids p28-metB and p28-metB M . They were transformed into E. coli BL21 (DE3) competent cells to obtain recombinant strains DE-CGS and DE-CGS M respectively.

分别将DE-CGS和DE-CGSM种子培养物接种至LB液体培养基中,采用0.1mmol/LIPTG诱导表达4h。取1mL培养物于4℃10000g离心1min收集菌体,并用1mL缓冲液(200mmol/LTris-HCl,pH 8.1)洗涤菌体沉淀3次后再用1mL缓冲液重悬。用超声破碎仪超声破碎上述菌悬液,工作条件为:功率350W,工作时间5sec,间隔时间10sec,5个循环,于冰上操作。将破碎液于8000g 4℃离心后取上清液,采用Ni-NTA亲和层析法分离纯化重组胱硫醚-γ-合酶MetB及其突变体MetBMDE-CGS and DE-CGS M seed cultures were inoculated into LB liquid medium respectively, and expression was induced with 0.1 mmol/LIPTG for 4 h. Take 1 mL of the culture and centrifuge it at 10,000 g for 1 min at 4°C to collect the bacterial cells. Wash the bacterial pellet three times with 1 mL of buffer (200 mmol/LTris-HCl, pH 8.1) and then resuspend in 1 mL of buffer. Use an ultrasonic crusher to ultrasonically crush the above-mentioned bacterial suspension. The working conditions are: power 350W, working time 5sec, interval 10sec, 5 cycles, and operate on ice. The broken liquid was centrifuged at 8000 g and 4°C, and the supernatant was taken, and Ni-NTA affinity chromatography was used to separate and purify the recombinant cystathionine-γ-synthase MetB and its mutant MetB M .

取适量重组酶液测定其酶活性。反应条件为:50mmol/L Tris-HCl溶液(pH7.8),含有20mmol/L O-琥珀酰-高丝氨酸,0.025-20mmol/L L-半胱氨酸(酶活测定时的L-半胱氨酸浓度为20mmol/L),10μL胱硫醚-γ-合酶液,20μmol/L磷酸吡哆醛。于25℃孵育30min后用丙酮终止反应。利用高效液相法测定L-半胱氨酸消耗量。酶活力定义为:25℃、pH 7.8条件下,1分钟转化1μmol L-半胱氨酸所需的酶量为一个酶活力单位(U)。Take an appropriate amount of recombinant enzyme solution and measure its enzyme activity. The reaction conditions are: 50mmol/L Tris-HCl solution (pH7.8), containing 20mmol/L O-succinyl-homoserine, 0.025-20mmol/L L-cysteine (L-cysteine when measuring enzyme activity amino acid concentration is 20mmol/L), 10μL cystathionine-γ-synthase solution, 20μmol/L pyridoxal phosphate. After incubating at 25°C for 30 min, the reaction was terminated with acetone. L-cysteine consumption was measured using high-performance liquid chromatography. Enzyme activity is defined as: the amount of enzyme required to convert 1 μmol L-cysteine in 1 minute under the conditions of 25°C and pH 7.8 is one enzyme activity unit (U).

反应液中L-半胱氨酸的检测:反应液经8000×g离心10min后取上清液并用去离子水稀释10倍后,使用0.8%(V/V)2,4-二硝基氟苯对反应液进行衍生反应,采用高效液相色谱测定L-半胱氨酸含量,其检测条件为:Agilent C18(150mm×4.6mm,5μm),采用乙腈/醋酸钠二元梯度洗脱,柱温33℃,检测波长360nm。Detection of L-cysteine in the reaction solution: The reaction solution was centrifuged at 8000×g for 10 minutes, the supernatant was taken and diluted 10 times with deionized water, and 0.8% (V/V) 2,4-dinitrofluoride was used. Benzene was used to derivatize the reaction solution, and high-performance liquid chromatography was used to determine the L-cysteine content. The detection conditions were: Agilent C18 (150 mm × 4.6 mm, 5 μm), using acetonitrile/sodium acetate binary gradient elution, and the column The temperature is 33℃ and the detection wavelength is 360nm.

测定不同L-半胱氨酸浓度下MetB和MetBM的酶促反应速度,采用双倒数法计算酶的Km值;同时在L-半胱氨酸浓度为20mmol/L时测定酶活。具体结果见下表。The enzymatic reaction rates of MetB and MetB M were measured under different L-cysteine concentrations, and the double reciprocal method was used to calculate the Km value of the enzyme; at the same time, the enzyme activity was measured when the L-cysteine concentration was 20mmol/L. See the table below for specific results.

KmKm KcatKcat Kcat/KmKcat/Km 比酶活力(U/mg)Specific enzyme activity (U/mg) MetBMetB 0.25mmol/L0.25mmol/L 111.9s-1 111.9s -1 447.6(mmol/L)-1S-1)447.6(mmol/L) -1 S -1 ) 158.1158.1 MetBM M 0.13mmol/L0.13mmol/L 138.2s-1 138.2s -1 1063.1(mmol/L)-1S-1 1063.1(mmol/L) -1 S -1 195.3195.3

由上述结果可知,MetBM的Km和Kcat,与MetB均存在一定差异。Km越小,表示底物特异性越强;Kcat越大说明酶转化底物的速率越快。MetBM的比活力较MetB高23.5%。由此可见本发明获得的胱硫醚-γ-合酶突变体与底物的亲和度和催化效率均高于野生型胱硫醚-γ-合酶。From the above results, it can be seen that the Km and Kcat of MetB M are somewhat different from those of MetB. The smaller the Km, the stronger the substrate specificity; the larger the Kcat, the faster the enzyme converts the substrate. The specific activity of MetB M is 23.5% higher than that of MetB. It can be seen that the affinity and catalytic efficiency of the cystathionine-γ-synthase mutant obtained in the present invention to the substrate are higher than those of the wild-type cystathionine-γ-synthase.

实施例5:高活性胱硫醚-γ-合酶在L-甲硫氨酸合成中应用Example 5: Application of highly active cystathionine-γ-synthase in the synthesis of L-methionine

(1)分别以pUC-metB和pUC-metBM为模板,利用引物pS-1/pS-2分别扩增metB和metBM,利用重组试剂盒ClonExpress IIOne Step Cloning Kit(南京诺唯赞医疗科技有限公司)连接至经BamH I酶切的质粒pSTV28,获得质粒pSTV-metB和pSTV-metBM。分别将pSTV-metB和pSTV-metBM转化至大肠杆菌E.coli W3110,获得重组菌株LMT-1和LMT-2。(1) Use pUC-metB and pUC-metB M as templates, use primers pS-1/pS-2 to amplify metB and metB M respectively, and use the recombination kit ClonExpress IIOne Step Cloning Kit (Nanjing Novozan Medical Technology Co., Ltd. Company) was connected to the BamHI-digested plasmid pSTV28 to obtain plasmids pSTV-metB and pSTV-metB M . pSTV-metB and pSTV-metB M were transformed into E. coli W3110, respectively, to obtain recombinant strains LMT-1 and LMT-2.

(2)分别将LMT-1和LMT-2接种于30mL基本培养基,37℃,220rpm摇床振荡培养24h。(2) Inoculate LMT-1 and LMT-2 into 30 mL of basic medium respectively, and culture them with shaking at 37°C and 220 rpm shaker for 24 hours.

基本培养成份为:葡萄糖15g/L,MgSO4 0.3g/L,KH2PO4 2g/L,(NH4)2SO4 4g/L,MgSO4 1g/L,FeSO4·7H2O 10mg/L,MnSO4 10mg/L,去离子水1000mL,pH 6.5-7.0。The basic culture ingredients are: glucose 15g/L, MgSO 4 0.3g/L, KH 2 PO 4 2g/L, (NH 4 ) 2 SO 4 4g/L, MgSO 4 1g/L, FeSO 4 ·7H 2 O 10mg/ L, MnSO 4 10mg/L, deionized water 1000mL, pH 6.5-7.0.

(3)发酵液中L-甲硫氨酸的检测(3) Detection of L-methionine in fermentation broth

发酵液经8000×g离心10min后取上清液并用去离子水稀释后,使用0.8%(V/V)2,4-二硝基氟苯对发酵液进行衍生反应,采用高效液相色谱测定L-甲硫氨酸含量,其检测条件为:Agilent C18(150mm×4.6mm,5μm),采用乙腈/醋酸钠二元梯度洗脱,柱温33℃,检测波长360nm。The fermentation broth was centrifuged at 8000 × g for 10 minutes, the supernatant was taken and diluted with deionized water, and 0.8% (V/V) 2,4-dinitrofluorobenzene was used for derivatization of the fermentation broth, and high-performance liquid chromatography was used for determination. For L-methionine content, the detection conditions are: Agilent C18 (150mm×4.6mm, 5μm), using acetonitrile/sodium acetate binary gradient elution, the column temperature is 33°C, and the detection wavelength is 360nm.

LMT-1和LMT-2的L-甲硫氨酸产量分别为0.02g/L和0.25g/L,说明本发明获得的胱硫醚-γ-合酶突变体MetBM合成L-甲硫氨酸的能力相对于野生型得到显著提高。The L-methionine yields of LMT-1 and LMT-2 are 0.02g/L and 0.25g/L respectively, indicating that the cystathionine-γ-synthase mutant MetB M obtained in the present invention synthesizes L-methionine. Acid capacity was significantly improved relative to the wild type.

本发明实施例所用引物序列列表:List of primer sequences used in the examples of the present invention:

以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本专利构思的前提下,上述各实施方式还可以做出若干变形、组合和改进,这些都属于本专利的保护范围。因此,本专利的保护范围应以权利要求为准。The above-mentioned embodiments only express several implementation modes of the present invention, and their descriptions are relatively specific and detailed, but they should not be construed as limiting the scope of the patent. It should be noted that for those of ordinary skill in the art, several modifications, combinations and improvements can be made to each of the above embodiments without departing from the concept of this patent, and these all fall within the protection scope of this patent. Therefore, the scope of protection of this patent should be determined by the claims.

Claims (5)

1. The cystathionine-gamma-synthase mutant is characterized in that the amino acid sequence of the cystathionine-gamma-synthase is shown as SEQ ID NO. 1.
2. A gene encoding the cystathionine-gamma-synthase mutant according to claim 1.
3. The coding gene as claimed in claim 2, wherein the nucleotide sequence is shown in the sequence table SEQ ID NO. 2.
4. Use of the cystathionine- γ -synthase mutant according to claim 1.
5. The use according to claim 4, wherein the cystathionine- γ -synthase mutant is used for producing L-methionine.
CN202311111182.5A 2023-08-30 2023-08-30 Cystathionine-gamma-synthase mutant and application thereof Pending CN117165549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311111182.5A CN117165549A (en) 2023-08-30 2023-08-30 Cystathionine-gamma-synthase mutant and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311111182.5A CN117165549A (en) 2023-08-30 2023-08-30 Cystathionine-gamma-synthase mutant and application thereof

Publications (1)

Publication Number Publication Date
CN117165549A true CN117165549A (en) 2023-12-05

Family

ID=88938861

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311111182.5A Pending CN117165549A (en) 2023-08-30 2023-08-30 Cystathionine-gamma-synthase mutant and application thereof

Country Status (1)

Country Link
CN (1) CN117165549A (en)

Similar Documents

Publication Publication Date Title
KR20220139351A (en) Modified Microorganisms and Methods for Improved Production of Ectoins
Neuner et al. Mixed glucose and lactate uptake by Corynebacterium glutamicum through metabolic engineering
CN108795916B (en) A lysine decarboxylase mutant, its encoding gene and its expression and application
CN111019878B (en) Recombinant Escherichia coli with improved L-threonine yield, construction method and application thereof
CN107739734A (en) The glutamine transaminage mutant that a kind of enzyme activity improves
CN112908417B (en) Gene mining method combining functional sequence and structure simulation, NADH-preferring glufosinate dehydrogenase mutant and its application
CN112877272A (en) Escherichia coli engineering bacteria of N-acetylglucosamine and fermentation production method
CN112725251B (en) Engineering bacterium for producing spermidine
CN105505969A (en) Method for improving conversion rate of L-threonine and application of method
CN114058560B (en) Process for the production of glycine
KR102149044B1 (en) Method of producing 2-hydroxy gamma butyrolactone or 2,4-dihydroxybutanoic acid
CN115927142A (en) Engineering bacterium for high yield of beta-alanine and application thereof
CN116113699B (en) Modified phosphoenolpyruvate carboxylase and its application in improving amino acid production in Corynebacterium glutamicum
Zhao et al. Efficient production of spermidine from Bacillus amyloliquefaciens by enhancing synthesis pathway, blocking degradation pathway and increasing precursor supply
CN117165549A (en) Cystathionine-gamma-synthase mutant and application thereof
CN111154705A (en) Bacillus thermoglucosidasius engineering bacterium and construction method and application thereof
CN113789307B (en) A kind of pantothenic acid synthetase mutant, coding gene, carrier and application
US11939599B2 (en) Gene mining method combining functional sequence and structure simulation, NADH-preferring phosphinothricin dehydrogenase mutant and application thereof
CN113174378B (en) Glutamate dehydrogenase mutant, encoding gene thereof, genetically engineered bacterium and application thereof in preparation of L-2-aminobutyric acid
US11760988B2 (en) L-aspartate alpha-decarboxylase mutant and application thereof
CN104561072A (en) Method for fermentation production of L-proline by utilizing recombinant Escherichia coli
CN112921012B (en) Corynebacterium glutamicum meso-2,6-diaminopimelate dehydrogenase mutant and its application
CN114149981A (en) Pantothenate synthetase mutant with improved specific activity and application thereof
CN115197954A (en) Recombinant DNA for fermentation production of 1, 5-pentanediamine, strain and application thereof
CN108342347B (en) BDSF high-yielding strain and its fermentation optimization method and application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination