CN117159440A - A soluble microneedle co-loaded with immune adjuvants and immune checkpoint inhibitors and its preparation method and application - Google Patents
A soluble microneedle co-loaded with immune adjuvants and immune checkpoint inhibitors and its preparation method and application Download PDFInfo
- Publication number
- CN117159440A CN117159440A CN202311052821.5A CN202311052821A CN117159440A CN 117159440 A CN117159440 A CN 117159440A CN 202311052821 A CN202311052821 A CN 202311052821A CN 117159440 A CN117159440 A CN 117159440A
- Authority
- CN
- China
- Prior art keywords
- immune
- drug
- loaded
- immune checkpoint
- checkpoint inhibitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229940076838 Immune checkpoint inhibitor Drugs 0.000 title claims abstract description 43
- 102000037984 Inhibitory immune checkpoint proteins Human genes 0.000 title claims abstract description 43
- 108091008026 Inhibitory immune checkpoint proteins Proteins 0.000 title claims abstract description 43
- 239000012274 immune-checkpoint protein inhibitor Substances 0.000 title claims abstract description 43
- 239000002671 adjuvant Substances 0.000 title claims abstract description 41
- 238000002360 preparation method Methods 0.000 title claims abstract description 24
- 239000003814 drug Substances 0.000 claims abstract description 80
- 229940079593 drug Drugs 0.000 claims abstract description 79
- 229920001661 Chitosan Polymers 0.000 claims abstract description 41
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 36
- 150000002632 lipids Chemical class 0.000 claims abstract description 25
- 239000002502 liposome Substances 0.000 claims abstract description 22
- 239000000758 substrate Substances 0.000 claims abstract 3
- 230000001571 immunoadjuvant effect Effects 0.000 claims abstract 2
- 239000000568 immunological adjuvant Substances 0.000 claims abstract 2
- 239000000463 material Substances 0.000 claims description 21
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 claims description 15
- 229920002674 hyaluronan Polymers 0.000 claims description 15
- 229960003160 hyaluronic acid Drugs 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 15
- 150000003904 phospholipids Chemical class 0.000 claims description 14
- 201000011510 cancer Diseases 0.000 claims description 13
- 238000011282 treatment Methods 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 7
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 claims description 6
- 239000000556 agonist Substances 0.000 claims description 4
- 206010006187 Breast cancer Diseases 0.000 claims description 3
- 208000026310 Breast neoplasm Diseases 0.000 claims description 3
- 239000001913 cellulose Substances 0.000 claims description 3
- 229920002678 cellulose Polymers 0.000 claims description 3
- 235000012000 cholesterol Nutrition 0.000 claims description 3
- 230000007935 neutral effect Effects 0.000 claims description 3
- 229920000642 polymer Polymers 0.000 claims description 3
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 claims description 2
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 claims description 2
- 208000000453 Skin Neoplasms Diseases 0.000 claims description 2
- 108010060825 Toll-Like Receptor 7 Proteins 0.000 claims description 2
- 108010060752 Toll-Like Receptor 8 Proteins 0.000 claims description 2
- 102100039390 Toll-like receptor 7 Human genes 0.000 claims description 2
- 102100033110 Toll-like receptor 8 Human genes 0.000 claims description 2
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 claims description 2
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 claims description 2
- 201000000849 skin cancer Diseases 0.000 claims description 2
- 235000010413 sodium alginate Nutrition 0.000 claims description 2
- 239000000661 sodium alginate Substances 0.000 claims description 2
- 229940005550 sodium alginate Drugs 0.000 claims description 2
- 229940044616 toll-like receptor 7 agonist Drugs 0.000 claims description 2
- 229940044655 toll-like receptor 9 agonist Drugs 0.000 claims description 2
- 201000001441 melanoma Diseases 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 14
- 210000000987 immune system Anatomy 0.000 abstract description 5
- 210000004881 tumor cell Anatomy 0.000 abstract description 5
- 230000002209 hydrophobic effect Effects 0.000 abstract description 4
- 231100000331 toxic Toxicity 0.000 abstract description 4
- 230000002588 toxic effect Effects 0.000 abstract description 4
- 230000009885 systemic effect Effects 0.000 abstract description 3
- 238000009792 diffusion process Methods 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 26
- 229950010550 resiquimod Drugs 0.000 description 21
- BXNMTOQRYBFHNZ-UHFFFAOYSA-N resiquimod Chemical compound C1=CC=CC2=C(N(C(COCC)=N3)CC(C)(C)O)C3=C(N)N=C21 BXNMTOQRYBFHNZ-UHFFFAOYSA-N 0.000 description 21
- 210000004027 cell Anatomy 0.000 description 13
- 241000699670 Mus sp. Species 0.000 description 12
- 238000009169 immunotherapy Methods 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 7
- 239000002105 nanoparticle Substances 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 6
- 241001465754 Metazoa Species 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 210000004185 liver Anatomy 0.000 description 6
- 210000004072 lung Anatomy 0.000 description 6
- 102000004169 proteins and genes Human genes 0.000 description 6
- 108090000623 proteins and genes Proteins 0.000 description 6
- 241000699666 Mus <mouse, genus> Species 0.000 description 5
- 239000002202 Polyethylene glycol Substances 0.000 description 5
- 229920001223 polyethylene glycol Polymers 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 230000001225 therapeutic effect Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 230000009881 electrostatic interaction Effects 0.000 description 4
- 210000003734 kidney Anatomy 0.000 description 4
- 238000001000 micrograph Methods 0.000 description 4
- 235000019832 sodium triphosphate Nutrition 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 229920003082 Povidone K 90 Polymers 0.000 description 3
- 238000010171 animal model Methods 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 238000002512 chemotherapy Methods 0.000 description 3
- 238000012377 drug delivery Methods 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 210000002216 heart Anatomy 0.000 description 3
- 229940126533 immune checkpoint blocker Drugs 0.000 description 3
- 230000003902 lesion Effects 0.000 description 3
- 238000000593 microemulsion method Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 210000000952 spleen Anatomy 0.000 description 3
- 238000002626 targeted therapy Methods 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- 206010059866 Drug resistance Diseases 0.000 description 2
- 241000776475 Terrabacteria group Species 0.000 description 2
- 208000003721 Triple Negative Breast Neoplasms Diseases 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 2
- -1 distearoylcholine Chemical compound 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 238000007490 hematoxylin and eosin (H&E) staining Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 238000010255 intramuscular injection Methods 0.000 description 2
- 239000007927 intramuscular injection Substances 0.000 description 2
- 238000010253 intravenous injection Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000003907 kidney function Effects 0.000 description 2
- 230000003908 liver function Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000000877 morphologic effect Effects 0.000 description 2
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 2
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 238000001959 radiotherapy Methods 0.000 description 2
- 238000002271 resection Methods 0.000 description 2
- 229940126586 small molecule drug Drugs 0.000 description 2
- SRLOHQKOADWDBV-NRONOFSHSA-M sodium;[(2r)-2,3-di(octadecanoyloxy)propyl] 2-(2-methoxyethoxycarbonylamino)ethyl phosphate Chemical compound [Na+].CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCCNC(=O)OCCOC)OC(=O)CCCCCCCCCCCCCCCCC SRLOHQKOADWDBV-NRONOFSHSA-M 0.000 description 2
- 238000011476 stem cell transplantation Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- UNXRWKVEANCORM-UHFFFAOYSA-I triphosphate(5-) Chemical compound [O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O UNXRWKVEANCORM-UHFFFAOYSA-I 0.000 description 2
- 208000022679 triple-negative breast carcinoma Diseases 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- JQWAHKMIYCERGA-UHFFFAOYSA-N (2-nonanoyloxy-3-octadeca-9,12-dienoyloxypropoxy)-[2-(trimethylazaniumyl)ethyl]phosphinate Chemical compound CCCCCCCCC(=O)OC(COP([O-])(=O)CC[N+](C)(C)C)COC(=O)CCCCCCCC=CCC=CCCCCC JQWAHKMIYCERGA-UHFFFAOYSA-N 0.000 description 1
- CITHEXJVPOWHKC-UUWRZZSWSA-N 1,2-di-O-myristoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCC CITHEXJVPOWHKC-UUWRZZSWSA-N 0.000 description 1
- PORPENFLTBBHSG-MGBGTMOVSA-N 1,2-dihexadecanoyl-sn-glycerol-3-phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(O)=O)OC(=O)CCCCCCCCCCCCCCC PORPENFLTBBHSG-MGBGTMOVSA-N 0.000 description 1
- 238000011725 BALB/c mouse Methods 0.000 description 1
- 208000031648 Body Weight Changes Diseases 0.000 description 1
- 229940046168 CpG oligodeoxynucleotide Drugs 0.000 description 1
- 102000009058 Death Domain Receptors Human genes 0.000 description 1
- 108010049207 Death Domain Receptors Proteins 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 238000008157 ELISA kit Methods 0.000 description 1
- 206010016654 Fibrosis Diseases 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 102000037982 Immune checkpoint proteins Human genes 0.000 description 1
- 108091008036 Immune checkpoint proteins Proteins 0.000 description 1
- 206010027480 Metastatic malignant melanoma Diseases 0.000 description 1
- 102000001742 Tumor Suppressor Proteins Human genes 0.000 description 1
- 108010040002 Tumor Suppressor Proteins Proteins 0.000 description 1
- COQLPRJCUIATTQ-UHFFFAOYSA-N Uranyl acetate Chemical compound O.O.O=[U]=O.CC(O)=O.CC(O)=O COQLPRJCUIATTQ-UHFFFAOYSA-N 0.000 description 1
- ATBOMIWRCZXYSZ-XZBBILGWSA-N [1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (9e,12e)-octadeca-9,12-dienoate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(COP(O)(=O)OCC(O)CO)OC(=O)CCCCCCC\C=C\C\C=C\CCCCC ATBOMIWRCZXYSZ-XZBBILGWSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- AWUCVROLDVIAJX-UHFFFAOYSA-N alpha-glycerophosphate Natural products OCC(O)COP(O)(O)=O AWUCVROLDVIAJX-UHFFFAOYSA-N 0.000 description 1
- 229940125644 antibody drug Drugs 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 230000005975 antitumor immune response Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 230000004579 body weight change Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229960003724 dimyristoylphosphatidylcholine Drugs 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000004761 fibrosis Effects 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 208000024908 graft versus host disease Diseases 0.000 description 1
- ODYPFMHOOQOHEF-UHFFFAOYSA-N hexadecanoylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OCC[N+](C)(C)C ODYPFMHOOQOHEF-UHFFFAOYSA-N 0.000 description 1
- 229960002751 imiquimod Drugs 0.000 description 1
- DOUYETYNHWVLEO-UHFFFAOYSA-N imiquimod Chemical compound C1=CC=CC2=C3N(CC(C)C)C=NC3=C(N)N=C21 DOUYETYNHWVLEO-UHFFFAOYSA-N 0.000 description 1
- 230000005746 immune checkpoint blockade Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002601 intratumoral effect Effects 0.000 description 1
- 231100001231 less toxic Toxicity 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 201000010893 malignant breast melanoma Diseases 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 208000021039 metastatic melanoma Diseases 0.000 description 1
- 206010061289 metastatic neoplasm Diseases 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 229940046166 oligodeoxynucleotide Drugs 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000037368 penetrate the skin Effects 0.000 description 1
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 1
- 150000003905 phosphatidylinositols Chemical class 0.000 description 1
- 229920006316 polyvinylpyrrolidine Polymers 0.000 description 1
- 238000010837 poor prognosis Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 208000005069 pulmonary fibrosis Diseases 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 210000000434 stratum corneum Anatomy 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 231100000057 systemic toxicity Toxicity 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 229940100640 transdermal system Drugs 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
Landscapes
- Medicinal Preparation (AREA)
Abstract
Description
技术领域Technical field
本发明属于生物医药技术领域。更具体地,涉及一种共负载免疫佐剂与免疫检查点抑制剂的可溶性微针及其制备方法和应用。The invention belongs to the technical field of biomedicine. More specifically, it relates to a soluble microneedle co-loaded with an immune adjuvant and an immune checkpoint inhibitor and its preparation method and application.
背景技术Background technique
癌症是全球第二大死因,对人类的生命健康和社会发展产生重大威胁。自1991年以来,美国的癌症死亡率逐年下降,这部分地归功于美国展开的免疫检查点阻断法、转移性黑色素瘤靶向治疗等新型治疗方法。Cancer is the second leading cause of death in the world and poses a major threat to human life, health and social development. Since 1991, the cancer mortality rate in the United States has been declining year by year, which is partly due to the introduction of new treatments such as immune checkpoint blockade and targeted therapy for metastatic melanoma in the United States.
治疗癌症的常用手段主要包括化学疗法、手术切除和放射治疗;除此之外,免疫疗法、靶向治疗、干细胞移植也发挥了重要作用。然而,上述治疗手段均存在各自的局限性,例如:手术切除仅对实体瘤有效,对转移性的肿瘤束手无策,且存在预后不良、肿瘤复发等风险;放疗和化疗在杀伤癌细胞的同时会对正常的细胞无差别攻击;靶向治疗可能会导致癌细胞产生耐药性;干细胞移植容易出现移植物抗宿主反应。为达到在治愈肿瘤的同时降低副作用的目的,开发更为高效、低毒的肿瘤治疗方案势在必行。Commonly used methods to treat cancer mainly include chemotherapy, surgical resection and radiotherapy; in addition, immunotherapy, targeted therapy, and stem cell transplantation also play an important role. However, the above-mentioned treatment methods all have their own limitations. For example, surgical resection is only effective for solid tumors and is helpless for metastatic tumors, and there are risks such as poor prognosis and tumor recurrence; radiotherapy and chemotherapy not only kill cancer cells but also Normal cells attack indiscriminately; targeted therapy may cause cancer cells to develop drug resistance; stem cell transplantation is prone to graft-versus-host reaction. In order to achieve the goal of curing tumors while reducing side effects, it is imperative to develop more efficient and less toxic tumor treatment options.
免疫疗法与其他治疗手段最大的区别在于,免疫疗法可以增强免疫系统识别和杀伤肿瘤的能力,也就是说,它针对的是能够抵抗癌性病变的免疫系统,而非肿瘤细胞。免疫疗法能够促进免疫系统产生杀伤肿瘤细胞的成分,或者抵消癌细胞所产生的抑制免疫反应的信号,与化疗等传统治疗方法相比具有毒副作用较小、耐药性低、脱靶率较低等优势。然而,免疫疗法在临床应用中同样存在不足。例如,免疫疗法中使用的小分子激动剂或是蛋白类抗体,在体内输送时存在水溶性差、易降解等问题。纳米给药体系的引入能够在一定程度上改善免疫药物的生物利用度。但是,纳米药物通常采用静脉或肌肉注射,通常只有2%~8%的药物能够最终在肿瘤聚集,给药效率不足;为达到治疗窗口,静脉或肌肉注射纳米药物所需的药量较大,不仅增加了成本,也增加了药物全身性的毒性。另外,肿瘤组织致密,间质压力较大,不仅限制了原位注射的给药量,也使药物难以深层次渗透到肿瘤组织中。The biggest difference between immunotherapy and other treatments is that immunotherapy can enhance the immune system's ability to recognize and kill tumors. That is to say, it targets the immune system that can resist cancerous lesions rather than tumor cells. Immunotherapy can promote the immune system to produce components that kill tumor cells, or counteract the signals produced by cancer cells that inhibit the immune response. Compared with traditional treatments such as chemotherapy, immunotherapy has fewer side effects, lower drug resistance, and lower off-target rates. Advantage. However, immunotherapy also has shortcomings in clinical application. For example, small molecule agonists or protein antibodies used in immunotherapy have problems such as poor water solubility and easy degradation when transported in the body. The introduction of nano-delivery systems can improve the bioavailability of immune drugs to a certain extent. However, nanomedicines are usually injected intravenously or intramuscularly, and usually only 2% to 8% of the drugs can eventually accumulate in tumors, resulting in insufficient drug delivery efficiency. In order to achieve the therapeutic window, intravenous or intramuscular injection of nanomedicines requires a large amount of drug, This not only increases the cost, but also increases the systemic toxicity of the drug. In addition, the tumor tissue is dense and the interstitial pressure is high, which not only limits the amount of in situ injection, but also makes it difficult for the drug to penetrate deeply into the tumor tissue.
相比静脉注射或肌肉注射,微针能够以微创的方式温和、无痛地通过皮肤角质层输送药物。微针具有微米级多阵列针尖结构,与传统原位单点注射的形式相比,能够实现分散性多点注射,克服了肿瘤的间质压力,增强药物在病灶的聚集,最终提高药物的生物利用度。如中国专利申请CN113694009A公开了一种透皮系统,通过微针直接局部共同递送免疫检查点抑制剂和化学治疗剂以用于协同免疫化学治疗,虽然对肿瘤细胞具有一定的疗效,但aPD-1和CDDP的共同递送是采用同一个纳米体系装载实现的。基于疏水和静电非特异性相互作用,aPD-1被负载到脂质体的磷脂层,aPD-1蛋白类药物属于大分子物质,受限于空间位阻,难以稳定负载于脂质体磷脂层中,导致得到的纳米载药体系稳定性较低,药物容易从纳米体系泄露出去。将上述脂质纳米药物装载到微针中时,aPD-1容易从脂质体中释放出来,从而扩散到微针基底,导致微针载药量降低。另外,该方法使用反相微乳液法将CDDP和aPD-1装载于脂质体中,反相微乳液法存在两大问题:一方面,蛋白类抗体aPD-1会和残存的有机溶剂接触,不可避免地会破坏蛋白类抗体aPD-1的空间结构,难以保证此类昂贵抗体的生物活性;另一方面,反相微乳液法制备过程复杂,产物稳定性低,相同制备条件下负载量难以保证每次都相同,难以推广到生产实践中。除此之外,使用密度较轻的脂质体包封抗体类药物,尽管能够沉积到微针针尖,但在制备过程中较容易向微针背部基底扩散并被刮去,导致针尖药物含量降低,并造成浪费。Compared to intravenous or intramuscular injections, microneedles can gently and painlessly deliver drugs through the stratum corneum of the skin in a minimally invasive manner. Microneedles have a micron-scale multi-array tip structure. Compared with traditional in situ single-point injection, microneedles can achieve dispersed multi-point injection, overcome the interstitial pressure of tumors, enhance the accumulation of drugs in lesions, and ultimately improve the bioavailability of drugs. Utilization. For example, Chinese patent application CN113694009A discloses a transdermal system that directly and locally co-delivers immune checkpoint inhibitors and chemotherapeutic agents through microneedles for collaborative immunochemotherapy. Although it has a certain effect on tumor cells, aPD-1 Co-delivery with CDDP is achieved using the same nanosystem loading. Based on hydrophobic and electrostatic non-specific interactions, aPD-1 is loaded into the phospholipid layer of liposomes. aPD-1 protein drugs are macromolecular substances that are limited by steric hindrance and are difficult to stably load into the phospholipid layer of liposomes. , resulting in low stability of the obtained nano drug-carrying system, and the drug easily leaks out of the nano system. When the above-mentioned lipid nanomedicine is loaded into microneedles, aPD-1 is easily released from the liposomes and diffuses to the microneedle base, resulting in a reduction in the microneedle drug loading capacity. In addition, this method uses the reverse phase microemulsion method to load CDDP and aPD-1 into liposomes. The reverse phase microemulsion method has two major problems: on the one hand, the protein antibody aPD-1 will come into contact with the remaining organic solvents; It will inevitably destroy the spatial structure of the protein antibody aPD-1, making it difficult to ensure the biological activity of such expensive antibodies; on the other hand, the preparation process of the reverse-phase microemulsion method is complex, the product stability is low, and the loading capacity is difficult under the same preparation conditions. It is guaranteed to be the same every time and is difficult to generalize to production practice. In addition, the use of lighter-density liposomes to encapsulate antibody drugs, although they can be deposited on the microneedle tips, is easier to diffuse to the back base of the microneedle and be scraped off during the preparation process, resulting in a reduction in the drug content in the needle tips. , and cause waste.
发明内容Contents of the invention
本发明要解决的技术问题是克服现有微针给药中蛋白类药物的活性容易遭受破坏以及负载在微针针尖的纳米药物容易向微针背部基底扩散导致针尖药物含量降低的缺陷和不足,提供一种共负载免疫佐剂与免疫检查点抑制剂的可溶性微针。The technical problem to be solved by this invention is to overcome the defects and shortcomings in the existing microneedle drug delivery that the activity of protein drugs is easily destroyed and the nanomedicine loaded on the microneedle tip is easy to diffuse to the back base of the microneedle, resulting in a reduction in the drug content in the tip. A soluble microneedle co-loaded with an immune adjuvant and an immune checkpoint inhibitor is provided.
本发明的目的是提供所述共负载免疫佐剂与免疫检查点抑制剂的可溶性微针的制备方法。The object of the present invention is to provide a method for preparing the soluble microneedles co-loaded with immune adjuvants and immune checkpoint inhibitors.
本发明另一目的是提供所述共负载免疫佐剂与免疫检查点抑制剂的可溶性微针在制备治疗癌症药物或医疗器具中的应用。Another object of the present invention is to provide the application of the soluble microneedles co-loaded with immune adjuvants and immune checkpoint inhibitors in the preparation of cancer treatment drugs or medical devices.
本发明上述目的通过以下技术方案实现:The above objects of the present invention are achieved through the following technical solutions:
本发明保护一种共负载免疫佐剂与免疫检查点抑制剂的可溶性微针,所述免疫佐剂包封于脂质体中得到脂质纳米药物,所述免疫检查点抑制剂装载于壳聚糖纳米凝胶中,得到壳聚糖纳米凝胶药物,脂质纳米药物和壳聚糖纳米凝胶药物共同负载在可溶性微针的针尖部位。The invention protects a soluble microneedle that is co-loaded with an immune adjuvant and an immune checkpoint inhibitor. The immune adjuvant is encapsulated in liposomes to obtain lipid nanomedicine, and the immune checkpoint inhibitor is loaded in chitosan. In the sugar nanogel, chitosan nanogel drug is obtained, and lipid nanomedicine and chitosan nanogel drug are jointly loaded on the tip of the soluble microneedle.
免疫佐剂通常是疏水性小分子药物,能够提升机体对抗原的应答能力。脂质体具有类似细胞膜的磷脂双分子层结构,能够将疏水性药物包封在磷脂层,形成脂质纳米药物,提高其水溶性和生物利用度。免疫检查点阻断剂通常为蛋白类抗体,在体内容易酶解失活,正电性的壳聚糖能够通过静电相互作用负载负电性的免疫检查点抑制剂,形成纳米凝胶药物。将所得的脂质纳米药物和壳聚糖纳米凝胶药物共同装载于可溶性微针的针尖部位,能够对近浅表肿瘤进行免疫治疗,在提高病灶药物浓度的同时降低给药剂量,既增强了抗肿瘤免疫应答,又降低了药物的全身性毒副作用,并且两种纳米药物的共同递送可协同增强治疗效果。Immune adjuvants are usually hydrophobic small molecule drugs that can enhance the body's ability to respond to antigens. Liposomes have a phospholipid bilayer structure similar to that of a cell membrane, which can encapsulate hydrophobic drugs in the phospholipid layer to form lipid nanomedicines and improve their water solubility and bioavailability. Immune checkpoint blockers are usually protein antibodies, which are easily enzymatically inactivated in the body. Positively charged chitosan can load negatively charged immune checkpoint inhibitors through electrostatic interactions to form nanogel drugs. The obtained lipid nanomedicine and chitosan nanogel drug are jointly loaded on the needle tip of the soluble microneedle, which can perform immunotherapy on near-superficial tumors. It can increase the concentration of the drug in the lesion while reducing the dosage, which not only enhances the anti-tumor immune response, and reduce the systemic toxic and side effects of the drug, and the co-delivery of two nanomedicines can synergistically enhance the therapeutic effect.
优选地,所述免疫佐剂包括Toll样受体7激动剂(如咪喹莫特R837)、Toll样受体7/8激动剂(如雷西莫特R848)或Toll样受体9激动剂(如未甲基化寡聚脱氧核苷酸CpG ODN)。Preferably, the immune adjuvant includes a Toll-like receptor 7 agonist (such as imiquimod R837), a Toll-like receptor 7/8 agonist (such as resiquimod R848) or a Toll-like receptor 9 agonist (such as unmethylated oligodeoxynucleotide CpG ODN).
进一步地,所述免疫检查点抑制剂为IgG抗体。Further, the immune checkpoint inhibitor is an IgG antibody.
优选地,所述免疫检查点抑制剂可选自抗程序性死亡受体1抗体(即aPD-1)或抗程序性死亡受体-配体1抗体(即aPD-L1)等IgG抗体中的一种或多种。Preferably, the immune checkpoint inhibitor can be selected from IgG antibodies such as anti-programmed death receptor 1 antibody (i.e., aPD-1) or anti-programmed death receptor-ligand 1 antibody (i.e., aPD-L1). one or more.
优选地,所述脂质体的材料包括中性磷脂、负电性的磷脂、正电性的磷脂、磷脂-聚合物偶联物或胆固醇中的一种或多种。Preferably, the liposome material includes one or more of neutral phospholipids, electronegative phospholipids, electropositive phospholipids, phospholipid-polymer conjugates or cholesterol.
更优选地,所述中性磷脂包括棕榈酰胆碱、二硬脂酰胆碱、二肉豆蔻酰磷脂酰胆碱或磷脂酰胆碱。More preferably, the neutral phospholipid includes palmitoylcholine, distearoylcholine, dimyristoylphosphatidylcholine or phosphatidylcholine.
更优选地,所述负电性的磷脂包括磷脂酸、磷脂酰甘油、磷脂酰肌醇或二硬脂酰磷脂酰乙醇胺-聚乙二醇。More preferably, the electronegative phospholipid includes phosphatidic acid, phosphatidylglycerol, phosphatidylinositol or distearoylphosphatidylethanolamine-polyethylene glycol.
更优选地,所述正电性的磷脂包括磷脂硬脂酰胺胆固醇衍生物。一般带正电的磷脂基本上都是人工合成的。More preferably, the electropositive phospholipid includes a phospholipid stearylamide cholesterol derivative. Generally, positively charged phospholipids are basically artificially synthesized.
更优选地,所述磷脂-聚合物偶联物包括二硬脂磷脂酰乙醇胺-聚乙二醇、二硬脂酰磷脂酰胆碱-聚乙二醇或二棕榈酰磷脂酰胆碱-聚乙二醇。More preferably, the phospholipid-polymer conjugate includes distearoylphosphatidylethanolamine-polyethylene glycol, distearoylphosphatidylcholine-polyethylene glycol or dipalmitoylphosphatidylcholine-polyethylene glycol. diol.
优选地,所述可溶性微针的针尖部位的基材选自透明质酸、纤维素、海藻酸钠和海藻糖等中的一种或多种。Preferably, the base material of the tip portion of the soluble microneedle is selected from one or more of hyaluronic acid, cellulose, sodium alginate, trehalose, and the like.
优选地,所述透明质酸的分子量小于10kDa。Preferably, the molecular weight of the hyaluronic acid is less than 10 kDa.
优选地,所述可溶性微针的针体部分和底座部分的基材选自聚乙烯吡咯烷酮K90、透明质酸、葡聚糖、纤维素和明胶中的一种或多种。Preferably, the base material of the needle body part and the base part of the soluble microneedle is selected from one or more of polyvinylpyrrolidone K90, hyaluronic acid, dextran, cellulose and gelatin.
优选地,所述免疫佐剂与脂质体的材料的质量比为1:10~20。Preferably, the mass ratio of the immune adjuvant to the liposome material is 1:10-20.
优选地,所述免疫检查点抑制剂与壳聚糖的质量比为1:0.5~2。Preferably, the mass ratio of the immune checkpoint inhibitor to chitosan is 1:0.5-2.
进一步地,所述免疫佐剂在可溶性微针中的负载量为每平方厘米5~15μg。Further, the loading amount of the immune adjuvant in the soluble microneedles is 5-15 μg per square centimeter.
进一步地,所述免疫检查点抑制剂在可溶性微针中的负载量为每平方厘米2~10μg。Further, the loading amount of the immune checkpoint inhibitor in the soluble microneedles is 2-10 μg per square centimeter.
本发明还保护所述共负载免疫佐剂与免疫检查点抑制剂的可溶性微针的制备方法,具体包括以下步骤:The present invention also protects the preparation method of the soluble microneedles co-loaded with immune adjuvants and immune checkpoint inhibitors, which specifically includes the following steps:
S1、将免疫佐剂包封在脂质体中得到脂质纳米药物;将免疫检查点抑制剂装载在壳聚糖纳米凝胶中,得到壳聚糖纳米凝胶药物;S1. Encapsulate immune adjuvants in liposomes to obtain lipid nanomedicines; load immune checkpoint inhibitors into chitosan nanogels to obtain chitosan nanogel drugs;
S2、将步骤S1所得脂质纳米药物与针尖部位的基材溶液混合均匀后和壳聚糖纳米凝胶药物分步通过微针模具负载在可溶性微针的针尖部位,且不受限于脂质纳米药物和壳聚糖凝胶药物的负载顺序;如果先负载壳聚糖纳米凝胶药物后负载脂质纳米药物,负电性针尖基材能通过静电相互作用吸附到壳聚糖纳米凝胶药物表面,增加其密度与尺寸,使其在离心力的作用下聚集到微针针尖,避免了药物向微针基底扩散,进一步提高微针的载药率,减少了昂贵药物的浪费,最大程度发挥对肿瘤的治疗效果;如果先负载脂质纳米药物后负载壳聚糖纳米凝胶药物,在注入基材制备针体时,基材同样能够增加壳聚糖纳米凝胶药物的密度,若该基材为负电性材料,可以通过静电相互作用附到壳聚糖纳米凝胶药物表面,避免药物向微针基底扩散。S2. Mix the lipid nanomedicine obtained in step S1 with the base material solution at the needle tip evenly, and then load the chitosan nanogel drug on the needle tip of the soluble microneedle through the microneedle mold step by step, and is not limited to lipids. The loading sequence of nanomedicine and chitosan gel medication; if the chitosan nanogel medication is loaded first and then the lipid nanomedicine is loaded, the negatively charged tip base material can be adsorbed to the surface of the chitosan nanogel medication through electrostatic interaction , increase its density and size, causing it to gather at the tip of the microneedle under the action of centrifugal force, avoiding the diffusion of drugs to the base of the microneedle, further improving the drug loading rate of the microneedle, reducing the waste of expensive drugs, and maximizing the effect on tumors. The therapeutic effect; if the lipid nanomedicine is loaded first and then the chitosan nanogel drug is loaded, when the base material is injected to prepare the needle, the base material can also increase the density of the chitosan nanogel drug. If the base material is Negative materials can be attached to the drug surface of chitosan nanogel through electrostatic interaction to prevent the drug from diffusing to the microneedle base.
S3、在步骤S2所得针尖部位上依次制备针体部分和底座部分,即得。S3. Prepare the needle body part and the base part in sequence on the needle tip obtained in step S2, and that is the result.
无论是小分子药物还是抗体,都存在密度较小的问题,在微针制备过程中难以通过离心聚集到针尖,即使到达针尖的药物,也容易向微针背部基底扩散并被刮去,不仅限制了微针的载药率,也造成了昂贵药物的浪费,最终还会影响肿瘤的治疗效果。经过前期大量的研究,申请人创造性发现,制备共负载免疫佐剂与免疫检查点抑制剂的可溶性微针的过程中,将免疫佐剂包封在脂质体中得到脂质纳米药物,将免疫检查点抑制剂装载在壳聚糖纳米凝胶中,得到壳聚糖纳米凝胶药物,再分步负载在可溶性微针的针尖部位并且后续使用的基质材料能够进一步增加脂质体的密度,有利于药物聚集在微针针尖并且不易扩散,从而有效改善微针的载药率。Whether it is small molecule drugs or antibodies, there is a problem of low density. During the preparation process of microneedles, it is difficult to gather to the needle tip through centrifugation. Even if the drug reaches the needle tip, it is easy to diffuse to the back base of the microneedle and be scraped off, which not only limits the The drug loading rate of microneedles is reduced, which also leads to the waste of expensive drugs and ultimately affects the therapeutic effect of tumors. After extensive preliminary research, the applicant creatively discovered that in the process of preparing soluble microneedles co-loaded with immune adjuvants and immune checkpoint inhibitors, the immune adjuvants are encapsulated in liposomes to obtain lipid nanomedicines, which combine immune The checkpoint inhibitor is loaded into the chitosan nanogel to obtain the chitosan nanogel drug, which is then loaded step by step on the tip of the soluble microneedle, and the subsequent matrix material used can further increase the density of the liposome, with It is conducive to the accumulation of drugs on the microneedle tips and is not easy to spread, thereby effectively improving the drug loading rate of the microneedle.
进一步地,步骤S1中,采用离子凝胶法制备壳聚糖纳米凝胶药物。Further, in step S1, the chitosan nanogel drug is prepared using an ion gel method.
优选地,所述离子凝胶法采用的交联剂为三聚磷酸钠。Preferably, the cross-linking agent used in the ion gel method is sodium tripolyphosphate.
进一步地,步骤S2中,纳米药物与针尖部位的基材制成溶液后固化得到针尖部分,所述针尖部位的基材的浓度为50~120mg/mL,纳米药物(两种药物的总浓度)的浓度为1~4mg/mL。Further, in step S2, the nanomedicine and the base material at the needle tip part are made into a solution and then solidified to obtain the needle tip part. The concentration of the base material at the needle tip part is 50-120 mg/mL, and the nanomedicine (total concentration of the two drugs) The concentration is 1~4mg/mL.
优选地,所述纳米药物的浓度为2mg/mL。Preferably, the concentration of the nanomedicine is 2 mg/mL.
优选地,当壳聚糖纳米凝胶药物先负载在可溶性微针的针尖部位,再负载脂质纳米药物,具有较高的机械强度,利于穿透皮肤。壳聚糖纳米凝胶相较于脂质体,密度大幅增高,更有利于沉积在针尖底部;与此同时,本发明还使用多步离心法,在壳聚糖纳米凝胶固化后再加入混合针尖基材溶液(带负电)的脂质纳米药物,负电性的针尖基材溶液能够通过静电相互作用吸附到壳聚糖表面,增加了壳聚糖纳米凝胶药物的密度和尺寸,使其在离心力的作用下聚集到微针针尖,避免了药物向微针基底扩散,进一步保证昂贵的免疫检查点抑制剂抗体的利用度。Preferably, when the chitosan nanogel drug is first loaded on the needle tip of the soluble microneedle, and then the lipid nanomedicine is loaded, it has higher mechanical strength and is easier to penetrate the skin. Compared with liposomes, chitosan nanogel has a significantly higher density and is more conducive to deposition at the bottom of the needle tip; at the same time, the present invention also uses a multi-step centrifugation method to add and mix the chitosan nanogel after solidification The needle tip base material solution (negatively charged) lipid nanomedicine, the negatively charged needle tip base material solution can be adsorbed to the chitosan surface through electrostatic interaction, increasing the density and size of the chitosan nanogel drug, making it Under the action of centrifugal force, it gathers on the tip of the microneedle, preventing the drug from diffusing to the base of the microneedle, further ensuring the utilization of expensive immune checkpoint inhibitor antibodies.
进一步地,步骤S2中,所述微针模具为PDMS微针模具,形态参数为针高400~1500μm,底座直径300~500μm,针尖直径小于10μm,阵列数量大于8×8。Further, in step S2, the microneedle mold is a PDMS microneedle mold, the morphological parameters are needle height 400-1500 μm, base diameter 300-500 μm, needle tip diameter less than 10 μm, and the number of arrays is greater than 8×8.
进一步地,步骤S3中,针体部分的基材浓度为300~400mg/mL,底座部分的基材浓度300~400mg/mL。在制备中具体为:在针尖部分上制备针体部分,在针体部分上制备底座部分。Further, in step S3, the base material concentration of the needle body part is 300-400 mg/mL, and the base material concentration of the base part is 300-400 mg/mL. The preparation process specifically includes: preparing a needle body part on the needle tip part, and preparing a base part on the needle body part.
更进一步地,所述针尖、针体和底座部分别将基材溶液置于微针模具中,离心、固化得到;其中,所述离心的转速为3000~10000rpm,时间为5~30min。Furthermore, the needle tip, needle body and base part are obtained by placing the base material solution in a microneedle mold respectively, centrifuging and solidifying; wherein the centrifugal speed is 3000-10000 rpm and the time is 5-30 min.
本发明为了解决微针给药负载量小且无法将药物集中于微针针尖的问题,通过两步法制备微针针尖与针体。In order to solve the problem that the microneedle drug delivery load is small and the drug cannot be concentrated on the microneedle tip, the present invention prepares the microneedle tip and needle body through a two-step method.
本发明还保护所述共负载免疫佐剂与免疫检查点抑制剂的可溶性微针在制备治疗癌症药物或医疗器具中的应用。The present invention also protects the application of the soluble microneedles co-loaded with immune adjuvants and immune checkpoint inhibitors in the preparation of cancer treatment drugs or medical devices.
进一步地,所述癌症为浅表性癌症,包括乳腺癌、黑色素瘤、皮肤癌。Further, the cancer is superficial cancer, including breast cancer, melanoma, and skin cancer.
本发明具有以下有益效果:The invention has the following beneficial effects:
本发明提供了一种共负载免疫佐剂和免疫检查点激动剂的可溶性微针,利用脂质体包封免疫佐剂形成脂质纳米药物,利用壳聚糖装载免疫检查点抑制剂形成壳聚糖纳米凝胶药物;进一步将所得两种纳米药物分步负载于可溶性微针的针尖部位,并能避免药物向微针基底扩散;制备得到的微针能够作用于浅表型肿瘤,显著提高病灶的药物浓度,并且两种纳米药物的共同递送可协同增强机体免疫系统对肿瘤细胞的杀伤功能;与此同时,还可以降低用药剂量,避免产生全身性的毒副作用。The invention provides a soluble microneedle that is co-loaded with an immune adjuvant and an immune checkpoint agonist. The immune adjuvant is encapsulated in liposomes to form lipid nanomedicine, and chitosan is used to load immune checkpoint inhibitors to form chitosan. Sugar nanogel drug; the two obtained nanomedicines are further loaded on the tip of the soluble microneedle step by step, and can prevent the drug from diffusing to the microneedle base; the prepared microneedle can act on superficial tumors and significantly improve the focus of the disease. The drug concentration is high, and the co-delivery of the two nanomedicines can synergistically enhance the killing function of the body's immune system against tumor cells; at the same time, the dosage can also be reduced to avoid systemic toxic side effects.
附图说明Description of drawings
图1为实施例1、2中RNPs和αNPs纳米药物的粒径的数据统计图。Figure 1 is a statistical graph showing the particle size of RNPs and αNPs nanomedicines in Examples 1 and 2.
图2为实施例1、2中RNPs和αNPs纳米药物的表面电位的数据统计图。Figure 2 is a statistical graph showing the surface potential of RNPs and αNPs nanomedicines in Examples 1 and 2.
图3为实施例1中RNPs纳米药物的透射电镜扫描图。Figure 3 is a transmission electron microscope scanning image of RNPs nanomedicine in Example 1.
图4为实施例2中αNPs纳米药物的透射电镜扫描图。Figure 4 is a transmission electron microscope scanning image of αNPs nanomedicine in Example 2.
图5为实施例3中可溶性微针的扫描电镜图。Figure 5 is a scanning electron microscope image of the soluble microneedles in Example 3.
图6为实施例3中可溶性微针的手持显微镜图。Figure 6 is a handheld microscope image of the soluble microneedles in Example 3.
图7为实施例4中可溶性微针的载药量测试结果的数据统计图。Figure 7 is a statistical graph showing the drug loading test results of the soluble microneedles in Example 4.
图8为实施例5中不同浓度的R848、RNPs以及装载RNPs的RNP@DMN微针对DC2.4细胞存活率的数据统计图。Figure 8 is a statistical graph showing the survival rate of DC2.4 cells using different concentrations of R848, RNPs and RNP@DMN microneedles loaded with RNPs in Example 5.
图9为实施例6中肿瘤体积记录实体图。Figure 9 is a physical diagram of tumor volume recording in Example 6.
图10为实施例6中肿瘤体积变化的数据统计图(三个星号(***)代表p<0.001,表示具有极其显著的统计学差异)。Figure 10 is a statistical graph of tumor volume changes in Example 6 (three asterisks (***) represent p<0.001, indicating an extremely significant statistical difference).
图11为实施例6中小鼠体重变化的数据统计图。Figure 11 is a statistical graph showing body weight changes of mice in Example 6.
图12为实施例6中小鼠心肝脾肺肾的HE染色图。Figure 12 is a HE staining picture of the heart, liver, spleen, lung and kidney of mice in Example 6.
图13为实施例6中小鼠的肝肾功能参数(ALT、BUN、TBIL、CREA)的数据统计图。Figure 13 is a statistical graph of liver and kidney function parameters (ALT, BUN, TBIL, CREA) of mice in Example 6.
具体实施方式Detailed ways
以下结合说明书附图和具体实施例来进一步说明本发明,但实施例并不对本发明做任何形式的限定。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。The invention will be further described below with reference to the accompanying drawings and specific examples, but the examples do not limit the invention in any way. Unless otherwise specified, the reagents, methods and equipment used in the present invention are conventional reagents, methods and equipment in this technical field.
除非特别说明,以下实施例所用试剂和材料均为市购。Unless otherwise stated, the reagents and materials used in the following examples were all commercially available.
PC-98T:即高纯蛋黄卵磷脂,购自艾伟拓(上海)医药科技有限公司;PC-98T: High-purity egg yolk lecithin, purchased from Avituo (Shanghai) Pharmaceutical Technology Co., Ltd.;
Chol:即胆固醇,购自艾伟拓(上海)医药科技有限公司;Chol: Cholesterol, purchased from Avituo (Shanghai) Pharmaceutical Technology Co., Ltd.;
DSPE-mPEG2000:即二硬脂酸磷脂酰乙醇胺-聚乙二醇2000,购自艾伟拓(上海)医药科技有限公司。DSPE-mPEG2000: distearic acid phosphatidylethanolamine-polyethylene glycol 2000, purchased from Avituo (Shanghai) Pharmaceutical Technology Co., Ltd.
实施例1包封免疫佐剂的脂质纳米药物RNPs的合成(以R848为例)Example 1 Synthesis of lipid nanomedicine RNPs encapsulating immune adjuvants (taking R848 as an example)
所述包封免疫佐剂的脂质纳米药物RNPs的制备方法具体包括以下步骤:The preparation method of the lipid nanomedicine RNPs encapsulating immune adjuvants specifically includes the following steps:
SI-1、将20mg的脂质体膜材(PC-98T:Chol:DSPE-mPEG2000=10:5:1,摩尔比)和2mg R848溶解于15mL氯仿中,倒入250mL茄形瓶中,通过旋转蒸发(35℃,135rpm,20min)除去氯仿,得到一层均匀的脂质膜;SI-1. Dissolve 20 mg of liposome membrane material (PC-98T:Chol:DSPE-mPEG2000=10:5:1, molar ratio) and 2 mg of R848 in 15 mL of chloroform, pour it into a 250 mL eggplant-shaped bottle, and pass Rotate evaporate (35°C, 135rpm, 20min) to remove chloroform and obtain a uniform lipid film;
SI-2、向茄形瓶中加入4mL纯水,在超声下剥离脂质膜;SI-2. Add 4 mL of pure water to the eggplant-shaped bottle and peel off the lipid film under ultrasound;
SI-3、通过探头超声(130w,20kHz,20min)得到脂质纳米药物RNPs。SI-3. Obtain lipid nanomedicine RNPs through probe ultrasound (130w, 20kHz, 20min).
测定RNPs纳米粒子的粒径、电位、表面形貌等表征,结果如图1~3所示。由图可见,RNPs纳米粒子的水合粒径大小在85nm左右,zeta电位在-27mV左右,透射电镜图像显示RNPs呈现一种有空腔的膜结构,干燥坍缩后的粒径在60nm左右。The particle size, potential, surface morphology and other characteristics of RNPs nanoparticles were measured. The results are shown in Figures 1 to 3. As can be seen from the figure, the hydrated particle size of RNPs nanoparticles is about 85nm, and the zeta potential is about -27mV. The transmission electron microscope image shows that RNPs exhibit a membrane structure with cavities, and the particle size after drying and collapse is about 60nm.
实施例2装载免疫检查点抑制剂的壳聚糖纳米凝胶药物αNPs的合成(以aPD-1为例)Example 2 Synthesis of chitosan nanogel drug αNPs loaded with immune checkpoint inhibitors (taking aPD-1 as an example)
所述装载免疫检查点抑制剂的壳聚糖纳米凝胶药物αNPs的制备方法具体包括以下步骤:The preparation method of the chitosan nanogel drug αNPs loaded with immune checkpoint inhibitors specifically includes the following steps:
SII-1、将壳聚糖溶解于2%乙酸水溶液,质量浓度为2.5mg/mL;aPD-1溶解于1×PBS中,质量浓度为2mg/mL,三聚磷酸钠(TPP)溶解于纯水中,质量浓度为0.25mg/mL。SII-1. Dissolve chitosan in 2% acetic acid aqueous solution with a mass concentration of 2.5 mg/mL; aPD-1 is dissolved in 1×PBS with a mass concentration of 2 mg/mL. Sodium tripolyphosphate (TPP) is dissolved in pure In water, the mass concentration is 0.25mg/mL.
SII-2、4℃条件下,将aPD-1溶液与TPP溶液混合均匀,在高速涡旋的条件下(1500~3000rpm)逐滴滴加入壳聚糖溶液中,反应2h。aPD-1与壳聚糖的质量比为1:1。Under the conditions of SII-2 and 4°C, mix the aPD-1 solution and the TPP solution evenly, add it drop by drop to the chitosan solution under high-speed vortex conditions (1500~3000rpm), and react for 2 hours. The mass ratio of aPD-1 to chitosan is 1:1.
SII-3、将SII-2中所得的溶液高速离心(10000rpm)15min,弃去上清液,用等量纯水分散下层固体,得到装载免疫检查点抑制剂的壳聚糖纳米凝胶药物αNPs。SII-3. Centrifuge the solution obtained in SII-2 at high speed (10000 rpm) for 15 minutes, discard the supernatant, and disperse the lower solid with an equal amount of pure water to obtain chitosan nanogel drug αNPs loaded with immune checkpoint inhibitors. .
测定αNPs纳米粒子的粒径、电位、表面形貌等表征,结果如图1~2、图4所示。由图可见,αNPs纳米粒子的水合粒径大小在94nm左右,zeta电位在46mV左右,αNPs用醋酸铀染色后拍摄的透射电镜图显示其干燥坍缩后的粒径在60nm左右。The particle size, potential, surface morphology and other characteristics of αNPs nanoparticles were measured. The results are shown in Figures 1 to 2 and Figure 4. As can be seen from the figure, the hydrated particle size of αNPs nanoparticles is about 94nm, and the zeta potential is about 46mV. The transmission electron microscope image taken after αNPs was dyed with uranyl acetate shows that its particle size after drying and collapse is about 60nm.
实施例3共负载免疫佐剂和免疫检查点阻断剂的可溶性微针的制备Example 3 Preparation of soluble microneedles co-loaded with immune adjuvants and immune checkpoint blockers
共负载免疫佐剂和免疫检查点阻断剂的制备方法具体包括以下步骤:The preparation method of co-loading immune adjuvant and immune checkpoint blocker specifically includes the following steps:
SIII-1、取实施例2得到的αNPs纳米粒子100μg,浇筑至微针模具中,4000rpm转速条件下离心5min,旋转180°再次离心5min,刮去多余液体,离心30min,干燥至溶液固化;SIII-1. Take 100 μg of αNPs nanoparticles obtained in Example 2, pour it into a microneedle mold, centrifuge at 4000 rpm for 5 min, rotate 180° and centrifuge again for 5 min, scrape off excess liquid, centrifuge for 30 min, and dry until the solution solidifies;
SIII-2、取实施例1得到的RNPs纳米粒子2.5mg,与70mg/mL的透明质酸(HA)水溶液混合均匀;将含有RNPs的HA溶液浇筑至SIII-1中所得的针尖部位已固化了αNPs的微针模具中,4000rpm转速条件下离心5min,旋转180°再次离心5min,刮去多余液体,离心30min,干燥至溶液固化,与αNPs共同作为针尖部分;SIII-2. Take 2.5 mg of the RNPs nanoparticles obtained in Example 1 and mix them evenly with a 70 mg/mL hyaluronic acid (HA) aqueous solution; pour the HA solution containing RNPs into the needle tip obtained in SIII-1 and the needle tip has solidified. In the microneedle mold of αNPs, centrifuge at 4000 rpm for 5 minutes, rotate 180° and centrifuge again for 5 minutes, scrape off excess liquid, centrifuge for 30 minutes, dry until the solution solidifies, and serve as the needle tip together with αNPs;
SIII-3、配制300mg/mL的HA溶液,并将所配制的HA溶液浇筑至微针模具中,4000rpm转速条件下离心5min,旋转180°再次离心5min,刮去多余液体,离心30min,干燥至溶液固化,作为针体部分;SIII-3. Prepare 300 mg/mL HA solution, pour the prepared HA solution into the microneedle mold, centrifuge at 4000 rpm for 5 min, rotate 180° and centrifuge again for 5 min, scrape off excess liquid, centrifuge for 30 min, and dry to The solution solidifies as part of the needle body;
SIII-4、配制300mg/mL的PVP K90水溶液,并将所配制的PVP K90水溶液浇筑至微针模具中,维持真空负压15min,抽出气泡,刮去含气泡溶液,加入新的PVP K90水溶液,填满整个模具,干燥至溶液固化,作为底座部分,即可得共负载免疫佐剂和免疫检查点抑制剂的可溶性微针;SIII-4. Prepare a 300 mg/mL PVP K90 aqueous solution, pour the prepared PVP K90 aqueous solution into the microneedle mold, maintain the vacuum negative pressure for 15 minutes, extract the bubbles, scrape off the bubble-containing solution, and add a new PVP K90 aqueous solution. Fill the entire mold, dry until the solution solidifies, and use it as the base part to obtain soluble microneedles co-loaded with immune adjuvants and immune checkpoint inhibitors;
其中,所采用的微针模具为PDMS微针模具,其形态参数为针高1200μm,底座直径300μm,针尖直径小于10μm,阵列数量大于12×12。Among them, the microneedle mold used is a PDMS microneedle mold, whose morphological parameters are needle height 1200 μm, base diameter 300 μm, needle tip diameter less than 10 μm, and the number of arrays is greater than 12×12.
对所得共负载免疫佐剂和免疫检查点抑制剂的可溶性微针形貌进行表征,表征结果如图5~6所示。The morphology of the obtained soluble microneedles co-loaded with immune adjuvants and immune checkpoint inhibitors was characterized, and the characterization results are shown in Figures 5-6.
实施例4可溶性微针的载药量测试Example 4 Drug Loading Test of Soluble Microneedles
(1)仅负载脂质纳米药物RNPs的可溶性微针(RNP@DMN)的制备(1) Preparation of soluble microneedles (RNP@DMN) loaded only with lipid nanomedicine RNPs
取实施例1得到的RNPs纳米药物2.5mg,与70mg/mL的透明质酸(HA)水溶液混合均匀;将含有RNPs的HA溶液浇筑至微针模具中,4000rpm转速条件下离心5min,旋转180°再次离心5min,刮去多余液体,离心30min,干燥至溶液固化,作为针尖部分;Take 2.5 mg of the RNPs nanomedicine obtained in Example 1 and mix it evenly with a 70 mg/mL hyaluronic acid (HA) aqueous solution; pour the HA solution containing RNPs into the microneedle mold, centrifuge at 4000 rpm for 5 min, and rotate 180° Centrifuge again for 5 minutes, scrape off excess liquid, centrifuge for 30 minutes, dry until the solution solidifies, and use it as the needle tip;
其余步骤与参数参考实施例3制备即可得可溶性微针RNP@DMN。The remaining steps and parameters are prepared with reference to Example 3, and the soluble microneedle RNP@DMN is obtained.
(2)仅负载壳聚糖纳米凝胶药物αNPs的可溶性微针(αNP@DMN)的制备(2) Preparation of soluble microneedles (αNP@DMN) loaded only with chitosan nanogel drug αNPs
取实施例2得到的αNPs纳米粒子100μg,浇筑至微针模具中,4000rpm转速条件下离心5min,旋转180°再次离心5min,刮去多余液体,离心30min,干燥至溶液固化,作为针体部分;Take 100 μg of the αNPs nanoparticles obtained in Example 2, pour them into a microneedle mold, centrifuge at 4000 rpm for 5 min, rotate 180° and centrifuge again for 5 min, scrape off excess liquid, centrifuge for 30 min, dry until the solution solidifies, and serve as the needle body;
其余步骤与参数参考实施例3制备即可得可溶性微针αNP@DMN。The remaining steps and parameters are prepared with reference to Example 3, and the soluble microneedle αNP@DMN is obtained.
(3)R848可溶性微针(R848@DMN)的制备(3) Preparation of R848 soluble microneedles (R848@DMN)
保证R848@DMN的制备过程中,R848的添加量与RNP@DMN制备过程中称取的RNP负载的R848相同,经换算取适量R848溶解于1mL氯仿中,与70mg/mL的透明质酸(HA)水溶液混合均匀;将含有R848的HA溶液浇筑至微针模具中,4000rpm转速条件下离心5min,旋转180°再次离心5min,刮去多余液体,离心30min,干燥至溶液固化,作为针尖部分;Ensure that during the preparation process of R848@DMN, the added amount of R848 is the same as the RNP-loaded R848 weighed during the preparation process of RNP@DMN. After conversion, an appropriate amount of R848 is dissolved in 1mL of chloroform and mixed with 70mg/mL of hyaluronic acid (HA). ) Mix the aqueous solution evenly; pour the HA solution containing R848 into the microneedle mold, centrifuge at 4000 rpm for 5 minutes, rotate 180° and centrifuge again for 5 minutes, scrape off excess liquid, centrifuge for 30 minutes, dry until the solution solidifies, and serve as the needle tip;
其余步骤与参数参考实施例3制备即可得可溶性微针R848@DMN。The remaining steps and parameters can be prepared by referring to Example 3 to obtain soluble microneedles R848@DMN.
(4)aPD-1可溶性微针(aPD-1@DMN)的制备(4) Preparation of aPD-1 soluble microneedles (aPD-1@DMN)
保证aPD-1@DMN的制备过程中aPD-1的添加量与RNP@DMN制备过程中称取的αNPs负载的aPD-1相同,经换算取适量aPD-1溶解在1mL 1×PBS中,浇筑至微针模具中,4000rpm转速条件下离心5min,旋转180°再次离心5min,刮去多余液体,离心30min,干燥至溶液固化,作为针体部分;Ensure that the amount of aPD-1 added during the preparation of aPD-1@DMN is the same as the αNPs-loaded aPD-1 weighed during the preparation of RNP@DMN. After conversion, dissolve an appropriate amount of aPD-1 in 1mL 1×PBS and pour into the microneedle mold, centrifuge at 4000 rpm for 5 minutes, rotate 180° and centrifuge again for 5 minutes, scrape off excess liquid, centrifuge for 30 minutes, dry until the solution solidifies, and serve as the needle body;
其余步骤与参数参考实施例3制备即可得可溶性微针aPD-1@DMN。The remaining steps and parameters are prepared with reference to Example 3, and the soluble microneedle aPD-1@DMN is obtained.
(5)可溶性微针的载药量测试:(5) Drug loading test of soluble microneedles:
使用手术刀片将上述(1)~(4)中所得可溶性微针从微针贴片上刮下,收集并称重,用适量的超纯水溶解,再用DMSO稀释上述溶解后的溶液到合适的浓度,通过高效液相色谱-紫外检测器测定微针中R848的浓度;采用相同的方法收集aPD-1,通过IgG ELISA试剂盒对aPD-1的载药量进行测定。Use a scalpel blade to scrape the soluble microneedles obtained in (1) to (4) above from the microneedle patch, collect and weigh them, dissolve them with an appropriate amount of ultrapure water, and then dilute the above dissolved solution with DMSO to a suitable The concentration of R848 in the microneedles was determined by high-performance liquid chromatography-UV detector; aPD-1 was collected using the same method, and the drug loading capacity of aPD-1 was determined by IgG ELISA kit.
测定结果如图7所示,由图可知,相较于未经包封直接负载于可溶性微针的R848和aPD-1,将R848包封于脂质体、将aPD-1装载于壳聚糖纳米凝胶后再装入可溶性微针得到的共负载免疫佐剂和免疫检查点抑制剂的可溶性微针装载率的得到了显著的提高。The measurement results are shown in Figure 7. It can be seen from the figure that compared to R848 and aPD-1, which are directly loaded on soluble microneedles without encapsulation, R848 is encapsulated in liposomes and aPD-1 is loaded on chitosan. After loading the nanogel into soluble microneedles, the loading rate of the soluble microneedles obtained by co-loading immune adjuvants and immune checkpoint inhibitors has been significantly improved.
实施例5不同浓度的R848、RNPs以及装载RNPs的可溶性微针αNP-RNP@DMN对DC2.4细胞存活率的影响Example 5 Effects of different concentrations of R848, RNPs and soluble microneedles αNP-RNP@DMN loaded with RNPs on the survival rate of DC2.4 cells
参考实施例4的方法制备装载RNPs的可溶性微针(RNP@DMN),采用MTT法分别测试不同浓度的R848、RNP以及装载RNPs的可溶性微针(RNP@DMN)对DC2.4细胞存活率的影响。Refer to the method of Example 4 to prepare soluble microneedles loaded with RNPs (RNP@DMN), and use the MTT method to test the effects of different concentrations of R848, RNP, and soluble microneedles loaded with RNPs (RNP@DMN) on the viability of DC2.4 cells. Influence.
测试结果如图8所示,通过图8可知,未包封的R848对DC2.4细胞(为R848的靶细胞)随着浓度的增高毒性增加,但当其包封于脂质体或装载入微针后,对DC2.4细胞起到促进增殖的作用。证明脂质体的包封降低了R848对DC2.4细胞的毒性。The test results are shown in Figure 8. It can be seen from Figure 8 that the toxicity of unencapsulated R848 to DC2.4 cells (the target cells of R848) increases as the concentration increases, but when it is encapsulated in liposomes or loaded into microspheres, After injection, it promotes the proliferation of DC2.4 cells. It was proved that liposome encapsulation reduced the toxicity of R848 to DC2.4 cells.
实施例6共负载免疫佐剂和免疫检查点抑制剂的可溶性微针作用于肿瘤的治疗效果及安全性评估Example 6 Therapeutic effect and safety evaluation of soluble microneedles co-loaded with immune adjuvants and immune checkpoint inhibitors on tumors
1、实验材料:1. Experimental materials:
鼠源三阴性乳腺癌4T1细胞系;4~6周龄的BALB/c小鼠,购置于广东省动物实验中心。所有动物操作程序均遵照中山大学“实验动物关爱和使用指南”进行实验。所有涉及动物的实验均严格遵守《中国动物管理条例》(1988年,2017年修订)和《中国实验动物人道待遇指南》(MOST 2006)。Mouse-derived triple-negative breast cancer 4T1 cell line; BALB/c mice aged 4 to 6 weeks were purchased from the Guangdong Provincial Animal Experiment Center. All animal operating procedures were conducted in accordance with the "Guidelines for the Care and Use of Laboratory Animals" of Sun Yat-sen University. All experiments involving animals strictly abide by the "China Animal Management Regulations" (1988, revised in 2017) and the "China Guidelines for the Humane Treatment of Laboratory Animals" (MOST 2006).
2、实验方法:2. Experimental method:
肿瘤动物模型建模:脱净小鼠背部毛发,将4T1乳腺癌细胞悬液100μL(1×106个)注射到小鼠背部,将小鼠分为5组,分别为对照组(Control)、RNPs单药微针组(RNP@DMN)、αNPs单药微针组(αNP@DMN)、RNPs和αNPs混合溶液瘤内注射组(αNP+RNP i.t.)以及共负载RNPs和αNPs微针组(αNP-RNP@DMN)。建模7天后按照不同组进行不同的给药处理,每两天记录一次小鼠体重和肿瘤体积。结果参见图9~11。Tumor animal model modeling: Remove the hair from the back of mice, inject 100 μL (1×10 6 cells) of 4T1 breast cancer cell suspension into the back of mice, divide the mice into 5 groups, namely control group (Control), RNPs single drug microneedle group (RNP@DMN), αNPs single drug microneedle group (αNP@DMN), RNPs and αNPs mixed solution intratumoral injection group (αNP+RNP it), and co-loaded RNPs and αNPs microneedle group (αNP -RNP@DMN). After 7 days of modeling, different administration treatments were performed according to different groups, and the mouse body weight and tumor volume were recorded every two days. The results are shown in Figures 9 to 11.
通过对小鼠心肝脾肺肾的HE染色明确药物的毒副反应,染色结果参见图12;同时通过小鼠生化仪检测小鼠的肝肾功能,结果如图13所示。The toxic and side effects of the drug were clarified by HE staining of the heart, liver, spleen, lung and kidney of mice. The staining results are shown in Figure 12. At the same time, the liver and kidney functions of the mice were detected by a mouse biochemical instrument, and the results are shown in Figure 13.
3、实验结果:3. Experimental results:
由图9~13可见,免疫佐剂和免疫检查点抑制剂联合给药组的抑癌效果均明显优于对照组和单药给药组,而通过微针给药的αNP-RNP@DMN组相比瘤内注射混合药物溶液的αNP+RNP i.t.组相比具有更佳的疗效;与其他组持续上升的肿瘤大小相比,αNP-RNP@DMN组肿瘤在给药第十天开始出现变小的趋势。另外,各组小鼠的体重均没有出现明显下降,肝、肾的生化指标均处于正常范围以内且各组间不存在显著性差异,各组心肝脾肾的H&E切片未显示明显损伤,证明微针给药没有明显的毒副作用。其中,图12中肺的H&E切片显示,小鼠三阴性乳腺癌将会使肺间质出现纤维化并增厚的情况,威胁小鼠的生命健康,αNP+RNPi.t.组和αNP-RNP@DMN组治疗能够有效抑制小鼠肺纤维化,维持小鼠肺器官的正常功能。As can be seen from Figures 9 to 13, the tumor suppressor effect of the combined administration of immune adjuvants and immune checkpoint inhibitors was significantly better than that of the control group and single drug administration group, while the αNP-RNP@DMN group administered through microneedles Compared with the αNP+RNP i.t. group injected with mixed drug solution into the tumor, it has better efficacy; compared with the continued increase in tumor size in other groups, the tumors in the αNP-RNP@DMN group began to shrink on the tenth day of administration. the trend of. In addition, the weight of mice in each group did not decrease significantly, the biochemical indicators of the liver and kidneys were within the normal range, and there was no significant difference between the groups. The H&E sections of the heart, liver, spleen, and kidneys in each group showed no obvious damage, proving that microorganisms Injection administration has no obvious side effects. Among them, the H&E sections of the lungs in Figure 12 show that triple-negative breast cancer in mice will cause fibrosis and thickening of the lung interstitium, threatening the life and health of the mice. αNP+RNPi.t. group and αNP-RNP Treatment in the @DMN group can effectively inhibit pulmonary fibrosis in mice and maintain the normal function of the mouse lung organs.
根据以上结果,可证明共负载免疫佐剂和免疫检查点抑制剂的可溶性微针具有显著的抑制肿瘤的功效,且对正常器官未显示毒性,并能够维持小鼠肺部正常的形态。Based on the above results, it can be proved that the soluble microneedles co-loaded with immune adjuvants and immune checkpoint inhibitors have significant tumor inhibition effect, show no toxicity to normal organs, and can maintain the normal morphology of mouse lungs.
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above embodiments are preferred embodiments of the present invention, but the embodiments of the present invention are not limited to the above embodiments. Any other changes, modifications, substitutions, combinations, etc. may be made without departing from the spirit and principles of the present invention. All simplifications should be equivalent substitutions, and are all included in the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311052821.5A CN117159440A (en) | 2023-08-18 | 2023-08-18 | A soluble microneedle co-loaded with immune adjuvants and immune checkpoint inhibitors and its preparation method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311052821.5A CN117159440A (en) | 2023-08-18 | 2023-08-18 | A soluble microneedle co-loaded with immune adjuvants and immune checkpoint inhibitors and its preparation method and application |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117159440A true CN117159440A (en) | 2023-12-05 |
Family
ID=88932844
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311052821.5A Pending CN117159440A (en) | 2023-08-18 | 2023-08-18 | A soluble microneedle co-loaded with immune adjuvants and immune checkpoint inhibitors and its preparation method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117159440A (en) |
-
2023
- 2023-08-18 CN CN202311052821.5A patent/CN117159440A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2213284B1 (en) | Preparation for application to body surface and preparation holding sheet for application to body surface | |
Abnoos et al. | Chitosan-alginate nano-carrier for transdermal delivery of pirfenidone in idiopathic pulmonary fibrosis | |
Bui et al. | Dissolving microneedles for long-term storage and transdermal delivery of extracellular vesicles | |
Garg et al. | Ancient and advanced approaches for the treatment of an inflammatory autoimmune disease− psoriasis | |
WO2010083778A1 (en) | Lung targeting injectable pharmaceutical composition of liposome | |
Li et al. | Inhalable functional mixed-polymer microspheres to enhance doxorubicin release behavior for lung cancer treatment | |
CN104288093B (en) | Application of the nano drug transdermal preparation in tumour | |
US8481075B2 (en) | Preparation and application of biodegradable-material-made microsphere vascular embolus containing liposome-encapsulated cytokines | |
Yi et al. | Visually controlled pulsatile release of insulin from chitosan poly-acrylic acid nanobubbles triggered by focused ultrasound | |
Bai et al. | Double-targeted liposomes coated with matrix metallopeptidase-2-responsive polypeptide nanogel for chemotherapy and enhanced immunotherapy against cervical cancer | |
CN102370623A (en) | Liquid-state lipid micro-particles used for delivering cerebric medicine through olfactory pathway, preparation method thereof, and preparation thereof | |
Sallam et al. | Colloidal delivery of drugs: present strategies and conditions | |
CN102188379B (en) | Preparation method of drug-carrying liposome | |
CN117159440A (en) | A soluble microneedle co-loaded with immune adjuvants and immune checkpoint inhibitors and its preparation method and application | |
CN116687833A (en) | A kind of soluble microneedle containing antibody-coupled albumin-paclitaxel nano-drug and its preparation method and application | |
CN101919808A (en) | Topical fluorouracil vesicle gel and preparation method thereof | |
CN113750033B (en) | Baicalin ethosome-loaded soluble hyaluronic acid microneedle array and preparation method and application thereof | |
CN1980671B (en) | Liposome preparation containing slightly water-soluble camptothecin | |
CN1876177B (en) | Microsphere vascular embolism agent containing biodegradable liposomal cytokines and its preparation and application | |
CN112741828B (en) | Drug combination and preparation method and application thereof | |
CN108392637B (en) | Posaconazole liposome and preparation method thereof | |
CN114588111A (en) | Acid-sensitive drug-releasing arsenic trioxide targeted liposome composition and preparation method thereof | |
CN113288871B (en) | Pharmaceutical composition liposome formulations for modulation of epigenetic and immune checkpoints | |
CN109925297A (en) | Transdermal delivery system and its preparation method and application containing aconitine | |
CN115501203B (en) | Nanomedicine carrier loaded with active ingredients and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |