CN117160493A - CdSe/KTaO 3 Preparation method and application of composite photocatalyst - Google Patents

CdSe/KTaO 3 Preparation method and application of composite photocatalyst Download PDF

Info

Publication number
CN117160493A
CN117160493A CN202311136139.4A CN202311136139A CN117160493A CN 117160493 A CN117160493 A CN 117160493A CN 202311136139 A CN202311136139 A CN 202311136139A CN 117160493 A CN117160493 A CN 117160493A
Authority
CN
China
Prior art keywords
ktao
cdse
composite photocatalyst
solution
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202311136139.4A
Other languages
Chinese (zh)
Other versions
CN117160493B (en
Inventor
李强
黄雅静
宋巨谱
曹严文
李佳雪
徐宇航
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaibei Normal University
Original Assignee
Huaibei Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaibei Normal University filed Critical Huaibei Normal University
Priority to CN202311136139.4A priority Critical patent/CN117160493B/en
Publication of CN117160493A publication Critical patent/CN117160493A/en
Application granted granted Critical
Publication of CN117160493B publication Critical patent/CN117160493B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Catalysts (AREA)

Abstract

The invention discloses a CdSe/KTaO 3 A preparation method and application of a composite photocatalyst relate to the technical field of photocatalytic materials. The preparation method comprises the following steps: firstly, preparing KTaO by adopting a hydrothermal method 3 Then Se powder and Na 2 SO 3 Dissolving in deionized water, and adding KTaO 3 Performing ultrasonic treatment, and adding CdCl after the treatment 2 The solution is treated by ultrasonic treatment and stirring, and the CdSe/KTaO is finally obtained after the reaction is finished 3 A composite photocatalyst. The invention prepares CdSe/KTaO 3 Heterojunction photocatalysisThe material greatly improves the photocatalytic hydrogen production activity and solves the problem of KTaO in the prior art 3 The photocatalyst has the advantages of low hydrogen production efficiency, simple preparation process, easily controlled experimental conditions, low cost, safety and reliability.

Description

CdSe/KTaO 3 Preparation method and application of composite photocatalyst
Technical Field
The invention relates to the technical field of photocatalytic materials, in particular to a CdSe/KTaO 3 A preparation method and application of a composite photocatalyst.
Background
With the continuous development of the age, the continuous increase of petrochemical fuel consumption brings serious pollution to the environment, and more importantly, the petrochemical fuel belongs to non-renewable energy sources and is not inexhaustible. Under the dual pressures of environmental pollution and energy crisis, researchers are working to find new renewable and environmentally friendly energy sources, such as hydrogen energy sources; however, the industrial hydrogen production mainly depends on coal and natural gas reforming, but the coal and the natural gas are non-renewable energy sources, so that the consumption of the non-renewable energy sources is aggravated and the environmental pollution is brought in the current industrial hydrogen production process. Solar energy is used as inexhaustible renewable energy, and can be converted into clean and efficient hydrogen energy through a photocatalysis process, so that the solar energy is an ideal way for solving the problems.
KTaO 3 Is a typical perovskite oxide, has the advantages of proper energy band position, excellent chemical stability, low price, no toxicity and the like, and has great application potential in the field of photocatalytic hydrogen production. But KTaO 3 The band gap width (about 3.6 eV) of the solar energy collector is larger, the solar energy collector can only absorb ultraviolet light, and the solar energy collector accounts for about 4% of sunlight, so that the solar energy utilization rate is lower; in addition, a single KTaO 3 Quantum efficiency is also low. These defects limit KTaO 3 The method is applied to the aspect of hydrogen production by sunlight. Research has found that KTaO 3 Can be compounded with a narrow-band gap photocatalyst to improve KTaO 3 The photoresponse range and quantum efficiency of the photocatalytic material.
CdSe is a narrow bandgap semiconductor (-2.0 eV) with excellent visible light response capability among many nanomaterials. However, the light of pure CdSe catalystThe electron-hole pair recombination rate is high, and the photocatalytic hydrogen production performance is not ideal. But due to its energy band structure and KTaO 3 After the two semiconductors are coupled together, the photo-generated carriers can be transported and separated between the two semiconductors with different band gaps, and the recombination rate of photo-generated electron hole pairs is reduced. Thus, KTaO 3 The heterojunction formed by the compound with CdSe can effectively avoid respective defects, the required energy is lower, the light absorption range can be enlarged, and the photocatalytic hydrogen production effect is improved. Thus, the present invention provides a CdSe/KTaO 3 A preparation method and application of a composite photocatalyst.
Disclosure of Invention
The invention aims to provide a CdSe/KTaO 3 Preparation method and application of composite photocatalyst, and CdSe nano particles are uniformly coated on KTaO 3 CdSe/KTaO is prepared on the surface of the nanometer cube 3 Composite photocatalyst for widening KTaO 3 The light absorption range of the catalyst promotes the separation and migration of photo-generated electron hole pairs, and has obviously enhanced activity of photo-catalytically decomposing water to produce hydrogen.
To achieve the above object, the present invention provides a CdSe/KTaO 3 Preparation method of composite photocatalyst, uniformly loading CdSe nano particles on KTaO 3 The nano cubic block surface comprises the following steps:
s1, preparing KTaO by utilizing hydrothermal method 3 A nano cube;
s2, preparing Na 2 SeSO 3 Solution and CdCl 2 A solution;
s3, KTaO is taken 3 Adding Na into the nano cubic block 2 SeSO 3 Ultrasonic treatment is carried out in the solution, and then CdCl is added 2 Slowly dripping the solution into the mixed solution, continuing ultrasonic treatment and stirring treatment, finally cleaning and collecting the reaction product, and vacuum drying and grinding to obtain CdSe/KTaO 3 A composite photocatalyst.
Preferably, the step S1 prepares KTaO by a hydrothermal method 3 The specific steps of the nano cube are as follows:
s1-1, 25mL of KOH aqueous solution having a concentration of 15mol/L was prepared, and then 2.5mmolTa was added 2 O 5 Dispersing in KOH solution, magnetically stirring for 1 hour to obtain suspension;
s1-2, transferring the suspension prepared in the S1-1 into a polytetrafluoroethylene lining reaction kettle for reaction, collecting a product after the reaction is finished into a forced air drying box for drying to obtain KTaO 3 Nano cubes.
Preferably, in the step S1-2, the reaction temperature in the reaction kettle is 150 ℃ and the reaction time is 5 hours; the temperature in the forced air drying oven was 70℃and dried for 12 hours.
Preferably, in the step S2, na is prepared 2 SeSO 3 The specific operation of the solution is as follows: se powder and Na 2 SO 3 Adding the powder into deionized water, and then reacting in an oil bath to obtain Na 2 SeSO 3 Solution of Se powder and Na 2 SO 3 The ratio of the amounts of the substances of the powder was 1:6.
Preferably, in the step S2, cdCl is prepared 2 The specific operation of the solution is as follows: cdCl is reacted with 2 Adding the powder into deionized water, stirring to dissolve completely to obtain CdCl 2 Homogeneous solution of Se powder and CdCl 2 The ratio of the amounts of the substances of the powder was 15:11.
Preferably, in the step S3, KTaO 3 The mass of the nano cube is 0.047-0.421 g.
Preferably, in the step S3, the reaction product is centrifugally washed by deionized water and absolute ethyl alcohol, vacuum dried for 12 hours at 60 ℃, and ground to obtain CdSe/KTaO 3 A composite photocatalyst.
CdSe/KTaO prepared by the preparation method 3 Composite photocatalyst, the CdSe/KTaO 3 CdSe and KTaO in composite photocatalyst 3 The mass ratio of (2) is one of 5:5, 7:3 or 9:1.
CdSe/KTaO prepared by the preparation method 3 The application of the composite photocatalyst in hydrogen production.
Compared with the prior art, the invention has the following beneficial effects:
(1) Uniformly wrapping CdSe nano particles on KTaO 3 Nanometer scaleThe surface of the cube block widens KTa O 3 Promotes the separation and migration of photo-generated electron-hole pairs, and the prepared CdSe/KTaO 3 The composite photocatalyst has a higher CdSe and KTaO than those of CdSe and KTaO 3 Is a photocatalytic activity of (a);
(2) The preparation method is simple, the experimental conditions are easy to control, the cost is low, and the safety and the reliability are realized;
(3) The prepared CdSe/KTaO 3 The composite photocatalyst has good application prospect and industrialization prospect in the field of photolysis of water to produce hydrogen.
The technical scheme of the invention is further described in detail through the drawings and the embodiments.
Drawings
FIG. 1 is pure KTaO 3 Photocatalyst, pure CdSe photocatalyst and CdSe/KTaO with different proportions prepared by the invention 3 An X-ray diffraction pattern (XRD) pattern of the composite photocatalyst;
FIG. 2 is pure KTaO 3 Photocatalyst, pure CdSe photocatalyst and CdSe/KTaO prepared by the method 3 Scanning electron microscope topography of the composite photocatalyst; wherein (a) is pure KTaO 3 Photocatalyst, (b) pure CdSe photocatalyst, (c) CdSe/KTaO 3 A composite photocatalyst;
FIG. 3 is pure KTaO 3 Photocatalyst, pure CdSe photocatalyst and CdSe/KTaO with different proportions prepared by the invention 3 A comparative graph of the hydrogen production activity by the photolysis water of the composite photocatalyst; wherein, (a) is a hydrogen production amount comparison chart; (b) is a hydrogen production rate comparison chart.
Detailed Description
The following detailed description of the embodiments of the invention, provided in the accompanying drawings, is not intended to limit the scope of the invention, as claimed, but is merely representative of selected embodiments of the invention. All other embodiments, which can be made by those skilled in the art based on the embodiments of the invention without making any inventive effort, are intended to be within the scope of the invention.
The invention provides a CdSe/KTaO 3 Preparation method of composite photocatalyst, uniformly loading CdSe nano particles on KTaO 3 The nano cubic block surface comprises the following steps:
s1, preparing KTaO by utilizing hydrothermal method 3 A nano cube;
s2, preparing Na 2 SeSO 3 Solution and CdCl 2 A solution;
s3, KTaO is taken 3 Adding Na into the nano cubic block 2 SeSO 3 Ultrasonic treatment is carried out in the solution, and then CdCl is added 2 Slowly dripping the solution into the mixed solution, continuing ultrasonic treatment and stirring treatment, finally cleaning and collecting the reaction product, and vacuum drying and grinding to obtain CdSe/KTaO 3 A composite photocatalyst.
Example 1
CdSe/KTaO 3 The preparation method of the composite photocatalyst comprises the following steps:
s1, preparing KTaO by utilizing hydrothermal method 3 A nano cube;
s1-1, 25mL of KOH aqueous solution having a concentration of 15mol/L was prepared, and then 2.5mmolTa was added 2 O 5 Dispersing in KOH solution, magnetically stirring for 1 hour to obtain suspension;
s1-1, transferring the suspension prepared in the S1-1 into a polytetrafluoroethylene lining reaction kettle for reaction, wherein the reaction temperature is 160 ℃, and the reaction time is 5 hours; collecting the product after the reaction is finished, and drying the product in a forced air drying oven at 70 ℃ for 12 hours to obtain KTaO 3 Nano cubes.
S2, preparing Na 2 SeSO 3 Solution and CdCl 2 A solution;
s2-1, 3mmolSe powder and 18mmolNa powder 2 SO 3 The powder was added to 60ml of deionized water and then reacted in an oil bath at 100℃to give Na 2 SeSO 3 A solution;
s2-2, 2.2mmolCdCl 2 Adding the powder into 40ml deionized water, stirring to dissolve completely to obtain CdCl 2 The solution was homogenized.
S3, 0.047g KTaO 3 Adding Na prepared by the above method into nanometer cube 2 SeSO 3 Ultrasonic treatment is carried out in the solution, and then the CdCl is treated 2 Solution is slowDropping the solution into the mixed solution to continue ultrasonic treatment for 30 min, stirring for 90min, washing and collecting the reaction product with deionized water and absolute ethyl alcohol, drying in vacuum at 60 deg.C for 12 hr, and grinding to obtain 90% CdSe/KTaO 3 A composite photocatalyst.
Example 2
CdSe/KTaO 3 The preparation method of the composite photocatalyst comprises the following steps:
s1, preparing KTaO by utilizing hydrothermal method 3 A nano cube;
s1-1, 25mL of KOH aqueous solution having a concentration of 15mol/L was prepared, and then 2.5mmolTa was added 2 O 5 Dispersing in KOH solution, magnetically stirring for 1 hour to obtain suspension;
s1-1, transferring the suspension prepared in the S1-1 into a polytetrafluoroethylene lining reaction kettle for reaction, wherein the reaction temperature is 160 ℃, and the reaction time is 5 hours; collecting the product after the reaction is finished, and drying the product in a forced air drying oven at 70 ℃ for 12 hours to obtain KTaO 3 Nano cubes.
S2, preparing Na 2 SeSO 3 Solution and CdCl 2 A solution;
s2-1, 3mmolSe powder and 18mmolNa powder 2 SO 3 The powder was added to 60ml of deionized water and then reacted in an oil bath at 100℃to give Na 2 SeSO 3 A solution;
s2-2, 2.2mmolCdCl 2 Adding the powder into 40ml deionized water, stirring to dissolve completely to obtain CdCl 2 The solution was homogenized.
S3, 0.180g KTaO 3 Adding Na prepared by the above method into nanometer cube 2 SeSO 3 Ultrasonic treatment is carried out in the solution, and then the CdCl is treated 2 Slowly dripping the solution into the mixed solution, continuing to carry out ultrasonic treatment for 30 min, stirring for 90min, finally washing and collecting the reaction product by using deionized water and absolute ethyl alcohol, drying in vacuum at 60 ℃ for 12 hours, and grinding to obtain 70% CdSe/KTaO 3 A composite photocatalyst.
Example 3
CdSe/KTaO 3 The preparation method of the composite photocatalyst comprises the following steps:
s1, preparing KTaO by utilizing hydrothermal method 3 A nano cube;
s1-1, 25mL of KOH aqueous solution having a concentration of 15mol/L was prepared, and then 2.5mmolTa was added 2 O 5 Dispersing in KOH solution, magnetically stirring for 1 hour to obtain suspension;
s1-1, transferring the suspension prepared in the S1-1 into a polytetrafluoroethylene lining reaction kettle for reaction, wherein the reaction temperature is 160 ℃, and the reaction time is 5 hours; collecting the product after the reaction is finished, and drying the product in a forced air drying oven at 70 ℃ for 12 hours to obtain KTaO 3 Nano cubes.
S2, preparing Na 2 SeSO 3 Solution and CdCl 2 A solution;
s2-1, 3mmolSe powder and 18mmolNa powder 2 SO 3 The powder was added to 60ml of deionized water and then reacted in an oil bath at 100℃to give Na 2 SeSO 3 A solution;
s2-2, 2.2mmolCdCl 2 Adding the powder into 40ml deionized water, stirring to dissolve completely to obtain CdCl 2 The solution was homogenized.
S3, 0.421g KTaO 3 Adding Na prepared by the above method into nanometer cube 2 SeSO 3 Ultrasonic treatment is carried out in the solution, and then the CdCl is treated 2 Slowly dripping the solution into the mixed solution, continuing to carry out ultrasonic treatment for 30 min, stirring for 90min, finally washing and collecting the reaction product by using deionized water and absolute ethyl alcohol, drying in vacuum at 60 ℃ for 12 hours, and grinding to obtain 50% CdSe/KTaO 3 A composite photocatalyst.
As shown in fig. 1, the X-ray diffraction pattern (XRD) patterns of different photocatalysts are shown, and XRD is used to characterize the phase structure of the material. As can be seen from FIG. 1, KTaO 3 All diffraction peaks of (3) can be completely attributed to the cubic phase KTaO 3 (JCPDSno: 38-1470). The XRD spectra of pure CdSe quantum dots confirm that CdSe is cubic phase, and three diffraction peaks at 25.4 °, 42.1 ° and 49.7 ° correspond to (111), (220) and (311) planes (JCPSDSNo. 19-0191) of cubic phase CdSe, respectively. In CdSe/KTaO 3 In the composite photocatalyst, cdSe and KTaO are detected 3 And with increasing CdSe content, the intensity of CdSe diffraction peak is gradually increased, while KTaO 3 The diffraction peak intensity of (2) gradually decreases. Based on these results, cdSe/KTaO was successfully produced 3 A composite photocatalyst.
As shown in FIG. 2, the morphology of the scanning electron microscope of the different photocatalysts is shown in FIG. 2a, and the pure KTaO is shown 3 Irregular nanocubes with smooth surfaces are presented, their size distribution varies from 200nm to 400 nm. FIG. 2b is a morphology of pure CdSe, a CdSe material consisting of particles with a diameter of about 200nm, with a tendency to agglomerate. As shown in FIG. 2c, when KTaO 3 After being compounded with CdSe nano particles, KTaO 3 The smooth surface of the nano-cube is uniformly covered with CdSe particles. These results demonstrate that CdSe particles and KTa O 3 The nano cubes are well combined, so that the separation of photo-generated carriers is facilitated, and the photocatalytic hydrogen production activity is improved.
The composite photocatalyst prepared in examples 1 to 3 was subjected to a verification test.
In the presence of simulated sunlight, H is generated by photocatalytic water decomposition 2 Reaction, study KTaO 3 CdSe and CdSe/KTaO with different proportions 3 Photocatalytic activity of the composite material. The photocatalytic hydrogen production reaction is performed in a photocatalytic water splitting system. 30mg of the photocatalyst was suspended in 100ml of water containing 80. Mu.l of chloroplatinic acid. At 0.35MNA 2 S and 0.25MNA 2 SO 3 As hole scavengers. The reaction temperature was maintained at about 6℃by means of a circulating water cooling system. Adopt 300W xenon lamp as simulation solar light source, H 2 The yield of (2) was determined by gas chromatography. As shown in FIG. 3 (a), the original KTaO 3 No hydrogen production activity, a small amount of hydrogen was detected from the original CdSe sample. As shown in FIG. 3 (b), cdSe/KTaO is compared with pure catalyst 3 The composite material shows significantly enhanced photocatalytic hydrogen production performance, wherein CdSe/KTaO containing 70wt% CdSe nanoparticles 3 The highest hydrogen production rate of the composite material is 15.48 mmol.g-1.h-1, which is about original CdSe and KTaO 3 3.3 times and 17 times of (a).
Thus, the first and second substrates are bonded together,the invention provides a CdSe/KTaO 3 Preparation method and application of composite photocatalyst, wherein CdSe nano particles are uniformly coated on KTaO 3 The surface of the nano cubic block widens KTaO 3 Promotes the separation and migration of photo-generated electron-hole pairs, and the prepared CdSe/KTaO 3 The composite photocatalyst has a higher CdSe and KTaO than those of CdSe and KTaO 3 Is a photocatalytic activity of (a); the preparation method is simple, the experimental conditions are easy to control, the cost is low, and the safety and the reliability are realized; the prepared CdSe/KTaO 3 The composite photocatalyst has good application prospect and industrialization prospect in the field of photolysis of water to produce hydrogen.
Finally, it should be noted that: the above embodiments are only for illustrating the technical solution of the present invention and not for limiting it, and although the present invention has been described in detail with reference to the preferred embodiments, it will be understood by those skilled in the art that: the technical scheme of the invention can be modified or replaced by the same, and the modified technical scheme cannot deviate from the spirit and scope of the technical scheme of the invention.

Claims (9)

1. CdSe/KTaO 3 Preparation method of composite photocatalyst, uniformly loading CdSe nano particles on KTaO 3 The nano cubic block surface is characterized by comprising the following steps:
s1, preparing KTaO by utilizing hydrothermal method 3 A nano cube;
s2, preparing Na 2 SeSO 3 Solution and CdCl 2 A solution;
s3, KTaO is taken 3 Adding Na into the nano cubic block 2 SeSO 3 Ultrasonic treatment is carried out in the solution, and then CdCl is added 2 Slowly dripping the solution into the mixed solution, continuing ultrasonic treatment and stirring treatment, finally cleaning and collecting the reaction product, and vacuum drying and grinding to obtain CdSe/KTaO 3 A composite photocatalyst.
2. A CdSe/KTaO as claimed in claim 1 3 The preparation method of the composite photocatalyst is characterized in that the step S1 preparation of KTaO by hydrothermal method 3 The specific steps of the nano cube are as follows:
s1-1, 25mL of KOH aqueous solution having a concentration of 15mol/L was prepared, and then 2.5mmolTa was added 2 O 5 Dispersing in KOH solution, magnetically stirring for 1 hour to obtain suspension;
s1-2, transferring the suspension prepared in the S1-1 into a polytetrafluoroethylene lining reaction kettle for reaction, collecting a product after the reaction is finished into a forced air drying box for drying to obtain KTaO 3 Nano cubes.
3. A CdSe/KTaO as claimed in claim 2 3 The preparation method of the composite photocatalyst is characterized by comprising the following steps: in the step S1-2, the reaction temperature in the reaction kettle is 150 ℃ and the reaction time is 5 hours; the temperature in the forced air drying oven was 70℃and dried for 12 hours.
4. A CdSe/KTaO as claimed in claim 3 3 The preparation method of the composite photocatalyst is characterized in that in the step S2, na is prepared 2 SeSO 3 The specific operation of the solution is as follows: se powder and Na 2 SO 3 Adding the powder into deionized water, and then reacting in an oil bath to obtain Na 2 SeSO 3 Solution of Se powder and Na 2 SO 3 The ratio of the amounts of the substances of the powder was 1:6.
5. A CdSe/KTaO as recited in claim 4 3 The preparation method of the composite photocatalyst is characterized by comprising the following steps: in the step S2, cdCl is prepared 2 The specific operation of the solution is as follows: cdCl is reacted with 2 Adding the powder into deionized water, stirring to dissolve completely to obtain CdCl 2 Homogeneous solution of Se powder and CdCl 2 The ratio of the amounts of the substances of the powder was 15:11.
6. A CdSe/KTaO as recited in claim 5 3 The preparation method of the composite photocatalyst is characterized by comprising the following steps: in the step S3, KTaO 3 The mass of the nano cube is 0.047-0.421g。
7. CdSe/KTaO according to claim 6 3 The preparation method of the composite photocatalyst is characterized by comprising the following steps: in the step S3, the reaction product is centrifugally washed by deionized water and absolute ethyl alcohol, is dried in vacuum for 12 hours at the temperature of 60 ℃, and is ground to obtain CdSe/KTaO 3 A composite photocatalyst.
8. CdSe/KTaO prepared by the preparation method of any of claims 1-7 3 The composite photocatalyst is characterized in that: the CdSe/KTaO 3 CdSe and KTaO in composite photocatalyst 3 The mass ratio of (2) is one of 5:5, 7:3 or 9:1.
9. CdSe/KTaO prepared by the preparation method of any of claims 1-7 3 The application of the composite photocatalyst in hydrogen production.
CN202311136139.4A 2023-09-05 2023-09-05 CdSe/KTaO 3 Preparation method and application of composite photocatalyst Active CN117160493B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311136139.4A CN117160493B (en) 2023-09-05 2023-09-05 CdSe/KTaO 3 Preparation method and application of composite photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311136139.4A CN117160493B (en) 2023-09-05 2023-09-05 CdSe/KTaO 3 Preparation method and application of composite photocatalyst

Publications (2)

Publication Number Publication Date
CN117160493A true CN117160493A (en) 2023-12-05
CN117160493B CN117160493B (en) 2024-03-26

Family

ID=88940683

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311136139.4A Active CN117160493B (en) 2023-09-05 2023-09-05 CdSe/KTaO 3 Preparation method and application of composite photocatalyst

Country Status (1)

Country Link
CN (1) CN117160493B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102522454A (en) * 2011-12-15 2012-06-27 广东工业大学 Preparation method of CdSe nanocrystal semiconductor film
JP2015002144A (en) * 2013-06-18 2015-01-05 株式会社東芝 Photocatalyst electrode, photolysis device for water, and photolysis method for water
CN110075930A (en) * 2019-05-10 2019-08-02 华东师范大学 A kind of photocatalytic system and preparation method and application with photoresponse switch, self-indication
US20210130188A1 (en) * 2019-10-31 2021-05-06 The Research Foundation For The State University Of New York Quantum material/vanadium oxide heterostructures, methods of making same, and uses thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102522454A (en) * 2011-12-15 2012-06-27 广东工业大学 Preparation method of CdSe nanocrystal semiconductor film
JP2015002144A (en) * 2013-06-18 2015-01-05 株式会社東芝 Photocatalyst electrode, photolysis device for water, and photolysis method for water
CN110075930A (en) * 2019-05-10 2019-08-02 华东师范大学 A kind of photocatalytic system and preparation method and application with photoresponse switch, self-indication
US20210130188A1 (en) * 2019-10-31 2021-05-06 The Research Foundation For The State University Of New York Quantum material/vanadium oxide heterostructures, methods of making same, and uses thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MARTYNA MARCHELEK ET AL.: "KTaO3-based nanocomposites for air treatment", 《CATALYSIS TODAY》, vol. 252, 14 November 2015 (2015-11-14), pages 48 *
籍云方: "TiO2纳米结构、复合及其光催化性能研究", 《中国优秀硕士学位论文全文数据库 工程科技I辑》, 15 July 2015 (2015-07-15), pages 27 *

Also Published As

Publication number Publication date
CN117160493B (en) 2024-03-26

Similar Documents

Publication Publication Date Title
CN107790160B (en) Phosphorus-doped zinc cadmium sulfide solid solution catalyst, photocatalytic system and method for producing hydrogen by decomposing water
CN114588888B (en) Photocatalyst, and preparation method and application thereof
CN108525677B (en) Cerium dioxide/indium zinc sulfide nanosheet composite catalyst and application thereof in visible light catalysis of CO2Use in transformation
CN108607593B (en) Cadmium sulfide nanoparticle modified niobium pentoxide nanorod/nitrogen-doped graphene composite photocatalyst and application thereof
Guo et al. CeO2 nanoparticles dispersed on CoAl-LDH hexagonal nanosheets as 0D/2D binary composite for enhanced photocatalytic hydrogen evolution
CN113751029B (en) Co (cobalt) 9 S 8 /ZnIn 2 S 4 Photocatalytic hydrogen production material and preparation method and application thereof
Zhang et al. Mechanism investigation of PtPd decorated Zn0. 5Cd0. 5S nanorods with efficient photocatalytic hydrogen production combining with kinetics and thermodynamics
Zhang et al. MOF templated to construct hierarchical ZnIn2S4-In2S3 hollow nanotube for enhancing photocatalytic performance
CN113145141B (en) For CO 2 Reduced CsPbBr 3 Quantum dot/nano CuCo 2 O 4 Composite photocatalyst and preparation method thereof
CN114160164B (en) CeO 2-x S x Preparation method and application of/CdZnS/ZnO nano material
Li et al. Recent advances in zinc chalcogenide-based nanocatalysts for photocatalytic reduction of CO 2
CN112427045A (en) CdS/g-C synthesized by hydrothermal method and having Z-shaped heterojunction3N4Preparation method of composite photocatalyst material
Zhang et al. Potassium-doped-C3N4/Cd0. 5Zn0. 5S photocatalysts toward the enhancement of photocatalytic activity under visible-light
CN114377708A (en) Oxygen vacancy-containing bismuthyl carbonate nanosheet and preparation method and application thereof
CN113058617A (en) Photocatalyst and preparation method and application thereof
CN113559834A (en) Ti3C2MXene@TiO2/CuInS2Catalytic material, preparation method and application thereof
CN107308973B (en) Basic cobalt phosphate nanoneedle composite LTON photocatalyst and preparation method and application thereof
CN110026207B (en) CaTiO3@ZnIn2S4Nano composite material and preparation method and application thereof
Yao et al. A novel hierarchical CdS-DETA@ CoP composite as highly stable photocatalyst for efficient H2 evolution from water splitting under visible light irradiation
CN109589985B (en) Preparation method of doped nano zinc germanate and catalytic reduction of carbon dioxide by using doped nano zinc germanate
CN107866212B (en) Rectangular flaky zinc oxide photocatalyst, preparation method and application thereof in hydrogen production through photocatalytic water decomposition
CN110627116B (en) Hydrogen-doped TiO (titanium dioxide)2Phase-change nano material and application thereof
CN117583001A (en) BiOBr-Bi 2 O 2 SO 4 Preparation method and application of heterojunction photocatalyst
CN112844413A (en) Preparation method and application of photocatalyst with sphalerite/wurtzite junction
CN115920929B (en) MoO3-x/Cu0.5Cd0.5S composite photocatalyst, preparation method and application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant