CN117150402A - 基于生成式对抗网络的电力数据异常检测方法及模型 - Google Patents

基于生成式对抗网络的电力数据异常检测方法及模型 Download PDF

Info

Publication number
CN117150402A
CN117150402A CN202311024532.4A CN202311024532A CN117150402A CN 117150402 A CN117150402 A CN 117150402A CN 202311024532 A CN202311024532 A CN 202311024532A CN 117150402 A CN117150402 A CN 117150402A
Authority
CN
China
Prior art keywords
data
loss
power data
group
true probability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311024532.4A
Other languages
English (en)
Inventor
曾碧卿
郑辛茹
洪培林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Normal University
Original Assignee
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Normal University filed Critical South China Normal University
Priority to CN202311024532.4A priority Critical patent/CN117150402A/zh
Publication of CN117150402A publication Critical patent/CN117150402A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/243Classification techniques relating to the number of classes
    • G06F18/2433Single-class perspective, e.g. one-against-all classification; Novelty detection; Outlier detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks
    • G06N3/0442Recurrent networks, e.g. Hopfield networks characterised by memory or gating, e.g. long short-term memory [LSTM] or gated recurrent units [GRU]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0475Generative networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/088Non-supervised learning, e.g. competitive learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/094Adversarial learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/098Distributed learning, e.g. federated learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2123/00Data types
    • G06F2123/02Data types in the time domain, e.g. time-series data

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Computing Systems (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

基于生成式对抗网络的电力数据异常检测方法,包括:将原始数据信号分成小序列信号后经过映射得到对应的潜在向量;将潜在向量逐个映射,得到一组伪时间序列数据;分别计算每一个伪时间序列数据的子序列的为真概率及计算每一个小序列信号的为真概率;将伪时间序列数据的子序列的为真概率与每一个小序列信号的为真概率比对,计算每一组子序列的判别损失,求和得到总判别损失;将每一个伪时间序列数据的子序列与每一个小序列信号比对,得到每一组子序列的剩余损失,求和得到总剩余损失;根据每一组子序列的剩余损失和判别损失,计算剩余分数和判别分数,对剩余分数和判别分数加权处理,得到一异常分数;将异常分数与一预设阈值比较,得到鉴别结果。

Description

基于生成式对抗网络的电力数据异常检测方法及模型
技术领域
本发明涉及异常检测领域,特别是涉及电力数据异常检测方法及模型领域。
背景技术
随着物联网技术的普及,种类丰富的信息传感器已经在人们的生活中随处可见,电力数据的信息采集也由人工记录全面转化为电子传感设备自动录入,使得数据采集更加高效。但由于各种方面的因素,仍然会产生异常电力数据。传统上,基于规则的异常检测方法是检测异常数据的常用解决方案,但电力数据为模拟信号,且随着时间具有连续变化,因此电力数据在时间步长上具有相关性,从而电力数据拥有多变量的时序特性,无法简单通过基于规则的方法来准确判别异常。
面对上述问题,现有的时间序列数据中的异常检测任务中,因为有监督机器学习方法需要大量真实的正常数据和带有标注的异常数据来训练学习,但实际中电力数据缺乏标记,因此电力时间序列数据中的异常检测通常被视为一种无监督的机器学习任务,而无监督学习大多是将样本数据进行线性变换和投影后嵌入向量空间,通过比较原始数据和预测数据的差异值来检测异常,但复杂的电力时序序列数据隐含的内在相关性往往是非线性的。另一类方法通过比较当前时间步长的系统状态值和预测的正常范围,以此来检测异常,但是因为大多数电力系统本质上是高度动态的,很难定义一个正常的测量范围,所以也存在一定的误差,导致异常检测效果不佳。
发明内容
因此,本发明提出基于生成式对抗网络的电力数据异常检测模型及方法,本发明使用包含生成器和鉴别器的异常检测模型来处理电力时间序列数据,并通过对抗训练,不断优化生成器和鉴别器的数据生成能力和异常鉴别能力,提高模型的异常检测能力。丰富了生成式对抗网络在电力数据异常检测上的应用,为其扩展了应用场景,提升了模型的实用性。
本申请是通过如下技术方案实现的:
一方面,本申请提供一种基于生成式对抗网络的电力数据异常检测方法,所述异常检测其包括以下步骤:
S1:获取原始数据信号,将原始数据信号通过滑动窗口Sw分成小序列信号组,小序列信号组中的每一个小序列信号组经过映射得到对应的潜在向量,从而形成潜在向量组;
S2:将潜在向量组中的潜在向量逐个进行映射,得到一组伪时间序列数据;
S3A1:分别计算每一个伪时间序列数据的子序列的为真概率,以及计算每一个小序列信号的为真概率;
S3A2:将伪时间序列数据的子序列的为真概率与小序列信号组的每一个小序列信号的为真概率进行比对,计算得到每一组子序列的判别损失,最后求和得到总判别损失;
S3B:将每一个伪时间序列数据的子序列与小序列信号组的每一个小序列信号进行比对,得到每一组子序列的剩余损失,最后求和得到总剩余损失;
S4:根据每一组子序列的剩余损失和判别损失,计算剩余分数和判别分数,对剩余分数和判别分数进行加权处理,得到一异常分数;
S5:将所述异常分数与一预设阈值进行比较,得到鉴别结果。
进一步地,S31A的总判别损失计算公式为:
其中,x为小序列信号组,D1(·)表示计算对应数据的为真概率评估值,具体为指定输入小序列的统计数据的函数体。
进一步地,S3B的总剩余损失计算公式为:
其中,x为小序列信号组,G(zλ)为伪时间序列数据。
进一步地,所述步骤S2和S3A1的参数通过以下第一训练方法进行优化:
从一潜在向量组中随机选择一噪声向量输入至生成器的映射模块中,并从原始电力数据集中随机选择一个电力数据输入至鉴别器的为真概率计算模块中;
所述噪声向量经过所述映射模块生成一个伪时间序列数据;
计算伪时间序列的为真概率和原始电力数据集中的电力数据的为真概率;
根据伪时间序列的为真概率和原始电力数据集中的电力数据的为真概率,计算总损失,对映射模块和为真概率计算模块的网络参数进行更新;
判断目标损失函数是否收敛,若否,则重复上述步骤,若是,则完成模型训练。
进一步地,所述步骤S2和S3A1的参数的第一训练方法中的目标损失函数具体为:
其中Ex是真实数据空间X的期望值,Ez是潜在空间Z的期望值,D1(x)表示鉴别器得到的正常电力数据的为真概率,D1(G(z))表示鉴别器得到的伪时间序列的为真概率。
进一步地,所述步骤S1中将小序列信号映射得到对应的潜在向量的映射规则通过以下的第二训练方法进行优化:
从原始电力数据集中随机选择一原始电力数据输入至所述异常检测模型中进行运算,得到生成器的剩余损失和所述鉴别器的判别损失;
结合所述剩余损失和所述判别损失,更新所述信号预处理模块对原始电力数据进行数据压缩时的映射规则;
判断由剩余损失和判别损失构建的总损失函数是否收敛,若否,则重复上述步骤,若是,则完成模型训练。
进一步地,所述第二训练方法的总损失函数具体为:
剩余损失LR
LR(zλ)=Σ|x-G(zλ)|
其中,x为小序列信号组,G(zλ)为伪时间序列数据;
损失函数LD
其中,x为小序列信号组,D1(·)表示计算对应数据的为真概率评估值,具体为指定输入小序列的统计数据的函数体;
损失函数L定义为剩余损失和判别损失的加权和,如下所示:
L(zλ)=(1-γ)LR(zλ)+γLD(zλ)
其中γ为加权系数。
另一方面,本申请还提供一种基于生成式对抗网络的电力数据异常检测模型,其包括:
信号预处理模块:用于获取原始数据信号,将原始数据信号通过滑动窗口Sw分成小序列信号组,小序列信号组中的每一个小序列信号组经过映射得到对应的潜在向量,从而形成潜在向量组;
映射模块:用于将潜在向量组中的潜在向量逐个进行映射,得到一组伪时间序列数据;
为真概率计算模块:用于分别计算每一个伪时间序列数据的子序列的为真概率,以及计算每一个小序列信号的为真概率;
判别损失计算模块:用于将伪时间序列数据的子序列的为真概率与小序列信号组的每一个小序列信号的为真概率进行比对,计算得到每一组子序列的判别损失,最后求和得到总判别损失;
剩余损失计算模块:用于将每一个伪时间序列数据的子序列与小序列信号组的每一个小序列信号进行比对,得到每一组子序列的剩余损失,最后求和得到总剩余损失;
异常分数计算模块:用于根据每一组子序列的剩余损失和判别损失,计算剩余分数和判别分数,对剩余分数和判别分数进行加权处理,得到一异常分数;
阈值比较模块:用于将所述异常分数与一预设阈值进行比较,得到鉴别结果。
进一步地,所述映射模块和剩余损失计算模块组成一生成器,所述为真概率计算模块、判别损失计算模块、异常分数计算计算模块、阈值比较模块组成一鉴别器;
且所述生成器包括三层长短期记忆网络,所述鉴别器包括单层长短期记忆网络。
另一方面,本申请还提供一种计算机设备,所述计算机设备包括至少一个存储器以及至少一个处理器;
所述存储器,用于存储一个或多个程序;当所述一个或多个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如上述任一项所述的一种基于生成式对抗网络的电力数据异常检测方法的步骤。
本申请继承了基于无监督学习的异常检测算法思想,并受到GAN模型博弈原理的启发后,提出一种基于生成式对抗网络的电力数据异常检测模型及训练方法;本发明使用LSTM作为GAN网络的生成器和鉴别器的网络架构,得到的异常检测模型来处理电力时间序列数据,使用不同的有效架构来检测小数据集中的异常,本模型首次在电力时序数据上进行实验,丰富了生成式对抗网络在电力数据异常检测上的应用,为其扩展了应用场景,提升了模型的实用性,并且在模型结构中,鉴别器使用了一层的LSTM进行训练,具有100个隐藏单元;生成器使用了三层的LSTM,从少量隐藏单元开始,逐步增加每个连续层中隐藏单元的数量,其中每个连续层隐藏单元的数量分别为32、64和128个,使得模型能够在小数据集的条件下训练得到的生成器是有效的,也能有效地识别数据中的异常。
为了更好地理解和实施,下面结合附图详细说明本发明。
附图说明
图1为本发明的一种基于生成式对抗网络的电力数据异常检测模型的模块示意图;
图2为图1的基于生成式对抗网络的电力数据异常检测模型的检测步骤流程图;
图3为对本发明的生成式对抗网络的电力数据异常检测模型的第一训练方法的流程图;
图4为对本发明的生成式对抗网络的电力数据异常检测模型的第二训练方法的流程图。
具体实施方式
基于电力系统中现有的异常检测方法不能考虑时序数据中时间步长上的相关性,不能处理时间序列数据中的非线性相互作用的问题,发明人分析了用户用电数据具有时间关联特性、高维度特性,提出采用生成式对抗网络作为电力数据异常检测的模型。而本申请提出的模型首先通过对待检测的电力数据进行降维处理,提取有效特征后,输入至训练好的模型中,通过训练好的生成器和鉴别器共同得到异常损失,并计算异常分数与一设定阈值进行比较来对时序数据进行异常检测,完成用户用电行为负荷特征的提取和分析;实现用户用电异常行为高精度检测,提高用户异常用电行为的识别准确率和减少识别时间。
请参阅图1和图2,图1为本发明的一种基于生成式对抗网络的电力数据异常检测模型的模块示意图,图2为图1的基于生成式对抗网络的电力数据异常检测模型的检测步骤流程图,其中,本发明的基于生成式对抗网络的电力数据异常检测模型包括信号预处理模块、映射模块、为真概率计算模块、判别损失计算模块、剩余损失计算模块、异常分数计算模块和阈值比较模块。
具体地,所述信号预处理模块用于执行步骤S1:获取原始数据信号,将原始数据信号通过滑动窗口Sw分成小序列信号组,小序列信号组中的每一个小序列信号组经过映射得到对应的潜在向量,从而形成潜在向量组。其中,原始数据信号为连续的模拟信号,潜在向量为原始数据信号经过一映射关系,从连续的模拟信号转化向量形式,潜在向量位于潜在空间,潜在空间为抽象的多维空间,将原始数据信号映射到潜在空间,能够对原始数据进行压缩。
所述映射模块用于执行步骤S2:将潜在向量组中的潜在向量逐个进行映射,得到一组伪时间序列数据,伪时间序列数据是生成器根据原始数据生成的伪电力时间序列数据,特点是和真实数据足够相似,让鉴别器无法区分。在具体的处理中,映射模块通过函数G(z,θ1))将每一个潜在向量进行重构,得到一个对应伪时间序列数据的子序列G(z)。其中,θ1是映射模块的参数。
所述为真概率计算模块用于执行步骤S3A1:分别计算每一个伪时间序列数据的子序列的为真概率,以及计算每一个小序列信号的为真概率;其中,为真概率计算模块通过一内置函数D(x,θ2),计算输入的伪时间序列数据或者小信号序列的为真概率,其中θ2是为真概率计算模块的参数。
所述判别损失计算模块用于执行步骤S3A2:将伪时间序列数据的子序列的为真概率与小序列信号组的每一个小序列信号的为真概率进行比对,计算得到每一组子序列的判别损失,最后求和得到总判别损失。
损失函数LD定义为:
其中,x为小序列信号组,D1(·)表示计算对应数据的为真概率评估值,具体为指定输入小序列的统计数据的函数体。
所述剩余损失计算模块用于执行步骤S3B:将每一个伪时间序列数据的子序列与小序列信号组的每一个小序列信号进行比对,得到每一组子序列的剩余损失,最后求和得到总剩余损失。
剩余损失LR的具体计算方式为:
其中,x为小序列信号组,G(zλ)为伪时间序列数据。
所述异常分数计算模块用于执行步骤S4:根据每一组子序列的剩余损失和判别损失,计算剩余分数和判别分数,对剩余分数和判别分数进行加权处理,得到一异常分数。
将一个原始数据经过上述处理,将会为每个子序列输出一组异常检测损失{L=Li,s,i=1,2,...,m;s=1,2,...sw}
其中异常检测损失的具体计算公式如下:
L(zλ)=(1-γ)LR(zλ)+γzD(zλ)
其中γ为加权系数。
其中,剩余分数R(x)的计算公式如下:
lct=count(i,s∈{i+s=t})
其中,LR,s为每一个子序列对应的剩余损失。
判别分数D2(x)的计算公式如下:
lct=count(i,s∈{i+s=t})
其中,LD,s为每一个子序列对应的判别损失。
异常分数A(x)表示给定模拟数据分布G(z,θ1)与一般数据分布(即正常时间序列模型)的拟合程度,具体公式如下:
A(x)=(1-γ)R(x)+γD2(x)
其中,参数γ为加权系数。
所述阈值比较模块用于执行步骤S5:将所述异常分数与一预设阈值进行比较,得到鉴别结果。
当异常分数大于预设阈值,则判定待检测数据异常,若异常分数小于预设阈值,则判定待检测数据正常。
本发明的电力数据异常检测模型可利用现有的一些运算模型来进行具体模块的执行,例如,可使用一生成器来执行上述映射模块和剩余损失计算模块的数据处理;以及通过一鉴别器来执行上述判别损失计算模块、异常分数计算模块和阈值比较模块的数据处理。
进一步,上述对抗生成网络(即生成器和鉴别器)的网络参数基于真实空间的电力数据的一般分布来进行优化,其学习真实空间的电力数据的一般分布由第一次训练来获得。具体地,
请参阅图3,图3为对本发明的生成式对抗网络的电力数据异常检测模型的第一训练方法的流程图。
首先预设一个标准数据库,标准数据库包括原始电力数据集,其包括n个电力数据;其中,原始电力数据集中的电力数据均为正常数据。从潜在空间中随机选择n个噪声向量作为潜在向量组。
从一潜在向量组中随机选择一噪声向量输入至生成器的映射模块中,并从原始电力数据集中随机选择一个电力数据输入至鉴别器的为真概率计算模块中。
所述噪声向量经过所述映射模块生成一个伪时间序列数据。
计算伪时间序列的为真概率和原始电力数据集中的电力数据的为真概率。
根据伪时间序列的为真概率和原始电力数据集中的电力数据的为真概率,计算总损失,对映射模块和为真概率计算模块的网络参数进行更新;
判断目标损失函数是否收敛,若否,则重复上述步骤,若是,则完成模型训练。
第一次训练过程类似于生成器G将鉴别器D作为对手。生成器G需要学习如何生成数据,来使鉴别器D无法再将其区分为假的。假设用于训练的正常电力数据是x,电力数据的分布为pdata(x),生成器G需要去学习到真实数据分布pdata(x)。噪声向量z的分布假设为pz(z),在这里pz(z)是已知的,而pdata(x)是未知的。在理想的状态下G(Z)的分布应该是尽可能接近pdata(x),G将已知分布的z变量映射到位置分布x变量上,具体训练过程如下:
首先一个原始数据的时间序列在发送给鉴别器D之前被用滑动窗口sw分成小序列,然后发送给鉴别器,而生成器的输入是从潜在向量组中随机选择的一噪声信号,最后生成器根据噪声信号生成一伪时间序列,然后鉴别器的为真概率计算模块分别计算伪时间序列和正常电力数据的为真概率。最后根据为真概率计算判别损失。
生成器G和鉴别器D都试图在训练期间优化竞争损失函数。因此,它们可以被认为是两个使用函数V(G,D)进行极大极小博弈的过程。生成器G试图最大化G(z)被识别为真实值的概率,而鉴别器D试图最小化G(z)被识别为真实值的概率。
对抗训练可以看成是采用生成器与鉴别器之间的一个极小极大化策略,其目标损失函数如下:
其中Ex是真实数据空间X的期望值,Ez是潜在空间Z的期望值;D1(x)表示鉴别器得到的正常电力数据的为真概率,D1(G(z))表示鉴别器得到的伪时间序列的为真概率。
每更新一次,生成器的G(z,θ1))中的θθ和鉴别器D(x,θ2)的θ2都学习到标准数据库中正常电力数据的一般数据分布,当目标损失函数收敛时,第一阶段训练完成。
G(z,θ1)函数模拟了将输入加噪潜在向量z映射到所述真实数据空间x∈X(即时间序列小序列)的过程。D(x,θ2)函数来自于鉴别器,通过此函数可以预测数据真实的概率。这里θ1和θ2是模型的参数。该网络的目标损失函数使函数D1(x)最大化,并使D1(G(z))最小,即鉴别器鉴别正常数据的为真概率最大,而鉴别生成器生成的伪时间数据的为真概率最小。经过足够的迭代训练,生成器G和鉴别器D将达到无法再提高的程度,也就是它们不能再被改进。此时,生成器G生成真实的时间序列数据,而鉴别器D无法区分假数据和真数据。
第一训练阶段的目的是通过对抗性训练学习给定的标准数据库中的数据的一般数据分布pg。该过程同时训练生成伪时间序列数据的生成器G和如何区分由生成器生成的伪数据和正常电力数据的鉴别器D。为了解决数据点数量少的问题,发明人提出使用一个三层的LSTM作为生成器,单层的LSTM作为鉴别器。因为当数据集很小时,大型鉴别器很容易过度拟合数据,而浅层生成器不能生成足够真实的数据来击败鉴别器。因此发明人在数据集小的时候使用一个简单的浅层鉴别器D和一个中等深度的生成器G来解决上述问题。
为了使得加快训练速度,发明人还采用随机梯度下降法对模型进行训练
随机梯度下降(SGD)算法从样本中随机抽出一组,训练后按梯度更新一次,然后再抽取一组,再更新一次,在样本量极其大的情况下,可能不用训练完所有的样本就可以获得一个损失值在可接受范围之内的模型,梯度下降具体为梯度的方向是函数在给定点上升最快的方向,那么梯度的反方向就是函数在给定点下降最快的方向。因此我们在做梯度下降的时候,沿着梯度的反方向进行权重的更新,可以有效的找到全局的最优解。这里的随机是指每次迭代过程中,样本都要被随机打乱,打乱能够有效减小样本之间造成的参数更新抵消问题。发明人使用随机梯度下降算法来训练GAN网络。对抗性训练完成后,时间序列小序列x∈X映射到潜在空间z∈Z进行异常检测。
发明人在研究中发现在对抗性训练中,生成器学习映射G:Z→X,使得G(z)∈X,即从潜在空间表示z到真实数据空间的正常时间序列x。为了检测异常,首先我们需要将现实时间序列x∈X映射到潜在空间z∈Z,观察对应的潜在空间生成现实时间序列的程度。然而,GAN不存在G-1:X→Z的逆映射,使得G-1(x)∈Z,或者是当不同数据其映射关系并不固定,仅仅依靠预设的映射函数,降低了预测结果准确性,且模型的普适性不高,因此本申请还增加了模型的对抗生成网络的映射能力训练过程即第二训练阶段,用于解决上述缺陷。
请参阅图4,图4为对本发明的生成式对抗网络的电力数据异常检测模型的第二次训练过程的流程图,第二训练方法具体包括:
从原始电力数据集中随机选择一原始电力数据输入至所述异常检测模型中进行运算,得到生成器的剩余损失和所述鉴别器的判别损失。
结合所述剩余损失和所述判别损失,更新所述信号预处理模块对原始电力数据进行数据压缩时的映射规则。
判断由剩余损失和判别损失构建的总损失函数是否收敛,若否,则重复上述步骤,若是,则完成模型训练。
给定一个真实的时间序列x∈X,我们需要找到与真实时间序列x最相似的伪时间序列G(z)所对应的潜在向量z∈Z。x和G(z)之间的相似程度取决于x遵循用于训练生成器G的数据分布pg的程度。
为了找到给定x的最佳z,这个过程从随机采样z1∈Z开始,并将其输入到完成第一次训练的生成器G中,以得到一个假的时间序列G(z1)。基于假的时间序列G(z1),我们定义了一个损失函数L,它提供了梯度来以此更新z12的参数,从而获得更新的位置z2∈Z。为了找到最相似的序列G(zλ)~x,不断更新信号预处理模块中的参数,来优化得到的潜在向量z。
进一步地,定义损失函数L以此来将真实的时间序列x∈X映射到最佳潜在空间位置z∈Z。损失函数L由剩余损失LR和判别损失LD两部分组成,如下所示。
损失函数L定义为剩余损失和判别损失的加权和,如下所示:
L(zλ)=(1-γ)LR(zλ)+γLD(zλ)
LR使虚假序列G(zλ)和真实序列x之间的点上相似。LD使虚假序列G(zλ))位于X中。这意味着,G和D都被用来通过反向传播更新z的参数。在这个反映射过程中,只有z的参数是通过反向传播更新的;生成器G和鉴别器D的参数保持不变。
即根据损失函数来找到一个从真实空间映射到潜在空间的映射关系G-1:X→Z的逆映射,使得,X→Z后,G(z)的分布与原来的x最接近。
当损失函数L收敛时,第二次训练结束。
在模型训练达到拟合后,将训练好的鉴别器和生成器共同用来检测异常,如异常分数A(x)所示,将两部分都应用于异常评判中能够更好地来识别异常,所以基于GAN的异常检测由上述两部分构成。异常分值A(x)大,表示异常时间序列;异常分值小,表示生成器G在对抗训练中学习到的X的一般数据分布的时间序列就是正常时间序列。
本申请继承了基于无监督学习的异常检测算法思想,并受到GAN模型博弈原理的启发后,提出一种基于生成式对抗网络的电力数据异常检测模型训练方法;本发明利用基于生成式对抗网络的生成器和鉴别器训练得到的异常检测模型来处理电力时间序列数据,并通过对抗训练,不断优化生成器和鉴别器的数据生成能力和异常鉴别能力,提高模型的异常检测能力,本模型首次在电力时序数据上进行实验,丰富了生成式对抗网络在电力数据异常检测上的应用,为其扩展了应用场景,提升了模型的实用性,并且其中的模型结构使用不同的有效架构来检测小数据集中的异常,鉴别器使用了一层的LSTM进行训练,具有100个隐藏单元;生成器使用了三层的LSTM,从少量隐藏单元开始,逐步增加每个连续层中隐藏单元的数量,其中每个连续层隐藏单元的数量分别为32、64和128个,使得模型能够在小数据集的条件下训练得到的生成器是有效的,也能有效地识别数据中的异常。
基于上述的同一发明构思,本申请还提供一种电子设备,可以是服务器、台式计算设备或移动计算设备(例如,膝上型计算设备、手持计算设备、平板电脑、上网本等)等终端设备。该设备包括一个或多个处理器和存储器,其中处理器用于执行程序实现上述一种基于生成式对抗网络的电力数据异常检测模型训练方法;存储器用于存储可由所述处理器执行的计算机程序。
基于同一发明构思,本申请还提供一种计算机可读存储介质,与前述一种基于生成式对抗网络的电力数据异常检测方法的实施例相对应,所述计算机可读存储介质其上存储有计算机程序,该程序被处理器执行时实现上述任一实施例所记载的的步骤。
本申请可采用在一个或多个其中包含有程序代码的存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。计算机可用存储介质包括永久性和非永久性、可移动和非可移动媒体,可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括但不限于:相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,则本发明也意图包含这些改动和变形。

Claims (10)

1.一种基于生成式对抗网络的电力数据异常检测方法,其包括以下步骤:
S1:获取原始数据信号,将原始数据信号通过滑动窗口Sw分成小序列信号组,小序列信号组中的每一个小序列信号组经过映射得到对应的潜在向量,从而形成潜在向量组;
S2:将潜在向量组中的潜在向量逐个进行映射,得到一组伪时间序列数据;
S3A1:分别计算每一个伪时间序列数据的子序列的为真概率,以及计算每一个小序列信号的为真概率;
S3A2:将伪时间序列数据的子序列的为真概率与小序列信号组的每一个小序列信号的为真概率进行比对,计算得到每一组子序列的判别损失,最后求和得到总判别损失;
S3B:将每一个伪时间序列数据的子序列与小序列信号组的每一个小序列信号进行比对,得到每一组子序列的剩余损失,最后求和得到总剩余损失;
S4:根据每一组子序列的剩余损失和判别损失,计算剩余分数和判别分数,对剩余分数和判别分数进行加权处理,得到一异常分数;
S5:将所述异常分数与一预设阈值进行比较,得到鉴别结果。
2.根据权利要求1所述的基于生成式对抗网络的电力数据异常检测方法,其特征在于,S31A的总判别损失计算公式为:
其中,x为小序列信号组,D1(·)表示计算对应数据的为真概率评估值,具体为指定输入小序列的统计数据的函数体。
3.根据权利要求2所述的一种基于生成式对抗网络的电力数据异常检测方法,其特征在于,S3B的总剩余损失计算公式为:
其中,x为小序列信号组,G(zλ)为伪时间序列数据。
4.根据权利要求3所述的一种基于生成式对抗网络的电力数据异常检测方法,其特征在于,所述步骤S2和S3A1的参数通过以下第一训练方法进行优化:
从一潜在向量组中随机选择一噪声向量输入至生成器的映射模块中,并从原始电力数据集中随机选择一个电力数据输入至鉴别器的为真概率计算模块中;
所述噪声向量经过所述映射模块生成一个伪时间序列数据;
计算伪时间序列的为真概率和原始电力数据集中的电力数据的为真概率;
根据伪时间序列的为真概率和原始电力数据集中的电力数据的为真概率,计算总损失,对映射模块和为真概率计算模块的网络参数进行更新;
判断目标损失函数是否收敛,若否,则重复上述步骤,若是,则完成模型训练。
5.根据权利要求4所述的一种基于生成式对抗网络的电力数据异常检测方法,其特征在于,所述步骤S2和S3A1的参数的第一训练方法中的目标损失函数具体为:
其中Ex是真实数据空间X的期望值,Ez是潜在空间Z的期望值,D1(x)表示鉴别器得到的正常电力数据的为真概率,D1(G(z))表示鉴别器得到的伪时间序列的为真概率。
6.根据权利要求5所述的一种基于生成式对抗网络的电力数据异常检测方法,其特征在于,所述步骤S1中将小序列信号映射得到对应的潜在向量的映射规则通过以下的第二训练方法进行优化:
从原始电力数据集中随机选择一原始电力数据输入至所述异常检测模型中进行运算,得到生成器的剩余损失和所述鉴别器的判别损失;
结合所述剩余损失和所述判别损失,更新所述信号预处理模块对原始电力数据进行数据压缩时的映射规则;
判断由剩余损失和判别损失构建的总损失函数是否收敛,若否,则重复上述步骤,若是,则完成模型训练。
7.根据权利要求6所述的一种基于生成式对抗网络的电力数据异常检测方法,其特征在于,所述第二训练方法的总损失函数具体为:
剩余损失LR
LR(zλ)=∑|x-G(zλ)|
其中,x为小序列信号组,G(zλ)为伪时间序列数据;
损失函数LD
其中,x为小序列信号组,D1(·)表示计算对应数据的为真概率评估值,具体为指定输入小序列的统计数据的函数体;
损失函数L定义为剩余损失和判别损失的加权和,如下所示:
L(zλ)=(1-γ)LR(zλ)+γLD(zλ)
其中γ为加权系数。
8.一种基于生成式对抗网络的电力数据异常检测模型,其特征在于,包括:
信号预处理模块:用于获取原始数据信号,将原始数据信号通过滑动窗口Sw分成小序列信号组,小序列信号组中的每一个小序列信号组经过映射得到对应的潜在向量,从而形成潜在向量组;
映射模块:用于将潜在向量组中的潜在向量逐个进行映射,得到一组伪时间序列数据;
为真概率计算模块:用于分别计算每一个伪时间序列数据的子序列的为真概率,以及计算每一个小序列信号的为真概率;
判别损失计算模块:用于将伪时间序列数据的子序列的为真概率与小序列信号组的每一个小序列信号的为真概率进行比对,计算得到每一组子序列的判别损失,最后求和得到总判别损失;
剩余损失计算模块:用于将每一个伪时间序列数据的子序列与小序列信号组的每一个小序列信号进行比对,得到每一组子序列的剩余损失,最后求和得到总剩余损失;
异常分数计算模块:用于根据每一组子序列的剩余损失和判别损失,计算剩余分数和判别分数,对剩余分数和判别分数进行加权处理,得到一异常分数;
阈值比较模块:用于将所述异常分数与一预设阈值进行比较,得到鉴别结果。
9.根据权利要求8所述的一种基于生成式对抗网络的电力数据异常检测模型其特征在于,所述映射模块和剩余损失计算模块组成一生成器,所述为真概率计算模块、判别损失计算模块、异常分数计算计算模块、阈值比较模块组成一鉴别器;
且所述生成器包括三层长短期记忆网络,所述鉴别器包括单层长短期记忆网络。
10.一种计算机设备,其特征在于,包括:
至少一个存储器以及至少一个处理器;
所述存储器,用于存储一个或多个程序;
当所述一个或多个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1至7任一项所述的一种基于生成式对抗网络的电力数据异常检测方法的步骤。
CN202311024532.4A 2023-08-14 2023-08-14 基于生成式对抗网络的电力数据异常检测方法及模型 Pending CN117150402A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311024532.4A CN117150402A (zh) 2023-08-14 2023-08-14 基于生成式对抗网络的电力数据异常检测方法及模型

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311024532.4A CN117150402A (zh) 2023-08-14 2023-08-14 基于生成式对抗网络的电力数据异常检测方法及模型

Publications (1)

Publication Number Publication Date
CN117150402A true CN117150402A (zh) 2023-12-01

Family

ID=88885874

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311024532.4A Pending CN117150402A (zh) 2023-08-14 2023-08-14 基于生成式对抗网络的电力数据异常检测方法及模型

Country Status (1)

Country Link
CN (1) CN117150402A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117574244A (zh) * 2024-01-15 2024-02-20 成都秦川物联网科技股份有限公司 基于物联网的超声波水表故障预测方法、装置及设备
CN118094454A (zh) * 2024-04-29 2024-05-28 国网山东省电力公司嘉祥县供电公司 一种配电网负荷数据异常检测方法及系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117574244A (zh) * 2024-01-15 2024-02-20 成都秦川物联网科技股份有限公司 基于物联网的超声波水表故障预测方法、装置及设备
CN117574244B (zh) * 2024-01-15 2024-04-02 成都秦川物联网科技股份有限公司 基于物联网的超声波水表故障预测方法、装置及设备
CN118094454A (zh) * 2024-04-29 2024-05-28 国网山东省电力公司嘉祥县供电公司 一种配电网负荷数据异常检测方法及系统

Similar Documents

Publication Publication Date Title
Wang et al. Locational detection of the false data injection attack in a smart grid: A multilabel classification approach
EP3832553A1 (en) Method for identifying energy of micro-energy device on basis of bp neural network
CN110941928B (zh) 一种基于dropout-SAE和Bi-LSTM的滚动轴承剩余寿命预测方法
CN114297936A (zh) 一种数据异常检测方法及装置
CN117150402A (zh) 基于生成式对抗网络的电力数据异常检测方法及模型
CN114297036A (zh) 数据处理方法、装置、电子设备及可读存储介质
CN116522265A (zh) 工业互联网时序数据异常检测方法及装置
CN115587335A (zh) 异常值检测模型的训练方法、异常值检测方法及系统
CN111222689A (zh) 基于多尺度时间特征的lstm负荷预测方法、介质及电子装置
CN116304853A (zh) 一种极限学习机与特征提取相结合的数据分类方法及系统
CN114582325A (zh) 音频检测方法、装置、计算机设备、存储介质
CN114677556A (zh) 神经网络模型的对抗样本生成方法及相关设备
CN113469111A (zh) 图像关键点检测方法及系统、电子设备、存储介质
CN117271979A (zh) 一种基于深度学习的赤道印度洋表层海流流速预测方法
CN116757533A (zh) 一种工业设备异常检测方法及相关装置
CN116680639A (zh) 一种基于深度学习的深海潜水器传感器数据的异常检测方法
CN116662866A (zh) 基于数据插补和表征学习的端到端不完整时间序列分类方法
CN115687912A (zh) 预测对象的轨迹数据的方法和系统及训练机器学习方法来预测对象的轨迹数据的方法和系统
CN113706290A (zh) 在区块链上采用神经架构搜索的信用评估模型构建方法、系统、设备及存储介质
Yokkampon et al. Anomaly detection using variational autoencoder with spectrum analysis for time series data
CN111950629A (zh) 对抗样本的检测方法、装置及设备
Farag et al. Inductive Conformal Prediction for Harvest-Readiness Classification of Cauliflower Plants: A Comparative Study of Uncertainty Quantification Methods
Trentin et al. Unsupervised nonparametric density estimation: A neural network approach
CN118094454B (zh) 一种配电网负荷数据异常检测方法及系统
CN117688365B (zh) 多模态生物识别门禁系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination