CN117144155A - A method for separating and extracting arsenic-containing phases from copper slag and its application - Google Patents
A method for separating and extracting arsenic-containing phases from copper slag and its application Download PDFInfo
- Publication number
- CN117144155A CN117144155A CN202311128692.3A CN202311128692A CN117144155A CN 117144155 A CN117144155 A CN 117144155A CN 202311128692 A CN202311128692 A CN 202311128692A CN 117144155 A CN117144155 A CN 117144155A
- Authority
- CN
- China
- Prior art keywords
- arsenic
- filter residue
- extraction
- filtrate
- copper slag
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052785 arsenic Inorganic materials 0.000 title claims abstract description 92
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 title claims abstract description 92
- 239000002893 slag Substances 0.000 title claims abstract description 73
- 238000000034 method Methods 0.000 title claims abstract description 55
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 44
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 44
- 239000010949 copper Substances 0.000 title claims abstract description 44
- 239000000706 filtrate Substances 0.000 claims abstract description 48
- 238000000605 extraction Methods 0.000 claims abstract description 42
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 35
- 230000001590 oxidative effect Effects 0.000 claims abstract description 34
- 239000002253 acid Substances 0.000 claims abstract description 16
- 239000000463 material Substances 0.000 claims abstract description 13
- 150000007522 mineralic acids Chemical class 0.000 claims abstract description 12
- 239000003513 alkali Substances 0.000 claims abstract description 10
- 150000007524 organic acids Chemical class 0.000 claims abstract description 9
- 238000010438 heat treatment Methods 0.000 claims abstract description 7
- 238000001914 filtration Methods 0.000 claims abstract 7
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 42
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 30
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 19
- 238000000926 separation method Methods 0.000 claims description 19
- 238000004090 dissolution Methods 0.000 claims description 15
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 14
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 9
- 229910017604 nitric acid Inorganic materials 0.000 claims description 9
- 229960000583 acetic acid Drugs 0.000 claims description 7
- 239000012362 glacial acetic acid Substances 0.000 claims description 7
- -1 hydrogen ions Chemical class 0.000 claims description 7
- 229910000040 hydrogen fluoride Inorganic materials 0.000 claims description 5
- 230000002378 acidificating effect Effects 0.000 claims description 3
- 238000007670 refining Methods 0.000 claims description 3
- 150000008044 alkali metal hydroxides Chemical group 0.000 claims description 2
- 229910052739 hydrogen Inorganic materials 0.000 claims 1
- 239000001257 hydrogen Substances 0.000 claims 1
- 230000003647 oxidation Effects 0.000 claims 1
- 238000007254 oxidation reaction Methods 0.000 claims 1
- 238000001514 detection method Methods 0.000 abstract 1
- 230000007613 environmental effect Effects 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 30
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 22
- DJHGAFSJWGLOIV-UHFFFAOYSA-K Arsenate3- Chemical compound [O-][As]([O-])([O-])=O DJHGAFSJWGLOIV-UHFFFAOYSA-K 0.000 description 18
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 18
- 239000007788 liquid Substances 0.000 description 17
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 229940000489 arsenate Drugs 0.000 description 15
- 239000000203 mixture Substances 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- 239000008367 deionised water Substances 0.000 description 9
- 229910021641 deionized water Inorganic materials 0.000 description 9
- 239000005368 silicate glass Substances 0.000 description 8
- 238000003723 Smelting Methods 0.000 description 7
- 229910000413 arsenic oxide Inorganic materials 0.000 description 7
- 229910052500 inorganic mineral Inorganic materials 0.000 description 7
- 239000011707 mineral Substances 0.000 description 7
- XPDICGYEJXYUDW-UHFFFAOYSA-N tetraarsenic tetrasulfide Chemical compound S1[As]2S[As]3[As]1S[As]2S3 XPDICGYEJXYUDW-UHFFFAOYSA-N 0.000 description 7
- IKWTVSLWAPBBKU-UHFFFAOYSA-N a1010_sial Chemical compound O=[As]O[As]=O IKWTVSLWAPBBKU-UHFFFAOYSA-N 0.000 description 6
- 150000001495 arsenic compounds Chemical class 0.000 description 6
- 229960002594 arsenic trioxide Drugs 0.000 description 6
- 229940093920 gynecological arsenic compound Drugs 0.000 description 6
- BMWMWYBEJWFCJI-UHFFFAOYSA-K iron(3+);trioxido(oxo)-$l^{5}-arsane Chemical compound [Fe+3].[O-][As]([O-])([O-])=O BMWMWYBEJWFCJI-UHFFFAOYSA-K 0.000 description 6
- 239000003245 coal Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910052729 chemical element Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 229910052964 arsenopyrite Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 238000001069 Raman spectroscopy Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 2
- MKOYQDCOZXHZSO-UHFFFAOYSA-N [Cu].[Cu].[Cu].[As] Chemical compound [Cu].[Cu].[Cu].[As] MKOYQDCOZXHZSO-UHFFFAOYSA-N 0.000 description 2
- LAISNASYKAIAIK-UHFFFAOYSA-N [S].[As] Chemical compound [S].[As] LAISNASYKAIAIK-UHFFFAOYSA-N 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 239000012670 alkaline solution Substances 0.000 description 2
- MJLGNAGLHAQFHV-UHFFFAOYSA-N arsenopyrite Chemical compound [S-2].[Fe+3].[As-] MJLGNAGLHAQFHV-UHFFFAOYSA-N 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000000536 complexating effect Effects 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 238000002386 leaching Methods 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229910052957 realgar Inorganic materials 0.000 description 2
- 239000013049 sediment Substances 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- DJHGAFSJWGLOIV-UHFFFAOYSA-N Arsenic acid Chemical compound O[As](O)(O)=O DJHGAFSJWGLOIV-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001339 alkali metal compounds Chemical class 0.000 description 1
- 230000003113 alkalizing effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- YBQWEUNEYYXYOI-UHFFFAOYSA-N arsenamide Chemical compound NC(=O)C1=CC=C([As](SCC(O)=O)SCC(O)=O)C=C1 YBQWEUNEYYXYOI-UHFFFAOYSA-N 0.000 description 1
- 229940000488 arsenic acid Drugs 0.000 description 1
- AQLMHYSWFMLWBS-UHFFFAOYSA-N arsenite(1-) Chemical compound O[As](O)[O-] AQLMHYSWFMLWBS-UHFFFAOYSA-N 0.000 description 1
- GCPXMJHSNVMWNM-UHFFFAOYSA-N arsenous acid Chemical compound O[As](O)O GCPXMJHSNVMWNM-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 229910052958 orpiment Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000012958 reprocessing Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000012306 spectroscopic technique Methods 0.000 description 1
- TUNFSRHWOTWDNC-UHFFFAOYSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCCC(O)=O TUNFSRHWOTWDNC-UHFFFAOYSA-N 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B30/00—Obtaining antimony, arsenic or bismuth
- C22B30/04—Obtaining arsenic
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/006—Wet processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/006—Wet processes
- C22B7/007—Wet processes by acid leaching
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/006—Wet processes
- C22B7/008—Wet processes by an alkaline or ammoniacal leaching
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
本发明属于环境工程领域,尤其涉及一种从铜炉渣中分离提取含砷物相的方法。所述方法包括:1)取铜炉渣加入至水中,加热溶解物料后过滤分离得到滤渣A和滤液A;2)将滤渣A置于有机酸中,溶解部分物料后过滤分离得到滤渣B和滤液B;3)将滤渣B加入至非氧化性无机酸中,溶解部分物料后过滤分离得到滤渣C和滤液C;4)将滤渣C加入至碱液中,加热溶解物料后过滤分离得到滤渣D和滤液D;5)将滤渣D加入至氧化性酸液中,进行氧化提取,过滤得到滤渣E和滤液E;6)将滤渣E加入至强氧化性溶液中,溶解得到提取液F。本发明采用选择性逐级提取方法,每一步提取都针对特定形态的含砷物相,解决了对炉渣中检测微量砷形态含量研究困难的问题。
The invention belongs to the field of environmental engineering, and in particular relates to a method for separating and extracting arsenic-containing phases from copper slag. The method includes: 1) adding copper slag to water, heating and dissolving the material, filtering and separating to obtain filter residue A and filtrate A; 2) placing filter residue A in organic acid, dissolving part of the material, filtering and separating to obtain filter residue B and filtrate B. ; 3) Add filter residue B to the non-oxidizing inorganic acid, dissolve part of the material and then filter and separate to obtain filter residue C and filtrate C; 4) Add filter residue C to the alkali solution, heat to dissolve the material and then filter and separate to obtain filter residue D and filtrate. D; 5) Add the filter residue D to the oxidizing acid solution, perform oxidative extraction, and filter to obtain the filter residue E and the filtrate E; 6) Add the filter residue E to the strong oxidizing solution and dissolve it to obtain the extract solution F. The present invention adopts a selective step-by-step extraction method, and each step of extraction is targeted at a specific form of arsenic-containing phase, thereby solving the problem of difficulty in researching the detection of trace arsenic form content in slag.
Description
技术领域Technical field
本发明属于冶金领域,尤其涉及一种从铜炉渣中分离提取含砷物相的方法。The invention belongs to the field of metallurgy, and in particular relates to a method for separating and extracting arsenic-containing phases from copper slag.
背景技术Background technique
闪速熔炼炉渣中含有夹杂的铜和砷,一般采用选矿法把富铜渣精矿选回,其余部分作为渣尾矿从系统开路。而在采用选矿法回收炉渣中的铜时,部分砷进入选出来的铜精矿中、部分进入渣尾矿中,而砷作为重金属杂质,不同形态的砷在水中的溶解度以及化学稳定性差别很大,例如,氧化砷/易溶砷酸盐、微溶砷酸盐都是存在较大的浸出毒性,这部分砷比例较高的话渣尾矿进入环境就存在一定的风险;而硅酸盐玻璃相中的砷则是稳定的被安全固化的砷,进入渣尾矿也相对较为安全。Flash smelting slag contains mixed copper and arsenic. Generally, the ore dressing method is used to select the copper-rich slag concentrate back, and the rest is removed from the system as slag tailings. When the ore dressing method is used to recover copper from slag, part of the arsenic enters the selected copper concentrate and part enters the slag tailings. As a heavy metal impurity, arsenic in different forms has very different solubility and chemical stability in water. For example, arsenic oxide/easily soluble arsenate and slightly soluble arsenate have great leaching toxicity. If the proportion of arsenic in this part is high, there is a certain risk that the slag tailings will enter the environment; and silicate glass The arsenic in the phase is stable and safely solidified, and it is relatively safe to enter the slag tailings.
因此,详细了解铜炉渣中砷的赋存状态,对指导炉渣及尾矿的安全处理、熔炼渣铜回收等具有重要意义。Therefore, a detailed understanding of the occurrence status of arsenic in copper slag is of great significance to guide the safe treatment of slag and tailings, and the recovery of copper from smelting slag.
砷再铜炉渣中的赋存状态种类多样、形态复杂,且渣中砷含量较低(<0.5wt%),常规的光谱技术,例如X射线衍射(XRD)、X射线荧光(XRF)、X射线光电子能谱(XPS)和拉曼光谱(RS),在低浓度下,只能粗略测定总的砷含量,并不能准确识别砷的赋存状态,且无法分析砷的化学稳定性如何。The occurrence states of arsenic in copper slag are diverse and complex, and the arsenic content in the slag is low (<0.5wt%). Conventional spectroscopic techniques, such as X-ray diffraction (XRD), X-ray fluorescence (XRF), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy (RS) can only roughly measure the total arsenic content at low concentrations, and cannot accurately identify the occurrence state of arsenic, and cannot analyze the chemical stability of arsenic.
名称为“一种煤中复杂混合态砷的分离及检测方法”(CN 103335991 A)的专利公开了一种分离和检测煤中复杂混合态砷的方法,采用选择性逐级提取(SSE)法,将煤中砷物相分为水溶态、离子交换态、碱溶性有机结合态、不溶性有机结合态、盐酸提取态、氢氟酸提取态、硝酸提取态、强结合态这八种赋存状态,利用密度分级、逐级提取及柱色谱层析的联用,对煤中不同宏观煤岩组分中混和无机和有机结合态砷进行分离和测定。该方案仅对土壤和沉积物进行的研究具有参考价值,所提取目标产物包括吸附态As-Fe共沉积物、有机砷等。而铜冶炼炉渣中的砷是经高温造渣反应产生的各种含砷物相,基本不含如“吸附态”、“有机砷”等物相,因此传统逐级提取方法不适合高温熔炼产生的炉渣中含砷物相的逐级提取和鉴别。The patent titled "A method for separating and detecting complex mixed arsenic in coal" (CN 103335991 A) discloses a method for separating and detecting complex mixed arsenic in coal, using the selective stepwise extraction (SSE) method. , the arsenic phase in coal is divided into eight occurrence states: water-soluble state, ion exchange state, alkali-soluble organic combined state, insoluble organic combined state, hydrochloric acid extracted state, hydrofluoric acid extracted state, nitric acid extracted state, and strongly bound state. , using the combination of density classification, step-by-step extraction and column chromatography to separate and measure the mixed inorganic and organically bound arsenic in different macroscopic coal and rock components in coal. This program only has reference value for research on soil and sediments. The extracted target products include adsorbed As-Fe co-sediments, organic arsenic, etc. The arsenic in copper smelting slag is a variety of arsenic-containing phases produced by high-temperature slag-making reactions. It basically does not contain phases such as "adsorbed state" and "organic arsenic". Therefore, the traditional step-by-step extraction method is not suitable for high-temperature smelting. Step-by-step extraction and identification of arsenic-containing phases in slag.
因此,寻找一种适用于分离提取铜炉渣中砷物相的方法势在必行。Therefore, it is imperative to find a method suitable for separation and extraction of arsenic phases in copper slag.
发明内容Contents of the invention
为解决现有技术无法实现炉渣中含砷物相的分离提取,难以实现对砷的赋存形态进行深入研究和测定等问题,本发明提供了一种从铜炉渣中分离提取含砷物相的方法。In order to solve the problems that the existing technology cannot separate and extract the arsenic-containing phase in the slag, and it is difficult to conduct in-depth research and determination of the occurrence form of arsenic, the present invention provides a method for separating and extracting the arsenic-containing phase from copper slag. method.
本发明的目的在于:一、实现炉渣中含砷物相的选择性提取;The purpose of the present invention is to: 1. Realize the selective extraction of arsenic-containing phases in slag;
二、实现炉渣中含砷物相的选择性分离和测定;2. Realize the selective separation and determination of arsenic-containing phases in slag;
三、提高所提取的含砷物相纯度,减少杂质。3. Improve the purity of the extracted arsenic-containing materials and reduce impurities.
为实现上述目的,本发明采用以下技术方案。In order to achieve the above objects, the present invention adopts the following technical solutions.
一种从铜炉渣中分离提取并测定含砷物相的方法,其特征在于:将铜炉渣依次用水、有机酸、非氧化性无机酸、碱液、氧化性酸液、强氧化性溶液进行提取,得到六种提取液,分别测定所述六种提取液中的砷含量。A method for separating, extracting and measuring arsenic-containing phases from copper slag, which is characterized by: sequentially extracting copper slag with water, organic acid, non-oxidizing inorganic acid, alkali solution, oxidizing acid solution and strong oxidizing solution , six kinds of extraction liquids were obtained, and the arsenic contents in the six kinds of extraction liquids were measured respectively.
所述方法包括以下步骤:The method includes the following steps:
1)取铜炉渣加入至水中,加热溶解物料后过滤分离得到滤渣A和滤液A;1) Take copper slag and add it to water, heat to dissolve the material and then filter and separate to obtain filter residue A and filtrate A;
2)将滤渣A置于有机酸中,溶解部分物料后过滤分离得到滤渣B和滤液B;2) Place filter residue A in organic acid, dissolve part of the material and then filter and separate to obtain filter residue B and filtrate B;
3)将滤渣B加入至非氧化性无机酸中,溶解部分物料后过滤分离得到滤渣C和滤液C;3) Add filter residue B to the non-oxidizing inorganic acid, dissolve part of the material and then filter and separate to obtain filter residue C and filtrate C;
4)将滤渣C加入至碱液中,加热溶解物料后过滤分离得到滤渣D和滤液D;4) Add filter residue C to the alkali solution, heat to dissolve the material, and then filter and separate to obtain filter residue D and filtrate D;
5)将滤渣D加入至氧化性酸液中,进行氧化提取,过滤得到滤渣E和滤液E;5) Add filter residue D to the oxidizing acid solution, perform oxidative extraction, and filter to obtain filter residue E and filtrate E;
6)将滤渣E加入至强氧化性溶液中,溶解得到提取液F。6) Add the filter residue E into the strongly oxidizing solution and dissolve it to obtain the extract solution F.
在上述技术方案中,铜炉渣中含砷物相的主要提取步骤分为以下几类。一、水溶性砷化合物,包括砷的氧化物以及钠、钾的砷酸盐;二、微溶性砷酸盐以及非晶态的铁砷酸盐,微溶性砷酸盐主要包括铝、镁、钙等砷酸盐;三、难溶性砷酸盐,如晶态砷酸铁等;四、砷的硫化物,包括雌黄、雄黄以及非晶态的硫化砷;五、砷化物以及难溶性的砷矿物,其中包括毒砂、砷化铜以及单质砷等以金属键或原子态存在的含砷物;六、硅酸盐玻璃相中的砷。In the above technical solution, the main extraction steps of arsenic-containing phases in copper slag are divided into the following categories. 1. Water-soluble arsenic compounds, including arsenic oxides and sodium and potassium arsenates; 2. Slightly soluble arsenates and amorphous iron arsenates. Slightly soluble arsenates mainly include aluminum, magnesium, and calcium. and other arsenates; 3. Insoluble arsenates, such as crystalline iron arsenate, etc.; 4. Arsenic sulfides, including orpiment, realgar and amorphous arsenic sulfide; 5. Arsenic compounds and insoluble arsenic minerals , including arsenopyrite, copper arsenide, elemental arsenic and other arsenic-containing substances that exist in the form of metallic bonds or atoms; 6. Arsenic in the silicate glass phase.
基于上述分类,进行如图1所示的分级提取。步骤1)中,根据碱金属砷酸盐溶于水的通性,以及氧化砷在热水中溶解形成亚砷酸的特性。氧化砷在热水中溶解的反应方程式如下:As2O3+3H2O→2H3AsO3。在步骤1)中,利用热水溶解的方式去除氧化砷,能够避免后续氧化砷与酸或碱或氧化性化合物反应生产杂质,影响对于炉渣中各赋存形态的判定。步骤2)中,微溶砷酸盐可用有机酸提取,其络合效应促进微溶砷酸盐的溶解。以砷酸镁为例,其反应方程式如下:4n H++C6H6O7 2-+n Mg3(AsO4)2→[Mg3n(C6H6O7)]6n-2+2n H2AsO4 -。步骤3)中难溶砷酸盐以砷酸铁为代表,在水和柠檬酸中溶解度极低,但可用盐酸溶解,生成砷酸。其反应方程式如下:FeAsO4+3H+→Fe3++H3AsO4;步骤4)中以强碱溶液提取砷的硫化物,这是由于砷的硫化物不溶于水和酸,但在碱性环境下可生成硫代砷酸盐或硫代亚砷酸盐,以氢氧化钠溶液和As2S3反应为例,其反应方程式如下:As2S3+6NaOH→Na3AsO3+Na3AsS3+3H2O;步骤5)以有机酸、无机酸结合,添加双氧水作为氧化剂,来提取金属砷化物及硫砷矿物。由于此类金属间化合物或含砷矿物中,砷往往以金属键或金属键共价键共存的形式存在,不溶于非氧化性酸和碱性溶液。采用双氧水作为氧化剂,以无机、有机酸促进溶解的方式,可以有效地提取炉渣中的此类含砷物相。以毒砂和砷化铜为例,其反应方程式如下:FeAsS+7H2O2+H+→Fe3++H3AsO4+SO4 2-+6H2O、2Cu3As+11H2O2+12H+→6Cu2++2H3AsO4+14H2O;步骤6)中用硝酸、氢氟酸、双氧水彻底消解炉渣,使剩余残渣中As彻底释放,这部分砷主要存在于炉渣中的非晶硅酸盐玻璃相中,存在形式稳定,氢氟酸可以破坏硅氧键,使玻璃相中的砷得以释放,氢氟酸和二氧化硅的反应方程式如下:SiO2+4HF=SiF4↑+2H2O。Based on the above classification, hierarchical extraction is performed as shown in Figure 1. In step 1), based on the properties of alkali metal arsenate being soluble in water and the properties of arsenic oxide dissolving in hot water to form arsenous acid. The reaction equation for dissolving arsenic oxide in hot water is as follows: As 2 O 3 +3H 2 O→2H 3 AsO 3 . In step 1), using hot water to dissolve arsenic oxide to remove arsenic oxide can avoid the subsequent reaction of arsenic oxide with acid or alkali or oxidizing compounds to produce impurities, which will affect the determination of each occurrence form in the slag. In step 2), the slightly soluble arsenate can be extracted with organic acid, and its complexing effect promotes the dissolution of the slightly soluble arsenate. Taking magnesium arsenate as an example, the reaction equation is as follows: 4n H + +C 6 H 6 O 7 2- +n Mg 3 (AsO 4 ) 2 →[Mg 3n (C 6 H 6 O 7 )] 6n-2 + 2nH2AsO4- . _ The insoluble arsenate in step 3) is represented by iron arsenate, which has extremely low solubility in water and citric acid, but can be dissolved with hydrochloric acid to generate arsenic acid. The reaction equation is as follows: FeAsO 4 +3H + →Fe 3+ +H 3 AsO 4 ; In step 4), arsenic sulfide is extracted with a strong alkaline solution. This is because arsenic sulfide is insoluble in water and acid, but in alkali Thioarsenate or thioarsenite can be generated in a chemical environment. Taking the reaction between sodium hydroxide solution and As 2 S 3 as an example, the reaction equation is as follows: As 2 S 3 +6NaOH→Na 3 AsO 3 +Na 3 AsS 3 +3H 2 O; step 5) combine organic acid and inorganic acid, and add hydrogen peroxide as an oxidant to extract metal arsenide and sulfur arsenic minerals. Because in such intermetallic compounds or arsenic-containing minerals, arsenic often exists in the form of metal bonds or covalent bonds of metal bonds, and is insoluble in non-oxidizing acid and alkaline solutions. Using hydrogen peroxide as the oxidant and inorganic and organic acids to promote dissolution, such arsenic-containing phases in the slag can be effectively extracted. Taking arsenopyrite and copper arsenide as an example, the reaction equation is as follows: FeAsS+7H 2 O 2 +H + →Fe 3+ +H 3 AsO 4 +SO 4 2- +6H 2 O, 2Cu 3 As+11H 2 O 2 +12H + →6Cu 2+ +2H 3 AsO 4 +14H 2 O; in step 6), use nitric acid, hydrofluoric acid, and hydrogen peroxide to completely digest the slag, so that As in the remaining residue is completely released. This part of arsenic mainly exists in the slag. In the amorphous silicate glass phase, the existence form is stable. Hydrofluoric acid can destroy the silicon-oxygen bond and release arsenic in the glass phase. The reaction equation of hydrofluoric acid and silicon dioxide is as follows: SiO 2 +4HF = SiF 4 ↑+2H 2 O.
作为优选,As a preference,
步骤1)所述加热溶解过程中:加热温度为80~100℃,持续时间为2~4h。During the heating and dissolving process described in step 1): the heating temperature is 80 to 100°C, and the duration is 2 to 4 hours.
上述参数能够加快溶解的过程,并且提高溶解效率,能够更加有效地提高碱金属砷酸盐的分离效率。The above parameters can speed up the dissolution process and improve the dissolution efficiency, and can more effectively improve the separation efficiency of alkali metal arsenate.
作为优选,As a preference,
步骤2)所述有机酸为柠檬酸,柠檬酸溶液浓度为0.5~0.8wt%;Step 2) The organic acid is citric acid, and the concentration of the citric acid solution is 0.5-0.8wt%;
所述溶解过程于25~35℃条件下进行、持续1~3h。The dissolution process is carried out at 25-35°C and lasts for 1-3 hours.
上述浓度的柠檬酸能够更加有效地除去铜炉渣中的微溶性砷酸盐,通过络合效应促进微溶性砷酸盐的溶解和分离。并且柠檬酸本身不具备强酸性和氧化性,能够实现高纯度、针对性地提取分离。The above concentration of citric acid can more effectively remove the slightly soluble arsenate in the copper slag and promote the dissolution and separation of the slightly soluble arsenate through the complexing effect. Moreover, citric acid itself is not strongly acidic or oxidizing, and can achieve high-purity, targeted extraction and separation.
作为优选,As a preference,
步骤3)所述非氧化性无机酸中氢离子浓度为1~3mol/L;Step 3) The hydrogen ion concentration in the non-oxidizing inorganic acid is 1 to 3 mol/L;
所述溶解过程于25~80℃条件下进行、持续1~3h。The dissolution process is carried out at 25-80°C and lasts for 1-3 hours.
上述无机酸最优选择为盐酸,盐酸为实验室盐酸,浓度为36~38wt%。The optimal choice for the above-mentioned inorganic acid is hydrochloric acid, which is laboratory hydrochloric acid with a concentration of 36 to 38 wt%.
上述条件下能够利用盐酸对砷酸铁等难溶性砷酸盐进行有效的溶解分离。Under the above conditions, hydrochloric acid can be used to effectively dissolve and separate poorly soluble arsenates such as iron arsenate.
作为优选,As a preference,
步骤4)所述碱液为碱金属氢氧化物溶液;Step 4) The alkali solution is an alkali metal hydroxide solution;
所述碱液浓度为1~3mol/L,溶解过程于70~90℃条件下进行、持续1~3h。The concentration of the alkali solution is 1 to 3 mol/L, and the dissolution process is carried out at 70 to 90°C and lasts for 1 to 3 hours.
氢氧化钠和氢氧化钾均为容易获得的碱金属化合物,具有强碱性。通过其强碱性能够有效提取砷的硫化物,使其形成硫代砷酸盐或六代亚砷酸盐,进行有效的分离。Sodium hydroxide and potassium hydroxide are both readily available alkali metal compounds and are highly alkaline. Through its strong alkalinity, it can effectively extract arsenic sulfide and form thioarsenate or sixth-generation arsenite for effective separation.
作为优选,As a preference,
步骤5)所述氧化性酸液中含有冰醋酸和过氧化氢,并以非氧化性酸调节pH值至酸性;Step 5) The oxidizing acid solution contains glacial acetic acid and hydrogen peroxide, and the pH value is adjusted to acidic with non-oxidizing acid;
所述溶解过程于60~70℃条件下进行,持续2~4h。The dissolution process is carried out at 60-70°C and lasts for 2-4 hours.
其中无机酸和非氧化性酸用于促进过氧化氢提高其氧化性能。上述条件下具备相对更优的提取分离效率和提取分离效果。Among them, inorganic acids and non-oxidizing acids are used to promote hydrogen peroxide to improve its oxidizing properties. Under the above conditions, it has relatively better extraction and separation efficiency and extraction and separation effect.
作为优选,As a preference,
步骤5)所述氧化性酸液中冰醋酸含量为35~45wt%,过氧化氢含量为4~6wt%,非氧化性无机酸含量为1.6~2.5wt%。In step 5), the glacial acetic acid content in the oxidizing acid solution is 35-45wt%, the hydrogen peroxide content is 4-6wt%, and the non-oxidizing inorganic acid content is 1.6-2.5wt%.
上述的氧化性酸本身即是一种强酸,其能够有效分离提取金属砷化物以及硫砷矿物。The above-mentioned oxidizing acid itself is a strong acid, which can effectively separate and extract metal arsenic compounds and sulfur arsenic minerals.
作为优选,As a preference,
步骤6)所述强氧化性溶液中含有硝酸、氟化氢和过氧化氢;Step 6) The strong oxidizing solution contains nitric acid, hydrogen fluoride and hydrogen peroxide;
所述溶解过程持续0.5~2h。The dissolution process lasts for 0.5 to 2 hours.
上述条件下能够有效实现对铜炉渣中的非晶硅酸盐玻璃相中的残余As进行分离,其中氟化氢起到关键地破坏硅氧键的作用,使实现有效提取的关键。Under the above conditions, the residual As in the amorphous silicate glass phase in copper slag can be effectively separated. Hydrogen fluoride plays a key role in destroying the silicon-oxygen bond, making it the key to effective extraction.
作为优选,As a preference,
所述硝酸浓度为20~25wt%;The nitric acid concentration is 20-25wt%;
所述氟化氢浓度为8~10wt%;The hydrogen fluoride concentration is 8-10wt%;
所述过氧化氢浓度为10~15wt%。The hydrogen peroxide concentration is 10-15wt%.
上述浓度配比下,对非晶硅酸盐玻璃相中的As提取分离效果最优。Under the above concentration ratio, the extraction and separation effect of As in the amorphous silicate glass phase is optimal.
一种从铜炉渣中分离提取含砷物相的方法的应用,Application of a method for separating and extracting arsenic-containing phases from copper slag,
所述方法还可用于铜炉渣的净化处理和/或砷提炼。The method can also be used for purifying copper slag and/or refining arsenic.
本发明方案能够实现对铜炉渣进行有效的除砷净化处理,还能够同时分离出各类物相的砷,所分离的砷能够用于提炼或再加工利用。The solution of the present invention can realize effective arsenic removal and purification treatment of copper slag, and can also separate arsenic in various phases at the same time, and the separated arsenic can be used for refining or reprocessing.
本发明的有益效果是:The beneficial effects of the present invention are:
1)采用选择性逐级提取方法,对炉渣中存在的含砷物相进行了细致划分,每一步提取都针对特定形态的含砷物相,解决了对炉渣中检测微量砷赋存形态及各形态含量的研究困难的问题;1) Using a selective step-by-step extraction method, the arsenic-containing phases present in the slag are carefully divided. Each extraction step targets a specific form of arsenic-containing phase, solving the problem of detecting trace forms of arsenic in the slag and its various forms. Difficult issues in studying morphological content;
2)鉴别了炉渣中砷的具体赋存形态,对于深入了解铜熔炼过程中砷的行为有重要意义,具有实际应用性;2) The specific occurrence form of arsenic in the slag is identified, which is of great significance for in-depth understanding of the behavior of arsenic in the copper smelting process and has practical application;
3)通过含砷物种的精细测定,对于评价炉渣的砷稳定性和浸出毒性具有重要参考;3) The precise determination of arsenic-containing species is an important reference for evaluating the arsenic stability and leaching toxicity of slag;
4)所需提取液均为常用试剂,成本低廉,操作便捷。4) The required extraction solutions are all commonly used reagents, which are low-cost and easy to operate.
附图说明Description of the drawings
图1为本发明实施例1选择性提取的工艺流程图;Figure 1 is a process flow diagram of selective extraction in Embodiment 1 of the present invention;
图2为本发明实施例1所用炉渣的XRD图;Figure 2 is an XRD pattern of the slag used in Example 1 of the present invention;
图3为本发明实施例1~3各个步骤提取的砷物相质量分配图。Figure 3 is a mass distribution diagram of arsenic phases extracted in each step of Examples 1 to 3 of the present invention.
具体实施方式Detailed ways
以下结合具体实施例和说明书附图对本发明作出进一步清楚详细的描述说明。本领域普通技术人员在基于这些说明的情况下将能够实现本发明。此外,下述说明中涉及到的本发明的实施例通常仅是本发明一部分的实施例,而不是全部的实施例。因此,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应当属于本发明保护的范围。The present invention will be further described in detail below with reference to specific embodiments and accompanying drawings. A person of ordinary skill in the art will be able to implement the present invention based on these descriptions. In addition, the embodiments of the present invention mentioned in the following description are generally only some embodiments of the present invention, rather than all the embodiments. Therefore, based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts should fall within the scope of protection of the present invention.
如无特殊说明,本发明实施例所用原料均为市售或本领域技术人员可获得的原料;如无特殊说明,本发明实施例所用方法均为本领域技术人员所掌握的方法。Unless otherwise specified, the raw materials used in the examples of the present invention are all commercially available or those available to those skilled in the art. Unless otherwise specified, the methods used in the examples of the present invention are all methods mastered by those skilled in the art.
实施例1Example 1
一种从铜炉渣中分离提取含砷物相的方法,A method for separating and extracting arsenic-containing phases from copper slag,
所述方法包括以下步骤:The method includes the following steps:
1)提取铜炉渣中的水溶性砷:取适量去离子水加入锥形瓶中,加热至80℃,将炉渣样品研磨至能过30目筛网,按炉渣和去离子水比例10g/L加入上述锥形瓶中,在水平振荡仪中恒温水浴振荡4h,抽滤,分离得到滤液和残渣A,使用ICP-MS检测滤液中As浓度;1) Extract water-soluble arsenic in copper slag: Add an appropriate amount of deionized water to an Erlenmeyer flask, heat to 80°C, grind the slag sample until it can pass through a 30-mesh screen, and add the slag to deionized water at a ratio of 10g/L. In the above-mentioned Erlenmeyer flask, oscillate in a constant-temperature water bath for 4 hours in a horizontal oscillator, filter with suction, and separate the filtrate and residue A. Use ICP-MS to detect the As concentration in the filtrate;
2)提取微溶性砷酸盐以及非晶态铁砷酸盐:取适量0.5wt%柠檬酸溶液加入锥形瓶中,在25℃保温。将残渣A加入上述锥形瓶中,控制固液比为10g/L,在水平振荡仪中恒温水浴振荡3h,抽滤,分离得到滤液和残渣B,使用ICP-MS检测滤液中As浓度;2) Extract slightly soluble arsenate and amorphous iron arsenate: add an appropriate amount of 0.5wt% citric acid solution into an Erlenmeyer flask and keep it warm at 25°C. Add residue A to the above-mentioned Erlenmeyer flask, control the solid-liquid ratio to 10g/L, oscillate in a constant-temperature water bath in a horizontal oscillator for 3 hours, filter with suction, and separate the filtrate and residue B. Use ICP-MS to detect the As concentration in the filtrate;
3)提取难溶性砷酸盐:取适量1mol/L盐酸溶液加入锥形瓶中,在25℃保温。将残渣B加入上述锥形瓶中,控制固液比为10g/L,在水平振荡仪中恒温水浴振荡3h,抽滤,分离得到滤液和残渣C,使用ICP-MS检测滤液中As浓度;3) Extract poorly soluble arsenate: Add an appropriate amount of 1mol/L hydrochloric acid solution into an Erlenmeyer flask and keep it warm at 25°C. Add residue B into the above-mentioned Erlenmeyer flask, control the solid-liquid ratio to 10g/L, oscillate in a constant-temperature water bath in a horizontal oscillator for 3 hours, filter with suction, and separate the filtrate and residue C. Use ICP-MS to detect the As concentration in the filtrate;
4)提取砷的硫化物:取适量1mol/L NaOH溶液加入锥形瓶中,在70℃保温。将残渣C加入上述锥形瓶中,控制固液比为10g/L,在水平振荡仪中恒温水浴振荡3h,抽滤,分离得到滤液和残渣D,使用ICP-MS检测滤液中As浓度;4) Extract arsenic sulfide: Add an appropriate amount of 1mol/L NaOH solution into an Erlenmeyer flask and keep it warm at 70°C. Add residue C to the above-mentioned Erlenmeyer flask, control the solid-liquid ratio to 10g/L, oscillate in a constant-temperature water bath in a horizontal oscillator for 3 hours, filter with suction, and separate the filtrate and residue D. Use ICP-MS to detect the As concentration in the filtrate;
5)提取砷化物及难溶性砷矿物:将去离子水、冰醋酸、30wt%双氧水、36wt%浓盐酸按体积比8:8:3:1混合并加入锥形瓶中,加热至60℃后,将残渣D加入上述锥形瓶中,控制固液比为10g/L,在水平振荡仪中恒温水浴振荡,每隔10min滴加2ml双氧水,4h后抽滤,分离得到滤液和残渣E,使用ICP-MS检测滤液中As浓度;5) Extract arsenic compounds and insoluble arsenic minerals: Mix deionized water, glacial acetic acid, 30wt% hydrogen peroxide, and 36wt% concentrated hydrochloric acid in a volume ratio of 8:8:3:1 and add them to an Erlenmeyer flask, and heat to 60°C. , add residue D into the above-mentioned Erlenmeyer flask, control the solid-liquid ratio to 10g/L, oscillate in a constant-temperature water bath in a horizontal oscillator, add 2 ml of hydrogen peroxide dropwise every 10 minutes, filter after 4 hours, and separate the filtrate and residue E. Use ICP-MS detects the As concentration in the filtrate;
6)提取硅酸盐玻璃相中的砷:将68wt%浓硝酸、48wt%氢氟酸、30wt%双氧水按体积比3:2:5混合并加入锥形瓶中,将残渣E加入上述锥形瓶中,控制固液比为10g/L,待其完全溶解后,使用ICP-MS检测滤液中As浓度。6) Extract arsenic in the silicate glass phase: Mix 68wt% concentrated nitric acid, 48wt% hydrofluoric acid, and 30wt% hydrogen peroxide in a volume ratio of 3:2:5 and add them to a conical flask. Add the residue E to the above conical flask. In the bottle, control the solid-liquid ratio to 10g/L. After it is completely dissolved, use ICP-MS to detect the As concentration in the filtrate.
经检测本实施例所用铜炉渣的化学元素组成如下表所示。After testing, the chemical element composition of the copper slag used in this example is shown in the table below.
对本实施例各个步骤提取的砷物相分配进行统计计算并对纯度进行表征,结果如下表所示。Perform statistical calculations on the phase distribution of arsenic extracted in each step of this example and characterize the purity. The results are shown in the table below.
实施例2Example 2
一种从铜炉渣中分离提取含砷物相的方法,A method for separating and extracting arsenic-containing phases from copper slag,
所述方法包括以下步骤:The method includes the following steps:
1)提取炉渣样品中的水溶性砷:取适量去离子水加入锥形瓶中,加热至90℃,将炉渣样品研磨至能过60目筛网,按炉渣和去离子水比例10g/L加入上述锥形瓶中,在水平振荡仪中恒温水浴振荡3h,抽滤,分离得到滤液和残渣A,使用ICP-MS检测滤液中As浓度;1) Extract water-soluble arsenic from the slag sample: add an appropriate amount of deionized water to an Erlenmeyer flask, heat to 90°C, grind the slag sample until it can pass through a 60-mesh screen, and add the slag to deionized water at a ratio of 10g/L. In the above-mentioned Erlenmeyer flask, oscillate in a constant-temperature water bath for 3 hours in a horizontal oscillator, filter with suction, and separate the filtrate and residue A. Use ICP-MS to detect the As concentration in the filtrate;
2)提取微溶性砷酸盐以及非晶态铁砷酸盐:取适量0.5wt%柠檬酸溶液加入锥形瓶中,在35℃保温。将残渣A加入上述锥形瓶中,控制固液比为10g/L,在水平振荡仪中恒温水浴振荡1h,抽滤,分离得到滤液和残渣B,使用ICP-MS检测滤液中As浓度;2) Extract slightly soluble arsenate and amorphous iron arsenate: add an appropriate amount of 0.5wt% citric acid solution into an Erlenmeyer flask and keep it warm at 35°C. Add residue A to the above-mentioned Erlenmeyer flask, control the solid-liquid ratio to 10g/L, oscillate in a constant-temperature water bath in a horizontal oscillator for 1 hour, filter with suction, and separate the filtrate and residue B. Use ICP-MS to detect the As concentration in the filtrate;
3)提取难溶性砷酸盐:取适量1mol/L盐酸溶液加入锥形瓶中,在80℃保温。将残渣B加入上述锥形瓶中,控制固液比为10g/L,在水平振荡仪中恒温水浴振荡2h,抽滤,分离得到滤液和残渣C,使用ICP-MS检测滤液中As浓度;3) Extract poorly soluble arsenate: Add an appropriate amount of 1mol/L hydrochloric acid solution into an Erlenmeyer flask and keep it warm at 80°C. Add residue B to the above-mentioned Erlenmeyer flask, control the solid-liquid ratio to 10g/L, oscillate in a constant-temperature water bath in a horizontal oscillator for 2 hours, filter with suction, and separate the filtrate and residue C. Use ICP-MS to detect the As concentration in the filtrate;
4)提取砷的硫化物:取适量1mol/L NaOH溶液加入锥形瓶中,在90℃保温。将残渣C加入上述锥形瓶中,控制固液比为10g/L,在水平振荡仪中恒温水浴振荡1h,抽滤,分离得到滤液和残渣D,使用ICP-MS检测滤液中As浓度;4) Extract arsenic sulfide: Add an appropriate amount of 1mol/L NaOH solution into an Erlenmeyer flask and keep it warm at 90°C. Add residue C to the above Erlenmeyer flask, control the solid-liquid ratio to 10g/L, oscillate in a constant-temperature water bath in a horizontal oscillator for 1 hour, filter with suction, and separate the filtrate and residue D. Use ICP-MS to detect the As concentration in the filtrate;
5)提取砷化物及难溶性砷矿物:将去离子水、冰醋酸、30%双氧水、36wt%浓盐酸按体积比8:8:3:1混合并加入锥形瓶中,加热至70℃后,将残渣D加入上述锥形瓶中,控制固液比为10g/L,在水平振荡仪中恒温水浴振荡,每隔10min滴加2ml双氧水,2h后抽滤,分离得到滤液和残渣E,使用ICP-MS检测滤液中As浓度;5) Extract arsenic compounds and insoluble arsenic minerals: Mix deionized water, glacial acetic acid, 30% hydrogen peroxide, and 36wt% concentrated hydrochloric acid in a volume ratio of 8:8:3:1 and add them to an Erlenmeyer flask, and heat to 70°C. , add residue D into the above-mentioned Erlenmeyer flask, control the solid-liquid ratio to 10g/L, oscillate in a constant-temperature water bath in a horizontal oscillator, add 2 ml of hydrogen peroxide dropwise every 10 minutes, filter after 2 hours, separate the filtrate and residue E, and use ICP-MS detects the As concentration in the filtrate;
6)提取硅酸盐玻璃相中的砷:将68wt%浓硝酸、48wt%氢氟酸、30wt%双氧水按体积比3:2:5混合并加入锥形瓶中,将残渣E加入上述锥形瓶中,控制固液比为10g/L,待其完全溶解后,使用ICP-MS检测滤液中As浓度。6) Extract arsenic in the silicate glass phase: Mix 68wt% concentrated nitric acid, 48wt% hydrofluoric acid, and 30wt% hydrogen peroxide in a volume ratio of 3:2:5 and add them to a conical flask. Add the residue E to the above conical flask. In the bottle, control the solid-liquid ratio to 10g/L. After it is completely dissolved, use ICP-MS to detect the As concentration in the filtrate.
经检测本实施例所用铜炉渣的化学元素组成如下表所示。After testing, the chemical element composition of the copper slag used in this example is shown in the table below.
对本实施例各个步骤提取的砷物相分配进行统计计算,结果如下表所示。Statistical calculation was performed on the arsenic phase distribution extracted in each step of this example, and the results are shown in the table below.
实施例3Example 3
一种从铜炉渣中分离提取含砷物相的方法,A method for separating and extracting arsenic-containing phases from copper slag,
所述方法包括以下步骤:The method includes the following steps:
1)提取炉渣样品中的水溶性砷:取适量去离子水加入锥形瓶中,加热至100℃,将炉渣样品研磨至能过100目筛网,按炉渣和去离子水比例10g/L加入上述锥形瓶中,在水平振荡仪中恒温水浴振荡2h,抽滤,分离得到滤液和残渣A,使用ICP-MS检测滤液中As浓度;1) Extract water-soluble arsenic in slag samples: Add an appropriate amount of deionized water to an Erlenmeyer flask, heat to 100°C, grind the slag samples until they can pass through a 100-mesh screen, and add the slag to deionized water at a ratio of 10g/L. In the above-mentioned Erlenmeyer flask, oscillate in a constant-temperature water bath for 2 hours in a horizontal oscillator, filter with suction, and separate the filtrate and residue A. Use ICP-MS to detect the As concentration in the filtrate;
2)提取微溶性砷酸盐以及非晶态铁砷酸盐:取适量0.8wt%柠檬酸溶液加入锥形瓶中,在25℃保温。将残渣A加入上述锥形瓶中,控制固液比为10g/L,在水平振荡仪中恒温水浴振荡2h,抽滤,分离得到滤液和残渣B,使用ICP-MS检测滤液中As浓度;2) Extract slightly soluble arsenate and amorphous iron arsenate: add an appropriate amount of 0.8wt% citric acid solution into an Erlenmeyer flask and keep it warm at 25°C. Add residue A to the above-mentioned Erlenmeyer flask, control the solid-liquid ratio to 10g/L, oscillate in a constant-temperature water bath in a horizontal oscillator for 2 hours, filter with suction, and separate the filtrate and residue B. Use ICP-MS to detect the As concentration in the filtrate;
3)提取难溶性砷酸盐:取适量3mol/L盐酸溶液加入锥形瓶中,在80℃保温。将残渣B加入上述锥形瓶中,控制固液比为10g/L,在水平振荡仪中恒温水浴振荡2h,抽滤,分离得到滤液和残渣C,使用ICP-MS检测滤液中As浓度;3) Extract poorly soluble arsenate: Add an appropriate amount of 3mol/L hydrochloric acid solution into an Erlenmeyer flask and keep it warm at 80°C. Add residue B to the above-mentioned Erlenmeyer flask, control the solid-liquid ratio to 10g/L, oscillate in a constant-temperature water bath in a horizontal oscillator for 2 hours, filter with suction, and separate the filtrate and residue C. Use ICP-MS to detect the As concentration in the filtrate;
4)提取砷的硫化物:取适量2mol/L NaOH溶液加入锥形瓶中,在80℃保温。将残渣C加入上述锥形瓶中,控制固液比为10g/L,在水平振荡仪中恒温水浴振荡2h,抽滤,分离得到滤液和残渣D,使用ICP-MS检测滤液中As浓度;4) Extract arsenic sulfide: Add an appropriate amount of 2mol/L NaOH solution into an Erlenmeyer flask and keep it warm at 80°C. Add residue C into the above-mentioned Erlenmeyer flask, control the solid-liquid ratio to 10g/L, oscillate in a constant-temperature water bath in a horizontal oscillator for 2 hours, filter with suction, and separate the filtrate and residue D. Use ICP-MS to detect the As concentration in the filtrate;
5)提取砷化物及难溶性砷矿物:将去离子水、冰醋酸、30wt%双氧水、36wt%浓盐酸按体积比8:8:3:1混合并加入锥形瓶中,加热至70℃后,将残渣D加入上述锥形瓶中,控制固液比为10g/L,在水平振荡仪中恒温水浴振荡,每隔10min滴加2ml双氧水,4h后抽滤,分离得到滤液和残渣E,使用ICP-MS检测滤液中As浓度;5) Extract arsenic compounds and insoluble arsenic minerals: Mix deionized water, glacial acetic acid, 30wt% hydrogen peroxide, and 36wt% concentrated hydrochloric acid in a volume ratio of 8:8:3:1 and add them to an Erlenmeyer flask, and heat to 70°C. , add residue D into the above-mentioned Erlenmeyer flask, control the solid-liquid ratio to 10g/L, oscillate in a constant-temperature water bath in a horizontal oscillator, add 2 ml of hydrogen peroxide dropwise every 10 minutes, filter after 4 hours, and separate the filtrate and residue E. Use ICP-MS detects the As concentration in the filtrate;
6)提取硅酸盐玻璃相中的砷:将68wt%浓硝酸、48wt%氢氟酸、30wt%双氧水按体积比3:2:5混合并加入锥形瓶中,将残渣E加入上述锥形瓶中,控制固液比为10g/L,待其完全溶解后,使用ICP-MS检测滤液中As浓度。6) Extract arsenic in the silicate glass phase: Mix 68wt% concentrated nitric acid, 48wt% hydrofluoric acid, and 30wt% hydrogen peroxide in a volume ratio of 3:2:5 and add them to a conical flask. Add the residue E to the above conical flask. In the bottle, control the solid-liquid ratio to 10g/L. After it is completely dissolved, use ICP-MS to detect the As concentration in the filtrate.
经检测本实施例所用铜炉渣的化学元素组成如下表所示。After testing, the chemical element composition of the copper slag used in this example is shown in the table below.
对本实施例各个步骤提取的砷物相分配进行统计计算,结果如下表所示。Statistical calculation was performed on the arsenic phase distribution extracted in each step of this example, and the results are shown in the table below.
从上述实施例1~3可以明显看出,本发明方法能够有效实现逐级分离提取砷物相的效果。同时,对上述实施例1~3的砷物相提取结果分配比例进行整合,得到如图3所示的分配图。从图中可以看出,各个步骤中试剂的浓度、用量以及处理参数(温度、时间)等均会对单步骤中的提取分离效果产生较为显著的影响。It can be clearly seen from the above-mentioned Examples 1 to 3 that the method of the present invention can effectively realize the effect of stepwise separation and extraction of arsenic phases. At the same time, the distribution ratios of the arsenic phase extraction results of the above-mentioned Examples 1 to 3 were integrated to obtain a distribution diagram as shown in Figure 3. It can be seen from the figure that the concentration, dosage and processing parameters (temperature, time) of reagents in each step will have a significant impact on the extraction and separation effect in a single step.
并且,相较于现有技术中针对矿石的冶炼提取方式,本发明能够更加有效地用于冶炼所产生的炉渣,能够有效分离去除炉渣中的砷物相,对于有价金属的回收利用以及对炉渣中砷物相的形态、含量研究有着重大意义。Moreover, compared with the smelting and extraction methods of ores in the prior art, the present invention can be more effectively used for the slag produced by smelting, can effectively separate and remove the arsenic phase in the slag, and can be used for the recycling and utilization of valuable metals. The study of the morphology and content of arsenic phases in slag is of great significance.
对比例Comparative ratio
基于实施例1的各步骤具体实施方式,仅在更改步骤先后顺序的情况下,对铜炉渣中的砷物相进行分离提取操作,并对各阶段的砷产物分配比以及砷物相纯度进行表征。Based on the specific implementation of each step in Example 1, only in the case of changing the order of the steps, the arsenic phase in the copper slag was separated and extracted, and the arsenic product distribution ratio and arsenic phase purity at each stage were characterized. .
经检测本实施例所用铜炉渣的化学元素组成如下表所示。After testing, the chemical element composition of the copper slag used in this example is shown in the table below.
具体结果如下表所示。The specific results are shown in the table below.
从上述各组对比例可以明显看出,对于本发明技术方案而言,对于步骤次序性的把控具有严格的要求。步骤次序的改变将带来显著的影响,尤其S1步骤的后移,将导致前置的步骤所得砷物相纯度显著下降。锐对比例1、对比例2和对比例3等,且可以看出,本发明原有效工艺的提取次序着重点在于减少副产物对于后续提取过程的干扰,并且也非简单由易至难的提取时序,而是依照方法对应的提取范围,以后包前的方式进行的,确保前置步骤不影响后置步骤、后置步骤基本一定程度上囊括前置步骤的提取范围,因而对于提取方法选择以及排序是实现本发明方案的核心。It can be clearly seen from the above sets of comparative examples that the technical solution of the present invention has strict requirements for controlling the sequence of steps. Changes in the order of steps will have a significant impact, especially moving the S1 step later, which will lead to a significant decrease in the purity of the arsenic phase obtained from the preceding steps. Comparative Example 1, Comparative Example 2, Comparative Example 3, etc., and it can be seen that the extraction sequence of the original effective process of the present invention focuses on reducing the interference of by-products on the subsequent extraction process, and it is not a simple extraction from easy to difficult. The timing is based on the extraction range corresponding to the method, and is carried out in a post-package manner to ensure that the pre-steps do not affect the post-steps, and the post-steps basically include the extraction range of the pre-steps to a certain extent. Therefore, for the selection of extraction methods and Sorting is the core of the solution of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311128692.3A CN117144155A (en) | 2023-09-04 | 2023-09-04 | A method for separating and extracting arsenic-containing phases from copper slag and its application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311128692.3A CN117144155A (en) | 2023-09-04 | 2023-09-04 | A method for separating and extracting arsenic-containing phases from copper slag and its application |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117144155A true CN117144155A (en) | 2023-12-01 |
Family
ID=88886459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311128692.3A Pending CN117144155A (en) | 2023-09-04 | 2023-09-04 | A method for separating and extracting arsenic-containing phases from copper slag and its application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117144155A (en) |
-
2023
- 2023-09-04 CN CN202311128692.3A patent/CN117144155A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gu et al. | Arsenic removal from lead-zinc smelter ash by NaOH-H2O2 leaching | |
Eksteen et al. | A conceptual process for copper extraction from chalcopyrite in alkaline glycinate solutions | |
Ju et al. | Clean hydrometallurgical route to recover zinc, silver, lead, copper, cadmium and iron from hazardous jarosite residues produced during zinc hydrometallurgy | |
CN110093506B (en) | High-efficiency extraction of valuable metals from germanium-containing zinc leaching residues and method for reducing their quantities | |
CN1043248C (en) | Hydrometallurgical method for recovering metals from polymetallic ores | |
CN104379778B (en) | From the method for complex oxide ore deposit and sulfide mine recovery indium, silver, gold and other rare metals, noble metal and base metal | |
CN100567524C (en) | Process for treating dust and residues from electric and other furnaces containing zinc oxide and zinc ferrite | |
Li et al. | Removal of arsenic from Waelz zinc oxide using a mixed NaOH–Na2S leach | |
CN106868307B (en) | A kind of comprehensive utilization process of pyrite cinder arsenic removal enrichment gold and silver | |
Gu et al. | Arsenic and antimony extraction from high arsenic smelter ash with alkaline pressure oxidative leaching followed by Na2S leaching | |
CN103343224A (en) | Method for quickly extracting gold from gold-containing material | |
JP2016540891A (en) | Copper treatment method | |
CN107400780A (en) | A kind of method that gold, silver and bronze are extracted in the plate from cell phone lines | |
CN104498723A (en) | Method for extracting scandium oxide from titanium slag chlorinated waste salt | |
Che et al. | A shortcut approach for cooperative disposal of flue dust and waste acid from copper smelting: Decontamination of arsenic-bearing waste and recovery of metals | |
WO2021119728A1 (en) | Recovery of vanadium from slag materials | |
Tian et al. | Alkali circulating leaching of arsenic from copper smelter dust based on arsenic-alkali efficient separation | |
CN110484748A (en) | A method of the selective recovery silver from discarded circuit board | |
CN1253589C (en) | Method for wet zinc refining without iron slag | |
Li et al. | Recovery of vanadium from black shale | |
CN106834698A (en) | A kind of method of enriching and reclaiming indium in acid solution containing indium from low concentration | |
CN108265177B (en) | A kind of method of zinc hydrometallurgy kiln slag and waste acid comprehensive utilization | |
CN107287411B (en) | Method for removing arsenic in arsenic-containing mineral | |
CN116144953B (en) | A method for enriching germanium from low-concentration germanium-containing zinc oxide smoke leaching solution | |
Lu et al. | A novel separation process for detoxifying cadmium-containing residues from zinc purification plants |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |