CN117157316A - Modified plasma coagulation factor VIII and methods of use thereof - Google Patents

Modified plasma coagulation factor VIII and methods of use thereof Download PDF

Info

Publication number
CN117157316A
CN117157316A CN202180096784.0A CN202180096784A CN117157316A CN 117157316 A CN117157316 A CN 117157316A CN 202180096784 A CN202180096784 A CN 202180096784A CN 117157316 A CN117157316 A CN 117157316A
Authority
CN
China
Prior art keywords
leu
ser
glu
val
lys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180096784.0A
Other languages
Chinese (zh)
Inventor
王启钊
于道展
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ainuojian Gene Therapy Co ltd
Original Assignee
Ainuojian Gene Therapy Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ainuojian Gene Therapy Co ltd filed Critical Ainuojian Gene Therapy Co ltd
Publication of CN117157316A publication Critical patent/CN117157316A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/745Blood coagulation or fibrinolysis factors
    • C07K14/755Factors VIII, e.g. factor VIII C (AHF), factor VIII Ag (VWF)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Diabetes (AREA)
  • Biophysics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The present application describes modified hum1.An factor VIII polypeptides having enhanced factor VIII activity. In some embodiments, the modified human factor VIII polypeptide comprises one or more amino acid substitutions at positions a20, T21, F57, L69, I80, L178, R199, H212, I215, R269, I310, L318, S332, R378, I610, and/or I661. Such polypeptides and viral vectors encoding such polypeptides may be used to treat FVIII deficiency, such as hemophilia a.

Description

Modified plasma coagulation factor VIII and methods of use thereof
Technical Field
The present application relates generally to medical treatment, and in particular to modified plasma factor VIII polypeptides and their use in the treatment of hemophilia a.
Background
Hemophilia a is an X-linked recessive disease caused by a deficiency of functional plasma coagulation factor VIII (hFVIII). In hemophilia a patients, blood does not clot properly, resulting in excessive bleeding at the time of injury. The bleeding phenotype is typically associated with residual factor (residual factor) activity: people with severe disease (factor activity <1% normal) have frequent spontaneous bleeding; people with moderate disease (factor activity 1% -5% normal) rarely bleed spontaneously, but bleed with minor trauma; people with mild disease (factor activity 5% -40% normal) bleed during interventional surgery or trauma.
Current treatment of severe hemophilia a (factor VIII activity < 1%) requires periodic intravenous infusion of either recombinant factor VIII (rFVIII) or plasma concentrated factor VIII. Individuals with moderate and mild hemophilia a can be treated as desired without periodic preventive regimens. Infusion therapy is expensive and introduces a risk of infectious disease. rFVIII therapies have proven to be expensive due to the expense of production, purification and formulation. rFVIII treatment still requires intravenous administration because of the limited bioavailability of other routes of administration. The cost and limited availability of rFVIII have hampered the widespread implementation of this therapeutic strategy.
Gene therapy provides an alternative to infusion therapy. However, current gene therapies require high doses of viral vectors, which increases the costs associated with treatment. However, difficulties in implementing gene therapy techniques include vector toxicity and insufficient levels of factor VIII expression.
Thus, engineering FVIII to increase clotting activity, as demonstrated by increased secretion, increased specific activity, or both, would significantly increase rFVIII production in cell culture production or transgenic animals and increase the success potential of gene therapy strategies for hemophilia a. Thus, there is a need for improved vectors and constructs that are capable of efficiently expressing sufficient amounts of hFVIII protein to increase FVIII production or reduce the required dose of viral vectors to tolerable levels.
Disclosure of Invention
One aspect of the application relates to a modified hFVIII polypeptide (mhFVIII) comprising one or more mutations compared to a wild-type hFVIII polypeptide or a reference polypeptide.
In some embodiments, the mhFVIII comprises one or more amino acid substitutions at positions a20, T21, F57, L69, I80, L178, R199, H212, I215, R269, I310, L318, S332, R378, I610, and/or I661.
In some embodiments, the mhFVIII comprises one or more amino acid substitutions selected from the amino acid substitutions listed in table 1.
In some embodiments, the mhFVIII comprises one or more amino acid substitutions at a position selected from a20K, T21I, T3521V, F L, L69V, I80V, L178F, R199K, H212Q, I215V, R269K, I310V, L318F, S P, R378S, I610M and I661V. In some embodiments, the mhFVIII comprises a single amino acid substitution.
In some embodiments, the mhFVIII comprises an amino acid substitution in each of amino acids a20K and T21I.
In some embodiments, the mhFVIII comprises amino acid substitutions a20K and T21V.
In some embodiments, the mhFVIII comprises the amino acid substitutions T21I, L V and I80V.
In some embodiments, the mhFVIII comprises amino acid substitutions T21I, L69V, I, 80 and L178F.
In some embodiments, the mhFVIII comprises amino acid substitutions T21I, L69V, I V and I661V.
In some embodiments, the mhFVIII comprises amino acid substitutions T21I, L69V, I80, L178F, and I661V.
In some embodiments, the mhFVIII comprises the amino acid substitutions R199K, H212Q, I215V, R269K, I310V, L318F and S332P.
In some embodiments, the mhFVIII comprises amino acid substitutions T21I, L69V, I80V, L178F, H212Q, I215V, R269K, L F and I661V.
In some embodiments, the mhFVIII comprises amino acid substitutions a20K, T21V, L69V, I V, L178F, H212Q, I215V, R269K, L F and I661V.
In some embodiments, the mhFVIII comprises amino acid substitutions T21I, L69V, I80V, L178F, R199K, H212Q, I215V, R269K, I310V, L318F, S332P and I661V.
In some embodiments, the mhFVIII comprises amino acid substitutions a20K, T21V, L69V, I80V, L F, R199K, H212Q, I215V, R269K, I310V, L F, S332P and I661V.
In some embodiments, the mhFVIII consists of a single polypeptide comprising the A1, A2, A3, C1 and C2 domains of hFVIII.
In some embodiments, the mhFVIII consists of a single polypeptide comprising: (1) A1, A2, A3, C1 and C2 domains of hFVIII; and (2) a truncated B domain of hFVIII.
In some embodiments, the mhFVIII consists of a heavy chain polypeptide comprising the A1 and A2 domains of hFVIII and a light chain polypeptide comprising the A3, C1 and C2 domains of hFVIII. In some embodiments, the heavy chain polypeptide further comprises a truncated B domain of hFVIII and a light chain polypeptide comprising the A3, C1, and C2 domains of hFVIII.
In some embodiments, the mhFVIII comprises a heavy chain of human FVIII and a light chain of FVIII from a different species, e.g., a light chain of canine FVIII.
Another aspect of the application relates to an isolated polynucleotide encoding said mhFVIII of the application.
Another aspect of the application relates to an expression cassette comprising: the polynucleotides of the application; and regulatory sequences operably linked to the polynucleotide.
Another aspect of the application relates to an expression vector comprising said polynucleotide of the application. In some embodiments, the expression vector is a plasmid. In some embodiments, the expression vector is a viral vector. In some embodiments, the expression vector is an AAV vector.
Another aspect of the application relates to a host cell comprising said expression vector of the application.
Another aspect of the application relates to a pharmaceutical composition comprising said mhFVIII of the application and a pharmaceutically acceptable carrier.
Another aspect of the application relates to a pharmaceutical composition comprising the expression vector of the application and a pharmaceutically acceptable carrier.
Another aspect of the application relates to a method of treating a subject suffering from factor VIII deficiency. The method comprises the step of administering to the subject an effective amount of the mhFVIII, the expression vector or the host cell of the application.
Another aspect of the application relates to a recombinant AAV vector comprising nucleotides encoding mhFVIII, wherein the mhFVIII comprises one or more amino acid substitutions at a position selected from a20K, T I, T21 5621V, F L, L69V, I178F, R199K, H212Q, I215V, R269K, I310 318F, S332P, R S, I610M and I661V, and wherein the AAV vector is capable of expressing the mhFVIII in a host cell. In some embodiments, the mhFVIII comprises a truncated B domain of hFVIII.
Another aspect of the application relates to a method of expressing mhFVIII. The method comprises the following steps: (a) Introducing into a host cell an expression vector comprising: a polynucleotide comprising a nucleotide sequence encoding a signal peptide and a nucleotide sequence encoding the mhFVIII, wherein the mhFVIII comprises one or more amino acid substitutions at a position selected from the group consisting of a20K, T I, T21V, F L, L69V, I80 8238 178F, R K, H212Q, I215V, R269K, I310 318F, S332P, R378S, I610M and I661V; and a regulatory sequence operably linked to the polynucleotide; (b) Allowing the host cell to grow under conditions suitable for expression and secretion of the mhFVIII; (c) Harvesting a culture medium from the host cells, and (d) purifying the mhFVIII from the harvested culture medium.
Drawings
FIG. 1 shows an expression plasmid (pANG-CAG-hBDDF 8) encoding wild-type human FVIII with a deletion in the B domain (hBDDF 8). The hbdf 8 coding sequences (including heavy and light chains) are under the control of a CAG promoter for detecting the functional activity of various modified hbdf 8-proteins (also referred to as "mutant hFVIII" or "hFVIII mutants") according to the application.
FIG. 2 shows an alignment between the hBDDF8 heavy chain (hBDDF 8-HC) and the modified hBDDF8 heavy chain (qwBDDF 8-HC) containing 17 substitution mutations at the 16 amino acid positions for analysis of hFVIII mutant activity. Other constructs comprising various single, double and multiple substitutions thereof are further described in fig. 3 and example 1. Further analysis of the relative functional activity of these mutants is shown in FIGS. 4-9, described below.
FIG. 3 summarizes exemplary substitution mutants in hBDDF8-HC for analysis of hFVIII functional activity.
Figure 4 shows the relative functional activity of single amino acid substituted hFVIII mutants (i.e. modified hfdf 8 proteins) in HuH7 cells (compared to the functional activity of hFVIII (i.e. unmodified hfdf 8 protein)).
Figure 5 shows the relative functional activity of single amino acid substituted hFVIII mutants (i.e. modified hfdf 8 proteins) in HEK 293T cells (compared to the functional activity of hFVIII (i.e. unmodified hfdf 8 proteins)).
Figure 6 shows the relative functional activity of a particular single amino acid substitution mutation in amino acid 21 of the hFVIII heavy chain (i.e., the hbdf 8 protein modified at amino acid position 21) in HEK 293T cells (compared to the functional activity of hFVIII (i.e., the unmodified hbdf 8 protein).
Figure 7 shows the relative functional activity of the double amino acid substitutions (compared to each, as well as to unmodified hbdf 8 protein and single amino acid substitution mutant T21I) containing a combination of T21I and various substitutions in amino acid 20 of the hFVIII heavy chain (i.e., hbdf 8 protein modified at amino acid position 21) in HEK 293T cells.
FIG. 8 shows the functional activity of various hFVIII-HC mutants with single or multiple mutations (as indicated) in Huh7 cells 24 hours or 48 hours post-transfection (compared to the hBDDF8 cDNA in pANG-CAG-hBDDF 8).
FIG. 9 shows the functional activity of various hFVIII-HC mutants (including those with single and multiple mutations (as indicated)) in HEK 293T cells 24, 48 and 72 hours post-transfection (compared to that of hFVIII (i.e.unmodified hBDDF8 protein).
FIG. 10 shows the functional activity of various hFVIII-HC mutants (including those with single or multiple mutations (as indicated)) in CHO cells 24 hours or 48 hours post-transfection (compared to that of hFVIII (i.e.unmodified hBDDF8 protein).
FIG. 11A shows the domains of selected hFVIII mutants (and wild-type) and human/canine hybrid FVIII mutants. Fig. 11B shows the functional activity of the B-domain-free hFVIII mutant (and wild-type) and the human/canine hybrid FVIII mutant of fig. 11A in HEK 293T cells at 48 hours post-transfection (as compared to the functional activity of hFVIII (i.e., unmodified hfdf 8 protein).
FIG. 12 shows an expression plasmid (pANG-TTR-hBDDF 8) similar to the expression plasmid in FIG. 1, except that the CAG promoter is replaced by a TTR promoter.
FIG. 13 shows functional activity of various mhFVIII constructs and hBDDF8 from rAAV2 vectors expressed in Huh7 cells 72 hours post-transfection.
Detailed Description
I. Definition of the definition
Various terms relating to the biomolecules of the present application are used hereinabove and throughout the specification and claims.
The phrase "activity-enhanced FVIII (actFVIII or actF 8)" refers to a modified hFVIII (hF 8) that has been genetically engineered such that the encoded protein exhibits an increase in activity of at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 100% compared to unmodified wild-type hFVIII. The nucleotide sequence of unmodified wild-type hFVIII is set forth in SEQ ID NO. 1, comprising a nucleotide sequence encoding a signal peptide of 19 amino acids (MQIELSCFFLCLLRFCFS (SEQ ID NO: 2)). The amino acid sequence of unmodified wild-type hFVIII comprising a signal peptide is set forth in SEQ ID NO. 3. The amino acid sequence of unmodified wild-type hFVIII without signal peptide is set forth in SEQ ID NO. 4.
The term "hddf 8 protein", "hddf 8 polypeptide" or "hddf 8" refers to a wild-type hFVIII protein with a deletion in the B domain. In some embodiments, the deletion encompasses a majority of the B domain, including sequences responsive to multiple cuts within the wild-type B domain. Exemplary hBDDF8 polypeptides have the amino acid sequence shown in SEQ ID NO. 5 (with signal peptide) or SEQ ID NO. 6 (without signal peptide) comprising an hFVIII heavy chain (SEQ ID NO. 7), a truncated B domain (SEQ ID NO. 8) and a light chain (SEQ ID NO. 9).
The phrase "one or more" followed by a list of elements or species is intended to encompass any arrangement of elements or species in the list. Thus, for example, the phrase "one or more substitution mutations selected from A, B, C, D, E and F" can include any combination of substitution mutations comprising A, B, C, D, E and/or F.
As used herein, a range may be expressed as from one particular integer value to another particular integer value. When such a range is expressed, it should be understood that any and all integer values within the range define different embodiments in accordance with the application, and that the full range of embodiments is included within the range, and that the range further includes any and all subranges between any integer value pair within the initial range.
With respect to the nucleic acids of the present application, the term "isolated nucleic acid", when applied to DNA, refers to a DNA molecule that has been isolated from the naturally occurring genome of the organism from which it is derived (in the 5 'and 3' directions) from sequences immediately adjacent thereto. For example, an "isolated nucleic acid" may include a DNA or cDNA molecule inserted into a vector (e.g., a plasmid or viral vector) or integrated into the DNA of a prokaryote or eukaryote. The nucleic acid codons can be optimized to enhance expression in mammalian cells.
With respect to the RNA molecules of the present application, the term "isolated nucleic acid" refers primarily to RNA molecules encoded by the isolated DNA molecules as defined above. Alternatively, the term may refer to an RNA molecule that is sufficiently isolated from the RNA molecule to which it binds in its natural state (i.e., in a cell or tissue) to exist in a "substantially pure" form (the term "substantially pure" is defined below).
With respect to proteins, the term "isolated protein" or "isolated and purified protein" refers herein to a protein produced by expression of an isolated nucleic acid molecule of the application. Alternatively, this term may refer to a protein that has been sufficiently separated from other proteins that naturally bind, so as to exist in a "substantially pure" form.
The term "hFVIII polypeptide" refers to a full length human FVIII protein, a fragment of a human FVIII protein, a domain and a combination of domains of a human FVIII protein that substantially retains the biological function of hFVIII.
The term "mutant hFVIII polypeptide" or "modified hFVIII polypeptide" refers to a polypeptide that has one or more amino acid differences (e.g., one or more amino acid substitutions) from a reference hFVIII polypeptide. The reference hFVIII polypeptide may be a wild-type hFVIII protein with or without a signal peptide, a wild-type hFVIII protein with modifications, such as a wild-type hFVIII protein with a deletion in the B domain (e.g., hfdf 8) or a fragment of hFVIII, hFVIII without a B domain, a domain or combination of domains with or without further modifications of hFVIII. In some embodiments, a "reference hFVIII polypeptide" of a "modified hFVIII polypeptide" refers to a hFVIII polypeptide prior to modification. In some embodiments, the term "mutant hFVIII polypeptide" or "modified hFVIII polypeptide" refers to a hybrid FVIII polypeptide comprising a human FVIII heavy chain and FVIII light chains from different species (e.g., light chains from canine FVIII).
The term "hFVIII variant" as used herein refers to a "mutant hFVIII protein" or a "modified hFVIII protein" that substantially retains hFVIII biological function.
A "conservative amino acid substitution" is a substitution of an amino acid residue for a functionally similar residue. Examples of conservative substitutions include the substitution of nonpolar (hydrophobic) residues such as isoleucine, valine, leucine or methionine for one another; substitution of charged or polar (hydrophilic) residues with each other, such as between arginine and lysine, between glutamine and asparagine, or between threonine and serine; substitution of basic residues such as lysine or arginine with each other; substitution of acidic residues, such as aspartic acid or glutamic acid, with each other; substitution of aromatic residues such as phenylalanine, tyrosine or tryptophan with each other; or substitution of alanine or glycine. The mutant FVIII proteins of the application may comprise amino acids having one or more conservative substitutions relative to the reference protein and retaining some or all of the activity of the reference protein, as described herein.
The term "expression cassette" as used herein refers to a nucleic acid construct comprising nucleic acid elements sufficient to express a polynucleotide of interest. Typically, an expression cassette comprises a polynucleotide of interest operably linked to regulatory sequences (e.g., promoters and enhancers). In some embodiments, the expression cassette may comprise additional elements, such as introns, polyadenylation sites, woodchuck hepatitis virus post-transcriptional response elements (WPREs), secretion signal sequences, and/or other elements known to affect the level of the coding sequence expression.
The term "control sequences" refers to transcriptional control sequences of a gene, which may be found 5 'or 3' to the coding region, within the coding region, or within an intron. Examples of regulatory sequences include, but are not limited to, promoters and enhancers.
The term "promoter" as used herein refers to a nucleotide sequence capable of controlling expression of a coding sequence or functional RNA. Typically, the polynucleotide of interest is located 3' to the promoter sequence. In some embodiments, the promoter is entirely derived from a native gene. In some embodiments, the promoter consists of different elements derived from different naturally occurring promoters. In some embodiments, the promoter comprises a synthetic nucleotide sequence. It will be appreciated by those skilled in the art that different promoters will direct the expression of a gene in different tissues or cell types, or at different stages of development, or in response to different environmental conditions, or the presence or absence of a drug or transcription co-factor. Ubiquitous, cell type-specific, tissue-specific, developmental stage-specific, and conditional promoters, such as drug-responsive promoters (e.g., tetracycline-responsive promoters), are well known to those skilled in the art. Examples of promoters include, but are not limited to, phosphoglycerate Kinase (PKG) promoter, CAG, NSE (neuron specific enolase), synapsin or NeuN promoter, SV40 early promoter, mouse mammary tumor virus LTR promoter; adenovirus major late promoter (Ad-MLP); herpes Simplex Virus (HSV) promoters, cytomegalovirus (CMV) promoters such as CMV immediate early promoter region (CMVIE), SFFV promoters, osteosarcoma virus (RSV) promoters, synthetic promoters, hybrid promoters, and the like. Promoters may be from humans, but also from other species, including from mice. In addition, sequences derived from non-viral genes, such as the murine metallothionein gene promoter, may also be used herein. In some embodiments, the promoter is a heterologous promoter. In some embodiments, the promoter sequence consists of proximal and more distal upstream elements, and may comprise enhancer elements.
The term "heterologous promoter" as used herein refers to a promoter that is not found in nature operably linked to a given coding sequence.
The term "enhancer" refers to a nucleotide sequence that can stimulate the activity of a promoter, and can be an innate element (element) of the promoter or a heterologous element inserted to enhance the level or tissue specificity of the promoter.
The term "operatively linked" or "operatively linked" refers to the binding of two or more nucleic acid fragments to a single nucleic acid fragment, such that the function of one is affected by the other. For example, a promoter is operably linked to a coding sequence when the promoter is capable of affecting the expression of the coding sequence (e.g., the coding sequence is under the transcriptional control of the promoter). The coding sequence may be operably linked to the regulatory sequence in sense or antisense orientation.
As used herein, the term "secretion signal sequence," "signal peptide," or variant thereof refers to an amino acid sequence that has the function of enhancing (as described above) the secretion of an operably linked polypeptide from a cell as compared to the secretion level of the native polypeptide. As defined above, "enhanced" secretion refers to an increase in the relative proportion of polypeptide synthesized by a cell that is secreted from the cell; the absolute amount of secreted protein has not to be increased. In some embodiments, substantially all (i.e., at least 95%, 97%, 98%, 99% or more) of the polypeptide is secreted. However, as long as the secretion level is increased compared to the native polypeptide, it is not necessary that substantially all or even a substantial portion of the polypeptide is secreted. Typically, the secretion signal sequence is cleaved within the endoplasmic reticulum, and in some embodiments, the secretion signal sequence is cleaved prior to secretion. However, the secretion signal sequence does not have to be cleaved as long as the secretion of the polypeptide from the cell is enhanced and the polypeptide is functional. Thus, in some embodiments, the secretion signal sequence is partially or fully retained. The secretion signal sequence may be derived in whole or in part from the secretion signal of the secreted polypeptide (i.e., derived from a precursor) and/or may be wholly or partially synthetic. The length of the secretion signal sequence is not critical; typically, the known secretion signal sequence is about 10-15 to 50-60 amino acids in length. In addition, known secretion signals from secreted polypeptides may be altered or modified (e.g., by amino acid substitutions, deletions, truncations, or insertions) so long as the resulting secretion signal sequence serves to enhance secretion of the operably linked polypeptide. The secretion signal sequence of the invention may comprise, consist essentially of, or consist of a naturally occurring secretion signal or modification thereof (as described above). Many secreted proteins and sequences are known in the art that are secreted directly from cells. The secretion signal sequences of the invention may also be wholly or partially synthetic or artificial. Synthetic or artificial secretion signal peptides are known in the art, see, e.g., "Human secretory signal peptide description by hidden Markov model and generation of a strong artificial signal peptide for secreted protein expression" by Barash et al, "biochem. Biophys. Res. Comm 294:835-42 (2002); the disclosure of which is incorporated herein in its entirety. The term "operably linked" refers to the placement of regulatory sequences required for expression of a coding sequence in a DNA molecule in place relative to the coding sequence, thereby affecting the expression of the coding sequence. This same definition sometimes applies to the arrangement of coding sequences and transcriptional control elements (e.g., promoters, enhancers, and termination elements) in an expression vector. The definition also sometimes applies to the arrangement of the nucleic acid sequences of the first and second nucleic acid molecules, wherein a hybrid nucleic acid molecule is produced.
The term "substantially pure" refers to a formulation comprising at least 50-60% by weight of a compound of interest (e.g., nucleic acid, oligonucleotide, protein, etc.). More preferably, the formulation contains at least 75% by weight, most preferably 90-99% by weight of the compound of interest. Purity is measured by methods suitable for the compound of interest (e.g., chromatography, agarose or polyacrylamide gel electrophoresis, HPLC analysis, etc.).
The phrase "consisting essentially of … … when referring to a particular nucleotide sequence or amino acid sequence" refers to a sequence having the characteristics of a given SEQ ID NO. For example, when used in reference to an amino acid sequence, the phrase includes the sequence itself and molecular modifications that do not affect the basic and novel properties of the sequence.
The term "oligonucleotide" as used herein refers to primers and probes of the present application and is defined as a nucleic acid molecule consisting of two or more, preferably more than three, ribonucleotides or deoxyribonucleotides. The exact size of the oligonucleotide will depend on various factors and the particular application in which the oligonucleotide is used. The term "probe" as used herein refers to an oligonucleotide, polynucleotide or nucleic acid, whether R A or DNA, whether naturally occurring as in a purified restriction enzyme digest or synthetically produced, that is capable of annealing or specifically hybridizing to a nucleic acid having a sequence complementary to the probe. The probe may be single-stranded or double-stranded. The exact length of the probe depends on many factors, including temperature, source of the probe, and method of use. For example, for diagnostic applications, an oligonucleotide probe typically contains 15-25 or more nucleotides, although it may contain fewer nucleotides, depending on the complexity of the target sequence.
The term "percent identity" is used herein to refer to a comparison between nucleic acid or amino acid sequences. Nucleic acid and amino acid sequences are often compared using, for example, the computer program in the national library of medicine (National Library of Medicine) BLAST alignment program.
As used herein, a "corresponding" nucleic acid or amino acid or sequence is a nucleic acid or amino acid present at a site in a FVIII or mutant FVIII molecule or fragment thereof, which has the same structure and/or function as a site in a FVIII molecule of another species, although the number of nucleic acids or amino acids may not be the same. The sequence "corresponding" to another FVIII sequence corresponds substantially to such a sequence and hybridizes under stringent conditions to the human FVIIIDNA sequence designated SEQ ID NO. 1. Sequences "corresponding" to another FVIII sequence also include sequences that result in expression of FVIII or a procoagulant hybrid FVIII as claimed or fragments thereof and which will hybridize to a nucleic acid molecule comprising SEQ ID No. 1 but which are genetically redundant.
As used herein, a "unique" amino acid residue or sequence refers to an amino acid sequence or residue in a FVIII molecule of one species that differs from a homologous residue or sequence in a FVIII molecule of another species.
As used herein, "specific activity" refers to the activity that will correct coagulation defects in human factor VIII deficient plasma. In a standard assay, specific activity is measured in units of clotting activity per milligram of total FVIII protein, wherein the clotting time of human FVIII deficient plasma is compared to the clotting time of normal human plasma. One FVIII activity unit is activity present in one milliliter of normal human plasma. In the assay, the shorter the clot formation time, the greater the activity of FVIII assayed. In the human FVIII assay, heterozygous human/porcine FVIII has co-clotting activity. Such activity, as well as the activity of other heterozygous or heterozygous equivalent FVIII molecules or fragments thereof, may be less than, equal to or greater than the activity of plasma derived or recombinant human FVIII.
As used herein, the "subunits" of human or animal FVIII are the heavy and light chains of a protein. The heavy chain of FVIII comprises three domains, al, A2 and B. The light chain of FVIII also comprises three domains, A3, C1 and C2.
The terms "epitope," "antigenic site," and "antigenic determinant" as used herein are synonymous and are defined as the portion of human, animal, hybrid, or heterozygous equivalent FVIII or fragments thereof specifically recognized by an antibody. It may consist of any number of amino acid residues and may depend on the primary, secondary or tertiary structure of the protein. According to the present disclosure, a hybrid FVIII comprising at least one epitope, a hybrid FVIII equivalent or a fragment of one of them may be used as a reagent in the diagnostic assays described below. In some embodiments, the heterozygous or heterozygous equivalent FVIII or fragments thereof are not or less cross-reactive with all naturally occurring inhibitory FVIII antibodies compared to human or porcine FVIII.
As used herein, the term "immunogenic site" is defined as a region of human or animal FVIII, heterozygous or heterozygous equivalent FVIII or fragments thereof that specifically elicits the production of antibodies against FVIII, heterozygous equivalent or fragments in a human or animal as determined by conventional protocols (e.g., immunoassays as described herein, such as ELISA or Bethesda assays). It may consist of any number of amino acid residues, and it may depend on the primary, secondary or tertiary structure of the protein. In some embodiments, the heterozygous or heterozygous equivalent FVIII or fragment thereof is non-immunogenic or less immunogenic than human or porcine FVIII in an animal or human.
As used herein, "FVIII deficiency" refers to a lack of clotting activity caused by: (1) producing defective FVIII; (2) insufficient or no production of FVIII; or (3) partial or total inhibition of FVIII. Hemophilia a is a FVIII deficiency caused by a deficiency in the X-linked gene and by the deletion or deficiency of the FVIII protein encoded thereby.
Modified hFVIII polypeptide (mhFVIII)
One aspect of the application relates to a modified hFVIII polypeptide (mhFVIII) comprising one or more mutations compared to a wild-type hFVIII polypeptide or an unmodified reference polypeptide. In some embodiments, the mhFVIII when expressed in a host cell results in increased hFVIII activity in the host cell as compared to a wild type hFVIII or a reference protein (e.g., hfdf 8) expressed in the same type of host cell under the same conditions.
Human FVIII encodes a protein with 2351 amino acids (signal peptide with 19 amino acids and mature protein with 2332 amino acids). It is arranged with a series of structural "domains": NH (NH) 2 -SP-A1-A1-A2-A2-B-A3-A3-Cl-C2-COOH. As used herein, a FVIII "domain" is defined by a contiguous sequence of amino acids, characterized by, for example, internal amino acid sequence identity and thrombin proteolytic cleavage sites with the structurally related domains. Furthermore, the term "no domain" or "lack of domain"It is understood to have at least 95% or 100% domain deletion. Unless otherwise indicated, the FVIII domain is defined by the following amino acid residues in hFVIII (as shown in SEQ ID NO: 3) arranged from amino terminus to carboxyl terminus: SP, amino acid residues 1-19; al domain, amino acid residues 20-354; a1 domain, amino acid residues 355-391, A2 domain, amino residues 392-728; a2 domain, amino acid residues 729-760, b domain, amino residues 761-l667; a3 domain, amino acid residues 1668-l708; a3 domain, amino acid residues 1709-2039; c1 domain, amino acid residues 2040-2192; and C2 domain, amino acid residues 2193-2351.
A1-a 1 -A2-a 2 -B (amino acid (aa) 20-1667) sequence or A1-a 1 -A2-a 2 The (aa 1-740) sequence is commonly referred to as hFVIII heavy chain. a, a 3 The sequence A3-C1-C2 (aa l 668-2351) is commonly referred to as hFVIII light chain. FVIII is proteolytically activated by thrombin or factor Xa, which dissociates from von Willebrand factor to form FVIIIa with procoagulant function. The biological function of FVIIIa is to increase the catalytic efficiency of factor IXa on factor X activation by several orders of magnitude. Thrombin activated FVIIIa is A1-a of 160kDa 1 /A2-a 2 /a 3 -A3-C1-C2 heterotrimers forming complexes with factor IXa and factor X on the surface of platelets or monocytes.
The cDNA sequence encoding wild type human FVIII has the nucleotide sequence as set forth in SEQ ID NO. 1. In SEQ ID NO. 1, the first 57 nucleotides of the FVIII open reading frame encode a signal peptide sequence (SEQ ID NO. 2) that is normally cleaved from the mature FVIII protein.
In some embodiments, the modified hFVIII polypeptides of the application comprise one or more amino acid substitutions in the region corresponding to amino acid residues 20-171 of the wild-type hFVIII amino acid sequence set forth in SEQ ID NO. 3. In some embodiments, the modified hFVIII polypeptides of the application comprise one or more substitutions at positions a20, T21, F57, L69, I80, L178, R199, H212, I215, R269, I310, L318, S332, R378, I610, and I661.
Referring to the mutants or modifications described herein, the positional designation indicated by the single letter code of the amino acid followed by a number refers to the amino acid residue and its position in wild type hFVIII (SEQ ID NO: 3). For example, the designation "A20" refers to the amino acid residue alanine (A) at position 20 of the wild-type hFVIII sequence (SEQ ID NO: 3). Similarly, the substitution designations indicated by the first single letter code followed by a number for an amino acid and the second single letter code followed by an amino acid refer to the substitution of the original amino acid residue at the position indicated by the number in wild-type hFVIII (SEQ ID NO: 3) with the second amino acid. For example, the designation "A20K" refers to the substitution of the amino acid residue alanine (A) at position 20 of wild-type hFVIII (SEQ ID NO: 3) with the amino acid residue lysine (K). Amino acid position nomenclature and substitution nomenclature also applies to domains of hFVIII, hFVIII heavy and light chains, hFVIII fragments, polypeptides having a common sequence with hFVIII, and/or other hFVIII derived sequences, such as hfdf 8.
In some embodiments, the application provides mhFVIII comprising an amino acid substitution selected from one or more of amino acid residues a20, T21, F57, L69, I80, L178, R199, H212, I215, R269, I310, L318, S332, R378, I610, and I661. The mhFVIII may comprise any combination of mutations encompassing these 16 amino acid positions. An exemplary mhFVIII for use in accordance with the application is depicted in figure 3 with single and multiple mutations identified in the box.
In some embodiments, the mhFVIII of the application comprises one or more amino acid substitutions selected from the group consisting of a20K, T21I, T V, F57L, L69V, I80V, L178F, R199K, H212Q, I215V, R269K, I310V, L318F, S P, R378S, I M and I661V.
In some embodiments, the mhFVIII of the application comprises an amino acid substitution at position T21. Preferred substitutions include T21I and T21V. In some embodiments, the mhFVIII further comprises one or more amino acid substitutions at a position selected from the group consisting of a20, F57, L69, I80, L178, R199, H212, I215, R269, I310, L318, S332, R378, I610, and I661.
In some embodiments, mhVIII of the application comprises amino acid substitutions at positions a20 and T21. In some embodiments, the mhFVIII of the application comprises amino acid substitutions a20K and T21I (2M 1 mutant), or amino acid substitutions a20K and T21V (2M 2 mutant).
In some embodiments, mhFVIII of the application comprises amino acid substitutions at positions T21, L69 and I80. In some embodiments, mhFVIII of the application comprises amino acid substitutions T21I, L V and I80V (3M 1 mutant).
In some embodiments, mhFVIII of the application comprises amino acid substitutions at positions T21, L69, I80 and L178. In some embodiments, the mhFVIII of the application comprises the amino acid substitutions T21I, L69V, I80 and L178F (4M 1 mutant).
In some embodiments, mhFVIII of the application comprises amino acid substitutions at positions T21, L69, I80 and I661. In some embodiments, mhFVIII of the application comprises amino acid substitutions T21I, L69V, I V and I661V (4M 3 mutant).
In some embodiments, mhFVIII of the application comprises amino acid substitutions at positions T21, L69, I80, L178 and I661. In some embodiments, mhFVIII of the application comprises amino acid substitutions T21I, L69V, I80V, L178F and I661V (5M 4 mutant).
In some embodiments, mhFVIII of the application comprises amino acid substitutions at positions R199, H212, I215, R269, I310, L318, and S332. In some embodiments, the mhFVIII of the application comprises the amino acid substitutions R199K, H212Q, I215V, R269K, I310V, L F and S332P (7M 2 mutant).
In some embodiments, mhFVIII of the application comprises amino acid substitutions at positions T21, L69, I80, L178, H212, I215, R269, L318 and I661. In some embodiments, mhFVIII of the application comprises amino acid substitutions T21I, L69V, I80V, L178F, H212Q, I215V, R269K, L318F and I661V (9M 1 mutant).
In some embodiments, mhFVIII of the application comprises amino acid substitutions at positions a20, T21, L69, I80, L178, H212, I215, R269, L318 and I661. In some embodiments, the mhFVIII of the application comprises amino acid substitutions a20K, T21V, L V, I80V, L178F, H Q, I215V, R269K, L F and I661V (10M 1 mutant).
In some embodiments, mhFVIII of the application comprises amino acid substitutions at positions T21, L69, I80, L178, R199, H212, I215, R269, I310, L318, S322, and I661. In some embodiments, the mhFVIII of the application comprises the amino acid substitutions T21I, L69V, I V, L178F, R199K, H212Q, I215V, R269K, I310V, L318F, S P and I661V (12M 1 mutant).
In some embodiments, mhFVIII of the application comprises amino acid substitutions at positions a20, T21, L69, I80, L178, R199, H212, I215, R269, I310, L318, S332, and I661. In some embodiments, the mhFVIII of the application comprises amino acid substitutions a20K, T21V, L69V, I80V, L178F, R199K, H212Q, I215V, R269K, I310V, L318F, S P and I661V (13M 1 mutant).
In some embodiments, the amino acid positions corresponding to the amino acid substitutions described above may be substituted with other conservative substitutions. Table 1 provides a list of exemplary amino acid substitutions at amino acid positions a20, T21, L69, I80, L178, R199, H212, I215, R269, I310, L318, S332, and I661.
Table 1. Exemplary amino substitutions.
In some embodiments, the mhFVIIIs described above comprises a deletion in the B domain ("no B domain"). Examples of hFVIII polypeptides comprising deletions in the B domain are described in U.S. patent No.6,800,461, U.S. patent No.6,780,614 u.s.s. and patent application publication No.2004/0197875, which are incorporated herein by reference.
In some embodiments, the mhFVIII of the application comprises a single chain polypeptide. In some embodiments, the mhFVIII of the application comprises a single chain hFVIII polypeptide having a truncated or deleted B domain. In some embodiments, mhFVIII of the application comprises a heterodimer of a Heavy Chain (HC) comprising an A1 domain and an A2 domain and a Light Chain (LC) comprising an A3 domain, a C1 domain and a C2 domain. In some embodiments, mhFVIII of the application comprises a Heavy Chain (HC) comprising an A1 domain, an A2 domain and a full length or truncated B domain and a heterodimer of a Light Chain (LC) comprising an A3 domain, a C1 domain and a C2 domain. In some embodiments, mhFVIII of the application comprises a heterotrimer of A1 domain-containing polypeptide, an A2 domain-containing polypeptide, and A3 domain, C1 domain, and C2 domain-containing polypeptide.
In some embodiments, the mhFVIII described above is derived from wild-type hBDDF8 comprising a deletion in the B domain with the native hFVIII signal peptide set forth in SEQ ID NO 5. The secreted form of mhFVIII does not comprise the signal peptide sequence shown in SEQ ID NO. 2.
In some embodiments, mhFVIII of the application results in 5% -100-fold, 10% -50-fold, 50% -25-fold, 2-100-fold, 2-80-fold, 2-60-fold, 2-40-fold, 2-20-fold, 2-10-fold, 2-5-fold, at least 2-fold, at least 3-fold, at least 4-fold, at least 5-fold, at least 10-fold, at least 20-fold, at least 30-fold, at least 40-fold, at least 50-fold, at least 70-fold, at least 80-fold, or at least 100-fold improvement in FVIII activity when expressed in vitro (in vitro) or in vivo (in vivo). In vitro FVIII activity can be determined by analyzing tissue culture medium from mhFVIII expressing cells. In vivo FVIII activity can be determined by analyzing plasma collected from an individual receiving mhFVIII infusion or from an expression vector expressing mhFVIII.
In some embodiments, mhFVIII of the application as described above may be further modified to additionally include, delete or modify other FVIII sequences to confer other desired properties, such as reduced antigenicity, increased stability, increased circulatory half-life through binding to serum binding proteins, increased protein secretion, increased affinity for factor IXa and/or factor X, reduced affinity for von Willebrand factor, increased glycosylation, altered inactivating cleavage, altered at least one calcium binding site, and/or increased shelf life.
For example, in some embodiments, mhFVIII of the application may be modified to additionally include amino acid substitutions responsible for immunogenicity and/or antigenicity of human FVIII, as described in U.S. patent No., U.S. patent No.2003/0166536, e.g., R503 503 504 505 506 506 507 507 508 508 508 509 511 512 514 516 517 518 519 521 522 523 525 526 527 2218 2242 2246 2271F, or any combination thereof.
In other embodiments, mhFVIII of the application as described above may be modified to additionally include amino acid substitutions providing secretion enhancement as described in U.S. patent application No.2016/102133, such as I105V, Y124F, A127S, D134E, Q H, F148L, G151K, H153Q, M166T and L171P or any combination thereof.
In other embodiments, mhFVIII of the application as described above may be modified to additionally include amino acid substitutions that confer greater stability to activated FVIII by virtue of fused A2 and A3 domains. In particular, FVIII can be modified by substitution of the cysteine residues at positions 683 and 1845 (i.e., Y683C, T1845C) to yield mutant FVIII that forms a C683-Cl845 disulfide bond covalently linking the A2 and A3 domains.
In other embodiments, mhFVIII of the application as described above may be further modified to additionally include amino acid substitutions conferring altered inactivating cleavage sites. For example, a355 or a581 may be substituted for reducing sensitivity of the mutant FVIII to cleaving enzymes that normally inactivate wild type FVIII.
In other embodiments, the mhFVIIIs of the application as described above may be further modified to additionally include amino acid substitutions that confer enhanced affinity for factor IXa.
In other embodiments, mhFVIII of the application as described above may be further modified to additionally include amino acid substitutions that confer increased circulatory half-life. This can be accomplished by a variety of methods including, but not limited to, by reducing interactions with heparan sulfate (heparan sulfate).
In other embodiments, mhFVIII of the application as described above may be further modified to additionally comprise amino acid substitutions conferring a recognition sequence for glycosylation at asparagine residues. Such modifications can be used to evade detection by the presence of (existing) inhibitory antibodies (low antigenic FVIII) and by reducing the likelihood of producing inhibitory antibodies (low immunogenic FVIII). In one representative embodiment, the modified FVIII is mutated to incorporate a consensus amino acid sequence for N-linked glycosylation, e.g. N-X-S/T.
In other embodiments, mhFVIIIs of the application as described above may be further modified to additionally comprise a mutation to (i) delete von Willebrand factor binding site, (ii) add a mutation at a759, and/or (iii) add an amino acid sequence spacer between the A2 domain and the A3 domain, wherein the amino acid spacer is of sufficient length that upon activation, the procoagulant FVIII protein becomes a heterodimer.
In some embodiments, the mhFVIII of the application is a hybrid FVIII comprising a human FVIII heavy chain and a FVIII light chain from a different species, e.g., a light chain from canine FVIII. In some embodiments, the human FVIII heavy chain further comprises one or more amino acid substitutions described in the present application. In some embodiments, the hybrid FVIII comprises a truncated B domain. In some embodiments, the hybrid FVIII consists of a single polypeptide comprising (1) a wild type human FVIII heavy chain sequence or a modified human FVIII heavy chain sequence, and (B) a FVIII light chain sequence from a different species, e.g., a light chain from canine FVIII. In some embodiments, the modified human FVIII heavy chain sequence comprises one or more amino acid substitutions described in the present application. In some embodiments, the modified human FVIII heavy chain sequence comprises an hddf 8 sequence or a modified hddf 8 with one or more amino acid substitutions described in the present application.
III.mhFVIII encoding polynucleotides, expression cassettes and expression vectors
Another aspect of the application relates to an isolated polynucleotide encoding mhFVIII of the application, including all possible nucleic acids encoding substitutions and/or other mutations of the ranges (break) described herein. The isolated nucleic acid may be RNA or DNA.
In certain embodiments, the polynucleotide encodes a mhFVIII polypeptide that is codon optimized for expression in a variety of human, primate, or mammalian cells, such as HuH7, HEK293T, or CHO cells. Polynucleotides encoding mhFVIII of the application may be codon optimized to increase activity, stability or expression in a host cell without altering the encoded amino acid sequence.
Codons consist of a set of three nucleotides, either encoding a particular amino acid or resulting in translation termination (i.e., stop codon). The genetic code is redundant in that multiple codons specify the same amino acid, i.e., 61 codons in total encode 20 amino acids. Codon optimisation replaces codons present in the polynucleotide sequence with preferred codons encoding the same amino acid, e.g. preferred codons for mammalian expression. Thus, the amino acid sequence is not altered during this process. Codon optimisation may be performed using gene optimisation software. The codon-optimized nucleotide sequence is translated and aligned with the original protein sequence to ensure that the amino acid sequence is unchanged. Methods of codon optimization are known in the art and are described, for example, in U.S. application publication No.2008/0194511 and U.S. patent No.6,114,148.
In some embodiments, the mhFVIII protein is expressed as single chain B domain free mhFVIII. In some embodiments, the mhFVIII protein is expressed from one or more nucleic acids in the form of a double-stranded (DC) protein comprising the Heavy (HC) and Light (LC) chains of hFVIII. In some embodiments, the mhFVIII protein is expressed from one or more nucleic acids in the form of a heterotrimer of a polypeptide comprising an A1 domain, a polypeptide comprising an A2 domain, and a polypeptide comprising A3, C1, and C2 domains.
In some embodiments, the mhFVIII-encoding polynucleotides of the application include a coding sequence for expression of a wild-type hFVIII amino-terminal signal peptide (SEQ ID NO: 2) that is removed from the mature protein. In some embodiments, mhFVIIIs of the application are derived from an hBDDF8 protein having the amino acid sequence of SEQ ID NO:5 (with signal peptide) or SEQ ID NO:6 (without signal peptide). Because the signal peptide sequence can affect expression levels, the mhFVIII encoding polynucleotide can be engineered to express mhFVIII carrying any one of a variety of heterologous N-terminal signal peptides known in the art.
In some embodiments, a mhFVIII encoding polynucleotide of the application as described above may be modified to additionally include, delete or otherwise modify other FVIII sequences that confer other desired properties, such as reduced antigenicity, increased stability, increased circulation half-life through binding to serum binding proteins, increased protein secretion, increased affinity for factor IXa and/or factor X, reduced affinity for von Willebrand factor, increased glycosylation, altered inactivating cleavage, altered one or more calcium binding sites, and/or increased shelf life, as described above.
Another aspect of the application relates to an expression cassette for expressing mhFVIII as described herein. In some embodiments, the expression cassette comprises a nucleotide sequence encoding mhFVIII of the application and regulatory sequences operably linked to the nucleotide sequence. In some embodiments, the regulatory sequence comprises a promoter.
Another aspect of the application relates to an expression vector capable of expressing mhFVIII of the application in vitro and/or in vivo. In some embodiments, the expression vector is a non-viral vector, such as a plasmid. In some embodiments, the expression vector is a viral vector, such as an AAV vector or a lentiviral vector.
Expression vectors for expressing mhFVIII of the application typically comprise one or more regulatory sequences operably linked to the polynucleotide sequence to be expressed. It will be appreciated by those skilled in the art that the design of the expression vector may depend on factors such as the choice of host cell to be transformed, the level of expression of the desired protein, and the like. The expression vectors of the application can be introduced into host cells to produce mhFVIII as described herein.
Suitable expression vectors for directing expression in mammalian cells typically include promoters and other transcriptional and translational control sequences known in the art. In certain embodiments, mammalian expression vectors are capable of preferentially directing expression of a polynucleotide in a particular cell type (e.g., using tissue-specific regulatory elements to express the polynucleotide). Tissue-specific regulatory elements are known in the art and may include, for example, hepatocyte-specific promoters and/or enhancers (e.g., albumin promoter, a-1 antitrypsin promoter, apoE enhancer). Alternatively, constitutive promoters active in almost any cell type (e.g., HCMV) may be used.
In certain preferred embodiments, the expression vector is a viral vector. Viral vectors typically have one or more viral genes removed and include a gene/promoter cassette inserted into the viral genome insertion site for insertion of exogenous transgenes, including the mutated FVIII genes described herein. The necessary functions of the removed genes may be provided by cell lines that have been engineered to trans-express the gene products of the early genes. Exemplary viral vectors include, but are not limited to, adeno-associated virus (AAV) vectors, retroviral vectors, including lentiviral vectors, adenoviral vectors, herpesviral vectors, and alphaviral vectors. Other viral vectors include viral vectors such as astrovirus, coronavirus, orthomyxovirus, papillomavirus, paramyxovirus, parvovirus, picornavirus, poxvirus, togavirus (togavirus), and the like. The viral vector may comprise any suitable nucleic acid construct, for example a DNA or RNA construct, and may be single-stranded, double-stranded or multiple-stranded (multiplexed).
Once the DNA construct of the application is prepared, it can be integrated into a host cell. Thus, another aspect of the application relates to a method of preparing a recombinant cell comprising a mhFVIII nucleic acid. Basically, this requires introducing a DNA construct into a cell by transformation, transduction, electroporation, calcium phosphate precipitation, liposomes, etc., and selecting cells that have either bound the DNA extrachromosomally or have integrated the DNA into the host genome. In some embodiments, cells expressing the mhFVIII are transplanted into a subject for use in treating hemophilia.
In some embodiments, the mhFVIII protein is expressed from a viral vector for administration to hemophilia patients. In some embodiments, the viral vector is an AAV vector. In some embodiments, the viral vector is a lentiviral vector. In some embodiments, the viral vector is an adenovirus vector. In some embodiments, the viral vector is a retroviral vector. In some embodiments, the viral vector is a herpes viral vector. In some embodiments, methods are provided for administering one or more AAV vectors encoding mhFVIII.
Recombinant AAV and lentiviral vectors have found wide use in a variety of gene therapy applications. Their utility in such applications is largely due to the high efficiency of gene transfer in vivo achieved in various organ environments. AAV and lentiviral particles can be advantageously used as vectors for efficient gene delivery. Such viral particles have many desirable characteristics for such applications, including their propensity to dividing and non-dividing cells. Early clinical experience with these vectors also showed no persistent toxicity, little or no detectable immune response. AAV is known to infect a variety of cell types in vitro and in vivo through receptor-mediated endocytosis or transport. These vector systems have been tested in humans to target retinal epithelium, liver, skeletal muscle, airways, brain, joints and hematopoietic stem cells. Non-viral vectors based on plasmid DNA or micro loops (miniloops) may also be suitable gene transfer vectors for large genes encoding FVIII.
In some embodiments, the mhFVIII coding sequence is provided as a component of a viral vector packaged in a capsid. In some embodiments, AAV vectors are used for in vivo delivery of mhFVIII of the application. In this case, the AAV vector comprises at least one mhFVIII and associated expression control sequences for controlling expression of the mhFVIII sequence. Exemplary AAV vectors for expressing mhFVIII sequences may include promoter-enhancer regulatory regions for FVIII expression and cis acting ITRs (which function to facilitate replication and packaging of mhFVIII nucleic acid into AAV capsids and integration of mhFVIII nucleotides into the genome of target cells). Preferably, the rep and cap genes of the AAV vector are deleted and replaced with mhFVIII sequences and their associated expression control sequences. The mhFVIII sequence is typically inserted adjacent to one or both (i.e., flanking) AAV TR or TR elements sufficient for viral replication. Most preferably, only the necessary parts of the vector, such as ITR and LTR elements, respectively, are included. In some embodiments, two or more AAV vectors are used for in vivo delivery of mhFVIII of the application. In this case, each AAV vector is constructed as described above and carries a portion of the mhFVIII coding sequence (e.g., one vector carries the coding sequence of the mhFVIII heavy chain and the other vector carries the coding sequence of the mhFVIII light chain).
Regulatory sequences suitable for promoting tissue-specific expression of mutated hFVIII sequences in target cells are used for in vitro or in vivo expression of said mhFVIII. The introduction of a tissue-specific regulatory element in the expression construct of the application provides at least partial tissue tropism for the expression of mhFVIII or functional fragments thereof. For example, nucleic acid sequences encoding mutant FVIII under the control of the Cytomegalovirus (CMV) promoter or the CAG promoter can be used for skeletal muscle expression or hAAT-ApoE and others for liver-specific expression. Hematopoietic specific promoters in AAV and lentiviral vectors may also be used to drive expression of mhFVIII in vivo.
The viral capsid component of the packaged viral vector may be a parvoviral capsid. AAVCap and chimeric capsids are preferred. Examples of suitable parvoviral viral capsid components are capsid components from the parvoviridae family, such as autonomous parvovirus (autonomous parvovirus) or dependent virus (dependovirus). For example, the viral capsid may be an AAV capsid (e.g., AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, or AAV12 capsid; one skilled in the art will appreciate that there may be other variants that perform the same or similar function that have not been identified), or may include components from two or more AAV capsids. The complete complement (complement) of AAV Cap proteins includes VP1, VP2, and VP3. An ORF comprising a nucleotide sequence encoding an AAV VP capsid protein may comprise less than the complete complement AAV Cap protein, or may provide the complete complement of the AAV Cap protein.
One or more of the AAV-Cap proteins may be chimeric proteins, including the amino acid sequences AAV-Cap from two or more viruses, preferably two or more AAVs, as described in Rabinowitz et al, U.S. Pat. No.6,491,907. For example, a chimeric viral capsid can comprise an AAV1-Cap protein or subunit and at least one AAV2-Cap or subunit. Chimeric capsids may, for example, comprise AAV capsids having one or more B19-Cap subunits, e.g., AAV-Cap proteins or subunits may be substituted with B19-Cap proteins or subunits. For example, the Vp3 subunit of the AAV capsid may be replaced with the Vp2 subunit of B19.
Packaging cells can be cultured to produce the packaged viral vectors of the application. The packaging cell may include (1) a viral vector function, (2) a packaging function, and (3) a helper function. The viral vector functions typically include a portion of a parvoviral genome, such as an AAV genome, in which rep and cap are deleted and replaced with a mutated FVIII sequence and its associated expression control sequences, as described above.
In certain embodiments, the viral vector function may suitably be provided as a multiplex vector template, as described in U.S. patent publication No.2004/0029106 to Samulski et al. The multiplex vector is a dimeric self-complementary (sc) polynucleotide (typically DNA). For example, the DNA of the multiplex carrier may be selected so that a double stranded hairpin structure is formed due to base pairing within the strand. Both strands of the multiplex DNA vector may be packaged within the viral capsid. The multiplex vector provides a function comparable to that of a double stranded DNA viral vector and can alleviate the need for target cells to synthesize DNA complementary to the single stranded genome normally enveloped by the virus.
The TR (degradable and non-degradable) selected for the viral vector is preferably an AAV sequence (from any AAV serotype). Degradable AAV ITRs need not have wild-type TR sequences (e.g., wild-type sequences may be altered by insertions, deletions, truncations, or missense mutations) so long as TR mediates desired functions, such as viral packaging, integration, and/or proviral rescue, etc. TR may be a synthetic sequence that functions as an AAV inverted terminal repeat, such as the "double-D sequence" described in U.S. patent No.5,478,745 to Samulski et al. Typically, but not necessarily, multiple TRs are from the same parvovirus, e.g., both TR sequences are from AAV2.
The packaging function includes a capsid component. The capsid component is preferably derived from a parvoviral capsid, such as an AAV capsid or chimeric AAV capsid function. Examples of suitable parvoviral viral capsid components are capsid components from parvoviridae, such as autonomous parvoviruses or dependent viruses. For example, the capsid component may be selected from AAV capsids, such as AAV1-AAV12 and other novel capsids not yet identified, or from non-human primate sources. The capsid component may comprise components from two or more AAV capsids.
In certain embodiments, one or more VP capsid proteins may comprise a chimeric protein comprising amino acid sequences from two or more viruses, preferably two or more AAV. For example, the chimeric viral capsid can include a capsid region from an adeno-associated virus (AAV) and at least one capsid region from a B19 virus. The chimeric capsids may, for example, comprise an AAV capsid having one or more B19 capsid subunits, e.g., the AAV capsid subunits may be substituted with B19 capsid subunits. For example, the VP1, VP2, or VP3 subunit of the AAV capsid can be replaced by the VP1, VP2, or VP3 subunit of B19. As another example, the chimeric capsid may comprise an AAV type 2 capsid, wherein the VP1 subunit has been substituted with a VP1 subunit from an AAV type 1, 3, 4, 5 or 6 capsid, preferably a type 3, 4 or 5 capsid. Alternatively, the chimeric parvovirus has an AAV type 2 capsid wherein the VP2 subunit has been replaced with a VP2 subunit from an AAV type 1, 3, 4, 5 or 6 capsid, preferably a type 3, 4 or 5 capsid. Also preferred are chimeric parvoviruses in which the VP3 subunit from AAV type 1, 3, 4, 5 or 6 (more preferably type 3, 4 or 5) is replaced with the VP3 subunit of an AAV type 2 capsid. Alternatively, chimeric parvoviruses are preferred in which two AAV type 2 subunits are substituted with subunits from AAV of different serotypes (e.g., AAV types 1, 3, 4, 5, or 6). In an exemplary chimeric parvovirus according to this embodiment, the VP1 and VP2, or VP1 and VP3, or VP2 and VP3 subunits of an AAV type 2 capsid are substituted with corresponding subunits of an AAV of a different serotype (e.g., AAV type 1, 3, 4, 5, or 6). Also, in some other preferred embodiments, the chimeric parvovirus has an AAV type 1, 3, 4, 5 or 6 capsid (preferably type 2, 3 or 5 capsid), wherein one or both subunits have been replaced with subunits from AAV of a different serotype, as described above for AAV type 2.
Packaged viral vectors typically include a mutant FVIII sequence and expression control sequences flanked by TR elements sufficient to result in packaging of the vector DNA and subsequent expression of the mutant FVIII sequence in transduced cells. The viral vector function may be provided to the cell, for example, as a component of a plasmid or amplicon. The viral vector function may exist extrachromosomally within the cell line and/or may be integrated into the chromosomal DNA of the cell.
Methods and cell lines for production of mhFVIII proteins
Another aspect of the application relates to a method of preparing mhFVIII of the application. This requires growing the host cell of the application under conditions in which the expression vector converts the host cell to express mhFVIII. The expressed mhFVIII is then isolated.
Another aspect of the application relates to a host cell comprising an isolated nucleic acid molecule encoding said mhFVIII of the application. The host cell may contain the isolated nucleic acid molecule as a DNA molecule in the form of an episomal plasmid, or it may be stably integrated into the genome of the host cell. Furthermore, the host cell may constitute an expression system for producing the mhFVIII protein. Suitable host cells may be, but are not limited to, animal cells (e.g., human HuH7 and HEK293 cells, chinese hamster ovary cells ("CHO"), baby hamster kidney cells ("BHK")), bacterial cells (e.g., escherichia coli), insect cells (e.g., sf9 cells), fungal cells, yeast cells (e.g., saccharomyces cerevisiae or schizosaccharomyces), plant cells (e.g., arabidopsis or tobacco cells), algal cells, and the like. Mammalian cells suitable for practicing the application additionally include COS (e.g., ATCC No. CRL 1650 or 1651), BHK (e.g., ATCC No. CRL 6281), CHO (ATCC No. CCL 61), heLa (e.g., ATCC No. CCL 2), 293 (ATCC No. 1573), CHOP, huH7, HEK293 and NS-1 cells.
Another aspect of the application relates to a method of producing mhFVIII from cultured cells. In some embodiments, the method comprises the steps of: (a) Introducing into a host cell an expression vector comprising: a polynucleotide comprising a nucleotide sequence encoding a signal peptide and a nucleotide sequence encoding the mhFVIII, wherein the mhFVIII comprises at least one or more amino acid substitutions at a position selected from the group consisting of a20K, T I, T21V, F57L, L69V, I80V, L178F, R199K, H212Q, I215V, R269K, I310V, L F, S332P, R S, I610M and I661V; and a regulatory sequence operably linked to the polynucleotide; (b) Growing the host cell carrying the expression vector under conditions suitable for expression and secretion of the mhFVIII; and (c) harvesting the host cells and/or the medium of the host cells, and (d) purifying the mhFVIII from the harvested medium and/or host cells.
In one embodiment, the host cell is grown in vitro in a growth medium. Suitable growth media may include, but are not limited to, growth media containing von Willebrand factor (referred to herein as "VWF"). In this embodiment, the host cell may comprise a transgene encoding VWF, or VWF may be introduced as a supplement into the growth medium. VWF in the growth medium will allow the mhFVIII to achieve higher expression levels. Once the recombinant FVIII is secreted into the growth medium, it can be isolated from the growth medium using techniques known to those of ordinary skill in the relevant recombinant DNA and protein techniques, including those described herein. In another embodiment, the method of making the mhFVIII of the application further comprises disrupting the host cell prior to isolating the mhFVIII. In this embodiment, the mhFVIII is separated from cell debris.
The mhFVIII is preferably produced in substantially pure form. In a particular embodiment, the purity of the substantially pure recombinant FVIII is at least about 80%, more preferably at least 90%, most preferably at least 95%, 98%, 99% or 99.9%. Substantially pure recombinant FVIII can be obtained by conventional techniques well known in the art. Typically, substantially pure mhFVIII is secreted into the growth medium of the recombinant host cell. Alternatively, substantially pure mhFVIII is produced but not secreted into the growth medium. In this case, to isolate substantially pure mhFVIII, host cells carrying the recombinant plasmid are propagated, lysed by sonication, heating or chemical treatment, and the homogenate centrifuged to remove cell debris. The supernatant is then subjected to a sequential ammonium sulphate precipitation. The fraction containing substantially pure mhFVIII is gel filtered in a dextran or polyacrylamide column of appropriate size to isolate mhFVIII. If necessary, the protein fraction (containing substantially pure mhFVIII) may be further purified by high performance liquid chromatography ("HPLC").
V. therapeutic methods
Another aspect of the application relates to a method of treating a patient suffering from FVIII deficiency.
In some embodiments, the method comprises the step of administering to a patient in need thereof an effective amount of mhFVIII of the application. In some embodiments, the mhFVIII is administered intravenously in purified form.
In other embodiments, the method comprises the step of administering to a patient in need thereof an effective amount of an expression vector comprising a coding sequence for mhFVIII of the application, wherein the expression vector is capable of expressing the mhFVIII in the patient.
In other embodiments, the method comprises the step of administering to a patient in need thereof an effective amount of a cell comprising a coding sequence for mhFVIII of the application, wherein the cell is capable of expressing the mhFVIII in the patient after transplantation. In some embodiments, the cell is a dermal fibroblast. In some embodiments, the cell is an autologous cell. In some embodiments, the method comprises the step of introducing a mhFVIII encoding sequence into a population of target cells, wherein the target cells are isolated from a subject in need of such treatment; expressing the mhFVIII in the target cell, and infusing an effective amount of mhFVIII expressing cells into the subject.
In some embodiments, the FVIII deficiency is hemophilia a. In such cases, expression of mhFVIII of the application can enhance coagulation in patients that are otherwise susceptible to uncontrolled bleeding (e.g., intra-articular, intracranial, or gastrointestinal bleeding) due to FVIII deficiency, including hemophilia patients who have developed anti-human FVIII antibodies. The target cells of the vector are cells capable of expressing a polypeptide having FVIII activity, such as those of the mammalian liver system, endothelial cells, and other cells having appropriate cellular mechanisms to process the precursors to produce proteins having FVIII activity.
Administration of the mhFVIII protein or an expression vector encoding mhFVIII or a cell expressing mhFVIII to a FVIII deficient patient may functionally reestablish the coagulation cascade (coagulation cascade). The mhFVIII protein or expression vector encoding mhFVIII or cell expressing mhFVIII may be administered alone or in combination with other therapeutic agents in a pharmaceutically acceptable or biologically compatible composition.
In some embodiments, the method comprises administering intravenously a pharmaceutical composition comprising mhFVIII protein to a patient according to the same procedure as used for infusion of human or animal FVIII. Suitable effective amounts of mhFVIII may include, but are not limited to, from about 10 to about 500 units/kg of patient body weight.
The dosage of treatment of the mhFVIII-encoding expression vector or mhFVIII protein or mhFVIII-expressing cells will vary with the severity of FVIII deficiency. Typically, the dosage level is adjusted in frequency, duration, and units according to the severity and duration of each patient's bleeding episode. Thus, the expression vector encoding mhFVIII or the mhFVIII protein or cell expressing mhFVIII is contained in a pharmaceutically acceptable carrier, delivery vehicle or stabilizer in an amount sufficient to deliver a therapeutically effective amount of the protein to a patient to stop bleeding as measured by standard coagulation assays.
FVIII is classically defined as a substance present in normal plasma that corrects clotting defects in the plasma of hemophilia a individuals. The in vitro coagulation activity of purified and partially purified forms of FVIII was used to calculate the dose of mhFVIII infused in human patients and is a reliable indicator of recovery activity from patient plasma and correction of in vivo bleeding defects. No differences were reported between the in vitro standard assays of the novel FVIII molecules and their behavior in dog infusion models or human patients.
Typically, the desired plasma FVIII activity level in the patient is achieved by administration of said mhFVIII at 30-200% of normal levels. In one embodiment, the preferred dosage for intravenous administration of therapeutic mhFVIII is a dosage of about 5 to 500 units/kg body weight, particularly 10 to 100 units/kg body weight, further particularly 20 to 40 units/kg body weight; the frequency of intervals is about 8 to 24 hours (in severely affected hemophiliacs); and the duration of treatment in days is 1-10 days, or until the bleeding episode is resolved. Patients using inhibitors may require different amounts of mhFVIII than their previous forms of FVIII. For example, a patient may need less mhFVIII because it has higher specific activity than wild type VIII and its antibody reactivity is reduced. As with human or plasma-derived FVIII treatment, the amount of therapeutic mhFVIII infusion is determined by a single-stage FVIII clotting assay, and in selected cases, in vivo recovery is determined by measuring FVIII in the patient's plasma after infusion. It should be understood that for any particular subject, the particular dosage regimen should be adjusted over time according to the individual needs and the professional judgment of the person administering or supervising the administration of the compositions, and that the concentration ranges set forth herein are exemplary only and are not intended to limit the scope or practice of the mhFVIII as claimed.
The treatment may take the form of a single intravenous administration of the mtFVIII, or periodic or continuous administration over a longer period of time, as desired. Alternatively, therapeutic mhFVIII may be administered subcutaneously or orally with liposomes at different time intervals in one or several doses.
Administration of the expression vector to a human subject or animal in need thereof may be by any means known in the art for administration of viral vectors. Exemplary modes of administration include rectal, transmucosal, topical, transdermal, inhaled, parenteral (e.g., intravenous, subcutaneous, intradermal, intramuscular, and intra-articular), and the like, as well as direct tissue or organ injection, or intrathecal, direct intramuscular, intraventricular, intravenous, intraperitoneal, intranasal, or intraocular injection. Injectables can be prepared in conventional forms, such as liquid solutions or suspensions, solid forms suitable for dissolution or suspension in liquid prior to injection, or emulsion forms. Alternatively, the virus may be administered in a local rather than systemic manner, for example in a depot (depot) or sustained release formulation.
In certain preferred embodiments, the expression vector is administered intramuscularly, more preferably by intramuscular injection or topically. The vectors disclosed herein may be administered to the lungs of a subject by any suitable means, but are preferably administered by administering an aerosol suspension of respirable particles composed of the parvoviral vectors of the present invention (which are inhaled by the subject). The inhalable particles may be liquid or solid. Aerosols of liquid particles comprising the parvoviral vectors (e.g., AAV) of the invention may be produced by any suitable means, for example using a pressure-driven aerosol nebulizer or an ultrasonic nebulizer known to those skilled in the art (see, e.g., U.S. patent No.4,501,729).
The dose of the viral vector expressing mhFVIII will depend on the mode of administration, the disease or disorder to be treated, the condition of the individual subject, the particular viral vector and the gene to be delivered, and can be determined in a conventional manner. Exemplary dosages for achieving a therapeutic effect are at least about 10 5 、10 6 、10 7 、10 8 、10 9 、10 10 、10 11 、10 12 、10 13 、10 14 、10 15 A transduction unit or more, preferably about 10 8 -10 13 Transduction units, more preferably 10 12 Viral titer of the transduction unit. Polynucleotides encoding mtFVIII of the applicationCan be administered as a component of a DNA molecule having regulatory elements suitable for expression in a target cell. The mtFVIII encoding polynucleotides of the application can be administered as a component of a viral plasmid or viral particle (e.g., an AAV particle). The viral particles may be administered as individual viral particles by direct in vivo delivery to the portal vasculature of a subject in need thereof, or as an ex vivo treatment (ex vivo treatment) comprising the use of the viral particles to transduce cells ex vivo and then introducing the transduced cells back into the subject in vivo (in vivo).
The polynucleotide encoding mtFVIII can be administered as a single-chain molecule containing both heavy and light chain portions, or split into two or more molecules (e.g., heavy and heavy chains) in multiple independent viral or non-viral vectors for delivery into a patient's host cells.
In some embodiments, the expression vector is a viral vector. Viral vectors that can be used in the present application include, but are not limited to, adeno-associated viral (AAV) vectors of various serotypes (e.g., AAV-1 to AAV-12 and pseudotyped vectors thereof), hybrid AAV vectors, retroviral vectors, including lentiviral vectors and pseudotyped lentiviral vectors (e.g., human Immunodeficiency Virus (HIV) and Feline Immunodeficiency Virus (FIV)); adenovirus vectors, herpes simplex virus vectors, vaccinia virus vectors, non-viral vectors, and other vectors. Furthermore, any of the viral vectors may be modified to include tissue specific promoters/enhancers and the like.
VI pharmaceutical composition
Another aspect of the application relates to a pharmaceutical composition comprising (1) a mhFVIII polypeptide of the application, an expression vector encoding mhFVIII or a cell expressing mhFVIII, and (2) a pharmaceutically acceptable carrier.
Exemplary pharmaceutically acceptable carriers include sterile, pyrogen-free water and sterile, pyrogen-free, phosphate buffered saline. Physiologically acceptable carriers include pharmaceutically acceptable carriers. Pharmaceutically acceptable carriers are those that are not biologically or otherwise undesirable, i.e., the material may be administered to a subject without causing an undesirable biological effect that exceeds the beneficial biological effect of the material. In some embodiments, the pharmaceutical composition is formulated for injection.
For injection, the carrier is typically a liquid. As injection medium, water is preferably used which contains additives commonly used for injection solutions, such as stabilizers, salts or saline and/or buffers. For other methods of administration, the carrier may be solid or liquid. For administration by inhalation, the carrier will be respirable and preferably in solid or liquid particulate form.
The application is further illustrated by the following examples, which should not be construed as limiting. The contents of all references, patents and published patent applications cited throughout this application are hereby incorporated by reference.
Examples
Example 1: construction, expression and characterization of factor VIII mutants
And (3) a template: plasmid pANG-CAG-hBDDF8 was used as a template to introduce multiple hFVIII mutations into the coding region of the hFVIII heavy chain. As shown in FIG. 1, pANG-CAG-hBDDF8 (SEQ ID NO: 15) contains the human factor VIII (hBDDF 8) cDNA under the control of the CAG promoter. Furthermore, pANG-CAG-hbdf 8 carries a deletion in the B domain, resulting in a functionally defective B domain. FIG. 2 identifies hFVIII mutations constructed in pANG-CAG-hBDDF 8. Figure 3 shows two hFVIII mutations analyzed in this study, including single amino acid substitutions and combinations thereof.
Single mutation: using a GIBSONMethod A single mutation corresponding to A20K, T21I, T V, F57L, L69V, I80V, L178F, R199K, H212Q, I215V, R269K, I310V, L318F, S P, R378S, I M and I661V of human factor VIII was introduced into pANG-CAG-hBDDF8 plasmid. The obtained plasmid comprises pANG-CAG-hBDDF8-A20K, pANG-CAG-hBDDF8, pANG-CAG-hBDDF8-T21I, pANG-CAG-hBDDF8-T21V, pANG-CAG-hBDDF8-F57L, pANG-CAG-hBDDF8-L69V, pANG-CAG-hBDDF8-I80V、pANG-CAG-hBDDF8-L178F、pANG-CAG-hBDDF8-R199K、pANG-CAG-hBDDF8-H212Q、pANG-CAG-hBDDF8-I215V、pANG-CAG-hBDDF8-R269K、pANG-CAG-hBDDF8-I310V 、 pANG-CAG-hBDDF8-L318F 、pANG-CAG-hBDDF8-S332P 、 pANG-CAG-hBDDF8-R378S 、pANG-CAG-hBDDF8-I610M、pANG-CAG-hBDDF8-I661V。
T21 mutant: an avrII restriction site was introduced in pANG-CAG-hBDDF8 by substituting P for T21. The resulting plasmid pANG-CAG-hBDDF8-T21P was used as a template to generate a multiple point mutation at amino acid position 21. pANG-CAG-hBDDF8-T21P was digested by AvrII and used as a template for mutant construction as described herein. 19 oligonucleotides of NNN corresponding to the T21 position were recombined into pANG-CAG-hBDDF8 by HIFI assembly. Mutant plasmids include pANG-CAG-hBDDF8-T21V, pANG-CAG-hBDDF8-T21I … … pANG-CAG-hBDDF8-T21G and the like. The last letter indicates the amino acid substitution at that particular position. Similar strategies may be used to generate other substitutions in accordance with the present invention.
A20 mutation with T21I: T21I and NNN correspond to alanine 20 of 19 oligonucleotides through HIFI assembly recombination into AvrII digested pANG-CAG-hBDDF 8-T21P. The obtained mutant plasmids include pANG-CAG-hBDDF8-T21V, pANG-CAG-hBDDF8-T21I … … pANG-CAG-hBDDF8-T21G and the like. Similar strategies can be used to generate other substitutions according to the invention, such as pANG-CAG-hBDDF8-A20K/T21V (2M 2).
Combination of mutations: hFVIII mutants with multiple HC mutations were constructed in pANG-CAG-hBDDF8 (as shown in FIG. 3). In one embodiment, DNA fragments encoding substitution mutations a20K, T21V, L69V, I V, L178F, R199K, H212Q, I215V, R269K, I310V, L318F, S332P and I661V were chemically synthesized and used to replace the corresponding regions in pANG-CAG-hbdf 8. The resulting plasmid pANG-CAG-BDDF8-13M1 expresses the mutant factor VIII protein (13M 1) with the 13 mutations described above.
In another embodiment, DNA fragments encoding substitution mutations T21I, L69V, I V, L178F, R199K, H212Q, I215V, R269K, I310V, L318F, S P and I661V were chemically synthesized and used to replace the corresponding region of pANG-CAG-hbdf 8. The resulting plasmid pANG-CAG-BDDF8-12M1 expresses the mutant factor VIII protein (12M 1) with the 12 mutations described above.
In another embodiment, DNA fragments encoding substitution mutations a20K, T21V, L69V, I V, L178F, H212Q, I215V, R269K, L F and I661V were chemically synthesized and used to replace the corresponding regions of pANG-CAG-hbdf 8. The resulting plasmid pANG-CAG-BDDF8-10M1 expresses the mutant factor VIII protein (10M 1) with the 10 mutations described above.
In another embodiment, DNA fragments encoding substitution mutations T21I, L69V, I80V, L178F, H212Q, I215V, R269K, L318F and I661V were chemically synthesized and used to replace the corresponding regions of pANG-CAG-hbdf 8. The resulting plasmid pANG-CAG-BDDF8-9M1 expresses the mutant factor VIII protein (9M 1) with the 9 mutations described above.
In another embodiment, DNA fragments encoding the substitution mutations R199K, H212Q, I V, R269K, I310V, L F and S332P were chemically synthesized and used to replace the corresponding regions of pANG-CAG-hbdf 8. The resulting plasmid pANG-CAG-BDDF8-7M2 expresses the mutant factor VIII protein (7M 2) with the 7 mutations described above.
In another embodiment, DNA fragments encoding the substitution mutations T21I, L69V, I80V, L178F and I661V were chemically synthesized and used to replace the corresponding regions of pANG-CAG-hBDDF 8. The resulting plasmid pANG-CAG-BDDF8-5M4 expresses the mutant factor VIII protein (5M 4) with the 5 mutations described above.
In another embodiment, DNA fragments encoding the substitution mutations T21V, L69V, I V and I661V were chemically synthesized and used to replace the corresponding region of pANG-CAG-hbdf 8. The resulting plasmid pANG-CAG-BDDF8-4M3 expresses the mutant factor VIII protein (4M 3) with the 4 mutations described above.
In another embodiment, DNA fragments encoding the substitution mutations T21I, L69V, I V and L178F were chemically synthesized and used to replace the corresponding regions of pANG-CAG-hbdf 8. The resulting plasmid pANG-CAG-BDDF8-4M1 expresses the mutant factor VIII protein (4M 1) with the 4 mutations described above.
In another embodiment, DNA fragments encoding the substitution mutations T21I, L V and I80V were chemically synthesized and used to replace the corresponding regions of pANG-CAG-hbdf 8. The resulting plasmid pANG-CAG-BDDF8-3M1 expresses the mutant factor VIII protein (3M 1) with the 3 mutations described above.
To test the functional activity of the mutant constructs, HEK 293T, huH and CHO cells were cultured in DMEM containing 10% fetal bovine serum, penicillin (100U/ml) and streptomycin (100 μg/ml) at 37 ℃ in a humid environment provided with 5% carbon dioxide. HEK 293T, huH and CHO cells were transfected with mutants or wild type expression constructs in pANG-CAG-hDDF 8. Following transfection, cells were maintained in RPMI-1640 medium containing 2% inactivated fetal bovine serum. Cell culture media was collected at various times (24 hours, 48 hours, 72 hours) after transfection. Secreted FVIII activity was assayed using an Activated Partial Thromboplastin Time (APTT) assay. Normal human plasma was used as a standard.
Representative results of these assays are shown in FIGS. 4-10, 11B and 13. Briefly, FIGS. 4-6 show that functional activity of specific single amino acid substitution mutants was increased in HuH7 cells (FIG. 4) and HEK 293T cells (FIGS. 5, 6) compared to wild-type hFVIII at 48 hours post-transfection. Figure 6 shows that T21I and T21V mutants significantly improved FVIII activity in HEK 293T cells at 48 hours post-transfection. FIG. 7 shows that double mutants carrying A20K (A20K/T21I and A20K/T22V) further increased FVIII activity in HEK 293T cells at 48 hours post-transfection relative to T21 and T21V monosubstituted counterparts. Figures 8-10 show that the combination of multiple mutations significantly increased FVIII functional activity compared to wild type, single and double substitution mutants in HuH7, HEK 293T and CHO cells, respectively, 24 hours and 48 hours after transfection.
Example 2: construction, expression and functional Activity of heterozygous human/canine factor VIII mutants
To evaluate the functional activity of mutant hVIII of the application compared to mutant hybrid human/canine FVIII consisting of mutant hVIII heavy chain (hHC) and canine FVIII light chain (cLC), a series of B-domain free FVIII constructs were prepared and expressed in HEK 293T cells, as shown in fig. 11A and 11B.
Briefly, a mutant FVIII comprising a mutant human FVIII heavy chain and a canine FVIII light chain was constructed. Briefly, pANG-CAG-hBDDF8 was digested with CspCI and XhoI. A DNA fragment encoding a canine light chain (cLC) was chemically synthesized and used to replace the corresponding human light chain (hLC) region in pANG-CAG-hBDDF8 by the Gibson assembly method. The resulting plasmid pANG CAG-hHC cLC expressed the B-domain-free hybrid human/canine factor VIII polypeptide consisting of hHC and cLC (i.e., hHC-cLC). SEQ ID NO. 10 shows the amino acid sequence of the hHC-cLC protein with the native hFVIII signal peptide. SEQ ID NO. 11 shows the cDNA sequence encoding the protein in SEQ ID NO. 10. SEQ ID NO. 12 shows the amino acid sequence of the hHC-cLC protein without hFVIII signal peptide. SEQ ID NO. 13 shows the amino acid sequence of the truncated B domain in the hHC-cLC protein, while SEQ ID NO. 14 shows the amino acid sequence of the canine FVIII light chain (cLC).
Similar strategies were used to generate pANG-CAG-qwHC-2M1-cLC (2M 1 mutant) and pANG-CAG-qwHCC-9M1-cLC (9M 1 mutant) plasmids as shown in FIG. 11A (and abbreviated). Secreted FVIII activity was assayed using an Activated Partial Thromboplastin Time (APTT) assay. FIG. 11B shows the functional activity of various human/canine hybrid FVIII mutants in HEK 293T cells compared to the functional activity of hFVIII (i.e.unmodified hBDDF8 protein) 48 hours after transfection. As shown in fig. 11B, substitution of hLC with crc in this system resulted in increased FVIII activity compared to hfviii expressed from the parental plasmid hfdf 8.
In another aspect, the functional activity of a rAAV vector expressing mutant hdviii of the application is compared to a rAAV vector expressing the parental hddf 8. In this case, a series of rAAV expressing the hddf 8 protein and the modified hddf 8 protein were constructed and produced. The resulting rAAVs were used to infect Huh7 cells and analyzed for hVIII activity in the infected cells.
In this case, a first series of rAAV expressing mutant hVIII of the application was constructed in which the CAG promoter in hfdf 8 was replaced by the human TTR promoter. Briefly, pANG-CAG-hBDDF8 was digested with SnaBI and MluI. DNA fragments encoding the TTR promoter and intron were chemically synthesized and used to replace the CAG promoter region in pANG-CAG-hBDDF8 by the Gibson assembly method.
As shown in FIG. 12, the resulting plasmid pANG-TTR-hBDDF8 (SEQ ID NO: 18) expresses the hBDDF8 protein under the control of the TTR promoter. Similar strategies were used to generate pANG-TTR-qwBDDF8-2M1, pANG-TTR-qwBDDF8-2M2, pANG-TTR-qwBDDF8-9M1, pANG-TTR-qwBDDF8-10M1, pANG-TTR-qwBDDF8-12M1, pANG-TTR-qwBDDF8-13M1 plasmids.
AAV2 capsids were used to package pANG-TTR-hBDDF8 and its modified variant plasmids to produce rAAV therefrom. Briefly, pAAV Rep & Cap (serotype 2), pAd-cofactor (pAd-helper) and transgenic plasmids were co-transfected into HEK 293T cells cultured in a roller bottle (roller bottle) at a 1:1:1 ratio. rAAVs from transfected cell culture media were harvested 72 hours after transfection and purified by two rounds of CsCl gradient ultracentrifuge. Each rAAV was collected and extensively exchanged with PBS containing 5% D-sorbitol.
HuH7 cells were subjected to DMEM (Invitrogen, carlsbad, calif.) containing 10% FBS, penicillin (100U/ml) and streptomycin (100. Mu.g/ml) at 37℃in the presence of 5% CO 2 Is grown in a humid environment. For each transduction experiment, 50,000 viable cells were seeded in 24-well plates 24 hours prior to transduction. rAAV was added directly to each plate well at 100,000 vg/cell. Secreted FVIII activity was analyzed at 72 hours post-transfection using an Activated Partial Thromboplastin Time (APTT) assay.
As shown in fig. 13, modified hbdf 8 exhibited increased FVIII activity when expressed by rAAV vector in Huh7 cells as compared to unmodified hbdf 8.
The above examples demonstrate that the mutant factor VIII products of the application exhibit increased functional activity compared to wild-type factor VIII. Thus, use of the mutants described herein can reduce production costs and required FVIII expression levels (relative to existing constructs). They may also allow for lower carrier doses to be administered by providing a higher active FVIII product.
The above description is intended to teach a person of ordinary skill in the art how to practice the application. This description is not intended to detail all such obvious modifications and alterations that will become apparent to the skilled worker upon reading the description. However, it is intended that all such obvious modifications and variations be included within the scope of the present application, which is defined by the following claims. The claims are intended to cover the claimed elements and steps in any order that is effective to achieve their intended objects unless the context clearly indicates to the contrary.
Sequence listing
<110> Ai Nuojian Gene therapy Co., ltd
Wang Qi
In the road
<120> modified plasma factor VIII and methods of use thereof
<130> 23US0670AF-CN
<160> 18
<170> PatentIn version 3.5
<210> 1
<211> 7056
<212> DNA
<213> Chile person
<220>
<221> misc_feature
<223> human factor VIII
<400> 1
atgcaaatag agctctccac ctgcttcttt ctgtgccttt tgcgattctg ctttagtgcc 60
accagaagat actacctggg tgcagtggaa ctgtcatggg actatatgca aagtgatctc 120
ggtgagctgc ctgtggacgc aagatttcct cctagagtgc caaaatcttt tccattcaac 180
acctcagtcg tgtacaaaaa gactctgttt gtagaattca cggatcacct tttcaacatc 240
gctaagccaa ggccaccctg gatgggtctg ctaggtccta ccatccaggc tgaggtttat 300
gatacagtgg tcattacact taagaacatg gcttcccatc ctgtcagtct tcatgctgtt 360
ggtgtatcct actggaaagc ttctgaggga gctgaatatg atgatcagac cagtcaaagg 420
gagaaagaag atgataaagt cttccctggt ggaagccata catatgtctg gcaggtcctg 480
aaagagaatg gtccaatggc ctctgaccca ctgtgcctta cctactcata tctttctcat 540
gtggacctgg taaaagactt gaattcaggc ctcattggag ccctactagt atgtagagaa 600
gggagtctgg ccaaggaaaa gacacagacc ttgcacaaat ttatactact ttttgctgta 660
tttgatgaag ggaaaagttg gcactcagaa acaaagaact ccttgatgca ggatagggat 720
gctgcatctg ctcgggcctg gcctaaaatg cacacagtca atggttatgt aaacaggtct 780
ctgccaggtc tgattggatg ccacaggaaa tcagtctatt ggcatgtgat tggaatgggc 840
accactcctg aagtgcactc aatattcctc gaaggtcaca catttcttgt gaggaaccat 900
cgccaggcgt ccttggaaat ctcgccaata actttcctta ctgctcaaac actcttgatg 960
gaccttggac agtttctact gttttgtcat atctcttccc accaacatga tggcatggaa 1020
gcttatgtca aagtagacag ctgtccagag gaaccccaac tacgaatgaa aaataatgaa 1080
gaagcggaag actatgatga tgatcttact gattctgaaa tggatgtggt caggtttgat 1140
gatgacaact ctccttcctt tatccaaatt cgctcagttg ccaagaagca tcctaaaact 1200
tgggtacatt acattgctgc tgaagaggag gactgggact atgctccctt agtcctcgcc 1260
cccgatgaca gaagttataa aagtcaatat ttgaacaatg gccctcagcg gattggtagg 1320
aagtacaaaa aagtccgatt tatggcatac acagatgaaa cctttaagac tcgtgaagct 1380
attcagcatg aatcaggaat cttgggacct ttactttatg gggaagttgg agacacactg 1440
ttgattatat ttaagaatca agcaagcaga ccatataaca tctaccctca cggaatcact 1500
gatgtccgtc ctttgtattc aaggagatta ccaaaaggtg taaaacattt gaaggatttt 1560
ccaattctgc caggagaaat attcaaatat aaatggacag tgactgtaga agatgggcca 1620
actaaatcag atcctcggtg cctgacccgc tattactcta gtttcgttaa tatggagaga 1680
gatctagctt caggactcat tggccctctc ctcatctgct acaaagaatc tgtagatcaa 1740
agaggaaacc agataatgtc agacaagagg aatgtcatcc tgttttctgt atttgatgag 1800
aaccgaagct ggtacctcac agagaatata caacgctttc tccccaatcc agctggagtg 1860
cagcttgagg atccagagtt ccaagcctcc aacatcatgc acagcatcaa tggctatgtt 1920
tttgatagtt tgcagttgtc agtttgtttg catgaggtgg catactggta cattctaagc 1980
attggagcac agactgactt cctttctgtc ttcttctctg gatatacctt caaacacaaa 2040
atggtctatg aagacacact caccctattc ccattctcag gagaaactgt cttcatgtcg 2100
atggaaaacc caggtctatg gattctgggg tgccacaact cagactttcg gaacagaggc 2160
atgaccgcct tactgaaggt ttctagttgt gacaagaaca ctggtgatta ttacgaggac 2220
agttatgaag atatttcagc atacttgctg agtaaaaaca atgccattga accaagaagc 2280
ttctcccaga attcaagaca ccctagcact aggcaaaagc aatttaatgc caccacaatt 2340
ccagaaaatg acatagagaa gactgaccct tggtttgcac acagaacacc tatgcctaaa 2400
atacaaaatg tctcctctag tgatttgttg atgctcttgc gacagagtcc tactccacat 2460
gggctatcct tatctgatct ccaagaagcc aaatatgaga ctttttctga tgatccatca 2520
cctggagcaa tagacagtaa taacagcctg tctgaaatga cacacttcag gccacagctc 2580
catcacagtg gggacatggt atttacccct gagtcaggcc tccaattaag attaaatgag 2640
aaactgggga caactgcagc aacagagttg aagaaacttg atttcaaagt ttctagtaca 2700
tcaaataatc tgatttcaac aattccatca gacaatttgg cagcaggtac tgataataca 2760
agttccttag gacccccaag tatgccagtt cattatgata gtcaattaga taccactcta 2820
tttggcaaaa agtcatctcc ccttactgag tctggtggac ctctgagctt gagtgaagaa 2880
aataatgatt caaagttgtt agaatcaggt ttaatgaata gccaagaaag ttcatgggga 2940
aaaaatgtat cgtcaacaga gagtggtagg ttatttaaag ggaaaagagc tcatggacct 3000
gctttgttga ctaaagataa tgccttattc aaagttagca tctctttgtt aaagacaaac 3060
aaaacttcca ataattcagc aactaataga aagactcaca ttgatggccc atcattatta 3120
attgagaata gtccatcagt ctggcaaaat atattagaaa gtgacactga gtttaaaaaa 3180
gtgacacctt tgattcatga cagaatgctt atggacaaaa atgctacagc tttgaggcta 3240
aatcatatgt caaataaaac tacttcatca aaaaacatgg aaatggtcca acagaaaaaa 3300
gagggcccca ttccaccaga tgcacaaaat ccagatatgt cgttctttaa gatgctattc 3360
ttgccagaat cagcaaggtg gatacaaagg actcatggaa agaactctct gaactctggg 3420
caaggcccca gtccaaagca attagtatcc ttaggaccag aaaaatctgt ggaaggtcag 3480
aatttcttgt ctgagaaaaa caaagtggta gtaggaaagg gtgaatttac aaaggacgta 3540
ggactcaaag agatggtttt tccaagcagc agaaacctat ttcttactaa cttggataat 3600
ttacatgaaa ataatacaca caatcaagaa aaaaaaattc aggaagaaat agaaaagaag 3660
gaaacattaa tccaagagaa tgtagttttg cctcagatac atacagtgac tggcactaag 3720
aatttcatga agaacctttt cttactgagc actaggcaaa atgtagaagg ttcatatgac 3780
ggggcatatg ctccagtact tcaagatttt aggtcattaa atgattcaac aaatagaaca 3840
aagaaacaca cagctcattt ctcaaaaaaa ggggaggaag aaaacttgga aggcttggga 3900
aatcaaacca agcaaattgt agagaaatat gcatgcacca caaggatatc tcctaataca 3960
agccagcaga attttgtcac gcaacgtagt aagagagctt tgaaacaatt cagactccca 4020
ctagaagaaa cagaacttga aaaaaggata attgtggatg acacctcaac ccagtggtcc 4080
aaaaacatga aacatttgac cccgagcacc ctcacacaga tagactacaa tgagaaggag 4140
aaaggggcca ttactcagtc tcccttatca gattgcctta cgaggagtca tagcatccct 4200
caagcaaata gatctccatt acccattgca aaggtatcat catttccatc tattagacct 4260
atatatctga ccagggtcct attccaagac aactcttctc atcttccagc agcatcttat 4320
agaaagaaag attctggggt ccaagaaagc agtcatttct tacaaggagc caaaaaaaat 4380
aacctttctt tagccattct aaccttggag atgactggtg atcaaagaga ggttggctcc 4440
ctggggacaa gtgccacaaa ttcagtcaca tacaagaaag ttgagaacac tgttctcccg 4500
aaaccagact tgcccaaaac atctggcaaa gttgaattgc ttccaaaagt tcacatttat 4560
cagaaggacc tattccctac ggaaactagc aatgggtctc ctggccatct ggatctcgtg 4620
gaagggagcc ttcttcaggg aacagaggga gcgattaagt ggaatgaagc aaacagacct 4680
ggaaaagttc cctttctgag agtagcaaca gaaagctctg caaagactcc ctccaagcta 4740
ttggatcctc ttgcttggga taaccactat ggtactcaga taccaaaaga agagtggaaa 4800
tcccaagaga agtcaccaga aaaaacagct tttaagaaaa aggataccat tttgtccctg 4860
aacgcttgtg aaagcaatca tgcaatagca gcaataaatg agggacaaaa taagcccgaa 4920
atagaagtca cctgggcaaa gcaaggtagg actgaaaggc tgtgctctca aaacccacca 4980
gtcttgaaac gccatcaacg ggaaataact cgtactactc ttcagtcaga tcaagaggaa 5040
attgactatg atgataccat atcagttgaa atgaagaagg aagattttga catttatgat 5100
gaggatgaaa atcagagccc ccgcagcttt caaaagaaaa cacgacacta ttttattgct 5160
gcagtggaga ggctctggga ttatgggatg agtagctccc cacatgttct aagaaacagg 5220
gctcagagtg gcagtgtccc tcagttcaag aaagttgttt tccaggaatt tactgatggc 5280
tcctttactc agcccttata ccgtggagaa ctaaatgaac atttgggact cctggggcca 5340
tatataagag cagaagttga agataatatc atggtaactt tcagaaatca ggcctctcgt 5400
ccctattcct tctattctag ccttatttct tatgaggaag atcagaggca aggagcagaa 5460
cctagaaaaa actttgtcaa gcctaatgaa accaaaactt acttttggaa agtgcaacat 5520
catatggcac ccactaaaga tgagtttgac tgcaaagcct gggcttattt ctctgatgtt 5580
gacctggaaa aagatgtgca ctcaggcctg attggacccc ttctggtctg ccacactaac 5640
acactgaacc ctgctcatgg gagacaagtg acagtacagg aatttgctct gtttttcacc 5700
atctttgatg agaccaaaag ctggtacttc actgaaaata tggaaagaaa ctgcagggct 5760
ccctgcaata tccagatgga agatcccact tttaaagaga attatcgctt ccatgcaatc 5820
aatggctaca taatggatac actacctggc ttagtaatgg ctcaggatca aaggattcga 5880
tggtatctgc tcagcatggg cagcaatgaa aacatccatt ctattcattt cagtggacat 5940
gtgttcactg tacgaaaaaa agaggagtat aaaatggcac tgtacaatct ctatccaggt 6000
gtttttgaga cagtggaaat gttaccatcc aaagctggaa tttggcgggt ggaatgcctt 6060
attggcgagc atctacatgc tgggatgagc acactttttc tggtgtacag caataagtgt 6120
cagactcccc tgggaatggc ttctggacac attagagatt ttcagattac agcttcagga 6180
caatatggac agtgggcccc aaagctggcc agacttcatt attccggatc aatcaatgcc 6240
tggagcacca aggagccctt ttcttggatc aaggtggatc tgttggcacc aatgattatt 6300
cacggcatca agacccaggg tgcccgtcag aagttctcca gcctctacat ctctcagttt 6360
atcatcatgt atagtcttga tgggaagaag tggcagactt atcgaggaaa ttccactgga 6420
accttaatgg tcttctttgg caatgtggat tcatctggga taaaacacaa tatttttaac 6480
cctccaatta ttgctcgata catccgtttg cacccaactc attatagcat tcgcagcact 6540
cttcgcatgg agttgatggg ctgtgattta aatagttgca gcatgccatt gggaatggag 6600
agtaaagcaa tatcagatgc acagattact gcttcatcct actttaccaa tatgtttgcc 6660
acctggtctc cttcaaaagc tcgacttcac ctccaaggga ggagtaatgc ctggagacct 6720
caggtgaata atccaaaaga gtggctgcaa gtggacttcc agaagacaat gaaagtcaca 6780
ggagtaacta ctcagggagt aaaatctctg cttaccagca tgtatgtgaa ggagttcctc 6840
atctccagca gtcaagatgg ccatcagtgg actctctttt ttcagaatgg caaagtaaag 6900
gtttttcagg gaaatcaaga ctccttcaca cctgtggtga actctctaga cccaccgtta 6960
ctgactcgct accttcgaat tcacccccag agttgggtgc accagattgc cctgaggatg 7020
gaggttctgg gctgcgaggc acaggacctc tactga 7056
<210> 2
<211> 19
<212> PRT
<213> Chile person
<220>
<221> misc_feature
<223> human factor VIII Signal peptide
<400> 2
Met Gln Ile Glu Leu Ser Thr Cys Phe Phe Leu Cys Leu Leu Arg Phe
1 5 10 15
Cys Phe Ser
<210> 3
<211> 2351
<212> PRT
<213> Chile person
<220>
<221> misc_feature
<223> human factor VIII with Signal peptide
<400> 3
Met Gln Ile Glu Leu Ser Thr Cys Phe Phe Leu Cys Leu Leu Arg Phe
1 5 10 15
Cys Phe Ser Ala Thr Arg Arg Tyr Tyr Leu Gly Ala Val Glu Leu Ser
20 25 30
Trp Asp Tyr Met Gln Ser Asp Leu Gly Glu Leu Pro Val Asp Ala Arg
35 40 45
Phe Pro Pro Arg Val Pro Lys Ser Phe Pro Phe Asn Thr Ser Val Val
50 55 60
Tyr Lys Lys Thr Leu Phe Val Glu Phe Thr Asp His Leu Phe Asn Ile
65 70 75 80
Ala Lys Pro Arg Pro Pro Trp Met Gly Leu Leu Gly Pro Thr Ile Gln
85 90 95
Ala Glu Val Tyr Asp Thr Val Val Ile Thr Leu Lys Asn Met Ala Ser
100 105 110
His Pro Val Ser Leu His Ala Val Gly Val Ser Tyr Trp Lys Ala Ser
115 120 125
Glu Gly Ala Glu Tyr Asp Asp Gln Thr Ser Gln Arg Glu Lys Glu Asp
130 135 140
Asp Lys Val Phe Pro Gly Gly Ser His Thr Tyr Val Trp Gln Val Leu
145 150 155 160
Lys Glu Asn Gly Pro Met Ala Ser Asp Pro Leu Cys Leu Thr Tyr Ser
165 170 175
Tyr Leu Ser His Val Asp Leu Val Lys Asp Leu Asn Ser Gly Leu Ile
180 185 190
Gly Ala Leu Leu Val Cys Arg Glu Gly Ser Leu Ala Lys Glu Lys Thr
195 200 205
Gln Thr Leu His Lys Phe Ile Leu Leu Phe Ala Val Phe Asp Glu Gly
210 215 220
Lys Ser Trp His Ser Glu Thr Lys Asn Ser Leu Met Gln Asp Arg Asp
225 230 235 240
Ala Ala Ser Ala Arg Ala Trp Pro Lys Met His Thr Val Asn Gly Tyr
245 250 255
Val Asn Arg Ser Leu Pro Gly Leu Ile Gly Cys His Arg Lys Ser Val
260 265 270
Tyr Trp His Val Ile Gly Met Gly Thr Thr Pro Glu Val His Ser Ile
275 280 285
Phe Leu Glu Gly His Thr Phe Leu Val Arg Asn His Arg Gln Ala Ser
290 295 300
Leu Glu Ile Ser Pro Ile Thr Phe Leu Thr Ala Gln Thr Leu Leu Met
305 310 315 320
Asp Leu Gly Gln Phe Leu Leu Phe Cys His Ile Ser Ser His Gln His
325 330 335
Asp Gly Met Glu Ala Tyr Val Lys Val Asp Ser Cys Pro Glu Glu Pro
340 345 350
Gln Leu Arg Met Lys Asn Asn Glu Glu Ala Glu Asp Tyr Asp Asp Asp
355 360 365
Leu Thr Asp Ser Glu Met Asp Val Val Arg Phe Asp Asp Asp Asn Ser
370 375 380
Pro Ser Phe Ile Gln Ile Arg Ser Val Ala Lys Lys His Pro Lys Thr
385 390 395 400
Trp Val His Tyr Ile Ala Ala Glu Glu Glu Asp Trp Asp Tyr Ala Pro
405 410 415
Leu Val Leu Ala Pro Asp Asp Arg Ser Tyr Lys Ser Gln Tyr Leu Asn
420 425 430
Asn Gly Pro Gln Arg Ile Gly Arg Lys Tyr Lys Lys Val Arg Phe Met
435 440 445
Ala Tyr Thr Asp Glu Thr Phe Lys Thr Arg Glu Ala Ile Gln His Glu
450 455 460
Ser Gly Ile Leu Gly Pro Leu Leu Tyr Gly Glu Val Gly Asp Thr Leu
465 470 475 480
Leu Ile Ile Phe Lys Asn Gln Ala Ser Arg Pro Tyr Asn Ile Tyr Pro
485 490 495
His Gly Ile Thr Asp Val Arg Pro Leu Tyr Ser Arg Arg Leu Pro Lys
500 505 510
Gly Val Lys His Leu Lys Asp Phe Pro Ile Leu Pro Gly Glu Ile Phe
515 520 525
Lys Tyr Lys Trp Thr Val Thr Val Glu Asp Gly Pro Thr Lys Ser Asp
530 535 540
Pro Arg Cys Leu Thr Arg Tyr Tyr Ser Ser Phe Val Asn Met Glu Arg
545 550 555 560
Asp Leu Ala Ser Gly Leu Ile Gly Pro Leu Leu Ile Cys Tyr Lys Glu
565 570 575
Ser Val Asp Gln Arg Gly Asn Gln Ile Met Ser Asp Lys Arg Asn Val
580 585 590
Ile Leu Phe Ser Val Phe Asp Glu Asn Arg Ser Trp Tyr Leu Thr Glu
595 600 605
Asn Ile Gln Arg Phe Leu Pro Asn Pro Ala Gly Val Gln Leu Glu Asp
610 615 620
Pro Glu Phe Gln Ala Ser Asn Ile Met His Ser Ile Asn Gly Tyr Val
625 630 635 640
Phe Asp Ser Leu Gln Leu Ser Val Cys Leu His Glu Val Ala Tyr Trp
645 650 655
Tyr Ile Leu Ser Ile Gly Ala Gln Thr Asp Phe Leu Ser Val Phe Phe
660 665 670
Ser Gly Tyr Thr Phe Lys His Lys Met Val Tyr Glu Asp Thr Leu Thr
675 680 685
Leu Phe Pro Phe Ser Gly Glu Thr Val Phe Met Ser Met Glu Asn Pro
690 695 700
Gly Leu Trp Ile Leu Gly Cys His Asn Ser Asp Phe Arg Asn Arg Gly
705 710 715 720
Met Thr Ala Leu Leu Lys Val Ser Ser Cys Asp Lys Asn Thr Gly Asp
725 730 735
Tyr Tyr Glu Asp Ser Tyr Glu Asp Ile Ser Ala Tyr Leu Leu Ser Lys
740 745 750
Asn Asn Ala Ile Glu Pro Arg Ser Phe Ser Gln Asn Ser Arg His Pro
755 760 765
Ser Thr Arg Gln Lys Gln Phe Asn Ala Thr Thr Ile Pro Glu Asn Asp
770 775 780
Ile Glu Lys Thr Asp Pro Trp Phe Ala His Arg Thr Pro Met Pro Lys
785 790 795 800
Ile Gln Asn Val Ser Ser Ser Asp Leu Leu Met Leu Leu Arg Gln Ser
805 810 815
Pro Thr Pro His Gly Leu Ser Leu Ser Asp Leu Gln Glu Ala Lys Tyr
820 825 830
Glu Thr Phe Ser Asp Asp Pro Ser Pro Gly Ala Ile Asp Ser Asn Asn
835 840 845
Ser Leu Ser Glu Met Thr His Phe Arg Pro Gln Leu His His Ser Gly
850 855 860
Asp Met Val Phe Thr Pro Glu Ser Gly Leu Gln Leu Arg Leu Asn Glu
865 870 875 880
Lys Leu Gly Thr Thr Ala Ala Thr Glu Leu Lys Lys Leu Asp Phe Lys
885 890 895
Val Ser Ser Thr Ser Asn Asn Leu Ile Ser Thr Ile Pro Ser Asp Asn
900 905 910
Leu Ala Ala Gly Thr Asp Asn Thr Ser Ser Leu Gly Pro Pro Ser Met
915 920 925
Pro Val His Tyr Asp Ser Gln Leu Asp Thr Thr Leu Phe Gly Lys Lys
930 935 940
Ser Ser Pro Leu Thr Glu Ser Gly Gly Pro Leu Ser Leu Ser Glu Glu
945 950 955 960
Asn Asn Asp Ser Lys Leu Leu Glu Ser Gly Leu Met Asn Ser Gln Glu
965 970 975
Ser Ser Trp Gly Lys Asn Val Ser Ser Thr Glu Ser Gly Arg Leu Phe
980 985 990
Lys Gly Lys Arg Ala His Gly Pro Ala Leu Leu Thr Lys Asp Asn Ala
995 1000 1005
Leu Phe Lys Val Ser Ile Ser Leu Leu Lys Thr Asn Lys Thr Ser
1010 1015 1020
Asn Asn Ser Ala Thr Asn Arg Lys Thr His Ile Asp Gly Pro Ser
1025 1030 1035
Leu Leu Ile Glu Asn Ser Pro Ser Val Trp Gln Asn Ile Leu Glu
1040 1045 1050
Ser Asp Thr Glu Phe Lys Lys Val Thr Pro Leu Ile His Asp Arg
1055 1060 1065
Met Leu Met Asp Lys Asn Ala Thr Ala Leu Arg Leu Asn His Met
1070 1075 1080
Ser Asn Lys Thr Thr Ser Ser Lys Asn Met Glu Met Val Gln Gln
1085 1090 1095
Lys Lys Glu Gly Pro Ile Pro Pro Asp Ala Gln Asn Pro Asp Met
1100 1105 1110
Ser Phe Phe Lys Met Leu Phe Leu Pro Glu Ser Ala Arg Trp Ile
1115 1120 1125
Gln Arg Thr His Gly Lys Asn Ser Leu Asn Ser Gly Gln Gly Pro
1130 1135 1140
Ser Pro Lys Gln Leu Val Ser Leu Gly Pro Glu Lys Ser Val Glu
1145 1150 1155
Gly Gln Asn Phe Leu Ser Glu Lys Asn Lys Val Val Val Gly Lys
1160 1165 1170
Gly Glu Phe Thr Lys Asp Val Gly Leu Lys Glu Met Val Phe Pro
1175 1180 1185
Ser Ser Arg Asn Leu Phe Leu Thr Asn Leu Asp Asn Leu His Glu
1190 1195 1200
Asn Asn Thr His Asn Gln Glu Lys Lys Ile Gln Glu Glu Ile Glu
1205 1210 1215
Lys Lys Glu Thr Leu Ile Gln Glu Asn Val Val Leu Pro Gln Ile
1220 1225 1230
His Thr Val Thr Gly Thr Lys Asn Phe Met Lys Asn Leu Phe Leu
1235 1240 1245
Leu Ser Thr Arg Gln Asn Val Glu Gly Ser Tyr Asp Gly Ala Tyr
1250 1255 1260
Ala Pro Val Leu Gln Asp Phe Arg Ser Leu Asn Asp Ser Thr Asn
1265 1270 1275
Arg Thr Lys Lys His Thr Ala His Phe Ser Lys Lys Gly Glu Glu
1280 1285 1290
Glu Asn Leu Glu Gly Leu Gly Asn Gln Thr Lys Gln Ile Val Glu
1295 1300 1305
Lys Tyr Ala Cys Thr Thr Arg Ile Ser Pro Asn Thr Ser Gln Gln
1310 1315 1320
Asn Phe Val Thr Gln Arg Ser Lys Arg Ala Leu Lys Gln Phe Arg
1325 1330 1335
Leu Pro Leu Glu Glu Thr Glu Leu Glu Lys Arg Ile Ile Val Asp
1340 1345 1350
Asp Thr Ser Thr Gln Trp Ser Lys Asn Met Lys His Leu Thr Pro
1355 1360 1365
Ser Thr Leu Thr Gln Ile Asp Tyr Asn Glu Lys Glu Lys Gly Ala
1370 1375 1380
Ile Thr Gln Ser Pro Leu Ser Asp Cys Leu Thr Arg Ser His Ser
1385 1390 1395
Ile Pro Gln Ala Asn Arg Ser Pro Leu Pro Ile Ala Lys Val Ser
1400 1405 1410
Ser Phe Pro Ser Ile Arg Pro Ile Tyr Leu Thr Arg Val Leu Phe
1415 1420 1425
Gln Asp Asn Ser Ser His Leu Pro Ala Ala Ser Tyr Arg Lys Lys
1430 1435 1440
Asp Ser Gly Val Gln Glu Ser Ser His Phe Leu Gln Gly Ala Lys
1445 1450 1455
Lys Asn Asn Leu Ser Leu Ala Ile Leu Thr Leu Glu Met Thr Gly
1460 1465 1470
Asp Gln Arg Glu Val Gly Ser Leu Gly Thr Ser Ala Thr Asn Ser
1475 1480 1485
Val Thr Tyr Lys Lys Val Glu Asn Thr Val Leu Pro Lys Pro Asp
1490 1495 1500
Leu Pro Lys Thr Ser Gly Lys Val Glu Leu Leu Pro Lys Val His
1505 1510 1515
Ile Tyr Gln Lys Asp Leu Phe Pro Thr Glu Thr Ser Asn Gly Ser
1520 1525 1530
Pro Gly His Leu Asp Leu Val Glu Gly Ser Leu Leu Gln Gly Thr
1535 1540 1545
Glu Gly Ala Ile Lys Trp Asn Glu Ala Asn Arg Pro Gly Lys Val
1550 1555 1560
Pro Phe Leu Arg Val Ala Thr Glu Ser Ser Ala Lys Thr Pro Ser
1565 1570 1575
Lys Leu Leu Asp Pro Leu Ala Trp Asp Asn His Tyr Gly Thr Gln
1580 1585 1590
Ile Pro Lys Glu Glu Trp Lys Ser Gln Glu Lys Ser Pro Glu Lys
1595 1600 1605
Thr Ala Phe Lys Lys Lys Asp Thr Ile Leu Ser Leu Asn Ala Cys
1610 1615 1620
Glu Ser Asn His Ala Ile Ala Ala Ile Asn Glu Gly Gln Asn Lys
1625 1630 1635
Pro Glu Ile Glu Val Thr Trp Ala Lys Gln Gly Arg Thr Glu Arg
1640 1645 1650
Leu Cys Ser Gln Asn Pro Pro Val Leu Lys Arg His Gln Arg Glu
1655 1660 1665
Ile Thr Arg Thr Thr Leu Gln Ser Asp Gln Glu Glu Ile Asp Tyr
1670 1675 1680
Asp Asp Thr Ile Ser Val Glu Met Lys Lys Glu Asp Phe Asp Ile
1685 1690 1695
Tyr Asp Glu Asp Glu Asn Gln Ser Pro Arg Ser Phe Gln Lys Lys
1700 1705 1710
Thr Arg His Tyr Phe Ile Ala Ala Val Glu Arg Leu Trp Asp Tyr
1715 1720 1725
Gly Met Ser Ser Ser Pro His Val Leu Arg Asn Arg Ala Gln Ser
1730 1735 1740
Gly Ser Val Pro Gln Phe Lys Lys Val Val Phe Gln Glu Phe Thr
1745 1750 1755
Asp Gly Ser Phe Thr Gln Pro Leu Tyr Arg Gly Glu Leu Asn Glu
1760 1765 1770
His Leu Gly Leu Leu Gly Pro Tyr Ile Arg Ala Glu Val Glu Asp
1775 1780 1785
Asn Ile Met Val Thr Phe Arg Asn Gln Ala Ser Arg Pro Tyr Ser
1790 1795 1800
Phe Tyr Ser Ser Leu Ile Ser Tyr Glu Glu Asp Gln Arg Gln Gly
1805 1810 1815
Ala Glu Pro Arg Lys Asn Phe Val Lys Pro Asn Glu Thr Lys Thr
1820 1825 1830
Tyr Phe Trp Lys Val Gln His His Met Ala Pro Thr Lys Asp Glu
1835 1840 1845
Phe Asp Cys Lys Ala Trp Ala Tyr Phe Ser Asp Val Asp Leu Glu
1850 1855 1860
Lys Asp Val His Ser Gly Leu Ile Gly Pro Leu Leu Val Cys His
1865 1870 1875
Thr Asn Thr Leu Asn Pro Ala His Gly Arg Gln Val Thr Val Gln
1880 1885 1890
Glu Phe Ala Leu Phe Phe Thr Ile Phe Asp Glu Thr Lys Ser Trp
1895 1900 1905
Tyr Phe Thr Glu Asn Met Glu Arg Asn Cys Arg Ala Pro Cys Asn
1910 1915 1920
Ile Gln Met Glu Asp Pro Thr Phe Lys Glu Asn Tyr Arg Phe His
1925 1930 1935
Ala Ile Asn Gly Tyr Ile Met Asp Thr Leu Pro Gly Leu Val Met
1940 1945 1950
Ala Gln Asp Gln Arg Ile Arg Trp Tyr Leu Leu Ser Met Gly Ser
1955 1960 1965
Asn Glu Asn Ile His Ser Ile His Phe Ser Gly His Val Phe Thr
1970 1975 1980
Val Arg Lys Lys Glu Glu Tyr Lys Met Ala Leu Tyr Asn Leu Tyr
1985 1990 1995
Pro Gly Val Phe Glu Thr Val Glu Met Leu Pro Ser Lys Ala Gly
2000 2005 2010
Ile Trp Arg Val Glu Cys Leu Ile Gly Glu His Leu His Ala Gly
2015 2020 2025
Met Ser Thr Leu Phe Leu Val Tyr Ser Asn Lys Cys Gln Thr Pro
2030 2035 2040
Leu Gly Met Ala Ser Gly His Ile Arg Asp Phe Gln Ile Thr Ala
2045 2050 2055
Ser Gly Gln Tyr Gly Gln Trp Ala Pro Lys Leu Ala Arg Leu His
2060 2065 2070
Tyr Ser Gly Ser Ile Asn Ala Trp Ser Thr Lys Glu Pro Phe Ser
2075 2080 2085
Trp Ile Lys Val Asp Leu Leu Ala Pro Met Ile Ile His Gly Ile
2090 2095 2100
Lys Thr Gln Gly Ala Arg Gln Lys Phe Ser Ser Leu Tyr Ile Ser
2105 2110 2115
Gln Phe Ile Ile Met Tyr Ser Leu Asp Gly Lys Lys Trp Gln Thr
2120 2125 2130
Tyr Arg Gly Asn Ser Thr Gly Thr Leu Met Val Phe Phe Gly Asn
2135 2140 2145
Val Asp Ser Ser Gly Ile Lys His Asn Ile Phe Asn Pro Pro Ile
2150 2155 2160
Ile Ala Arg Tyr Ile Arg Leu His Pro Thr His Tyr Ser Ile Arg
2165 2170 2175
Ser Thr Leu Arg Met Glu Leu Met Gly Cys Asp Leu Asn Ser Cys
2180 2185 2190
Ser Met Pro Leu Gly Met Glu Ser Lys Ala Ile Ser Asp Ala Gln
2195 2200 2205
Ile Thr Ala Ser Ser Tyr Phe Thr Asn Met Phe Ala Thr Trp Ser
2210 2215 2220
Pro Ser Lys Ala Arg Leu His Leu Gln Gly Arg Ser Asn Ala Trp
2225 2230 2235
Arg Pro Gln Val Asn Asn Pro Lys Glu Trp Leu Gln Val Asp Phe
2240 2245 2250
Gln Lys Thr Met Lys Val Thr Gly Val Thr Thr Gln Gly Val Lys
2255 2260 2265
Ser Leu Leu Thr Ser Met Tyr Val Lys Glu Phe Leu Ile Ser Ser
2270 2275 2280
Ser Gln Asp Gly His Gln Trp Thr Leu Phe Phe Gln Asn Gly Lys
2285 2290 2295
Val Lys Val Phe Gln Gly Asn Gln Asp Ser Phe Thr Pro Val Val
2300 2305 2310
Asn Ser Leu Asp Pro Pro Leu Leu Thr Arg Tyr Leu Arg Ile His
2315 2320 2325
Pro Gln Ser Trp Val His Gln Ile Ala Leu Arg Met Glu Val Leu
2330 2335 2340
Gly Cys Glu Ala Gln Asp Leu Tyr
2345 2350
<210> 4
<211> 2332
<212> PRT
<213> Chile person
<220>
<221> misc_feature
<223> Signal peptide-free human factor VIII
<400> 4
Ala Thr Arg Arg Tyr Tyr Leu Gly Ala Val Glu Leu Ser Trp Asp Tyr
1 5 10 15
Met Gln Ser Asp Leu Gly Glu Leu Pro Val Asp Ala Arg Phe Pro Pro
20 25 30
Arg Val Pro Lys Ser Phe Pro Phe Asn Thr Ser Val Val Tyr Lys Lys
35 40 45
Thr Leu Phe Val Glu Phe Thr Asp His Leu Phe Asn Ile Ala Lys Pro
50 55 60
Arg Pro Pro Trp Met Gly Leu Leu Gly Pro Thr Ile Gln Ala Glu Val
65 70 75 80
Tyr Asp Thr Val Val Ile Thr Leu Lys Asn Met Ala Ser His Pro Val
85 90 95
Ser Leu His Ala Val Gly Val Ser Tyr Trp Lys Ala Ser Glu Gly Ala
100 105 110
Glu Tyr Asp Asp Gln Thr Ser Gln Arg Glu Lys Glu Asp Asp Lys Val
115 120 125
Phe Pro Gly Gly Ser His Thr Tyr Val Trp Gln Val Leu Lys Glu Asn
130 135 140
Gly Pro Met Ala Ser Asp Pro Leu Cys Leu Thr Tyr Ser Tyr Leu Ser
145 150 155 160
His Val Asp Leu Val Lys Asp Leu Asn Ser Gly Leu Ile Gly Ala Leu
165 170 175
Leu Val Cys Arg Glu Gly Ser Leu Ala Lys Glu Lys Thr Gln Thr Leu
180 185 190
His Lys Phe Ile Leu Leu Phe Ala Val Phe Asp Glu Gly Lys Ser Trp
195 200 205
His Ser Glu Thr Lys Asn Ser Leu Met Gln Asp Arg Asp Ala Ala Ser
210 215 220
Ala Arg Ala Trp Pro Lys Met His Thr Val Asn Gly Tyr Val Asn Arg
225 230 235 240
Ser Leu Pro Gly Leu Ile Gly Cys His Arg Lys Ser Val Tyr Trp His
245 250 255
Val Ile Gly Met Gly Thr Thr Pro Glu Val His Ser Ile Phe Leu Glu
260 265 270
Gly His Thr Phe Leu Val Arg Asn His Arg Gln Ala Ser Leu Glu Ile
275 280 285
Ser Pro Ile Thr Phe Leu Thr Ala Gln Thr Leu Leu Met Asp Leu Gly
290 295 300
Gln Phe Leu Leu Phe Cys His Ile Ser Ser His Gln His Asp Gly Met
305 310 315 320
Glu Ala Tyr Val Lys Val Asp Ser Cys Pro Glu Glu Pro Gln Leu Arg
325 330 335
Met Lys Asn Asn Glu Glu Ala Glu Asp Tyr Asp Asp Asp Leu Thr Asp
340 345 350
Ser Glu Met Asp Val Val Arg Phe Asp Asp Asp Asn Ser Pro Ser Phe
355 360 365
Ile Gln Ile Arg Ser Val Ala Lys Lys His Pro Lys Thr Trp Val His
370 375 380
Tyr Ile Ala Ala Glu Glu Glu Asp Trp Asp Tyr Ala Pro Leu Val Leu
385 390 395 400
Ala Pro Asp Asp Arg Ser Tyr Lys Ser Gln Tyr Leu Asn Asn Gly Pro
405 410 415
Gln Arg Ile Gly Arg Lys Tyr Lys Lys Val Arg Phe Met Ala Tyr Thr
420 425 430
Asp Glu Thr Phe Lys Thr Arg Glu Ala Ile Gln His Glu Ser Gly Ile
435 440 445
Leu Gly Pro Leu Leu Tyr Gly Glu Val Gly Asp Thr Leu Leu Ile Ile
450 455 460
Phe Lys Asn Gln Ala Ser Arg Pro Tyr Asn Ile Tyr Pro His Gly Ile
465 470 475 480
Thr Asp Val Arg Pro Leu Tyr Ser Arg Arg Leu Pro Lys Gly Val Lys
485 490 495
His Leu Lys Asp Phe Pro Ile Leu Pro Gly Glu Ile Phe Lys Tyr Lys
500 505 510
Trp Thr Val Thr Val Glu Asp Gly Pro Thr Lys Ser Asp Pro Arg Cys
515 520 525
Leu Thr Arg Tyr Tyr Ser Ser Phe Val Asn Met Glu Arg Asp Leu Ala
530 535 540
Ser Gly Leu Ile Gly Pro Leu Leu Ile Cys Tyr Lys Glu Ser Val Asp
545 550 555 560
Gln Arg Gly Asn Gln Ile Met Ser Asp Lys Arg Asn Val Ile Leu Phe
565 570 575
Ser Val Phe Asp Glu Asn Arg Ser Trp Tyr Leu Thr Glu Asn Ile Gln
580 585 590
Arg Phe Leu Pro Asn Pro Ala Gly Val Gln Leu Glu Asp Pro Glu Phe
595 600 605
Gln Ala Ser Asn Ile Met His Ser Ile Asn Gly Tyr Val Phe Asp Ser
610 615 620
Leu Gln Leu Ser Val Cys Leu His Glu Val Ala Tyr Trp Tyr Ile Leu
625 630 635 640
Ser Ile Gly Ala Gln Thr Asp Phe Leu Ser Val Phe Phe Ser Gly Tyr
645 650 655
Thr Phe Lys His Lys Met Val Tyr Glu Asp Thr Leu Thr Leu Phe Pro
660 665 670
Phe Ser Gly Glu Thr Val Phe Met Ser Met Glu Asn Pro Gly Leu Trp
675 680 685
Ile Leu Gly Cys His Asn Ser Asp Phe Arg Asn Arg Gly Met Thr Ala
690 695 700
Leu Leu Lys Val Ser Ser Cys Asp Lys Asn Thr Gly Asp Tyr Tyr Glu
705 710 715 720
Asp Ser Tyr Glu Asp Ile Ser Ala Tyr Leu Leu Ser Lys Asn Asn Ala
725 730 735
Ile Glu Pro Arg Ser Phe Ser Gln Asn Ser Arg His Pro Ser Thr Arg
740 745 750
Gln Lys Gln Phe Asn Ala Thr Thr Ile Pro Glu Asn Asp Ile Glu Lys
755 760 765
Thr Asp Pro Trp Phe Ala His Arg Thr Pro Met Pro Lys Ile Gln Asn
770 775 780
Val Ser Ser Ser Asp Leu Leu Met Leu Leu Arg Gln Ser Pro Thr Pro
785 790 795 800
His Gly Leu Ser Leu Ser Asp Leu Gln Glu Ala Lys Tyr Glu Thr Phe
805 810 815
Ser Asp Asp Pro Ser Pro Gly Ala Ile Asp Ser Asn Asn Ser Leu Ser
820 825 830
Glu Met Thr His Phe Arg Pro Gln Leu His His Ser Gly Asp Met Val
835 840 845
Phe Thr Pro Glu Ser Gly Leu Gln Leu Arg Leu Asn Glu Lys Leu Gly
850 855 860
Thr Thr Ala Ala Thr Glu Leu Lys Lys Leu Asp Phe Lys Val Ser Ser
865 870 875 880
Thr Ser Asn Asn Leu Ile Ser Thr Ile Pro Ser Asp Asn Leu Ala Ala
885 890 895
Gly Thr Asp Asn Thr Ser Ser Leu Gly Pro Pro Ser Met Pro Val His
900 905 910
Tyr Asp Ser Gln Leu Asp Thr Thr Leu Phe Gly Lys Lys Ser Ser Pro
915 920 925
Leu Thr Glu Ser Gly Gly Pro Leu Ser Leu Ser Glu Glu Asn Asn Asp
930 935 940
Ser Lys Leu Leu Glu Ser Gly Leu Met Asn Ser Gln Glu Ser Ser Trp
945 950 955 960
Gly Lys Asn Val Ser Ser Thr Glu Ser Gly Arg Leu Phe Lys Gly Lys
965 970 975
Arg Ala His Gly Pro Ala Leu Leu Thr Lys Asp Asn Ala Leu Phe Lys
980 985 990
Val Ser Ile Ser Leu Leu Lys Thr Asn Lys Thr Ser Asn Asn Ser Ala
995 1000 1005
Thr Asn Arg Lys Thr His Ile Asp Gly Pro Ser Leu Leu Ile Glu
1010 1015 1020
Asn Ser Pro Ser Val Trp Gln Asn Ile Leu Glu Ser Asp Thr Glu
1025 1030 1035
Phe Lys Lys Val Thr Pro Leu Ile His Asp Arg Met Leu Met Asp
1040 1045 1050
Lys Asn Ala Thr Ala Leu Arg Leu Asn His Met Ser Asn Lys Thr
1055 1060 1065
Thr Ser Ser Lys Asn Met Glu Met Val Gln Gln Lys Lys Glu Gly
1070 1075 1080
Pro Ile Pro Pro Asp Ala Gln Asn Pro Asp Met Ser Phe Phe Lys
1085 1090 1095
Met Leu Phe Leu Pro Glu Ser Ala Arg Trp Ile Gln Arg Thr His
1100 1105 1110
Gly Lys Asn Ser Leu Asn Ser Gly Gln Gly Pro Ser Pro Lys Gln
1115 1120 1125
Leu Val Ser Leu Gly Pro Glu Lys Ser Val Glu Gly Gln Asn Phe
1130 1135 1140
Leu Ser Glu Lys Asn Lys Val Val Val Gly Lys Gly Glu Phe Thr
1145 1150 1155
Lys Asp Val Gly Leu Lys Glu Met Val Phe Pro Ser Ser Arg Asn
1160 1165 1170
Leu Phe Leu Thr Asn Leu Asp Asn Leu His Glu Asn Asn Thr His
1175 1180 1185
Asn Gln Glu Lys Lys Ile Gln Glu Glu Ile Glu Lys Lys Glu Thr
1190 1195 1200
Leu Ile Gln Glu Asn Val Val Leu Pro Gln Ile His Thr Val Thr
1205 1210 1215
Gly Thr Lys Asn Phe Met Lys Asn Leu Phe Leu Leu Ser Thr Arg
1220 1225 1230
Gln Asn Val Glu Gly Ser Tyr Asp Gly Ala Tyr Ala Pro Val Leu
1235 1240 1245
Gln Asp Phe Arg Ser Leu Asn Asp Ser Thr Asn Arg Thr Lys Lys
1250 1255 1260
His Thr Ala His Phe Ser Lys Lys Gly Glu Glu Glu Asn Leu Glu
1265 1270 1275
Gly Leu Gly Asn Gln Thr Lys Gln Ile Val Glu Lys Tyr Ala Cys
1280 1285 1290
Thr Thr Arg Ile Ser Pro Asn Thr Ser Gln Gln Asn Phe Val Thr
1295 1300 1305
Gln Arg Ser Lys Arg Ala Leu Lys Gln Phe Arg Leu Pro Leu Glu
1310 1315 1320
Glu Thr Glu Leu Glu Lys Arg Ile Ile Val Asp Asp Thr Ser Thr
1325 1330 1335
Gln Trp Ser Lys Asn Met Lys His Leu Thr Pro Ser Thr Leu Thr
1340 1345 1350
Gln Ile Asp Tyr Asn Glu Lys Glu Lys Gly Ala Ile Thr Gln Ser
1355 1360 1365
Pro Leu Ser Asp Cys Leu Thr Arg Ser His Ser Ile Pro Gln Ala
1370 1375 1380
Asn Arg Ser Pro Leu Pro Ile Ala Lys Val Ser Ser Phe Pro Ser
1385 1390 1395
Ile Arg Pro Ile Tyr Leu Thr Arg Val Leu Phe Gln Asp Asn Ser
1400 1405 1410
Ser His Leu Pro Ala Ala Ser Tyr Arg Lys Lys Asp Ser Gly Val
1415 1420 1425
Gln Glu Ser Ser His Phe Leu Gln Gly Ala Lys Lys Asn Asn Leu
1430 1435 1440
Ser Leu Ala Ile Leu Thr Leu Glu Met Thr Gly Asp Gln Arg Glu
1445 1450 1455
Val Gly Ser Leu Gly Thr Ser Ala Thr Asn Ser Val Thr Tyr Lys
1460 1465 1470
Lys Val Glu Asn Thr Val Leu Pro Lys Pro Asp Leu Pro Lys Thr
1475 1480 1485
Ser Gly Lys Val Glu Leu Leu Pro Lys Val His Ile Tyr Gln Lys
1490 1495 1500
Asp Leu Phe Pro Thr Glu Thr Ser Asn Gly Ser Pro Gly His Leu
1505 1510 1515
Asp Leu Val Glu Gly Ser Leu Leu Gln Gly Thr Glu Gly Ala Ile
1520 1525 1530
Lys Trp Asn Glu Ala Asn Arg Pro Gly Lys Val Pro Phe Leu Arg
1535 1540 1545
Val Ala Thr Glu Ser Ser Ala Lys Thr Pro Ser Lys Leu Leu Asp
1550 1555 1560
Pro Leu Ala Trp Asp Asn His Tyr Gly Thr Gln Ile Pro Lys Glu
1565 1570 1575
Glu Trp Lys Ser Gln Glu Lys Ser Pro Glu Lys Thr Ala Phe Lys
1580 1585 1590
Lys Lys Asp Thr Ile Leu Ser Leu Asn Ala Cys Glu Ser Asn His
1595 1600 1605
Ala Ile Ala Ala Ile Asn Glu Gly Gln Asn Lys Pro Glu Ile Glu
1610 1615 1620
Val Thr Trp Ala Lys Gln Gly Arg Thr Glu Arg Leu Cys Ser Gln
1625 1630 1635
Asn Pro Pro Val Leu Lys Arg His Gln Arg Glu Ile Thr Arg Thr
1640 1645 1650
Thr Leu Gln Ser Asp Gln Glu Glu Ile Asp Tyr Asp Asp Thr Ile
1655 1660 1665
Ser Val Glu Met Lys Lys Glu Asp Phe Asp Ile Tyr Asp Glu Asp
1670 1675 1680
Glu Asn Gln Ser Pro Arg Ser Phe Gln Lys Lys Thr Arg His Tyr
1685 1690 1695
Phe Ile Ala Ala Val Glu Arg Leu Trp Asp Tyr Gly Met Ser Ser
1700 1705 1710
Ser Pro His Val Leu Arg Asn Arg Ala Gln Ser Gly Ser Val Pro
1715 1720 1725
Gln Phe Lys Lys Val Val Phe Gln Glu Phe Thr Asp Gly Ser Phe
1730 1735 1740
Thr Gln Pro Leu Tyr Arg Gly Glu Leu Asn Glu His Leu Gly Leu
1745 1750 1755
Leu Gly Pro Tyr Ile Arg Ala Glu Val Glu Asp Asn Ile Met Val
1760 1765 1770
Thr Phe Arg Asn Gln Ala Ser Arg Pro Tyr Ser Phe Tyr Ser Ser
1775 1780 1785
Leu Ile Ser Tyr Glu Glu Asp Gln Arg Gln Gly Ala Glu Pro Arg
1790 1795 1800
Lys Asn Phe Val Lys Pro Asn Glu Thr Lys Thr Tyr Phe Trp Lys
1805 1810 1815
Val Gln His His Met Ala Pro Thr Lys Asp Glu Phe Asp Cys Lys
1820 1825 1830
Ala Trp Ala Tyr Phe Ser Asp Val Asp Leu Glu Lys Asp Val His
1835 1840 1845
Ser Gly Leu Ile Gly Pro Leu Leu Val Cys His Thr Asn Thr Leu
1850 1855 1860
Asn Pro Ala His Gly Arg Gln Val Thr Val Gln Glu Phe Ala Leu
1865 1870 1875
Phe Phe Thr Ile Phe Asp Glu Thr Lys Ser Trp Tyr Phe Thr Glu
1880 1885 1890
Asn Met Glu Arg Asn Cys Arg Ala Pro Cys Asn Ile Gln Met Glu
1895 1900 1905
Asp Pro Thr Phe Lys Glu Asn Tyr Arg Phe His Ala Ile Asn Gly
1910 1915 1920
Tyr Ile Met Asp Thr Leu Pro Gly Leu Val Met Ala Gln Asp Gln
1925 1930 1935
Arg Ile Arg Trp Tyr Leu Leu Ser Met Gly Ser Asn Glu Asn Ile
1940 1945 1950
His Ser Ile His Phe Ser Gly His Val Phe Thr Val Arg Lys Lys
1955 1960 1965
Glu Glu Tyr Lys Met Ala Leu Tyr Asn Leu Tyr Pro Gly Val Phe
1970 1975 1980
Glu Thr Val Glu Met Leu Pro Ser Lys Ala Gly Ile Trp Arg Val
1985 1990 1995
Glu Cys Leu Ile Gly Glu His Leu His Ala Gly Met Ser Thr Leu
2000 2005 2010
Phe Leu Val Tyr Ser Asn Lys Cys Gln Thr Pro Leu Gly Met Ala
2015 2020 2025
Ser Gly His Ile Arg Asp Phe Gln Ile Thr Ala Ser Gly Gln Tyr
2030 2035 2040
Gly Gln Trp Ala Pro Lys Leu Ala Arg Leu His Tyr Ser Gly Ser
2045 2050 2055
Ile Asn Ala Trp Ser Thr Lys Glu Pro Phe Ser Trp Ile Lys Val
2060 2065 2070
Asp Leu Leu Ala Pro Met Ile Ile His Gly Ile Lys Thr Gln Gly
2075 2080 2085
Ala Arg Gln Lys Phe Ser Ser Leu Tyr Ile Ser Gln Phe Ile Ile
2090 2095 2100
Met Tyr Ser Leu Asp Gly Lys Lys Trp Gln Thr Tyr Arg Gly Asn
2105 2110 2115
Ser Thr Gly Thr Leu Met Val Phe Phe Gly Asn Val Asp Ser Ser
2120 2125 2130
Gly Ile Lys His Asn Ile Phe Asn Pro Pro Ile Ile Ala Arg Tyr
2135 2140 2145
Ile Arg Leu His Pro Thr His Tyr Ser Ile Arg Ser Thr Leu Arg
2150 2155 2160
Met Glu Leu Met Gly Cys Asp Leu Asn Ser Cys Ser Met Pro Leu
2165 2170 2175
Gly Met Glu Ser Lys Ala Ile Ser Asp Ala Gln Ile Thr Ala Ser
2180 2185 2190
Ser Tyr Phe Thr Asn Met Phe Ala Thr Trp Ser Pro Ser Lys Ala
2195 2200 2205
Arg Leu His Leu Gln Gly Arg Ser Asn Ala Trp Arg Pro Gln Val
2210 2215 2220
Asn Asn Pro Lys Glu Trp Leu Gln Val Asp Phe Gln Lys Thr Met
2225 2230 2235
Lys Val Thr Gly Val Thr Thr Gln Gly Val Lys Ser Leu Leu Thr
2240 2245 2250
Ser Met Tyr Val Lys Glu Phe Leu Ile Ser Ser Ser Gln Asp Gly
2255 2260 2265
His Gln Trp Thr Leu Phe Phe Gln Asn Gly Lys Val Lys Val Phe
2270 2275 2280
Gln Gly Asn Gln Asp Ser Phe Thr Pro Val Val Asn Ser Leu Asp
2285 2290 2295
Pro Pro Leu Leu Thr Arg Tyr Leu Arg Ile His Pro Gln Ser Trp
2300 2305 2310
Val His Gln Ile Ala Leu Arg Met Glu Val Leu Gly Cys Glu Ala
2315 2320 2325
Gln Asp Leu Tyr
2330
<210> 5
<211> 1457
<212> PRT
<213> Artificial work
<220>
<223> Artificial sequence
<220>
<221> misc_feature
<223> human factor VIII without B domain with Signal peptide (hBDDF 8)
<400> 5
Met Gln Ile Glu Leu Ser Thr Cys Phe Phe Leu Cys Leu Leu Arg Phe
1 5 10 15
Cys Phe Ser Ala Thr Arg Arg Tyr Tyr Leu Gly Ala Val Glu Leu Ser
20 25 30
Trp Asp Tyr Met Gln Ser Asp Leu Gly Glu Leu Pro Val Asp Ala Arg
35 40 45
Phe Pro Pro Arg Val Pro Lys Ser Phe Pro Phe Asn Thr Ser Val Val
50 55 60
Tyr Lys Lys Thr Leu Phe Val Glu Phe Thr Asp His Leu Phe Asn Ile
65 70 75 80
Ala Lys Pro Arg Pro Pro Trp Met Gly Leu Leu Gly Pro Thr Ile Gln
85 90 95
Ala Glu Val Tyr Asp Thr Val Val Ile Thr Leu Lys Asn Met Ala Ser
100 105 110
His Pro Val Ser Leu His Ala Val Gly Val Ser Tyr Trp Lys Ala Ser
115 120 125
Glu Gly Ala Glu Tyr Asp Asp Gln Thr Ser Gln Arg Glu Lys Glu Asp
130 135 140
Asp Lys Val Phe Pro Gly Gly Ser His Thr Tyr Val Trp Gln Val Leu
145 150 155 160
Lys Glu Asn Gly Pro Met Ala Ser Asp Pro Leu Cys Leu Thr Tyr Ser
165 170 175
Tyr Leu Ser His Val Asp Leu Val Lys Asp Leu Asn Ser Gly Leu Ile
180 185 190
Gly Ala Leu Leu Val Cys Arg Glu Gly Ser Leu Ala Lys Glu Lys Thr
195 200 205
Gln Thr Leu His Lys Phe Ile Leu Leu Phe Ala Val Phe Asp Glu Gly
210 215 220
Lys Ser Trp His Ser Glu Thr Lys Asn Ser Leu Met Gln Asp Arg Asp
225 230 235 240
Ala Ala Ser Ala Arg Ala Trp Pro Lys Met His Thr Val Asn Gly Tyr
245 250 255
Val Asn Arg Ser Leu Pro Gly Leu Ile Gly Cys His Arg Lys Ser Val
260 265 270
Tyr Trp His Val Ile Gly Met Gly Thr Thr Pro Glu Val His Ser Ile
275 280 285
Phe Leu Glu Gly His Thr Phe Leu Val Arg Asn His Arg Gln Ala Ser
290 295 300
Leu Glu Ile Ser Pro Ile Thr Phe Leu Thr Ala Gln Thr Leu Leu Met
305 310 315 320
Asp Leu Gly Gln Phe Leu Leu Phe Cys His Ile Ser Ser His Gln His
325 330 335
Asp Gly Met Glu Ala Tyr Val Lys Val Asp Ser Cys Pro Glu Glu Pro
340 345 350
Gln Leu Arg Met Lys Asn Asn Glu Glu Ala Glu Asp Tyr Asp Asp Asp
355 360 365
Leu Thr Asp Ser Glu Met Asp Val Val Arg Phe Asp Asp Asp Asn Ser
370 375 380
Pro Ser Phe Ile Gln Ile Arg Ser Val Ala Lys Lys His Pro Lys Thr
385 390 395 400
Trp Val His Tyr Ile Ala Ala Glu Glu Glu Asp Trp Asp Tyr Ala Pro
405 410 415
Leu Val Leu Ala Pro Asp Asp Arg Ser Tyr Lys Ser Gln Tyr Leu Asn
420 425 430
Asn Gly Pro Gln Arg Ile Gly Arg Lys Tyr Lys Lys Val Arg Phe Met
435 440 445
Ala Tyr Thr Asp Glu Thr Phe Lys Thr Arg Glu Ala Ile Gln His Glu
450 455 460
Ser Gly Ile Leu Gly Pro Leu Leu Tyr Gly Glu Val Gly Asp Thr Leu
465 470 475 480
Leu Ile Ile Phe Lys Asn Gln Ala Ser Arg Pro Tyr Asn Ile Tyr Pro
485 490 495
His Gly Ile Thr Asp Val Arg Pro Leu Tyr Ser Arg Arg Leu Pro Lys
500 505 510
Gly Val Lys His Leu Lys Asp Phe Pro Ile Leu Pro Gly Glu Ile Phe
515 520 525
Lys Tyr Lys Trp Thr Val Thr Val Glu Asp Gly Pro Thr Lys Ser Asp
530 535 540
Pro Arg Cys Leu Thr Arg Tyr Tyr Ser Ser Phe Val Asn Met Glu Arg
545 550 555 560
Asp Leu Ala Ser Gly Leu Ile Gly Pro Leu Leu Ile Cys Tyr Lys Glu
565 570 575
Ser Val Asp Gln Arg Gly Asn Gln Ile Met Ser Asp Lys Arg Asn Val
580 585 590
Ile Leu Phe Ser Val Phe Asp Glu Asn Arg Ser Trp Tyr Leu Thr Glu
595 600 605
Asn Ile Gln Arg Phe Leu Pro Asn Pro Ala Gly Val Gln Leu Glu Asp
610 615 620
Pro Glu Phe Gln Ala Ser Asn Ile Met His Ser Ile Asn Gly Tyr Val
625 630 635 640
Phe Asp Ser Leu Gln Leu Ser Val Cys Leu His Glu Val Ala Tyr Trp
645 650 655
Tyr Ile Leu Ser Ile Gly Ala Gln Thr Asp Phe Leu Ser Val Phe Phe
660 665 670
Ser Gly Tyr Thr Phe Lys His Lys Met Val Tyr Glu Asp Thr Leu Thr
675 680 685
Leu Phe Pro Phe Ser Gly Glu Thr Val Phe Met Ser Met Glu Asn Pro
690 695 700
Gly Leu Trp Ile Leu Gly Cys His Asn Ser Asp Phe Arg Asn Arg Gly
705 710 715 720
Met Thr Ala Leu Leu Lys Val Ser Ser Cys Asp Lys Asn Thr Gly Asp
725 730 735
Tyr Tyr Glu Asp Ser Tyr Glu Asp Ile Ser Ala Tyr Leu Leu Ser Lys
740 745 750
Asn Asn Ala Ile Glu Pro Arg Ser Phe Ser Gln Asn Pro Pro Val Leu
755 760 765
Lys Arg His Gln Arg Glu Ile Thr Arg Thr Thr Leu Gln Ser Asp Gln
770 775 780
Glu Glu Ile Asp Tyr Asp Asp Thr Ile Ser Val Glu Met Lys Lys Glu
785 790 795 800
Asp Phe Asp Ile Tyr Asp Glu Asp Glu Asn Gln Ser Pro Arg Ser Phe
805 810 815
Gln Lys Lys Thr Arg His Tyr Phe Ile Ala Ala Val Glu Arg Leu Trp
820 825 830
Asp Tyr Gly Met Ser Ser Ser Pro His Val Leu Arg Asn Arg Ala Gln
835 840 845
Ser Gly Ser Val Pro Gln Phe Lys Lys Val Val Phe Gln Glu Phe Thr
850 855 860
Asp Gly Ser Phe Thr Gln Pro Leu Tyr Arg Gly Glu Leu Asn Glu His
865 870 875 880
Leu Gly Leu Leu Gly Pro Tyr Ile Arg Ala Glu Val Glu Asp Asn Ile
885 890 895
Met Val Thr Phe Arg Asn Gln Ala Ser Arg Pro Tyr Ser Phe Tyr Ser
900 905 910
Ser Leu Ile Ser Tyr Glu Glu Asp Gln Arg Gln Gly Ala Glu Pro Arg
915 920 925
Lys Asn Phe Val Lys Pro Asn Glu Thr Lys Thr Tyr Phe Trp Lys Val
930 935 940
Gln His His Met Ala Pro Thr Lys Asp Glu Phe Asp Cys Lys Ala Trp
945 950 955 960
Ala Tyr Phe Ser Asp Val Asp Leu Glu Lys Asp Val His Ser Gly Leu
965 970 975
Ile Gly Pro Leu Leu Val Cys His Thr Asn Thr Leu Asn Pro Ala His
980 985 990
Gly Arg Gln Val Thr Val Gln Glu Phe Ala Leu Phe Phe Thr Ile Phe
995 1000 1005
Asp Glu Thr Lys Ser Trp Tyr Phe Thr Glu Asn Met Glu Arg Asn
1010 1015 1020
Cys Arg Ala Pro Cys Asn Ile Gln Met Glu Asp Pro Thr Phe Lys
1025 1030 1035
Glu Asn Tyr Arg Phe His Ala Ile Asn Gly Tyr Ile Met Asp Thr
1040 1045 1050
Leu Pro Gly Leu Val Met Ala Gln Asp Gln Arg Ile Arg Trp Tyr
1055 1060 1065
Leu Leu Ser Met Gly Ser Asn Glu Asn Ile His Ser Ile His Phe
1070 1075 1080
Ser Gly His Val Phe Thr Val Arg Lys Lys Glu Glu Tyr Lys Met
1085 1090 1095
Ala Leu Tyr Asn Leu Tyr Pro Gly Val Phe Glu Thr Val Glu Met
1100 1105 1110
Leu Pro Ser Lys Ala Gly Ile Trp Arg Val Glu Cys Leu Ile Gly
1115 1120 1125
Glu His Leu His Ala Gly Met Ser Thr Leu Phe Leu Val Tyr Ser
1130 1135 1140
Asn Lys Cys Gln Thr Pro Leu Gly Met Ala Ser Gly His Ile Arg
1145 1150 1155
Asp Phe Gln Ile Thr Ala Ser Gly Gln Tyr Gly Gln Trp Ala Pro
1160 1165 1170
Lys Leu Ala Arg Leu His Tyr Ser Gly Ser Ile Asn Ala Trp Ser
1175 1180 1185
Thr Lys Glu Pro Phe Ser Trp Ile Lys Val Asp Leu Leu Ala Pro
1190 1195 1200
Met Ile Ile His Gly Ile Lys Thr Gln Gly Ala Arg Gln Lys Phe
1205 1210 1215
Ser Ser Leu Tyr Ile Ser Gln Phe Ile Ile Met Tyr Ser Leu Asp
1220 1225 1230
Gly Lys Lys Trp Gln Thr Tyr Arg Gly Asn Ser Thr Gly Thr Leu
1235 1240 1245
Met Val Phe Phe Gly Asn Val Asp Ser Ser Gly Ile Lys His Asn
1250 1255 1260
Ile Phe Asn Pro Pro Ile Ile Ala Arg Tyr Ile Arg Leu His Pro
1265 1270 1275
Thr His Tyr Ser Ile Arg Ser Thr Leu Arg Met Glu Leu Met Gly
1280 1285 1290
Cys Asp Leu Asn Ser Cys Ser Met Pro Leu Gly Met Glu Ser Lys
1295 1300 1305
Ala Ile Ser Asp Ala Gln Ile Thr Ala Ser Ser Tyr Phe Thr Asn
1310 1315 1320
Met Phe Ala Thr Trp Ser Pro Ser Lys Ala Arg Leu His Leu Gln
1325 1330 1335
Gly Arg Ser Asn Ala Trp Arg Pro Gln Val Asn Asn Pro Lys Glu
1340 1345 1350
Trp Leu Gln Val Asp Phe Gln Lys Thr Met Lys Val Thr Gly Val
1355 1360 1365
Thr Thr Gln Gly Val Lys Ser Leu Leu Thr Ser Met Tyr Val Lys
1370 1375 1380
Glu Phe Leu Ile Ser Ser Ser Gln Asp Gly His Gln Trp Thr Leu
1385 1390 1395
Phe Phe Gln Asn Gly Lys Val Lys Val Phe Gln Gly Asn Gln Asp
1400 1405 1410
Ser Phe Thr Pro Val Val Asn Ser Leu Asp Pro Pro Leu Leu Thr
1415 1420 1425
Arg Tyr Leu Arg Ile His Pro Gln Ser Trp Val His Gln Ile Ala
1430 1435 1440
Leu Arg Met Glu Val Leu Gly Cys Glu Ala Gln Asp Leu Tyr
1445 1450 1455
<210> 6
<211> 1438
<212> PRT
<213> Artificial work
<220>
<223> Artificial sequence
<220>
<221> misc_feature
<223> B-domain-free human factor VIII without native Signal peptide (hBDDF 8)
<400> 6
Ala Thr Arg Arg Tyr Tyr Leu Gly Ala Val Glu Leu Ser Trp Asp Tyr
1 5 10 15
Met Gln Ser Asp Leu Gly Glu Leu Pro Val Asp Ala Arg Phe Pro Pro
20 25 30
Arg Val Pro Lys Ser Phe Pro Phe Asn Thr Ser Val Val Tyr Lys Lys
35 40 45
Thr Leu Phe Val Glu Phe Thr Asp His Leu Phe Asn Ile Ala Lys Pro
50 55 60
Arg Pro Pro Trp Met Gly Leu Leu Gly Pro Thr Ile Gln Ala Glu Val
65 70 75 80
Tyr Asp Thr Val Val Ile Thr Leu Lys Asn Met Ala Ser His Pro Val
85 90 95
Ser Leu His Ala Val Gly Val Ser Tyr Trp Lys Ala Ser Glu Gly Ala
100 105 110
Glu Tyr Asp Asp Gln Thr Ser Gln Arg Glu Lys Glu Asp Asp Lys Val
115 120 125
Phe Pro Gly Gly Ser His Thr Tyr Val Trp Gln Val Leu Lys Glu Asn
130 135 140
Gly Pro Met Ala Ser Asp Pro Leu Cys Leu Thr Tyr Ser Tyr Leu Ser
145 150 155 160
His Val Asp Leu Val Lys Asp Leu Asn Ser Gly Leu Ile Gly Ala Leu
165 170 175
Leu Val Cys Arg Glu Gly Ser Leu Ala Lys Glu Lys Thr Gln Thr Leu
180 185 190
His Lys Phe Ile Leu Leu Phe Ala Val Phe Asp Glu Gly Lys Ser Trp
195 200 205
His Ser Glu Thr Lys Asn Ser Leu Met Gln Asp Arg Asp Ala Ala Ser
210 215 220
Ala Arg Ala Trp Pro Lys Met His Thr Val Asn Gly Tyr Val Asn Arg
225 230 235 240
Ser Leu Pro Gly Leu Ile Gly Cys His Arg Lys Ser Val Tyr Trp His
245 250 255
Val Ile Gly Met Gly Thr Thr Pro Glu Val His Ser Ile Phe Leu Glu
260 265 270
Gly His Thr Phe Leu Val Arg Asn His Arg Gln Ala Ser Leu Glu Ile
275 280 285
Ser Pro Ile Thr Phe Leu Thr Ala Gln Thr Leu Leu Met Asp Leu Gly
290 295 300
Gln Phe Leu Leu Phe Cys His Ile Ser Ser His Gln His Asp Gly Met
305 310 315 320
Glu Ala Tyr Val Lys Val Asp Ser Cys Pro Glu Glu Pro Gln Leu Arg
325 330 335
Met Lys Asn Asn Glu Glu Ala Glu Asp Tyr Asp Asp Asp Leu Thr Asp
340 345 350
Ser Glu Met Asp Val Val Arg Phe Asp Asp Asp Asn Ser Pro Ser Phe
355 360 365
Ile Gln Ile Arg Ser Val Ala Lys Lys His Pro Lys Thr Trp Val His
370 375 380
Tyr Ile Ala Ala Glu Glu Glu Asp Trp Asp Tyr Ala Pro Leu Val Leu
385 390 395 400
Ala Pro Asp Asp Arg Ser Tyr Lys Ser Gln Tyr Leu Asn Asn Gly Pro
405 410 415
Gln Arg Ile Gly Arg Lys Tyr Lys Lys Val Arg Phe Met Ala Tyr Thr
420 425 430
Asp Glu Thr Phe Lys Thr Arg Glu Ala Ile Gln His Glu Ser Gly Ile
435 440 445
Leu Gly Pro Leu Leu Tyr Gly Glu Val Gly Asp Thr Leu Leu Ile Ile
450 455 460
Phe Lys Asn Gln Ala Ser Arg Pro Tyr Asn Ile Tyr Pro His Gly Ile
465 470 475 480
Thr Asp Val Arg Pro Leu Tyr Ser Arg Arg Leu Pro Lys Gly Val Lys
485 490 495
His Leu Lys Asp Phe Pro Ile Leu Pro Gly Glu Ile Phe Lys Tyr Lys
500 505 510
Trp Thr Val Thr Val Glu Asp Gly Pro Thr Lys Ser Asp Pro Arg Cys
515 520 525
Leu Thr Arg Tyr Tyr Ser Ser Phe Val Asn Met Glu Arg Asp Leu Ala
530 535 540
Ser Gly Leu Ile Gly Pro Leu Leu Ile Cys Tyr Lys Glu Ser Val Asp
545 550 555 560
Gln Arg Gly Asn Gln Ile Met Ser Asp Lys Arg Asn Val Ile Leu Phe
565 570 575
Ser Val Phe Asp Glu Asn Arg Ser Trp Tyr Leu Thr Glu Asn Ile Gln
580 585 590
Arg Phe Leu Pro Asn Pro Ala Gly Val Gln Leu Glu Asp Pro Glu Phe
595 600 605
Gln Ala Ser Asn Ile Met His Ser Ile Asn Gly Tyr Val Phe Asp Ser
610 615 620
Leu Gln Leu Ser Val Cys Leu His Glu Val Ala Tyr Trp Tyr Ile Leu
625 630 635 640
Ser Ile Gly Ala Gln Thr Asp Phe Leu Ser Val Phe Phe Ser Gly Tyr
645 650 655
Thr Phe Lys His Lys Met Val Tyr Glu Asp Thr Leu Thr Leu Phe Pro
660 665 670
Phe Ser Gly Glu Thr Val Phe Met Ser Met Glu Asn Pro Gly Leu Trp
675 680 685
Ile Leu Gly Cys His Asn Ser Asp Phe Arg Asn Arg Gly Met Thr Ala
690 695 700
Leu Leu Lys Val Ser Ser Cys Asp Lys Asn Thr Gly Asp Tyr Tyr Glu
705 710 715 720
Asp Ser Tyr Glu Asp Ile Ser Ala Tyr Leu Leu Ser Lys Asn Asn Ala
725 730 735
Ile Glu Pro Arg Ser Phe Ser Gln Asn Pro Pro Val Leu Lys Arg His
740 745 750
Gln Arg Glu Ile Thr Arg Thr Thr Leu Gln Ser Asp Gln Glu Glu Ile
755 760 765
Asp Tyr Asp Asp Thr Ile Ser Val Glu Met Lys Lys Glu Asp Phe Asp
770 775 780
Ile Tyr Asp Glu Asp Glu Asn Gln Ser Pro Arg Ser Phe Gln Lys Lys
785 790 795 800
Thr Arg His Tyr Phe Ile Ala Ala Val Glu Arg Leu Trp Asp Tyr Gly
805 810 815
Met Ser Ser Ser Pro His Val Leu Arg Asn Arg Ala Gln Ser Gly Ser
820 825 830
Val Pro Gln Phe Lys Lys Val Val Phe Gln Glu Phe Thr Asp Gly Ser
835 840 845
Phe Thr Gln Pro Leu Tyr Arg Gly Glu Leu Asn Glu His Leu Gly Leu
850 855 860
Leu Gly Pro Tyr Ile Arg Ala Glu Val Glu Asp Asn Ile Met Val Thr
865 870 875 880
Phe Arg Asn Gln Ala Ser Arg Pro Tyr Ser Phe Tyr Ser Ser Leu Ile
885 890 895
Ser Tyr Glu Glu Asp Gln Arg Gln Gly Ala Glu Pro Arg Lys Asn Phe
900 905 910
Val Lys Pro Asn Glu Thr Lys Thr Tyr Phe Trp Lys Val Gln His His
915 920 925
Met Ala Pro Thr Lys Asp Glu Phe Asp Cys Lys Ala Trp Ala Tyr Phe
930 935 940
Ser Asp Val Asp Leu Glu Lys Asp Val His Ser Gly Leu Ile Gly Pro
945 950 955 960
Leu Leu Val Cys His Thr Asn Thr Leu Asn Pro Ala His Gly Arg Gln
965 970 975
Val Thr Val Gln Glu Phe Ala Leu Phe Phe Thr Ile Phe Asp Glu Thr
980 985 990
Lys Ser Trp Tyr Phe Thr Glu Asn Met Glu Arg Asn Cys Arg Ala Pro
995 1000 1005
Cys Asn Ile Gln Met Glu Asp Pro Thr Phe Lys Glu Asn Tyr Arg
1010 1015 1020
Phe His Ala Ile Asn Gly Tyr Ile Met Asp Thr Leu Pro Gly Leu
1025 1030 1035
Val Met Ala Gln Asp Gln Arg Ile Arg Trp Tyr Leu Leu Ser Met
1040 1045 1050
Gly Ser Asn Glu Asn Ile His Ser Ile His Phe Ser Gly His Val
1055 1060 1065
Phe Thr Val Arg Lys Lys Glu Glu Tyr Lys Met Ala Leu Tyr Asn
1070 1075 1080
Leu Tyr Pro Gly Val Phe Glu Thr Val Glu Met Leu Pro Ser Lys
1085 1090 1095
Ala Gly Ile Trp Arg Val Glu Cys Leu Ile Gly Glu His Leu His
1100 1105 1110
Ala Gly Met Ser Thr Leu Phe Leu Val Tyr Ser Asn Lys Cys Gln
1115 1120 1125
Thr Pro Leu Gly Met Ala Ser Gly His Ile Arg Asp Phe Gln Ile
1130 1135 1140
Thr Ala Ser Gly Gln Tyr Gly Gln Trp Ala Pro Lys Leu Ala Arg
1145 1150 1155
Leu His Tyr Ser Gly Ser Ile Asn Ala Trp Ser Thr Lys Glu Pro
1160 1165 1170
Phe Ser Trp Ile Lys Val Asp Leu Leu Ala Pro Met Ile Ile His
1175 1180 1185
Gly Ile Lys Thr Gln Gly Ala Arg Gln Lys Phe Ser Ser Leu Tyr
1190 1195 1200
Ile Ser Gln Phe Ile Ile Met Tyr Ser Leu Asp Gly Lys Lys Trp
1205 1210 1215
Gln Thr Tyr Arg Gly Asn Ser Thr Gly Thr Leu Met Val Phe Phe
1220 1225 1230
Gly Asn Val Asp Ser Ser Gly Ile Lys His Asn Ile Phe Asn Pro
1235 1240 1245
Pro Ile Ile Ala Arg Tyr Ile Arg Leu His Pro Thr His Tyr Ser
1250 1255 1260
Ile Arg Ser Thr Leu Arg Met Glu Leu Met Gly Cys Asp Leu Asn
1265 1270 1275
Ser Cys Ser Met Pro Leu Gly Met Glu Ser Lys Ala Ile Ser Asp
1280 1285 1290
Ala Gln Ile Thr Ala Ser Ser Tyr Phe Thr Asn Met Phe Ala Thr
1295 1300 1305
Trp Ser Pro Ser Lys Ala Arg Leu His Leu Gln Gly Arg Ser Asn
1310 1315 1320
Ala Trp Arg Pro Gln Val Asn Asn Pro Lys Glu Trp Leu Gln Val
1325 1330 1335
Asp Phe Gln Lys Thr Met Lys Val Thr Gly Val Thr Thr Gln Gly
1340 1345 1350
Val Lys Ser Leu Leu Thr Ser Met Tyr Val Lys Glu Phe Leu Ile
1355 1360 1365
Ser Ser Ser Gln Asp Gly His Gln Trp Thr Leu Phe Phe Gln Asn
1370 1375 1380
Gly Lys Val Lys Val Phe Gln Gly Asn Gln Asp Ser Phe Thr Pro
1385 1390 1395
Val Val Asn Ser Leu Asp Pro Pro Leu Leu Thr Arg Tyr Leu Arg
1400 1405 1410
Ile His Pro Gln Ser Trp Val His Gln Ile Ala Leu Arg Met Glu
1415 1420 1425
Val Leu Gly Cys Glu Ala Gln Asp Leu Tyr
1430 1435
<210> 7
<211> 745
<212> PRT
<213> human factor VIII heavy chain in hBDDF8 (without Signal peptide)
<400> 7
Ala Thr Arg Arg Tyr Tyr Leu Gly Ala Val Glu Leu Ser Trp Asp Tyr
1 5 10 15
Met Gln Ser Asp Leu Gly Glu Leu Pro Val Asp Ala Arg Phe Pro Pro
20 25 30
Arg Val Pro Lys Ser Phe Pro Phe Asn Thr Ser Val Val Tyr Lys Lys
35 40 45
Thr Leu Phe Val Glu Phe Thr Asp His Leu Phe Asn Ile Ala Lys Pro
50 55 60
Arg Pro Pro Trp Met Gly Leu Leu Gly Pro Thr Ile Gln Ala Glu Val
65 70 75 80
Tyr Asp Thr Val Val Ile Thr Leu Lys Asn Met Ala Ser His Pro Val
85 90 95
Ser Leu His Ala Val Gly Val Ser Tyr Trp Lys Ala Ser Glu Gly Ala
100 105 110
Glu Tyr Asp Asp Gln Thr Ser Gln Arg Glu Lys Glu Asp Asp Lys Val
115 120 125
Phe Pro Gly Gly Ser His Thr Tyr Val Trp Gln Val Leu Lys Glu Asn
130 135 140
Gly Pro Met Ala Ser Asp Pro Leu Cys Leu Thr Tyr Ser Tyr Leu Ser
145 150 155 160
His Val Asp Leu Val Lys Asp Leu Asn Ser Gly Leu Ile Gly Ala Leu
165 170 175
Leu Val Cys Arg Glu Gly Ser Leu Ala Lys Glu Lys Thr Gln Thr Leu
180 185 190
His Lys Phe Ile Leu Leu Phe Ala Val Phe Asp Glu Gly Lys Ser Trp
195 200 205
His Ser Glu Thr Lys Asn Ser Leu Met Gln Asp Arg Asp Ala Ala Ser
210 215 220
Ala Arg Ala Trp Pro Lys Met His Thr Val Asn Gly Tyr Val Asn Arg
225 230 235 240
Ser Leu Pro Gly Leu Ile Gly Cys His Arg Lys Ser Val Tyr Trp His
245 250 255
Val Ile Gly Met Gly Thr Thr Pro Glu Val His Ser Ile Phe Leu Glu
260 265 270
Gly His Thr Phe Leu Val Arg Asn His Arg Gln Ala Ser Leu Glu Ile
275 280 285
Ser Pro Ile Thr Phe Leu Thr Ala Gln Thr Leu Leu Met Asp Leu Gly
290 295 300
Gln Phe Leu Leu Phe Cys His Ile Ser Ser His Gln His Asp Gly Met
305 310 315 320
Glu Ala Tyr Val Lys Val Asp Ser Cys Pro Glu Glu Pro Gln Leu Arg
325 330 335
Met Lys Asn Asn Glu Glu Ala Glu Asp Tyr Asp Asp Asp Leu Thr Asp
340 345 350
Ser Glu Met Asp Val Val Arg Phe Asp Asp Asp Asn Ser Pro Ser Phe
355 360 365
Ile Gln Ile Arg Ser Val Ala Lys Lys His Pro Lys Thr Trp Val His
370 375 380
Tyr Ile Ala Ala Glu Glu Glu Asp Trp Asp Tyr Ala Pro Leu Val Leu
385 390 395 400
Ala Pro Asp Asp Arg Ser Tyr Lys Ser Gln Tyr Leu Asn Asn Gly Pro
405 410 415
Gln Arg Ile Gly Arg Lys Tyr Lys Lys Val Arg Phe Met Ala Tyr Thr
420 425 430
Asp Glu Thr Phe Lys Thr Arg Glu Ala Ile Gln His Glu Ser Gly Ile
435 440 445
Leu Gly Pro Leu Leu Tyr Gly Glu Val Gly Asp Thr Leu Leu Ile Ile
450 455 460
Phe Lys Asn Gln Ala Ser Arg Pro Tyr Asn Ile Tyr Pro His Gly Ile
465 470 475 480
Thr Asp Val Arg Pro Leu Tyr Ser Arg Arg Leu Pro Lys Gly Val Lys
485 490 495
His Leu Lys Asp Phe Pro Ile Leu Pro Gly Glu Ile Phe Lys Tyr Lys
500 505 510
Trp Thr Val Thr Val Glu Asp Gly Pro Thr Lys Ser Asp Pro Arg Cys
515 520 525
Leu Thr Arg Tyr Tyr Ser Ser Phe Val Asn Met Glu Arg Asp Leu Ala
530 535 540
Ser Gly Leu Ile Gly Pro Leu Leu Ile Cys Tyr Lys Glu Ser Val Asp
545 550 555 560
Gln Arg Gly Asn Gln Ile Met Ser Asp Lys Arg Asn Val Ile Leu Phe
565 570 575
Ser Val Phe Asp Glu Asn Arg Ser Trp Tyr Leu Thr Glu Asn Ile Gln
580 585 590
Arg Phe Leu Pro Asn Pro Ala Gly Val Gln Leu Glu Asp Pro Glu Phe
595 600 605
Gln Ala Ser Asn Ile Met His Ser Ile Asn Gly Tyr Val Phe Asp Ser
610 615 620
Leu Gln Leu Ser Val Cys Leu His Glu Val Ala Tyr Trp Tyr Ile Leu
625 630 635 640
Ser Ile Gly Ala Gln Thr Asp Phe Leu Ser Val Phe Phe Ser Gly Tyr
645 650 655
Thr Phe Lys His Lys Met Val Tyr Glu Asp Thr Leu Thr Leu Phe Pro
660 665 670
Phe Ser Gly Glu Thr Val Phe Met Ser Met Glu Asn Pro Gly Leu Trp
675 680 685
Ile Leu Gly Cys His Asn Ser Asp Phe Arg Asn Arg Gly Met Thr Ala
690 695 700
Leu Leu Lys Val Ser Ser Cys Asp Lys Asn Thr Gly Asp Tyr Tyr Glu
705 710 715 720
Asp Ser Tyr Glu Asp Ile Ser Ala Tyr Leu Leu Ser Lys Asn Asn Ala
725 730 735
Ile Glu Pro Arg Ser Phe Ser Gln Asn
740 745
<210> 8
<211> 13
<212> PRT
<213> truncated B Domain in hBDDF8
<400> 8
Ser Phe Ser Gln Asn Pro Pro Val Leu Lys Arg His Gln
1 5 10
<210> 9
<211> 693
<212> PRT
<213> human FVIII light chain in hBDDF8
<400> 9
Pro Pro Val Leu Lys Arg His Gln Arg Glu Ile Thr Arg Thr Thr Leu
1 5 10 15
Gln Ser Asp Gln Glu Glu Ile Asp Tyr Asp Asp Thr Ile Ser Val Glu
20 25 30
Met Lys Lys Glu Asp Phe Asp Ile Tyr Asp Glu Asp Glu Asn Gln Ser
35 40 45
Pro Arg Ser Phe Gln Lys Lys Thr Arg His Tyr Phe Ile Ala Ala Val
50 55 60
Glu Arg Leu Trp Asp Tyr Gly Met Ser Ser Ser Pro His Val Leu Arg
65 70 75 80
Asn Arg Ala Gln Ser Gly Ser Val Pro Gln Phe Lys Lys Val Val Phe
85 90 95
Gln Glu Phe Thr Asp Gly Ser Phe Thr Gln Pro Leu Tyr Arg Gly Glu
100 105 110
Leu Asn Glu His Leu Gly Leu Leu Gly Pro Tyr Ile Arg Ala Glu Val
115 120 125
Glu Asp Asn Ile Met Val Thr Phe Arg Asn Gln Ala Ser Arg Pro Tyr
130 135 140
Ser Phe Tyr Ser Ser Leu Ile Ser Tyr Glu Glu Asp Gln Arg Gln Gly
145 150 155 160
Ala Glu Pro Arg Lys Asn Phe Val Lys Pro Asn Glu Thr Lys Thr Tyr
165 170 175
Phe Trp Lys Val Gln His His Met Ala Pro Thr Lys Asp Glu Phe Asp
180 185 190
Cys Lys Ala Trp Ala Tyr Phe Ser Asp Val Asp Leu Glu Lys Asp Val
195 200 205
His Ser Gly Leu Ile Gly Pro Leu Leu Val Cys His Thr Asn Thr Leu
210 215 220
Asn Pro Ala His Gly Arg Gln Val Thr Val Gln Glu Phe Ala Leu Phe
225 230 235 240
Phe Thr Ile Phe Asp Glu Thr Lys Ser Trp Tyr Phe Thr Glu Asn Met
245 250 255
Glu Arg Asn Cys Arg Ala Pro Cys Asn Ile Gln Met Glu Asp Pro Thr
260 265 270
Phe Lys Glu Asn Tyr Arg Phe His Ala Ile Asn Gly Tyr Ile Met Asp
275 280 285
Thr Leu Pro Gly Leu Val Met Ala Gln Asp Gln Arg Ile Arg Trp Tyr
290 295 300
Leu Leu Ser Met Gly Ser Asn Glu Asn Ile His Ser Ile His Phe Ser
305 310 315 320
Gly His Val Phe Thr Val Arg Lys Lys Glu Glu Tyr Lys Met Ala Leu
325 330 335
Tyr Asn Leu Tyr Pro Gly Val Phe Glu Thr Val Glu Met Leu Pro Ser
340 345 350
Lys Ala Gly Ile Trp Arg Val Glu Cys Leu Ile Gly Glu His Leu His
355 360 365
Ala Gly Met Ser Thr Leu Phe Leu Val Tyr Ser Asn Lys Cys Gln Thr
370 375 380
Pro Leu Gly Met Ala Ser Gly His Ile Arg Asp Phe Gln Ile Thr Ala
385 390 395 400
Ser Gly Gln Tyr Gly Gln Trp Ala Pro Lys Leu Ala Arg Leu His Tyr
405 410 415
Ser Gly Ser Ile Asn Ala Trp Ser Thr Lys Glu Pro Phe Ser Trp Ile
420 425 430
Lys Val Asp Leu Leu Ala Pro Met Ile Ile His Gly Ile Lys Thr Gln
435 440 445
Gly Ala Arg Gln Lys Phe Ser Ser Leu Tyr Ile Ser Gln Phe Ile Ile
450 455 460
Met Tyr Ser Leu Asp Gly Lys Lys Trp Gln Thr Tyr Arg Gly Asn Ser
465 470 475 480
Thr Gly Thr Leu Met Val Phe Phe Gly Asn Val Asp Ser Ser Gly Ile
485 490 495
Lys His Asn Ile Phe Asn Pro Pro Ile Ile Ala Arg Tyr Ile Arg Leu
500 505 510
His Pro Thr His Tyr Ser Ile Arg Ser Thr Leu Arg Met Glu Leu Met
515 520 525
Gly Cys Asp Leu Asn Ser Cys Ser Met Pro Leu Gly Met Glu Ser Lys
530 535 540
Ala Ile Ser Asp Ala Gln Ile Thr Ala Ser Ser Tyr Phe Thr Asn Met
545 550 555 560
Phe Ala Thr Trp Ser Pro Ser Lys Ala Arg Leu His Leu Gln Gly Arg
565 570 575
Ser Asn Ala Trp Arg Pro Gln Val Asn Asn Pro Lys Glu Trp Leu Gln
580 585 590
Val Asp Phe Gln Lys Thr Met Lys Val Thr Gly Val Thr Thr Gln Gly
595 600 605
Val Lys Ser Leu Leu Thr Ser Met Tyr Val Lys Glu Phe Leu Ile Ser
610 615 620
Ser Ser Gln Asp Gly His Gln Trp Thr Leu Phe Phe Gln Asn Gly Lys
625 630 635 640
Val Lys Val Phe Gln Gly Asn Gln Asp Ser Phe Thr Pro Val Val Asn
645 650 655
Ser Leu Asp Pro Pro Leu Leu Thr Arg Tyr Leu Arg Ile His Pro Gln
660 665 670
Ser Trp Val His Gln Ile Ala Leu Arg Met Glu Val Leu Gly Cys Glu
675 680 685
Ala Gln Asp Leu Tyr
690
<210> 10
<211> 1457
<212> PRT
<213> hHC-cLC having Signal peptide
<400> 10
Met Gln Ile Glu Leu Ser Thr Cys Phe Phe Leu Cys Leu Leu Arg Phe
1 5 10 15
Cys Phe Ser Ala Thr Arg Arg Tyr Tyr Leu Gly Ala Val Glu Leu Ser
20 25 30
Trp Asp Tyr Met Gln Ser Asp Leu Gly Glu Leu Pro Val Asp Ala Arg
35 40 45
Phe Pro Pro Arg Val Pro Lys Ser Phe Pro Phe Asn Thr Ser Val Val
50 55 60
Tyr Lys Lys Thr Leu Phe Val Glu Phe Thr Asp His Leu Phe Asn Ile
65 70 75 80
Ala Lys Pro Arg Pro Pro Trp Met Gly Leu Leu Gly Pro Thr Ile Gln
85 90 95
Ala Glu Val Tyr Asp Thr Val Val Ile Thr Leu Lys Asn Met Ala Ser
100 105 110
His Pro Val Ser Leu His Ala Val Gly Val Ser Tyr Trp Lys Ala Ser
115 120 125
Glu Gly Ala Glu Tyr Asp Asp Gln Thr Ser Gln Arg Glu Lys Glu Asp
130 135 140
Asp Lys Val Phe Pro Gly Gly Ser His Thr Tyr Val Trp Gln Val Leu
145 150 155 160
Lys Glu Asn Gly Pro Met Ala Ser Asp Pro Leu Cys Leu Thr Tyr Ser
165 170 175
Tyr Leu Ser His Val Asp Leu Val Lys Asp Leu Asn Ser Gly Leu Ile
180 185 190
Gly Ala Leu Leu Val Cys Arg Glu Gly Ser Leu Ala Lys Glu Lys Thr
195 200 205
Gln Thr Leu His Lys Phe Ile Leu Leu Phe Ala Val Phe Asp Glu Gly
210 215 220
Lys Ser Trp His Ser Glu Thr Lys Asn Ser Leu Met Gln Asp Arg Asp
225 230 235 240
Ala Ala Ser Ala Arg Ala Trp Pro Lys Met His Thr Val Asn Gly Tyr
245 250 255
Val Asn Arg Ser Leu Pro Gly Leu Ile Gly Cys His Arg Lys Ser Val
260 265 270
Tyr Trp His Val Ile Gly Met Gly Thr Thr Pro Glu Val His Ser Ile
275 280 285
Phe Leu Glu Gly His Thr Phe Leu Val Arg Asn His Arg Gln Ala Ser
290 295 300
Leu Glu Ile Ser Pro Ile Thr Phe Leu Thr Ala Gln Thr Leu Leu Met
305 310 315 320
Asp Leu Gly Gln Phe Leu Leu Phe Cys His Ile Ser Ser His Gln His
325 330 335
Asp Gly Met Glu Ala Tyr Val Lys Val Asp Ser Cys Pro Glu Glu Pro
340 345 350
Gln Leu Arg Met Lys Asn Asn Glu Glu Ala Glu Asp Tyr Asp Asp Asp
355 360 365
Leu Thr Asp Ser Glu Met Asp Val Val Arg Phe Asp Asp Asp Asn Ser
370 375 380
Pro Ser Phe Ile Gln Ile Arg Ser Val Ala Lys Lys His Pro Lys Thr
385 390 395 400
Trp Val His Tyr Ile Ala Ala Glu Glu Glu Asp Trp Asp Tyr Ala Pro
405 410 415
Leu Val Leu Ala Pro Asp Asp Arg Ser Tyr Lys Ser Gln Tyr Leu Asn
420 425 430
Asn Gly Pro Gln Arg Ile Gly Arg Lys Tyr Lys Lys Val Arg Phe Met
435 440 445
Ala Tyr Thr Asp Glu Thr Phe Lys Thr Arg Glu Ala Ile Gln His Glu
450 455 460
Ser Gly Ile Leu Gly Pro Leu Leu Tyr Gly Glu Val Gly Asp Thr Leu
465 470 475 480
Leu Ile Ile Phe Lys Asn Gln Ala Ser Arg Pro Tyr Asn Ile Tyr Pro
485 490 495
His Gly Ile Thr Asp Val Arg Pro Leu Tyr Ser Arg Arg Leu Pro Lys
500 505 510
Gly Val Lys His Leu Lys Asp Phe Pro Ile Leu Pro Gly Glu Ile Phe
515 520 525
Lys Tyr Lys Trp Thr Val Thr Val Glu Asp Gly Pro Thr Lys Ser Asp
530 535 540
Pro Arg Cys Leu Thr Arg Tyr Tyr Ser Ser Phe Val Asn Met Glu Arg
545 550 555 560
Asp Leu Ala Ser Gly Leu Ile Gly Pro Leu Leu Ile Cys Tyr Lys Glu
565 570 575
Ser Val Asp Gln Arg Gly Asn Gln Ile Met Ser Asp Lys Arg Asn Val
580 585 590
Ile Leu Phe Ser Val Phe Asp Glu Asn Arg Ser Trp Tyr Leu Thr Glu
595 600 605
Asn Ile Gln Arg Phe Leu Pro Asn Pro Ala Gly Val Gln Leu Glu Asp
610 615 620
Pro Glu Phe Gln Ala Ser Asn Ile Met His Ser Ile Asn Gly Tyr Val
625 630 635 640
Phe Asp Ser Leu Gln Leu Ser Val Cys Leu His Glu Val Ala Tyr Trp
645 650 655
Tyr Ile Leu Ser Ile Gly Ala Gln Thr Asp Phe Leu Ser Val Phe Phe
660 665 670
Ser Gly Tyr Thr Phe Lys His Lys Met Val Tyr Glu Asp Thr Leu Thr
675 680 685
Leu Phe Pro Phe Ser Gly Glu Thr Val Phe Met Ser Met Glu Asn Pro
690 695 700
Gly Leu Trp Ile Leu Gly Cys His Asn Ser Asp Phe Arg Asn Arg Gly
705 710 715 720
Met Thr Ala Leu Leu Lys Val Ser Ser Cys Asp Lys Asn Thr Gly Asp
725 730 735
Tyr Tyr Glu Asp Ser Tyr Glu Asp Ile Ser Ala Tyr Leu Leu Ser Lys
740 745 750
Asn Asn Ala Ile Glu Pro Arg Ser Phe Ser Gln Asn Pro Pro Val Ser
755 760 765
Lys His His Gln Arg Glu Ile Thr Val Thr Thr Leu Gln Pro Glu Glu
770 775 780
Asp Lys Phe Glu Tyr Asp Asp Thr Phe Ser Ile Glu Met Lys Arg Glu
785 790 795 800
Asp Phe Asp Ile Tyr Gly Asp Tyr Glu Asn Gln Gly Leu Arg Ser Phe
805 810 815
Gln Lys Lys Thr Arg His Tyr Phe Ile Ala Ala Val Glu Arg Leu Trp
820 825 830
Asp Tyr Gly Met Ser Arg Ser Pro His Ile Leu Arg Asn Arg Ala Gln
835 840 845
Ser Gly Asp Val Gln Gln Phe Lys Lys Val Val Phe Gln Glu Phe Thr
850 855 860
Asp Gly Ser Phe Thr Gln Pro Leu Tyr Arg Gly Glu Leu Asn Glu His
865 870 875 880
Leu Gly Leu Leu Gly Pro Tyr Ile Arg Ala Glu Val Glu Asp Asn Ile
885 890 895
Val Val Thr Phe Lys Asn Gln Ala Ser Arg Pro Tyr Ser Phe Tyr Ser
900 905 910
Ser Leu Ile Ser Tyr Asp Glu Asp Glu Gly Gln Gly Ala Glu Pro Arg
915 920 925
Arg Lys Phe Val Asn Pro Asn Glu Thr Lys Ile Tyr Phe Trp Lys Val
930 935 940
Gln His His Met Ala Pro Thr Lys Asp Glu Phe Asp Cys Lys Ala Trp
945 950 955 960
Ala Tyr Phe Ser Asp Val Asp Leu Glu Lys Asp Val His Ser Gly Leu
965 970 975
Ile Gly Pro Leu Leu Ile Cys Arg Ser Asn Thr Leu Asn Pro Ala His
980 985 990
Gly Arg Gln Val Thr Val Gln Glu Phe Ala Leu Val Phe Thr Ile Phe
995 1000 1005
Asp Glu Thr Lys Ser Trp Tyr Phe Thr Glu Asn Leu Glu Arg Asn
1010 1015 1020
Cys Arg Ala Pro Cys Asn Val Gln Lys Glu Asp Pro Thr Leu Lys
1025 1030 1035
Glu Asn Phe Arg Phe His Ala Ile Asn Gly Tyr Val Lys Asp Thr
1040 1045 1050
Leu Pro Gly Leu Val Met Ala Gln Asp Gln Lys Val Arg Trp Tyr
1055 1060 1065
Leu Leu Ser Met Gly Ser Asn Glu Asn Ile His Ser Ile His Phe
1070 1075 1080
Ser Gly His Val Phe Thr Val Arg Lys Lys Glu Glu Tyr Lys Met
1085 1090 1095
Ala Val Tyr Asn Leu Tyr Pro Gly Val Phe Glu Thr Val Glu Met
1100 1105 1110
Leu Pro Ser Gln Val Gly Ile Trp Arg Ile Glu Cys Leu Ile Gly
1115 1120 1125
Glu His Leu Gln Ala Gly Met Ser Thr Leu Phe Leu Val Tyr Ser
1130 1135 1140
Lys Lys Cys Gln Thr Pro Leu Gly Met Ala Ser Gly His Ile Arg
1145 1150 1155
Asp Phe Gln Ile Thr Ala Ser Gly Gln Tyr Gly Gln Trp Ala Pro
1160 1165 1170
Lys Leu Ala Arg Leu His Tyr Ser Gly Ser Ile Asn Ala Trp Ser
1175 1180 1185
Thr Lys Asp Pro Phe Ser Trp Ile Lys Val Asp Leu Leu Ala Pro
1190 1195 1200
Met Ile Ile His Gly Ile Met Thr Gln Gly Ala Arg Gln Lys Phe
1205 1210 1215
Ser Ser Leu Tyr Val Ser Gln Phe Ile Ile Met Tyr Ser Leu Asp
1220 1225 1230
Gly Asn Lys Trp His Ser Tyr Arg Gly Asn Ser Thr Gly Thr Leu
1235 1240 1245
Met Val Phe Phe Gly Asn Val Asp Ser Ser Gly Ile Lys His Asn
1250 1255 1260
Ile Phe Asn Pro Pro Ile Ile Ala Gln Tyr Ile Arg Leu His Pro
1265 1270 1275
Thr His Tyr Ser Ile Arg Ser Thr Leu Arg Met Glu Leu Leu Gly
1280 1285 1290
Cys Asp Phe Asn Ser Cys Ser Met Pro Leu Gly Met Glu Ser Lys
1295 1300 1305
Ala Ile Ser Asp Ala Gln Ile Thr Ala Ser Ser Tyr Leu Ser Ser
1310 1315 1320
Met Leu Ala Thr Trp Ser Pro Ser Gln Ala Arg Leu His Leu Gln
1325 1330 1335
Gly Arg Thr Asn Ala Trp Arg Pro Gln Ala Asn Asn Pro Lys Glu
1340 1345 1350
Trp Leu Gln Val Asp Phe Arg Lys Thr Met Lys Val Thr Gly Ile
1355 1360 1365
Thr Thr Gln Gly Val Lys Ser Leu Leu Ile Ser Met Tyr Val Lys
1370 1375 1380
Glu Phe Leu Ile Ser Ser Ser Gln Asp Gly His Asn Trp Thr Leu
1385 1390 1395
Phe Leu Gln Asn Gly Lys Val Lys Val Phe Gln Gly Asn Arg Asp
1400 1405 1410
Ser Ser Thr Pro Val Arg Asn Ala Leu Glu Pro Pro Leu Val Ala
1415 1420 1425
Arg Tyr Val Arg Leu His Pro Gln Ser Trp Ala His His Ile Ala
1430 1435 1440
Leu Arg Leu Glu Val Leu Gly Cys Asp Thr Gln Gln Pro Ala
1445 1450 1455
<210> 11
<211> 4374
<212> DNA
<213> hHC-cLC cDNA
<400> 11
atgcaaatag agctctccac ctgcttcttt ctgtgccttt tgcgattctg ctttagtgcc 60
accagaagat actacctggg tgcagtggaa ctgtcatggg actatatgca aagtgatctc 120
ggtgagctgc ctgtggacgc aagatttcct cctagagtgc caaaatcttt tccattcaac 180
acctcagtcg tgtacaaaaa gactctgttt gtagaattca cggatcacct tttcaacatc 240
gctaagccaa ggccaccctg gatgggtctg ctaggtccta ccatccaggc tgaggtttat 300
gatacagtgg tcattacact taagaacatg gcttcccatc ctgtcagtct tcatgctgtt 360
ggtgtatcct actggaaagc ttctgaggga gctgaatatg atgatcagac cagtcaaagg 420
gagaaagaag atgataaagt cttccctggt ggaagccata catatgtctg gcaggtcctg 480
aaagagaatg gtccaatggc ctctgaccca ctgtgcctta cctactcata tctttctcat 540
gtggacctgg taaaagactt gaattcaggc ctcattggag ccctactagt atgtagagaa 600
gggagtctgg ccaaggaaaa gacacagacc ttgcacaaat ttatactact ttttgctgta 660
tttgatgaag ggaaaagttg gcactcagaa acaaagaact ccttgatgca ggatagggat 720
gctgcatctg ctcgtgcctg gcctaaaatg cacacagtca atggttatgt aaacaggtct 780
ctgccaggtc tgattggatg ccacaggaaa tcagtctatt ggcatgtgat tggaatgggc 840
accactcctg aagtgcactc aatattcctc gaaggtcaca catttcttgt gaggaaccat 900
cgccaggcgt ccttggaaat ctcgccaata actttcctta ctgctcaaac actcttgatg 960
gaccttggac agtttctact gttttgtcat atctcttccc accaacatga tggcatggaa 1020
gcttatgtca aagtagacag ctgtccagag gaaccccaac tacgaatgaa aaataatgaa 1080
gaagcggaag actatgatga tgatcttact gattctgaaa tggatgtggt caggtttgat 1140
gatgacaact ctccttcctt tatccaaatt cgctcagttg ccaagaagca tcctaaaact 1200
tgggtacatt acattgctgc tgaagaggag gactgggact atgctccctt agtcctcgcc 1260
cccgatgaca gaagttataa aagtcaatat ttgaacaatg gccctcagcg gattggtagg 1320
aagtacaaaa aagtccgatt tatggcatac acagatgaaa cctttaagac tcgtgaagct 1380
attcagcatg aatcaggaat cttgggacct ttactttatg gggaagttgg agacacactg 1440
ttgattatat ttaagaatca agcaagcaga ccatataaca tctaccctca cggaatcact 1500
gatgtccgtc ctttgtattc aaggagatta ccaaaaggtg taaaacattt gaaggatttt 1560
ccaattctgc caggagaaat attcaaatat aaatggacag tgactgtaga agatgggcca 1620
actaaatcag atcctcggtg cctgacccgc tattactcta gtttcgttaa tatggagaga 1680
gatctagctt caggactcat tggccctctc ctcatctgct acaaagaatc tgtagatcaa 1740
agaggaaacc agataatgtc agacaagagg aatgtcatcc tgttttctgt atttgatgag 1800
aaccgaagct ggtacctcac agagaatata caacgctttc tccccaatcc agctggagtg 1860
cagcttgagg atccagagtt ccaagcctcc aacatcatgc acagcatcaa tggctatgtt 1920
tttgatagtt tgcagttgtc agtttgtttg catgaggtgg catactggta cattctaagc 1980
attggagcac agactgactt cctttctgtc ttcttctctg gatatacctt caaacacaaa 2040
atggtctatg aagacacact caccctattc ccattctcag gagaaactgt cttcatgtcg 2100
atggaaaacc caggtctatg gattctgggg tgccacaact cagactttcg gaacagaggc 2160
atgaccgcct tactgaaggt ttctagttgt gacaagaaca ctggtgatta ttacgaggac 2220
agttatgaag atatttcagc atacttgctg agtaaaaaca atgccattga accaagaagc 2280
ttctcccaga atccaccagt ctcaaaacac catcaaaggg aaataaccgt tactactctt 2340
cagccagagg aagacaaatt tgagtatgat gacaccttct caattgaaat gaagagagaa 2400
gattttgaca tctacggcga ctatgaaaat cagggcctcc gcagctttca aaagaaaaca 2460
cgacactatt tcattgctgc agtggagcgt ctctgggatt atgggatgag tagatctccc 2520
catatactaa gaaacagggc tcaaagtggg gatgtccagc agttcaagaa ggtggttttc 2580
caggaattta ctgatggatc ctttactcag cccttatacc gtggagaact gaatgaacac 2640
ttgggactct tggggccata tataagagca gaagttgaag acaatatcgt ggtaactttc 2700
aaaaaccagg cctctcgtcc ctactccttc tattctagtc ttatttctta tgacgaagat 2760
gagggacaag gagcagaacc tagaagaaag tttgtcaacc ctaatgaaac caaaatttac 2820
ttttggaaag tgcagcatca tatggcaccc actaaagatg agtttgactg caaagcctgg 2880
gcttattttt ctgatgttga tttggagaaa gatgtgcact caggcttgat tggacccctt 2940
ctgatctgcc gcagtaacac actgaaccct gctcatggga gacaagtgac agtgcaggag 3000
tttgccctgg ttttcactat attcgatgag actaagagct ggtacttcac tgaaaacctg 3060
gaaaggaact gtagagctcc ctgcaatgtc cagaaggagg accctactct aaaagaaaac 3120
ttccgcttcc atgcaatcaa cggctatgtg aaggatacac tccctggctt agtaatggct 3180
caggatcaaa aggttcgatg gtatctgctc agcatgggca gcaacgaaaa cattcattcc 3240
attcacttca gtggacatgt gttcactgta cggaaaaaag aggaatataa aatggcagtc 3300
tacaacctct atccaggtgt ttttgagact gtggaaatgc taccatccca agttggaatc 3360
tggcggatag aatgccttat cggcgagcac ctgcaagccg ggatgagcac tctgtttctg 3420
gtgtacagca agaagtgtca gactccactg gggatggctt ccggacacat tagagatttt 3480
cagattacag cttcaggaca atatggacag tgggccccaa agctggccag acttcattat 3540
tccggatcaa tcaatgcctg gagcaccaag gatccctttt cctggatcaa ggtggatctc 3600
ttggcaccga tgattattca cggcatcatg acccaggggg cccgccagaa gttctccagc 3660
ctctacgtgt ctcagtttat catcatgtac agtctggatg gcaacaagtg gcacagttac 3720
cgagggaatt ccacggggac cttaatggtc ttctttggca acgtggattc atctgggatc 3780
aaacacaata tttttaaccc tccgattatt gctcagtaca tccgtttgca cccaacccat 3840
tacagcatcc gcagcactct tcgcatggag ctcttgggct gtgacttcaa cagttgcagc 3900
atgccgctgg ggatggagag taaagcaata tcagatgctc agatcactgc ctcgtcctac 3960
ctaagcagta tgcttgccac ttggtctcct tcccaagccc ggctgcacct gcagggcagg 4020
actaatgcct ggagacctca ggcaaataac ccaaaagagt ggctgcaagt ggacttccgg 4080
aagaccatga aagtcacagg aataaccacc cagggggtga aatctctcct catcagcatg 4140
tatgtgaagg agttcctcat ctccagtagt caagatggcc ataactggac tctgtttctt 4200
cagaatggca aagtcaaggt cttccaggga aaccgggact cctccacgcc tgtgcggaac 4260
gctctcgaac ccccgctggt ggctcgctac gtgcgcctgc acccgcagag ctgggcgcac 4320
cacatcgccc tgaggctgga ggtcctgggc tgcgacaccc agcagcccgc ctga 4374
<210> 12
<211> 1438
<212> PRT
<213> hHC-cLC without Signal peptide
<400> 12
Ala Thr Arg Arg Tyr Tyr Leu Gly Ala Val Glu Leu Ser Trp Asp Tyr
1 5 10 15
Met Gln Ser Asp Leu Gly Glu Leu Pro Val Asp Ala Arg Phe Pro Pro
20 25 30
Arg Val Pro Lys Ser Phe Pro Phe Asn Thr Ser Val Val Tyr Lys Lys
35 40 45
Thr Leu Phe Val Glu Phe Thr Asp His Leu Phe Asn Ile Ala Lys Pro
50 55 60
Arg Pro Pro Trp Met Gly Leu Leu Gly Pro Thr Ile Gln Ala Glu Val
65 70 75 80
Tyr Asp Thr Val Val Ile Thr Leu Lys Asn Met Ala Ser His Pro Val
85 90 95
Ser Leu His Ala Val Gly Val Ser Tyr Trp Lys Ala Ser Glu Gly Ala
100 105 110
Glu Tyr Asp Asp Gln Thr Ser Gln Arg Glu Lys Glu Asp Asp Lys Val
115 120 125
Phe Pro Gly Gly Ser His Thr Tyr Val Trp Gln Val Leu Lys Glu Asn
130 135 140
Gly Pro Met Ala Ser Asp Pro Leu Cys Leu Thr Tyr Ser Tyr Leu Ser
145 150 155 160
His Val Asp Leu Val Lys Asp Leu Asn Ser Gly Leu Ile Gly Ala Leu
165 170 175
Leu Val Cys Arg Glu Gly Ser Leu Ala Lys Glu Lys Thr Gln Thr Leu
180 185 190
His Lys Phe Ile Leu Leu Phe Ala Val Phe Asp Glu Gly Lys Ser Trp
195 200 205
His Ser Glu Thr Lys Asn Ser Leu Met Gln Asp Arg Asp Ala Ala Ser
210 215 220
Ala Arg Ala Trp Pro Lys Met His Thr Val Asn Gly Tyr Val Asn Arg
225 230 235 240
Ser Leu Pro Gly Leu Ile Gly Cys His Arg Lys Ser Val Tyr Trp His
245 250 255
Val Ile Gly Met Gly Thr Thr Pro Glu Val His Ser Ile Phe Leu Glu
260 265 270
Gly His Thr Phe Leu Val Arg Asn His Arg Gln Ala Ser Leu Glu Ile
275 280 285
Ser Pro Ile Thr Phe Leu Thr Ala Gln Thr Leu Leu Met Asp Leu Gly
290 295 300
Gln Phe Leu Leu Phe Cys His Ile Ser Ser His Gln His Asp Gly Met
305 310 315 320
Glu Ala Tyr Val Lys Val Asp Ser Cys Pro Glu Glu Pro Gln Leu Arg
325 330 335
Met Lys Asn Asn Glu Glu Ala Glu Asp Tyr Asp Asp Asp Leu Thr Asp
340 345 350
Ser Glu Met Asp Val Val Arg Phe Asp Asp Asp Asn Ser Pro Ser Phe
355 360 365
Ile Gln Ile Arg Ser Val Ala Lys Lys His Pro Lys Thr Trp Val His
370 375 380
Tyr Ile Ala Ala Glu Glu Glu Asp Trp Asp Tyr Ala Pro Leu Val Leu
385 390 395 400
Ala Pro Asp Asp Arg Ser Tyr Lys Ser Gln Tyr Leu Asn Asn Gly Pro
405 410 415
Gln Arg Ile Gly Arg Lys Tyr Lys Lys Val Arg Phe Met Ala Tyr Thr
420 425 430
Asp Glu Thr Phe Lys Thr Arg Glu Ala Ile Gln His Glu Ser Gly Ile
435 440 445
Leu Gly Pro Leu Leu Tyr Gly Glu Val Gly Asp Thr Leu Leu Ile Ile
450 455 460
Phe Lys Asn Gln Ala Ser Arg Pro Tyr Asn Ile Tyr Pro His Gly Ile
465 470 475 480
Thr Asp Val Arg Pro Leu Tyr Ser Arg Arg Leu Pro Lys Gly Val Lys
485 490 495
His Leu Lys Asp Phe Pro Ile Leu Pro Gly Glu Ile Phe Lys Tyr Lys
500 505 510
Trp Thr Val Thr Val Glu Asp Gly Pro Thr Lys Ser Asp Pro Arg Cys
515 520 525
Leu Thr Arg Tyr Tyr Ser Ser Phe Val Asn Met Glu Arg Asp Leu Ala
530 535 540
Ser Gly Leu Ile Gly Pro Leu Leu Ile Cys Tyr Lys Glu Ser Val Asp
545 550 555 560
Gln Arg Gly Asn Gln Ile Met Ser Asp Lys Arg Asn Val Ile Leu Phe
565 570 575
Ser Val Phe Asp Glu Asn Arg Ser Trp Tyr Leu Thr Glu Asn Ile Gln
580 585 590
Arg Phe Leu Pro Asn Pro Ala Gly Val Gln Leu Glu Asp Pro Glu Phe
595 600 605
Gln Ala Ser Asn Ile Met His Ser Ile Asn Gly Tyr Val Phe Asp Ser
610 615 620
Leu Gln Leu Ser Val Cys Leu His Glu Val Ala Tyr Trp Tyr Ile Leu
625 630 635 640
Ser Ile Gly Ala Gln Thr Asp Phe Leu Ser Val Phe Phe Ser Gly Tyr
645 650 655
Thr Phe Lys His Lys Met Val Tyr Glu Asp Thr Leu Thr Leu Phe Pro
660 665 670
Phe Ser Gly Glu Thr Val Phe Met Ser Met Glu Asn Pro Gly Leu Trp
675 680 685
Ile Leu Gly Cys His Asn Ser Asp Phe Arg Asn Arg Gly Met Thr Ala
690 695 700
Leu Leu Lys Val Ser Ser Cys Asp Lys Asn Thr Gly Asp Tyr Tyr Glu
705 710 715 720
Asp Ser Tyr Glu Asp Ile Ser Ala Tyr Leu Leu Ser Lys Asn Asn Ala
725 730 735
Ile Glu Pro Arg Ser Phe Ser Gln Asn Pro Pro Val Ser Lys His His
740 745 750
Gln Arg Glu Ile Thr Val Thr Thr Leu Gln Pro Glu Glu Asp Lys Phe
755 760 765
Glu Tyr Asp Asp Thr Phe Ser Ile Glu Met Lys Arg Glu Asp Phe Asp
770 775 780
Ile Tyr Gly Asp Tyr Glu Asn Gln Gly Leu Arg Ser Phe Gln Lys Lys
785 790 795 800
Thr Arg His Tyr Phe Ile Ala Ala Val Glu Arg Leu Trp Asp Tyr Gly
805 810 815
Met Ser Arg Ser Pro His Ile Leu Arg Asn Arg Ala Gln Ser Gly Asp
820 825 830
Val Gln Gln Phe Lys Lys Val Val Phe Gln Glu Phe Thr Asp Gly Ser
835 840 845
Phe Thr Gln Pro Leu Tyr Arg Gly Glu Leu Asn Glu His Leu Gly Leu
850 855 860
Leu Gly Pro Tyr Ile Arg Ala Glu Val Glu Asp Asn Ile Val Val Thr
865 870 875 880
Phe Lys Asn Gln Ala Ser Arg Pro Tyr Ser Phe Tyr Ser Ser Leu Ile
885 890 895
Ser Tyr Asp Glu Asp Glu Gly Gln Gly Ala Glu Pro Arg Arg Lys Phe
900 905 910
Val Asn Pro Asn Glu Thr Lys Ile Tyr Phe Trp Lys Val Gln His His
915 920 925
Met Ala Pro Thr Lys Asp Glu Phe Asp Cys Lys Ala Trp Ala Tyr Phe
930 935 940
Ser Asp Val Asp Leu Glu Lys Asp Val His Ser Gly Leu Ile Gly Pro
945 950 955 960
Leu Leu Ile Cys Arg Ser Asn Thr Leu Asn Pro Ala His Gly Arg Gln
965 970 975
Val Thr Val Gln Glu Phe Ala Leu Val Phe Thr Ile Phe Asp Glu Thr
980 985 990
Lys Ser Trp Tyr Phe Thr Glu Asn Leu Glu Arg Asn Cys Arg Ala Pro
995 1000 1005
Cys Asn Val Gln Lys Glu Asp Pro Thr Leu Lys Glu Asn Phe Arg
1010 1015 1020
Phe His Ala Ile Asn Gly Tyr Val Lys Asp Thr Leu Pro Gly Leu
1025 1030 1035
Val Met Ala Gln Asp Gln Lys Val Arg Trp Tyr Leu Leu Ser Met
1040 1045 1050
Gly Ser Asn Glu Asn Ile His Ser Ile His Phe Ser Gly His Val
1055 1060 1065
Phe Thr Val Arg Lys Lys Glu Glu Tyr Lys Met Ala Val Tyr Asn
1070 1075 1080
Leu Tyr Pro Gly Val Phe Glu Thr Val Glu Met Leu Pro Ser Gln
1085 1090 1095
Val Gly Ile Trp Arg Ile Glu Cys Leu Ile Gly Glu His Leu Gln
1100 1105 1110
Ala Gly Met Ser Thr Leu Phe Leu Val Tyr Ser Lys Lys Cys Gln
1115 1120 1125
Thr Pro Leu Gly Met Ala Ser Gly His Ile Arg Asp Phe Gln Ile
1130 1135 1140
Thr Ala Ser Gly Gln Tyr Gly Gln Trp Ala Pro Lys Leu Ala Arg
1145 1150 1155
Leu His Tyr Ser Gly Ser Ile Asn Ala Trp Ser Thr Lys Asp Pro
1160 1165 1170
Phe Ser Trp Ile Lys Val Asp Leu Leu Ala Pro Met Ile Ile His
1175 1180 1185
Gly Ile Met Thr Gln Gly Ala Arg Gln Lys Phe Ser Ser Leu Tyr
1190 1195 1200
Val Ser Gln Phe Ile Ile Met Tyr Ser Leu Asp Gly Asn Lys Trp
1205 1210 1215
His Ser Tyr Arg Gly Asn Ser Thr Gly Thr Leu Met Val Phe Phe
1220 1225 1230
Gly Asn Val Asp Ser Ser Gly Ile Lys His Asn Ile Phe Asn Pro
1235 1240 1245
Pro Ile Ile Ala Gln Tyr Ile Arg Leu His Pro Thr His Tyr Ser
1250 1255 1260
Ile Arg Ser Thr Leu Arg Met Glu Leu Leu Gly Cys Asp Phe Asn
1265 1270 1275
Ser Cys Ser Met Pro Leu Gly Met Glu Ser Lys Ala Ile Ser Asp
1280 1285 1290
Ala Gln Ile Thr Ala Ser Ser Tyr Leu Ser Ser Met Leu Ala Thr
1295 1300 1305
Trp Ser Pro Ser Gln Ala Arg Leu His Leu Gln Gly Arg Thr Asn
1310 1315 1320
Ala Trp Arg Pro Gln Ala Asn Asn Pro Lys Glu Trp Leu Gln Val
1325 1330 1335
Asp Phe Arg Lys Thr Met Lys Val Thr Gly Ile Thr Thr Gln Gly
1340 1345 1350
Val Lys Ser Leu Leu Ile Ser Met Tyr Val Lys Glu Phe Leu Ile
1355 1360 1365
Ser Ser Ser Gln Asp Gly His Asn Trp Thr Leu Phe Leu Gln Asn
1370 1375 1380
Gly Lys Val Lys Val Phe Gln Gly Asn Arg Asp Ser Ser Thr Pro
1385 1390 1395
Val Arg Asn Ala Leu Glu Pro Pro Leu Val Ala Arg Tyr Val Arg
1400 1405 1410
Leu His Pro Gln Ser Trp Ala His His Ile Ala Leu Arg Leu Glu
1415 1420 1425
Val Leu Gly Cys Asp Thr Gln Gln Pro Ala
1430 1435
<210> 13
<211> 13
<212> PRT
<213> hHC-cLC truncated B Domain
<400> 13
Ser Phe Ser Gln Asn Pro Pro Val Ser Lys His His Gln
1 5 10
<210> 14
<211> 693
<212> PRT
Canine FVIII light chain in <213> hHC-cLC
<400> 14
Pro Pro Val Ser Lys His His Gln Arg Glu Ile Thr Val Thr Thr Leu
1 5 10 15
Gln Pro Glu Glu Asp Lys Phe Glu Tyr Asp Asp Thr Phe Ser Ile Glu
20 25 30
Met Lys Arg Glu Asp Phe Asp Ile Tyr Gly Asp Tyr Glu Asn Gln Gly
35 40 45
Leu Arg Ser Phe Gln Lys Lys Thr Arg His Tyr Phe Ile Ala Ala Val
50 55 60
Glu Arg Leu Trp Asp Tyr Gly Met Ser Arg Ser Pro His Ile Leu Arg
65 70 75 80
Asn Arg Ala Gln Ser Gly Asp Val Gln Gln Phe Lys Lys Val Val Phe
85 90 95
Gln Glu Phe Thr Asp Gly Ser Phe Thr Gln Pro Leu Tyr Arg Gly Glu
100 105 110
Leu Asn Glu His Leu Gly Leu Leu Gly Pro Tyr Ile Arg Ala Glu Val
115 120 125
Glu Asp Asn Ile Val Val Thr Phe Lys Asn Gln Ala Ser Arg Pro Tyr
130 135 140
Ser Phe Tyr Ser Ser Leu Ile Ser Tyr Asp Glu Asp Glu Gly Gln Gly
145 150 155 160
Ala Glu Pro Arg Arg Lys Phe Val Asn Pro Asn Glu Thr Lys Ile Tyr
165 170 175
Phe Trp Lys Val Gln His His Met Ala Pro Thr Lys Asp Glu Phe Asp
180 185 190
Cys Lys Ala Trp Ala Tyr Phe Ser Asp Val Asp Leu Glu Lys Asp Val
195 200 205
His Ser Gly Leu Ile Gly Pro Leu Leu Ile Cys Arg Ser Asn Thr Leu
210 215 220
Asn Pro Ala His Gly Arg Gln Val Thr Val Gln Glu Phe Ala Leu Val
225 230 235 240
Phe Thr Ile Phe Asp Glu Thr Lys Ser Trp Tyr Phe Thr Glu Asn Leu
245 250 255
Glu Arg Asn Cys Arg Ala Pro Cys Asn Val Gln Lys Glu Asp Pro Thr
260 265 270
Leu Lys Glu Asn Phe Arg Phe His Ala Ile Asn Gly Tyr Val Lys Asp
275 280 285
Thr Leu Pro Gly Leu Val Met Ala Gln Asp Gln Lys Val Arg Trp Tyr
290 295 300
Leu Leu Ser Met Gly Ser Asn Glu Asn Ile His Ser Ile His Phe Ser
305 310 315 320
Gly His Val Phe Thr Val Arg Lys Lys Glu Glu Tyr Lys Met Ala Val
325 330 335
Tyr Asn Leu Tyr Pro Gly Val Phe Glu Thr Val Glu Met Leu Pro Ser
340 345 350
Gln Val Gly Ile Trp Arg Ile Glu Cys Leu Ile Gly Glu His Leu Gln
355 360 365
Ala Gly Met Ser Thr Leu Phe Leu Val Tyr Ser Lys Lys Cys Gln Thr
370 375 380
Pro Leu Gly Met Ala Ser Gly His Ile Arg Asp Phe Gln Ile Thr Ala
385 390 395 400
Ser Gly Gln Tyr Gly Gln Trp Ala Pro Lys Leu Ala Arg Leu His Tyr
405 410 415
Ser Gly Ser Ile Asn Ala Trp Ser Thr Lys Asp Pro Phe Ser Trp Ile
420 425 430
Lys Val Asp Leu Leu Ala Pro Met Ile Ile His Gly Ile Met Thr Gln
435 440 445
Gly Ala Arg Gln Lys Phe Ser Ser Leu Tyr Val Ser Gln Phe Ile Ile
450 455 460
Met Tyr Ser Leu Asp Gly Asn Lys Trp His Ser Tyr Arg Gly Asn Ser
465 470 475 480
Thr Gly Thr Leu Met Val Phe Phe Gly Asn Val Asp Ser Ser Gly Ile
485 490 495
Lys His Asn Ile Phe Asn Pro Pro Ile Ile Ala Gln Tyr Ile Arg Leu
500 505 510
His Pro Thr His Tyr Ser Ile Arg Ser Thr Leu Arg Met Glu Leu Leu
515 520 525
Gly Cys Asp Phe Asn Ser Cys Ser Met Pro Leu Gly Met Glu Ser Lys
530 535 540
Ala Ile Ser Asp Ala Gln Ile Thr Ala Ser Ser Tyr Leu Ser Ser Met
545 550 555 560
Leu Ala Thr Trp Ser Pro Ser Gln Ala Arg Leu His Leu Gln Gly Arg
565 570 575
Thr Asn Ala Trp Arg Pro Gln Ala Asn Asn Pro Lys Glu Trp Leu Gln
580 585 590
Val Asp Phe Arg Lys Thr Met Lys Val Thr Gly Ile Thr Thr Gln Gly
595 600 605
Val Lys Ser Leu Leu Ile Ser Met Tyr Val Lys Glu Phe Leu Ile Ser
610 615 620
Ser Ser Gln Asp Gly His Asn Trp Thr Leu Phe Leu Gln Asn Gly Lys
625 630 635 640
Val Lys Val Phe Gln Gly Asn Arg Asp Ser Ser Thr Pro Val Arg Asn
645 650 655
Ala Leu Glu Pro Pro Leu Val Ala Arg Tyr Val Arg Leu His Pro Gln
660 665 670
Ser Trp Ala His His Ile Ala Leu Arg Leu Glu Val Leu Gly Cys Asp
675 680 685
Thr Gln Gln Pro Ala
690
<210> 15
<211> 9618
<212> DNA
<213> pANG-CAG-hBDDF8
<400> 15
ctgcgcgctc gctcgctcac tgaggccgcc cgggcaaagc ccgggcgtcg ggcgaccttt 60
ggtcgcccgg cctcagtgag cgagcgagcg cgcagagagg gagtgccaac tccatcacta 120
ggggttcctt gtagttaatg attaacccgc catgctactt atttacgtag ccatgctcta 180
ggtaccattg acgtcaataa tgacgtatgt tcccatagta acgccaatag ggactttcca 240
ttgacgtcaa tgggtggagt atttacggta aactgcccac ttggcagtac atcaagtgta 300
tcatatgcca agtacgcccc ctattgacgt caatgacggt aaatggcccg cctggcatta 360
tgcccagtac atgaccttat gggactttcc tacttggcag tacatctacg tattagtcat 420
cgctattacc atgtcgaggc cacgttctgc ttcactctcc ccatctcccc cccctcccca 480
cccccaattt tgtatttatt tattttttaa ttattttgtg cagcgatggg ggcggggggg 540
gggggcgcgc gccaggcggg gcggggcggg gcgaggggcg gggcggggcg aggcggagag 600
gtgcggcggc agccaatcag agcggcgcgc tccgaaagtt tccttttatg gcgaggcggc 660
ggcggcggcg gccctataaa aagcgaagcg cgcggcgggc gggagcaagc tctagccgcg 720
cggcgggcgg gagtcgctgc gcgctgcctt cgccccgtgc cccgctccgc cgccgcctcg 780
cgccgcccgc cccggctctg actgaccgcg ttactcccac aggtgagcgg gcgggacggc 840
ccttctcctc cgggctgtaa ttagcgcttg gtttaatgac ggcttgtttc ttttctgtgg 900
ctgcgtgaaa gccttgaggg gctccgggag ggccctttgt gcggggggag cggctcgggg 960
ctgtccgcgg ggggacggct gccttcgggg gggacggggc agggcggggt tcggcttctg 1020
gcgtgtgacc ggcggctcta gagcctctgc taaccatgtt catgccttct tctttttcct 1080
acagctcctg ggcaacgtgc tggttattgt gctgtctcat cattttggca aagaattgat 1140
ccacactttt tctttttctc cacaggtatc gattccacca tgcaaataga gctctccacc 1200
tgcttctttc tgtgcctttt gcgattctgc tttagtgcca ccagaagata ctacctgggt 1260
gcagtggaac tgtcatggga ctatatgcaa agtgatctcg gtgagctgcc tgtggacgca 1320
agatttcctc ctagagtgcc aaaatctttt ccattcaaca cctcagtcgt gtacaaaaag 1380
actctgtttg tagaattcac ggatcacctt ttcaacatcg ctaagccaag gccaccctgg 1440
atgggtctgc taggtcctac catccaggct gaggtttatg atacagtggt cattacactt 1500
aagaacatgg cttcccatcc tgtcagtctt catgctgttg gtgtatccta ctggaaagct 1560
tctgagggag ctgaatatga tgatcagacc agtcaaaggg agaaagaaga tgataaagtc 1620
ttccctggtg gaagccatac atatgtctgg caggtcctga aagagaatgg tccaatggcc 1680
tctgacccac tgtgccttac ctactcatat ctttctcatg tggacctggt aaaagacttg 1740
aattcaggcc tcattggagc cctactagta tgtagagaag ggagtctggc caaggaaaag 1800
acacagacct tgcacaaatt tatactactt tttgctgtat ttgatgaagg gaaaagttgg 1860
cactcagaaa caaagaactc cttgatgcag gatagggatg ctgcatctgc tcgggcctgg 1920
cctaaaatgc acacagtcaa tggttatgta aacaggtctc tgccaggtct gattggatgc 1980
cacaggaaat cagtctattg gcatgtgatt ggaatgggca ccactcctga agtgcactca 2040
atattcctcg aaggtcacac atttcttgtg aggaaccatc gccaggcgtc cttggaaatc 2100
tcgccaataa ctttccttac tgctcaaaca ctcttgatgg accttggaca gtttctactg 2160
ttttgtcata tctcttccca ccaacatgat ggcatggaag cttatgtcaa agtagacagc 2220
tgtccagagg aaccccaact acgaatgaaa aataatgaag aagcggaaga ctatgatgat 2280
gatcttactg attctgaaat ggatgtggtc aggtttgatg atgacaactc tccttccttt 2340
atccaaattc gctcagttgc caagaagcat cctaaaactt gggtacatta cattgctgct 2400
gaagaggagg actgggacta tgctccctta gtcctcgccc ccgatgacag aagttataaa 2460
agtcaatatt tgaacaatgg ccctcagcgg attggtagga agtacaaaaa agtccgattt 2520
atggcataca cagatgaaac ctttaagact cgtgaagcta ttcagcatga atcaggaatc 2580
ttgggacctt tactttatgg ggaagttgga gacacactgt tgattatatt taagaatcaa 2640
gcaagcagac catataacat ctaccctcac ggaatcactg atgtccgtcc tttgtattca 2700
aggagattac caaaaggtgt aaaacatttg aaggattttc caattctgcc aggagaaata 2760
ttcaaatata aatggacagt gactgtagaa gatgggccaa ctaaatcaga tcctcggtgc 2820
ctgacccgct attactctag tttcgttaat atggagagag atctagcttc aggactcatt 2880
ggccctctcc tcatctgcta caaagaatct gtagatcaaa gaggaaacca gataatgtca 2940
gacaagagga atgtcatcct gttttctgta tttgatgaga accgaagctg gtacctcaca 3000
gagaatatac aacgctttct ccccaatcca gctggagtgc agcttgagga tccagagttc 3060
caagcctcca acatcatgca cagcatcaat ggctatgttt ttgatagttt gcagttgtca 3120
gtttgtttgc atgaggtggc atactggtac attctaagca ttggagcaca gactgacttc 3180
ctttctgtct tcttctctgg atataccttc aaacacaaaa tggtctatga agacacactc 3240
accctattcc cattctcagg agaaactgtc ttcatgtcga tggaaaaccc aggtctatgg 3300
attctggggt gccacaactc agactttcgg aacagaggca tgaccgcctt actgaaggtt 3360
tctagttgtg acaagaacac tggtgattat tacgaggaca gttatgaaga tatttcagca 3420
tacttgctga gtaaaaacaa tgccattgaa ccaagaagct tctcccagaa tccaccagtc 3480
ttgaaacgcc atcaacgcga aataactcgt actactcttc agtcagatca agaggaaatt 3540
gactatgatg ataccatatc agttgaaatg aagaaggaag attttgacat ttatgatgag 3600
gatgaaaatc agagcccccg cagctttcaa aagaaaacac gacactattt tattgctgca 3660
gtggagaggc tctgggatta tgggatgagt agctccccac atgttctaag aaacagggct 3720
cagagtggca gtgtccctca gttcaagaaa gttgttttcc aggaatttac tgatggctcc 3780
tttactcagc ccttataccg tggagaacta aatgaacatt tgggactcct ggggccatat 3840
ataagagcag aagttgaaga taatatcatg gtaactttca gaaatcaggc ctctcgtccc 3900
tattccttct attctagcct tatttcttat gaggaagatc agaggcaagg agcagaacct 3960
agaaaaaact ttgtcaagcc taatgaaacc aaaacttact tttggaaagt gcaacatcat 4020
atggcaccca ctaaagatga gtttgactgc aaagcctggg cttatttctc tgatgttgac 4080
ctggaaaaag atgtgcactc aggcctgatt ggaccccttc tggtctgcca cactaacaca 4140
ctgaaccctg ctcatgggag acaagtgaca gtacaggaat ttgctctgtt tttcaccatc 4200
tttgatgaga ccaaaagctg gtacttcact gaaaatatgg aaagaaactg cagggctccc 4260
tgcaatatcc agatggaaga tcccactttt aaagagaatt atcgcttcca tgcaatcaat 4320
ggctacataa tggatacact acctggctta gtaatggctc aggatcaaag gattcgatgg 4380
tatctgctca gcatgggcag caatgaaaac atccattcta ttcatttcag tggacatgtg 4440
ttcactgtac gaaaaaaaga ggagtataaa atggcactgt acaatctcta tccaggtgtt 4500
tttgagacag tggaaatgtt accatccaaa gctggaattt ggcgggtgga atgccttatt 4560
ggcgagcatc tacatgctgg gatgagcaca ctttttctgg tgtacagcaa taagtgtcag 4620
actcccctgg gaatggcttc tggacacatt agagattttc agattacagc ttcaggacaa 4680
tatggacagt gggccccaaa gctggccaga cttcattatt ccggatcaat caatgcctgg 4740
agcaccaagg agcccttttc ttggatcaag gtggatctgt tggcaccaat gattattcac 4800
ggcatcaaga cccagggtgc ccgtcagaag ttctccagcc tctacatctc tcagtttatc 4860
atcatgtata gtcttgatgg gaagaagtgg cagacttatc gaggaaattc cactggaacc 4920
ttaatggtct tctttggcaa tgtggattca tctgggataa aacacaatat ttttaaccct 4980
ccaattattg ctcgatacat ccgtttgcac ccaactcatt atagcattcg cagcactctt 5040
cgcatggagt tgatgggctg tgatttaaat agttgcagca tgccattggg aatggagagt 5100
aaagcaatat cagatgcaca gattactgct tcatcctact ttaccaatat gtttgccacc 5160
tggtctcctt caaaagctcg acttcacctc caagggagga gtaatgcctg gagacctcag 5220
gtgaataatc caaaagagtg gctgcaagtg gacttccaga agacaatgaa agtcacagga 5280
gtaactactc agggagtaaa atctctgctt accagcatgt atgtgaagga gttcctcatc 5340
tccagcagtc aagatggcca tcagtggact ctcttttttc agaatggcaa agtaaaggtt 5400
tttcagggaa atcaagactc cttcacacct gtggtgaact ctctagaccc accgttactg 5460
actcgctacc ttcgaattca cccccagagt tgggtgcacc agattgccct gaggatggag 5520
gttctgggct gcgaggcaca ggacctctac tgactcgaga ataaaagatc agagctctag 5580
agatctgtgt gttggttttt tgtgtgcggc cgggatctga ggaaccccta gtgatggagt 5640
tggccactcc ctctctgcgc gctcgctcgc tcactgaggc cgcccgggca aagcccgggc 5700
gtcgggcgac ctttggtcgc ccggcctcag tgagcgagcg agcgcgcaga gagggagtgg 5760
ccaacccccc cccccccccc cctgcaggcg attctcttgt ttgctccaga ctctcaggca 5820
atgacctgat agcctttgta gagacctctc aaaaatagct accctctccg gcatgaattt 5880
atcagctaga acggttgaat atcatattga tggtgatttg actgtctccg gcctttctca 5940
cccgtttgaa tctttaccta cacattactc aggcattgca tttaaaatat atgagggttc 6000
taaaaatttt tatccttgcg ttgaaataaa ggcttctccc gcaaaagtat tacagggtca 6060
taatgttttt ggtacaaccg atttagcttt atgctctgag gctttattgc ttaattttgc 6120
taattctttg ccttgcctgt atgatttatt ggatgttgga attcctgatg cggtattttc 6180
tccttacgca tctgtgcggt atttcacacc gcatatggtg cactctcagt acaatctgct 6240
ctgatgccgc atagttaagc cagccccgac acccgccaac acccgctgac gcgccctgac 6300
gggcttgtct gctcccggca tccgcttaca gacaagctgt gaccgtctcc gggagctgca 6360
tgtgtcagag gttttcaccg tcatcaccga aacgcgcgag acgaaagggc ctcgtgatac 6420
gcctattttt ataggttaat gtcatgataa taatggtttc ttagacgtca ggtggcactt 6480
ttcggggaaa tgtgcgcgga acccctattt gtttattttt ctaaatacat tcaaatatgt 6540
atccgctcat gagacaataa ccctgataaa tgcttcaata atattgaaaa aggaagagta 6600
tgagtattca acatttccgt gtcgccctta ttcccttttt tgcggcattt tgccttcctg 6660
tttttgctca cccagaaacg ctggtgaaag taaaagatgc tgaagatcag ttgggtgcac 6720
gagtgggtta catcgaactg gatctcaaca gcggtaagat ccttgagagt tttcgccccg 6780
aagaacgttt tccaatgatg agcactttta aagttctgct atgtggcgcg gtattatccc 6840
gtattgacgc cgggcaagag caactcggtc gccgcataca ctattctcag aatgacttgg 6900
ttgagtactc accagtcaca gaaaagcatc ttacggatgg catgacagta agagaattat 6960
gcagtgctgc cataaccatg agtgataaca ctgcggccaa cttacttctg acaacgatcg 7020
gaggaccgaa ggagctaacc gcttttttgc acaacatggg ggatcatgta actcgccttg 7080
atcgttggga accggagctg aatgaagcca taccaaacga cgagcgtgac accacgatgc 7140
ctgtagcaat ggcaacaacg ttgcgcaaac tattaactgg cgaactactt actctagctt 7200
cccggcaaca attaatagac tggatggagg cggataaagt tgcaggacca cttctgcgct 7260
cggcccttcc ggctggctgg tttattgctg ataaatctgg agccggtgag cgtgggtctc 7320
gcggtatcat tgcagcactg gggccagatg gtaagccctc ccgtatcgta gttatctaca 7380
cgacggggag tcaggcaact atggatgaac gaaatagaca gatcgctgag ataggtgcct 7440
cactgattaa gcattggtaa ctgtcagacc aagtttactc atatatactt tagattgatt 7500
taaaacttca tttttaattt aaaaggatct aggtgaagat cctttttgat aatctcatga 7560
ccaaaatccc ttaacgtgag ttttcgttcc actgagcgtc agaccccgta gaaaagatca 7620
aaggatcttc ttgagatcct ttttttctgc gcgtaatctg ctgcttgcaa acaaaaaaac 7680
caccgctacc agcggtggtt tgtttgccgg atcaagagct accaactctt tttccgaagg 7740
taactggctt cagcagagcg cagataccaa atactgtcct tctagtgtag ccgtagttag 7800
gccaccactt caagaactct gtagcaccgc ctacatacct cgctctgcta atcctgttac 7860
cagtggctgc tgccagtggc gataagtcgt gtcttaccgg gttggactca agacgatagt 7920
taccggataa ggcgcagcgg tcgggctgaa cggggggttc gtgcacacag cccagcttgg 7980
agcgaacgac ctacaccgaa ctgagatacc tacagcgtga gctatgagaa agcgccacgc 8040
ttcccgaagg gagaaaggcg gacaggtatc cggtaagcgg cagggtcgga acaggagagc 8100
gcacgaggga gcttccaggg ggaaacgcct ggtatcttta tagtcctgtc gggtttcgcc 8160
acctctgact tgagcgtcga tttttgtgat gctcgtcagg ggggcggagc ctatggaaaa 8220
acgccagcaa cgcggccttt ttacggttcc tggccttttg ctggcctttt gctcacatgt 8280
tctttcctgc gttatcccct gattctgtgg ataaccgtat taccgccttt gagtgagctg 8340
ataccgctcg ccgcagccga acgaccgagc gcagcgagtc agtgagcgag gaagcggaag 8400
agcgcccaat acgcaaaccg cctctccccg cgcgttggcc gattcattaa tgcagaattc 8460
ccatcatcaa taatatacct tattttggat tgaagccaat atgataatga gggggtggag 8520
tttgtgacgt ggcgcggggc gtgggaacgg ggcgggtgac gtagtagtct ctagaggtcc 8580
ccagcgacct tgacgggcat ctgcccggca tttctgacag ctttgtgaac tgggtggccg 8640
agaaggaatg ggagttgccg ccagattctg acatggatct gaatctgatt gagcaggcac 8700
ccctgaccgt ggccgagaag ctgcatcgct ggcgtaatag cgaagaggcc cgcaccgatc 8760
gcccttccca acagttgcgc agcctgaatg gcgaatggcg attccgttgc aatggctggc 8820
ggtaatattg ttctggatat taccagcaag gccgatagtt tgagttcttc tactcaggca 8880
agtgatgtta ttactaatca aagaagtatt gcgacaacgg ttaatttgcg tgatggacag 8940
actcttttac tcggtggcct cactgattat aaaaacactt ctcaggattc tggcgtaccg 9000
ttcctgtcta aaatcccttt aatcggcctc ctgtttagct cccgctctga ttctaacgag 9060
gaaagcacgt tatacgtgct cgtcaaagca accatagtac gcgccctgta gcggcgcatt 9120
aagcgcggcg ggtgtggtgg ttacgcgcag cgtgaccgct acacttgcca gcgccctagc 9180
gcccgctcct ttcgctttct tcccttcctt tctcgccacg ttcgccggcg aacgtggcga 9240
gaaaggaagg gaagaaagcg aaaggagcgg gcgctagggc gctggcaagt gtagcggtca 9300
cgctgcgcgt aaccaccaca cccgccgcgc ttaatgcgcc gctacagggc gcgtcccatt 9360
cgccattcag gctgcgcaac tgttgggaag ggcgatcggt gcgggcctct tcgctattac 9420
gccagctggc gaaaggggga tgtgctgcaa ggcgattaag ttgggtaacg ccagggtttt 9480
cccagtcacg acgttgtaaa acgacggcca gtgaattagg ttaattaagg cacacccgcc 9540
gcgcttaatg cgccgctaca gggcgcgtcc cattcgccat tcaggctgcg caactgttgg 9600
gaagggcgat cggtgcgg 9618
<210> 16
<211> 791
<212> PRT
<213> hBDDF8 sequence in FIG. 2
<400> 16
Met Gln Ile Glu Leu Ser Thr Cys Phe Phe Leu Cys Leu Leu Arg Phe
1 5 10 15
Cys Phe Ser Ala Thr Arg Arg Tyr Tyr Leu Gly Ala Val Glu Leu Ser
20 25 30
Trp Asp Tyr Met Gln Ser Asp Leu Gly Glu Leu Pro Val Asp Ala Arg
35 40 45
Phe Pro Pro Arg Val Pro Lys Ser Phe Pro Phe Asn Thr Ser Val Val
50 55 60
Tyr Lys Lys Thr Leu Phe Val Glu Phe Thr Asp His Leu Phe Asn Ile
65 70 75 80
Ala Lys Pro Arg Pro Pro Trp Met Gly Leu Leu Gly Pro Thr Ile Gln
85 90 95
Ala Glu Val Tyr Asp Thr Val Val Ile Thr Leu Lys Asn Met Ala Ser
100 105 110
His Pro Val Ser Leu His Ala Val Gly Val Ser Tyr Trp Lys Ala Ser
115 120 125
Glu Gly Ala Glu Tyr Asp Asp Gln Thr Ser Gln Arg Glu Lys Glu Asp
130 135 140
Asp Lys Val Phe Pro Gly Gly Ser His Thr Tyr Val Trp Gln Val Leu
145 150 155 160
Lys Glu Asn Gly Pro Met Ala Ser Asp Pro Leu Cys Leu Thr Tyr Ser
165 170 175
Tyr Leu Ser His Val Asp Leu Val Lys Asp Leu Asn Ser Gly Leu Ile
180 185 190
Gly Ala Leu Leu Val Cys Arg Glu Gly Ser Leu Ala Lys Glu Lys Thr
195 200 205
Gln Thr Leu His Lys Phe Ile Leu Leu Phe Ala Val Phe Asp Glu Gly
210 215 220
Lys Ser Trp His Ser Glu Thr Lys Asn Ser Leu Met Gln Asp Arg Asp
225 230 235 240
Ala Ala Ser Ala Arg Ala Trp Pro Lys Met His Thr Val Asn Gly Tyr
245 250 255
Val Asn Arg Ser Leu Pro Gly Leu Ile Gly Cys His Arg Lys Ser Val
260 265 270
Tyr Trp His Val Ile Gly Met Gly Thr Thr Pro Glu Val His Ser Ile
275 280 285
Phe Leu Glu Gly His Thr Phe Leu Val Arg Asn His Arg Gln Ala Ser
290 295 300
Leu Glu Ile Ser Pro Ile Thr Phe Leu Thr Ala Gln Thr Leu Leu Met
305 310 315 320
Asp Leu Gly Gln Phe Leu Leu Phe Cys His Ile Ser Ser His Gln His
325 330 335
Asp Gly Met Glu Ala Tyr Val Lys Val Asp Ser Cys Pro Glu Glu Pro
340 345 350
Gln Leu Arg Met Lys Asn Asn Glu Glu Ala Glu Asp Tyr Asp Asp Asp
355 360 365
Leu Thr Asp Ser Glu Met Asp Val Val Arg Phe Asp Asp Asp Asn Ser
370 375 380
Pro Ser Phe Ile Gln Ile Arg Ser Val Ala Lys Lys His Pro Lys Thr
385 390 395 400
Trp Val His Tyr Ile Ala Ala Glu Glu Glu Asp Trp Asp Tyr Ala Pro
405 410 415
Leu Val Leu Ala Pro Asp Asp Arg Ser Tyr Lys Ser Gln Tyr Leu Asn
420 425 430
Asn Gly Pro Gln Arg Ile Gly Arg Lys Tyr Lys Lys Val Arg Phe Met
435 440 445
Ala Tyr Thr Asp Glu Thr Phe Lys Thr Arg Glu Ala Ile Gln His Glu
450 455 460
Ser Gly Ile Leu Gly Pro Leu Leu Tyr Gly Glu Val Gly Asp Thr Leu
465 470 475 480
Leu Ile Ile Phe Lys Asn Gln Ala Ser Arg Pro Tyr Asn Ile Tyr Pro
485 490 495
His Gly Ile Thr Asp Val Arg Pro Leu Tyr Ser Arg Arg Leu Pro Lys
500 505 510
Gly Val Lys His Leu Lys Asp Phe Pro Ile Leu Pro Gly Glu Ile Phe
515 520 525
Lys Tyr Lys Trp Thr Val Thr Val Glu Asp Gly Pro Thr Lys Ser Asp
530 535 540
Pro Arg Cys Leu Thr Arg Tyr Tyr Ser Ser Phe Val Asn Met Glu Arg
545 550 555 560
Asp Leu Ala Ser Gly Leu Ile Gly Pro Leu Leu Ile Cys Tyr Lys Glu
565 570 575
Ser Val Asp Gln Arg Gly Asn Gln Ile Met Ser Asp Lys Arg Asn Val
580 585 590
Ile Leu Phe Ser Val Phe Asp Glu Asn Arg Ser Trp Tyr Leu Thr Glu
595 600 605
Asn Ile Gln Arg Phe Leu Pro Asn Pro Ala Gly Val Gln Leu Glu Asp
610 615 620
Pro Glu Phe Gln Ala Ser Asn Ile Met His Ser Ile Asn Gly Tyr Val
625 630 635 640
Phe Asp Ser Leu Gln Leu Ser Val Cys Leu His Glu Val Ala Tyr Trp
645 650 655
Tyr Ile Leu Ser Ile Gly Ala Gln Thr Asp Phe Leu Ser Val Phe Phe
660 665 670
Ser Gly Tyr Thr Phe Lys His Lys Met Val Tyr Glu Asp Thr Leu Thr
675 680 685
Leu Phe Pro Phe Ser Gly Glu Thr Val Phe Met Ser Met Glu Asn Pro
690 695 700
Gly Leu Trp Ile Leu Gly Cys His Asn Ser Asp Phe Arg Asn Arg Gly
705 710 715 720
Met Thr Ala Leu Leu Lys Val Ser Ser Cys Asp Lys Asn Thr Gly Asp
725 730 735
Tyr Tyr Glu Asp Ser Tyr Glu Asp Ile Ser Ala Tyr Leu Leu Ser Lys
740 745 750
Asn Asn Ala Ile Glu Pro Arg Ser Phe Ser Gln Asn Pro Pro Val Leu
755 760 765
Lys Arg His Gln Arg Glu Ile Thr Arg Thr Thr Leu Gln Ser Asp Gln
770 775 780
Glu Glu Ile Asp Tyr Asp Asp
785 790
<210> 17
<211> 791
<212> PRT
<213> substituted hBDDF8 sequence in FIG. 2
<400> 17
Met Gln Ile Glu Leu Ser Thr Cys Phe Phe Leu Cys Leu Leu Arg Phe
1 5 10 15
Cys Phe Ser Lys Val Arg Arg Tyr Tyr Leu Gly Ala Val Glu Leu Ser
20 25 30
Trp Asp Tyr Met Gln Ser Asp Leu Gly Glu Leu Pro Val Asp Ala Arg
35 40 45
Phe Pro Pro Arg Val Pro Lys Ser Leu Pro Phe Asn Thr Ser Val Val
50 55 60
Tyr Lys Lys Thr Val Phe Val Glu Phe Thr Asp His Leu Phe Asn Val
65 70 75 80
Ala Lys Pro Arg Pro Pro Trp Met Gly Leu Leu Gly Pro Thr Ile Gln
85 90 95
Ala Glu Val Tyr Asp Thr Val Val Ile Thr Leu Lys Asn Met Ala Ser
100 105 110
His Pro Val Ser Leu His Ala Val Gly Val Ser Tyr Trp Lys Ala Ser
115 120 125
Glu Gly Ala Glu Tyr Asp Asp Gln Thr Ser Gln Arg Glu Lys Glu Asp
130 135 140
Asp Lys Val Phe Pro Gly Gly Ser His Thr Tyr Val Trp Gln Val Leu
145 150 155 160
Lys Glu Asn Gly Pro Met Ala Ser Asp Pro Leu Cys Leu Thr Tyr Ser
165 170 175
Tyr Phe Ser His Val Asp Leu Val Lys Asp Leu Asn Ser Gly Leu Ile
180 185 190
Gly Ala Leu Leu Val Cys Lys Glu Gly Ser Leu Ala Lys Glu Lys Thr
195 200 205
Gln Thr Leu Gln Lys Phe Val Leu Leu Phe Ala Val Phe Asp Glu Gly
210 215 220
Lys Ser Trp His Ser Glu Thr Lys Asn Ser Leu Met Gln Asp Arg Asp
225 230 235 240
Ala Ala Ser Ala Arg Ala Trp Pro Lys Met His Thr Val Asn Gly Tyr
245 250 255
Val Asn Arg Ser Leu Pro Gly Leu Ile Gly Cys His Lys Lys Ser Val
260 265 270
Tyr Trp His Val Ile Gly Met Gly Thr Thr Pro Glu Val His Ser Ile
275 280 285
Phe Leu Glu Gly His Thr Phe Leu Val Arg Asn His Arg Gln Ala Ser
290 295 300
Leu Glu Ile Ser Pro Val Thr Phe Leu Thr Ala Gln Thr Phe Leu Met
305 310 315 320
Asp Leu Gly Gln Phe Leu Leu Phe Cys His Ile Pro Ser His Gln His
325 330 335
Asp Gly Met Glu Ala Tyr Val Lys Val Asp Ser Cys Pro Glu Glu Pro
340 345 350
Gln Leu Arg Met Lys Asn Asn Glu Glu Ala Glu Asp Tyr Asp Asp Asp
355 360 365
Leu Thr Asp Ser Glu Met Asp Val Val Ser Phe Asp Asp Asp Asn Ser
370 375 380
Pro Ser Phe Ile Gln Ile Arg Ser Val Ala Lys Lys His Pro Lys Thr
385 390 395 400
Trp Val His Tyr Ile Ala Ala Glu Glu Glu Asp Trp Asp Tyr Ala Pro
405 410 415
Leu Val Leu Ala Pro Asp Asp Arg Ser Tyr Lys Ser Gln Tyr Leu Asn
420 425 430
Asn Gly Pro Gln Arg Ile Gly Arg Lys Tyr Lys Lys Val Arg Phe Met
435 440 445
Ala Tyr Thr Asp Glu Thr Phe Lys Thr Arg Glu Ala Ile Gln His Glu
450 455 460
Ser Gly Ile Leu Gly Pro Leu Leu Tyr Gly Glu Val Gly Asp Thr Leu
465 470 475 480
Leu Ile Ile Phe Lys Asn Gln Ala Ser Arg Pro Tyr Asn Ile Tyr Pro
485 490 495
His Gly Ile Thr Asp Val Arg Pro Leu Tyr Ser Arg Arg Leu Pro Lys
500 505 510
Gly Val Lys His Leu Lys Asp Phe Pro Ile Leu Pro Gly Glu Ile Phe
515 520 525
Lys Tyr Lys Trp Thr Val Thr Val Glu Asp Gly Pro Thr Lys Ser Asp
530 535 540
Pro Arg Cys Leu Thr Arg Tyr Tyr Ser Ser Phe Val Asn Met Glu Arg
545 550 555 560
Asp Leu Ala Ser Gly Leu Ile Gly Pro Leu Leu Ile Cys Tyr Lys Glu
565 570 575
Ser Val Asp Gln Arg Gly Asn Gln Ile Met Ser Asp Lys Arg Asn Val
580 585 590
Ile Leu Phe Ser Val Phe Asp Glu Asn Arg Ser Trp Tyr Leu Thr Glu
595 600 605
Asn Met Gln Arg Phe Leu Pro Asn Pro Ala Gly Val Gln Leu Glu Asp
610 615 620
Pro Glu Phe Gln Ala Ser Asn Ile Met His Ser Ile Asn Gly Tyr Val
625 630 635 640
Phe Asp Ser Leu Gln Leu Ser Val Cys Leu His Glu Val Ala Tyr Trp
645 650 655
Tyr Ile Leu Ser Val Gly Ala Gln Thr Asp Phe Leu Ser Val Phe Phe
660 665 670
Ser Gly Tyr Thr Phe Lys His Lys Met Val Tyr Glu Asp Thr Leu Thr
675 680 685
Leu Phe Pro Phe Ser Gly Glu Thr Val Phe Met Ser Met Glu Asn Pro
690 695 700
Gly Leu Trp Ile Leu Gly Cys His Asn Ser Asp Phe Arg Asn Arg Gly
705 710 715 720
Met Thr Ala Leu Leu Lys Val Ser Ser Cys Asp Lys Asn Thr Gly Asp
725 730 735
Tyr Tyr Glu Asp Ser Tyr Glu Asp Ile Ser Ala Tyr Leu Leu Ser Lys
740 745 750
Asn Asn Ala Ile Glu Pro Arg Ser Phe Ser Gln Asn Pro Pro Val Leu
755 760 765
Lys Arg His Gln Arg Glu Ile Thr Arg Thr Thr Leu Gln Ser Asp Gln
770 775 780
Glu Glu Ile Asp Tyr Asp Asp
785 790
<210> 18
<211> 8106
<212> DNA
<213> pANG-TTR-hBDDF8
<400> 18
ctgcgcgctc gctcgctcac tgaggccgcc cgggcaaagc ccgggcgtcg ggcgaccttt 60
ggtcgcccgg cctcagtgag cgagcgagcg cgcagagagg gagtggccaa ctccatcact 120
aggggttcct acgcgtgtct gtctgcacat ttcgtagagc gagtgttccg atactctaat 180
ctccctaggc aaggttcata tttgtgtagg ttacttattc tccttttgtt gactaagtca 240
ataatcagaa tcagcaggtt tggagtcagc ttggcaggga tcagcagcct gggttggaag 300
gagggggtat aaaagcccct tcaccaggag aagccgtcac acagatccac aagctcctgc 360
tagcaggtaa gtgccgtgtg tggttcccgc gggcctggcc tctttacggg ttatggccct 420
tgcgtgcctt gaattactga cactgacatc cactttttct ttttctccac aggtatcgat 480
gccaccatgc aaatagagct ctccacctgc ttctttctgt gccttttgcg attctgcttt 540
agtgccacca gaagatacta cctgggtgca gtggaactgt catgggacta tatgcaaagt 600
gatctcggtg agctgcctgt ggacgcaaga tttcctccta gagtgccaaa atcttttcca 660
ttcaacacct cagtcgtgta caaaaagact ctgtttgtag aattcacgga tcaccttttc 720
aacatcgcta agccaaggcc accctggatg ggtctgctag gtcctaccat ccaggctgag 780
gtttatgata cagtggtcat tacacttaag aacatggctt cccatcctgt cagtcttcat 840
gctgttggtg tatcctactg gaaagcttct gagggagctg aatatgatga tcagaccagt 900
caaagggaga aagaagatga taaagtcttc cctggtggaa gccatacata tgtctggcag 960
gtcctgaaag agaatggtcc aatggcctct gacccactgt gccttaccta ctcatatctt 1020
tctcatgtgg acctggtaaa agacttgaat tcaggcctca ttggagccct actagtatgt 1080
agagaaggga gtctggccaa ggaaaagaca cagaccttgc acaaatttat actacttttt 1140
gctgtatttg atgaagggaa aagttggcac tcagaaacaa agaactcctt gatgcaggat 1200
agggatgctg catctgctcg ggcctggcct aaaatgcaca cagtcaatgg ttatgtaaac 1260
aggtctctgc caggtctgat tggatgccac aggaaatcag tctattggca tgtgattgga 1320
atgggcacca ctcctgaagt gcactcaata ttcctcgaag gtcacacatt tcttgtgagg 1380
aaccatcgcc aggcgtcctt ggaaatctcg ccaataactt tccttactgc tcaaacactc 1440
ttgatggacc ttggacagtt tctactgttt tgtcatatct cttcccacca acatgatggc 1500
atggaagctt atgtcaaagt agacagctgt ccagaggaac cccaactacg aatgaaaaat 1560
aatgaagaag cggaagacta tgatgatgat cttactgatt ctgaaatgga tgtggtcagg 1620
tttgatgatg acaactctcc ttcctttatc caaattcgct cagttgccaa gaagcatcct 1680
aaaacttggg tacattacat tgctgctgaa gaggaggact gggactatgc tcccttagtc 1740
ctcgcccccg atgacagaag ttataaaagt caatatttga acaatggccc tcagcggatt 1800
ggtaggaagt acaaaaaagt ccgatttatg gcatacacag atgaaacctt taagactcgt 1860
gaagctattc agcatgaatc aggaatcttg ggacctttac tttatgggga agttggagac 1920
acactgttga ttatatttaa gaatcaagca agcagaccat ataacatcta ccctcacgga 1980
atcactgatg tccgtccttt gtattcaagg agattaccaa aaggtgtaaa acatttgaag 2040
gattttccaa ttctgccagg agaaatattc aaatataaat ggacagtgac tgtagaagat 2100
gggccaacta aatcagatcc tcggtgcctg acccgctatt actctagttt cgttaatatg 2160
gagagagatc tagcttcagg actcattggc cctctcctca tctgctacaa agaatctgta 2220
gatcaaagag gaaaccagat aatgtcagac aagaggaatg tcatcctgtt ttctgtattt 2280
gatgagaacc gaagctggta cctcacagag aatatacaac gctttctccc caatccagct 2340
ggagtgcagc ttgaggatcc agagttccaa gcctccaaca tcatgcacag catcaatggc 2400
tatgtttttg atagtttgca gttgtcagtt tgtttgcatg aggtggcata ctggtacatt 2460
ctaagcattg gagcacagac tgacttcctt tctgtcttct tctctggata taccttcaaa 2520
cacaaaatgg tctatgaaga cacactcacc ctattcccat tctcaggaga aactgtcttc 2580
atgtcgatgg aaaacccagg tctatggatt ctggggtgcc acaactcaga ctttcggaac 2640
agaggcatga ccgccttact gaaggtttct agttgtgaca agaacactgg tgattattac 2700
gaggacagtt atgaagatat ttcagcatac ttgctgagta aaaacaatgc cattgaacca 2760
agaagcttct cccagaatcc accagtcttg aaacgccatc aacgcgaaat aactcgtact 2820
actcttcagt cagatcaaga ggaaattgac tatgatgata ccatatcagt tgaaatgaag 2880
aaggaagatt ttgacattta tgatgaggat gaaaatcaga gcccccgcag ctttcaaaag 2940
aaaacacgac actattttat tgctgcagtg gagaggctct gggattatgg gatgagtagc 3000
tccccacatg ttctaagaaa cagggctcag agtggcagtg tccctcagtt caagaaagtt 3060
gttttccagg aatttactga tggctccttt actcagccct tataccgtgg agaactaaat 3120
gaacatttgg gactcctggg gccatatata agagcagaag ttgaagataa tatcatggta 3180
actttcagaa atcaggcctc tcgtccctat tccttctatt ctagccttat ttcttatgag 3240
gaagatcaga ggcaaggagc agaacctaga aaaaactttg tcaagcctaa tgaaaccaaa 3300
acttactttt ggaaagtgca acatcatatg gcacccacta aagatgagtt tgactgcaaa 3360
gcctgggctt atttctctga tgttgacctg gaaaaagatg tgcactcagg cctgattgga 3420
ccccttctgg tctgccacac taacacactg aaccctgctc atgggagaca agtgacagta 3480
caggaatttg ctctgttttt caccatcttt gatgagacca aaagctggta cttcactgaa 3540
aatatggaaa gaaactgcag ggctccctgc aatatccaga tggaagatcc cacttttaaa 3600
gagaattatc gcttccatgc aatcaatggc tacataatgg atacactacc tggcttagta 3660
atggctcagg atcaaaggat tcgatggtat ctgctcagca tgggcagcaa tgaaaacatc 3720
cattctattc atttcagtgg acatgtgttc actgtacgaa aaaaagagga gtataaaatg 3780
gcactgtaca atctctatcc aggtgttttt gagacagtgg aaatgttacc atccaaagct 3840
ggaatttggc gggtggaatg ccttattggc gagcatctac atgctgggat gagcacactt 3900
tttctggtgt acagcaataa gtgtcagact cccctgggaa tggcttctgg acacattaga 3960
gattttcaga ttacagcttc aggacaatat ggacagtggg ccccaaagct ggccagactt 4020
cattattccg gatcaatcaa tgcctggagc accaaggagc ccttttcttg gatcaaggtg 4080
gatctgttgg caccaatgat tattcacggc atcaagaccc agggtgcccg tcagaagttc 4140
tccagcctct acatctctca gtttatcatc atgtatagtc ttgatgggaa gaagtggcag 4200
acttatcgag gaaattccac tggaacctta atggtcttct ttggcaatgt ggattcatct 4260
gggataaaac acaatatttt taaccctcca attattgctc gatacatccg tttgcaccca 4320
actcattata gcattcgcag cactcttcgc atggagttga tgggctgtga tttaaatagt 4380
tgcagcatgc cattgggaat ggagagtaaa gcaatatcag atgcacagat tactgcttca 4440
tcctacttta ccaatatgtt tgccacctgg tctccttcaa aagctcgact tcacctccaa 4500
gggaggagta atgcctggag acctcaggtg aataatccaa aagagtggct gcaagtggac 4560
ttccagaaga caatgaaagt cacaggagta actactcagg gagtaaaatc tctgcttacc 4620
agcatgtatg tgaaggagtt cctcatctcc agcagtcaag atggccatca gtggactctc 4680
ttttttcaga atggcaaagt aaaggttttt cagggaaatc aagactcctt cacacctgtg 4740
gtgaactctc tagacccacc gttactgact cgctaccttc gaattcaccc ccagagttgg 4800
gtgcaccaga ttgccctgag gatggaggtt ctgggctgcg aggcacagga cctctactga 4860
ctcgagaata aaagatcaga gctctagaga tctgtgtgtt ggttttttgt gtgcggccgg 4920
gatctgagga acccctagtg atggagttgg ccactccctc tctgcgcgct cgctcgctca 4980
ctgaggccgc ccgggcaaag cccgggcgtc gggcgacctt tggtcgcccg gcctcagtga 5040
gcgagcgagc gcgcagagag ggagtggcca accccccccc ccccccccct gcaggcgatt 5100
ctcttgtttg ctccagactc tcaggcaatg acctgatagc ctttgtagag acctctcaaa 5160
aatagctacc ctctccggca tgaatttatc agctagaacg gttgaatatc atattgatgg 5220
tgatttgact gtctccggcc tttctcaccc gtttgaatct ttacctacac attactcagg 5280
cattgcattt aaaatatatg agggttctaa aaatttttat ccttgcgttg aaataaaggc 5340
ttctcccgca aaagtattac agggtcataa tgtttttggt acaaccgatt tagctttatg 5400
ctctgaggct ttattgctta attttgctaa ttctttgcct tgcctgtatg atttattgga 5460
tgttggaatt cctgatgcgg tattttctcc ttacgcatct gtgcggtatt tcacaccgca 5520
tatggtgcac tctcagtaca atctgctctg atgccgcata gttaagccag ccccgacacc 5580
cgccaacacc cgctgacgcg ccctgacggg cttgtctgct cccggcatcc gcttacagac 5640
aagctgtgac cgtctccggg agctgcatgt gtcagaggtt ttcaccgtca tcaccgaaac 5700
gcgcgagacg aaagggcctc gtgatacgcc tatttttata ggttaatgtc atgataataa 5760
tggtttctta gacgtcaggt ggcacttttc ggggaaatgt gcgcggaacc cctatttgtt 5820
tatttttcta aatacattca aatatgtatc cgctcatgag acaataaccc tgataaatgc 5880
ttcaataata ttgaaaaagg aagagtatga gtattcaaca tttccgtgtc gcccttattc 5940
ccttttttgc ggcattttgc cttcctgttt ttgctcaccc agaaacgctg gtgaaagtaa 6000
aagatgctga agatcagttg ggtgcacgag tgggttacat cgaactggat ctcaacagcg 6060
gtaagatcct tgagagtttt cgccccgaag aacgttttcc aatgatgagc acttttaaag 6120
ttctgctatg tggcgcggta ttatcccgta ttgacgccgg gcaagagcaa ctcggtcgcc 6180
gcatacacta ttctcagaat gacttggttg agtactcacc agtcacagaa aagcatctta 6240
cggatggcat gacagtaaga gaattatgca gtgctgccat aaccatgagt gataacactg 6300
cggccaactt acttctgaca acgatcggag gaccgaagga gctaaccgct tttttgcaca 6360
acatggggga tcatgtaact cgccttgatc gttgggaacc ggagctgaat gaagccatac 6420
caaacgacga gcgtgacacc acgatgcctg tagcaatggc aacaacgttg cgcaaactat 6480
taactggcga actacttact ctagcttccc ggcaacaatt aatagactgg atggaggcgg 6540
ataaagttgc aggaccactt ctgcgctcgg cccttccggc tggctggttt attgctgata 6600
aatctggagc cggtgagcgt gggtctcgcg gtatcattgc agcactgggg ccagatggta 6660
agccctcccg tatcgtagtt atctacacga cggggagtca ggcaactatg gatgaacgaa 6720
atagacagat cgctgagata ggtgcctcac tgattaagca ttggtaactg tcagaccaag 6780
tttactcata tatactttag attgatttaa aacttcattt ttaatttaaa aggatctagg 6840
tgaagatcct ttttgataat ctcatgacca aaatccctta acgtgagttt tcgttccact 6900
gagcgtcaga ccccgtagaa aagatcaaag gatcttcttg agatcctttt tttctgcgcg 6960
taatctgctg cttgcaaaca aaaaaaccac cgctaccagc ggtggtttgt ttgccggatc 7020
aagagctacc aactcttttt ccgaaggtaa ctggcttcag cagagcgcag ataccaaata 7080
ctgttcttct agtgtagccg tagttaggcc accacttcaa gaactctgta gcaccgccta 7140
catacctcgc tctgctaatc ctgttaccag tggctgctgc cagtggcgat aagtcgtgtc 7200
ttaccgggtt ggactcaaga cgatagttac cggataaggc gcagcggtcg ggctgaacgg 7260
ggggttcgtg cacacagccc agcttggagc gaacgaccta caccgaactg agatacctac 7320
agcgtgagct atgagaaagc gccacgcttc ccgaagggag aaaggcggac aggtatccgg 7380
taagcggcag ggtcggaaca ggagagcgca cgagggagct tccaggggga aacgcctggt 7440
atctttatag tcctgtcggg tttcgccacc tctgacttga gcgtcgattt ttgtgatgct 7500
cgtcaggggg gcggagccta tggaaaaacg ccagcaacgc ggccttttta cggttcctgg 7560
ccttttgctg gccttttgct cacatgttct ttcctgcgtt atcccctgat tctgtggata 7620
accgtattac cgcctttgag tgagctgata ccgctcgccg cagccgaacg accgagcgca 7680
gcgagtcagt gagcgaggaa gcggaagagc gcccaatacg caaaccgcct ctccccgcgc 7740
gttggccgat tcattaatgc agctgtggaa tgtgtgtcag ttagggtgtg gaaagtcccc 7800
aggctcccca gcaggcagaa gtatgcaaag catgcatctc aattagtcag caaccaggtg 7860
tggaaagtcc ccaggctccc cagcaggcag aagtatgcaa agcatgcatc tcaattagtc 7920
agcaaccata gtcccgcccc taactccgcc catcccgccc ctaactccgc ccagttccgc 7980
ccattctccg ccccatggct gactaatttt ttttatttat gcagaggccg aggccgcctc 8040
ggcctctgag ctattccaga agtagtgagg aggctttttt ggaggcctag gcttttgcaa 8100
aaagct 8106

Claims (15)

1. An isolated modified human factor VIII (mhFVIII) comprising one or more amino acid substitutions at a position selected from the group consisting of a20, T21, F57, L69, I80, L178, R199, H212, I215, R269, I310, L318, S332, R378, I610 and I661.
2. The isolated mhFVIII according to claim 1, wherein the mhFVIII comprises one or more amino acid substitutions selected from the amino acid substitutions listed in table 1.
3. The isolated mhFVIII according to claim 1 or 2, comprising one or more amino acid substitutions selected from the group consisting of a20K, T21I, T V, F3557L, L69V, I80V, L178F, R199K, H212Q, I215V, R269K, I310V, L F, S P, R378S, I M and I661V.
4. A mhFVIII according to any one of claims 1-3, comprising the following amino acid substitutions:
(1) A20K and T21I, or
(2) A20K and T21V, or
(3) T21I, L V and I80V, or
(4) T21I, L69V, I and L178F, or
(5) T21I, L69V, I V and I661V, or
(6) T21I, L69V, I, L178F and I661V, or
(7) R199K, H212Q, I V, R269K, I310V, L318F and S332P, or
(8) T21I, L69V, I80V, L178F, H212Q, I215V, R269K, L318F and I661V, or
(9) a20K, T21I, L V, I80V, L178F, H212Q, I215V, R269K, L318F and I661V, or
(10) T21I, L69V, I V, L178F, R199K, H212Q, I215V, R269K, I310V, L318F, S P and I661V, or
(11) a20K, T21V, L69V, I80V, L178F, R199K, H212Q, I215V, R269K, I310V, L318F, S332P and I661V.
5. The mhFVIII according to any one of claims 1-4, wherein the mhFVIII consists of a single polypeptide.
6. The mhFVIII according to any one of claims 1-5, wherein the mhFVIII comprises a truncated B domain.
7. The mhFVIII according to any one of claims 1-6, wherein the mhFVIII comprises (1) wild type hFVIII or the A1 and A2 domains of mhFVIII, and (2) the A3, C1 and C2 domains of FVIII from a non-human species.
8. The mhFVIII according to claim 7, wherein the A3, C1 and C2 domains are from canine factor VIII.
9. An isolated polynucleotide encoding mhFVIII according to any one of claims 1-8, optionally comprising regulatory sequences operably linked to the polynucleotide.
10. An expression vector comprising the polynucleotide of claim 9.
11. The expression vector of claim 10, wherein the expression vector is a viral vector.
12. The expression vector of claim 11, wherein the viral vector is an AAV vector.
13. A host cell comprising the expression vector of claim 10.
14. A pharmaceutical composition comprising:
(1) The isolated mhFVIII of any one of claims 1-8, the expression vector of any one of claims 10-12, or the host cell of claim 13; and
(2) A pharmaceutically acceptable carrier.
15. The pharmaceutical composition according to claim 14 for use in medicine.
CN202180096784.0A 2021-03-30 2021-03-30 Modified plasma coagulation factor VIII and methods of use thereof Pending CN117157316A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2021/024916 WO2022211791A1 (en) 2021-03-30 2021-03-30 Modified plasma clotting factor viii and method of use thereof

Publications (1)

Publication Number Publication Date
CN117157316A true CN117157316A (en) 2023-12-01

Family

ID=75588282

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180096784.0A Pending CN117157316A (en) 2021-03-30 2021-03-30 Modified plasma coagulation factor VIII and methods of use thereof

Country Status (4)

Country Link
EP (1) EP4314041A1 (en)
JP (1) JP2024511851A (en)
CN (1) CN117157316A (en)
WO (1) WO2022211791A1 (en)

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4501729A (en) 1982-12-13 1985-02-26 Research Corporation Aerosolized amiloride treatment of retained pulmonary secretions
US5859204A (en) 1992-04-07 1999-01-12 Emory University Modified factor VIII
US6376463B1 (en) 1992-04-07 2002-04-23 Emory University Modified factor VIII
US5478745A (en) 1992-12-04 1995-12-26 University Of Pittsburgh Recombinant viral vector system
US6114148C1 (en) 1996-09-20 2012-05-01 Gen Hospital Corp High level expression of proteins
CA2348382C (en) 1998-11-10 2013-09-17 The University Of North Carolina At Chapel Hill Chimeric parvovirus vectors and methods of making and administering the same
EP1038959A1 (en) 1999-03-17 2000-09-27 Aventis Behring Gesellschaft mit beschränkter Haftung Factor VIII without B-domain, comprising one or more insertions of a truncated intron I of factor IX
DE60117550T2 (en) 2000-06-01 2006-12-07 University Of North Carolina At Chapel Hill DOUBLE-SIDED PARVOVIRUS VECTORS
EP1319016A4 (en) 2000-09-19 2006-05-10 Univ Emory Modified factor viii
EP1233064A1 (en) 2001-02-09 2002-08-21 Aventis Behring Gesellschaft mit beschränkter Haftung Modified factor VIII cDNA and its use for the production of factor VIII
AU2003249208B2 (en) 2002-07-16 2010-03-04 Vgx Pharmaceuticals, Llc Codon optimized synthetic plasmids
EP1424344A1 (en) 2002-11-29 2004-06-02 Aventis Behring Gesellschaft mit beschränkter Haftung Modified cDNA factor VIII and its derivates
SE536732C2 (en) 2011-03-04 2014-07-01 Swemac Innovation Ab Prosthesis for joint surgery
EP3904376A1 (en) * 2013-06-24 2021-11-03 Xiao, Weidong Mutant factor viii compositions and methods
JP2021520802A (en) * 2018-04-12 2021-08-26 ビオテスト・アクチエンゲゼルシャフトBiotest AG Deimmunized factor VIII molecule and pharmaceutical composition containing it
CA3127065A1 (en) * 2019-01-16 2020-07-23 Baxalta Incorporated Viral vectors encoding recombinant fviii variants with increased expression for gene therapy of hemophilia a

Also Published As

Publication number Publication date
WO2022211791A1 (en) 2022-10-06
JP2024511851A (en) 2024-03-15
EP4314041A1 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
US11046957B2 (en) AAV treatment of Huntington&#39;s disease
DK2698163T3 (en) Codon-optimized factor VIII variants and synthetic liver-specific promoter
KR102450833B1 (en) Gene therapy for the treatment of hemophilia A
CN113227385A (en) Nucleic acid molecules and their use for non-viral gene therapy
CN111247251A (en) Nucleic acid molecules and uses thereof
AU2016343979A1 (en) Delivery of central nervous system targeting polynucleotides
EP3250226B1 (en) Factor viii proteins having ancestral sequences, expression vectors, and uses related thereto
US20220144919A1 (en) Mutant factor viii compositions and methods
JP2019503649A (en) CpG reduced factor VIII variants, compositions and methods and uses for the treatment of hemostatic disorders
CN114829391A (en) Treatment of hereditary angioedema with liver-specific gene therapy vectors
CA2462966A1 (en) Factor viii c2 domain variants
AU2016348759B2 (en) AAV/UPR-plus virus, UPR-plus fusion protein, genetic treatment method and use thereof in the treatment of neurodegenerative diseases, such as Parkinson&#39;s disease and Huntington&#39;s disease, inter alia
KR20210151785A (en) Non-viral DNA vectors and their use for expression of FVIII therapeutics
CN117157316A (en) Modified plasma coagulation factor VIII and methods of use thereof
RU2812852C2 (en) Non-viral dna vectors and options for their use for expression of therapeutic agent based on factor viii (fviii)
US11795207B2 (en) Modified plasma clotting factor VIII and method of use thereof
RU2808564C2 (en) Codon-optimized nucleic acid that encodes b-domain-deleted factor viii protein and its use
WO2024168358A1 (en) Lentiviral system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination