CN117142841A - 一种抗海生物污损的纳米陶瓷复合涂层及其制备方法 - Google Patents

一种抗海生物污损的纳米陶瓷复合涂层及其制备方法 Download PDF

Info

Publication number
CN117142841A
CN117142841A CN202311144044.7A CN202311144044A CN117142841A CN 117142841 A CN117142841 A CN 117142841A CN 202311144044 A CN202311144044 A CN 202311144044A CN 117142841 A CN117142841 A CN 117142841A
Authority
CN
China
Prior art keywords
composite coating
ceramic composite
nano ceramic
powder
marine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311144044.7A
Other languages
English (en)
Inventor
吕明利
张君
朱翔
杜德欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Yongzhao New Material Technology Co ltd
Original Assignee
Qingdao Yongzhao New Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Yongzhao New Material Technology Co ltd filed Critical Qingdao Yongzhao New Material Technology Co ltd
Priority to CN202311144044.7A priority Critical patent/CN117142841A/zh
Publication of CN117142841A publication Critical patent/CN117142841A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B17/00Methods preventing fouling
    • B08B17/02Preventing deposition of fouling or of dust
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/12Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on chromium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

本发明提出了一种抗海生物污损的纳米陶瓷复合涂层及其制备方法,属于材料表面强化技术领域。本发明的纳米陶瓷复合涂层厚度为0.1mm‑1mm,原料由氧化铝、氧化铬、氧化钛和碳化铬组成,其中氧化钛占纳米陶瓷复合涂层体积的3%‑40%,将氧化铝、氧化铬、氧化钛和碳化铬复合陶瓷粉末进行烧结处理,并采用热喷涂法喷涂到工件表面,制备得到的涂层具有耐腐蚀、耐磨、耐疲劳,与基体结合牢固,抗海生物污损作用,并且该制备方法具有低成本、高效率、应用场景广阔以及可以实现大规模批量生产的特点。

Description

一种抗海生物污损的纳米陶瓷复合涂层及其制备方法
技术领域
本发明属于材料表面强化技术领域,尤其涉及一种抗海生物污损的纳米陶瓷复合涂层及其制备方法。
背景技术
腐蚀问题已成为引发装备故障与事故、拖垮战备与维护能力和影响装备快速反应与战略部署的“头号劲敌”。深海探测器、潜艇等设备需在黑暗、低温和高压的环境下工作,这就导致海洋耐压舱表面除了面临海水的电化学腐蚀、生物化学腐蚀等腐蚀损伤之外,上下运行时还要受到越来越大的海水交变载荷,促使基体腐蚀疲劳随之加剧,一旦零件表面失效,很可能发生船毁人亡的惨剧。针对现有海洋设备存在的问题,迫切需要一种耐腐蚀、耐磨、耐疲劳,与基体结合牢固,具有抗海生物污损作用的涂层,这对于深海军事装备、海洋深海经济发展和产业化进程有着重要的战略意义。
发明内容
为解决上述技术问题,本发明提出了一种抗海生物污损的纳米陶瓷复合涂层及其制备方法。
为实现上述目的,本发明提供了以下技术方案:
本发明提出了一种抗海生物污损的纳米陶瓷复合涂层,所述纳米陶瓷复合涂层厚度为0.1mm-1mm,原料由氧化铝/氧化铬粉末和氧化钛粉末组成,其中氧化钛粉末占纳米陶瓷复合涂层原料体积的13%,其余粉末体积为余量。纳米氧化钛具有优异的光催化性能、稳定的物理化学性质以及对大部分污染物的降解能力,因此本发明的纳米陶瓷复合涂层通过添加氧化钛,并与氧化铝或者氧化铬混合,共同提高(每一种原料都不与海水发生反应,各种粉末原料涂层的强度、韧性不尽相同,各原料粉末协同发挥作用)海洋设备的耐腐蚀、耐磨、耐疲劳的等抗污损能力。
进一步地,所述原料氧化铝、氧化铬、氧化钛的粒径均为15μm-90μm,此粒径是将30nm左右的粉末,经过团聚烧结达到可以热喷涂要求。
进一步地,氧化钛粉末占纳米陶瓷复合涂层原料体积的13%。
本发明还提出了一种所述的抗海生物污损的纳米陶瓷复合涂层的制备方法,包括以下步骤:
将氧化铝、氧化铬、氧化钛和碳化铬粉末混合得到的复合陶瓷粉末进行烧结,之后喷涂在表面进行前处理的海洋设备工件表面,在海洋设备工件表面制备得到所述抗海生物污损的纳米陶瓷复合涂层。
进一步地,所述烧结的温度为450℃-1200℃,时间为1-2h。复合陶瓷粉末在烧结的过程中,随着温度的升高,陶瓷坯体的比表面增大,表面能较高的粉粒,力图向降低表面能的方向变化,不断进行物质迁移,晶界随之移动,气孔逐步排除,产生收缩,使坯体成为具有一定强度的致密的瓷体,实现团聚,形成中空结构。复合陶瓷粉末使用的原料氧化铝、氧化铬、氧化钛和碳化铬均为单相陶瓷,该粉末金属组织只有单相晶体,因此在使用过程中不会发生相变。
进一步地,所述喷涂的方法包括大气等离子喷涂和超音速喷涂,但不限于上述喷涂方法。大气等离子喷涂和超音速喷涂均为热喷涂法,利用其制备抗海生物污损的纳米陶瓷复合涂层是继火焰喷涂法后采用的更加精密均匀的方法,该方法是将含有氧化钛的复合涂层原料经过烧结,加热至熔融状态后通过加速设备实现高速喷射从而制备抗海生物污损的纳米陶瓷复合涂层,制备的涂层均匀致密,具有优良的表面性能。
进一步地,海洋设备工件表面进行前处理的过程包括对工件表面进行除油、除锈以及毛化处理,采用超声清洗机进行超声清洗,毛化处理采用喷砂处理的形式,使表面粗糙度Ra达到Ra3-7。
进一步地,在表面进行前处理的海洋设备工件表面喷涂复合陶瓷粉末之前,还包括在表面进行前处理的海洋设备工件表面制备过渡层的步骤,制备过程同样采用喷涂的方法。
进一步地,所述过渡层为镍基合金涂层,厚度为0.01mm-0.2mm。
与现有技术相比,本发明具有如下优点和技术效果:
本发明制备的纳米陶瓷复合涂层不仅保持了陶瓷涂层本身耐腐蚀等原有特性,同时由于该涂层具有特殊的半导体性能,兼有了抗海生物污损的功能,组织致密、孔隙率低,结合力≥35MPa,硬度HV0.3≥800,腐蚀电位≥-0.9V,纳米陶瓷复合涂层在光照下产生强烈的氧化能力,可以把很多难以分解的有机污染物氧化分解为二氧化碳和水等无机物,从而去除海洋装备表面附着的海生物等,扩大了陶瓷涂层在海洋装备上的应用。
本发明抗海生物污损的纳米陶瓷复合涂层的制备方法具有低成本、高效率、应用场景广阔以及可以实现大规模批量生产的特点,适用于工业化生产,对于深海军事装备、海洋深海经济发展和产业化进程有着重要的战略意义。
附图说明
构成本申请的一部分的附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为实施例1中经烧结得到的复合陶瓷粉末的微观形貌图,其中,(a)为复合陶瓷粉末颗粒团聚后的整体形貌,(b)为单个球形团聚颗粒的表面形貌,(c)为团聚不完整的颗粒的表面形貌,(d)为高放大倍率下的微观颗粒的形貌;
图2为实施例1中经烧结得到的复合陶瓷粉末的粒径分布图;
图3为实施例1制备得到的纳米陶瓷复合涂层的金相照片(100μm);
图4为实施例1制备得到的纳米陶瓷复合涂层的金相照片(50μm)。
具体实施方式
现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。
应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。
除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。本说明书中提到的所有文献通过引用并入,用以公开和描述与所述文献相关的方法和/或材料。在与任何并入的文献冲突时,以本说明书的内容为准。
在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实施方式对技术人员而言是显而易见得的。本发明说明书和实施例仅是示例性的。
关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。
本发明实施例中海洋设备工件表面进行前处理的过程均为本领域常规技术手段,不作为发明点,不再进行过多赘述。
本发明实施例中喷涂的方法包括大气等离子喷涂和超音速喷涂,但不限于上述喷涂方法,只要能实现热喷涂即可。
本发明实施例所用各原料均为通过市售购买得到,其中镍基合金涂层所用原料为常规市售镍基合金粉末即可。
本发明实施例中海洋设备工件为水下声信标。
本发明实施例中超声波清洗的步骤为本领域常规方法,对超声清洗的功率等参数无限制,只要能实现清洗作用即可,本发明超声清洗过程使用的超声波清洗机是一种利用超声波的振荡作用来清洗物品的设备,其原理是利用超声波的高频振动,使清洗液中的微小气泡在物体表面爆炸,从而去除物体表面的污垢,超声波清洗机广泛应用于电子、精密仪器、光学仪器、机械零部件等领域,因为它能够高效地清洗复杂形状和微小孔隙的物品,并且不会对物品造成损伤。
以下通过实施例对本发明的技术方案做进一步说明。
实施例1
将氧化铝粉末与氧化钛粉末进行混合,其中氧化钛粉末占纳米陶瓷复合涂层原料粉末体积的13%,其余粉末体积为余量,混合得到的复合陶瓷涂层原料粉末,将复合陶瓷涂层原料粉末在450℃-1200℃下烧结1-2h,得到粒径为15μm-90μm的中空结构复合陶瓷粉末;
对海洋设备工件表面进行除油、除锈,采用超声波清清洗机进行超声波清洗,再用酒精擦拭晾干,放置在喷砂机内,采用20-120目的白刚玉砂对工件表面进行喷砂处理,使表面粗糙度Ra达到3-7;
将复合陶瓷粉末喷涂在表面进行前处理的海洋设备工件表面,采用热喷涂技术依次喷涂过渡层(镍基合金涂层)和纳米陶瓷复合涂层:喷涂过渡层的工艺参数为:氩气流量3.4-4.2m3/h、氢气流量3.4-4.2m3/h、电流320-600A、电压130-150V、喷涂距离80-150mm、送粉量28-40g/min;喷涂纳米陶瓷复合涂层的工艺参数为:氩气流量3.6-4.8m3/h、氢气流量3.7-4.5m3/h、电流400-600A、电压120-160V、喷涂距离100-160mm、送粉量32-70g/min。喷涂前需进行预试验,以确定单位时间内的喷涂厚度,从而控制过渡层和纳米陶瓷复合涂层的厚度分别为0.01-0.2mm和0.1-1mm。
本实施例1中经烧结得到的复合陶瓷粉末的微观形貌图如图1所示。其中,图1中(a)为复合陶瓷粉末颗粒团聚后的整体形貌,图1中(b)为单个球形团聚颗粒的表面形貌,图1中(c)为团聚不完整的颗粒的表面形貌,图1中(d)为高放大倍率下的微观颗粒的形貌。由图1可见,经烧结团聚后的颗粒大部分为不规则的形状,球形的团聚颗粒较少,有些团聚的颗粒表面还有缺陷,通过缺陷可以看到团聚的颗粒内部结构,在较低放大倍率下,颗粒表面看着比较光滑,在高的放大倍率下可以看到团聚后的纳米颗粒间仍存在间隙。
通过ImageJ软件处理实施例1中经烧结得到的复合陶瓷粉末,其粒径分布图见图2,可以看出团聚后的粉末粒径分布在5-50μm之间。
本发明实施例1制备得到的纳米陶瓷复合涂层的金相照片见图3和图4,由图3和图4可以看出,本实施例制备的涂层致密度比较好,孔隙率低,致密的涂层也会有比较好结合力。
实施例2
将氧化铝粉末与氧化钛粉末进行混合,其中氧化钛粉末占纳米陶瓷复合涂层原料粉末体积的40%,其余粉末体积为余量,混合得到的复合陶瓷粉末,将复合陶瓷粉末在1200℃下烧结1h,得到粒径为15μm-90μm的中空结构复合陶瓷粉末;
对海洋设备工件表面进行除油、除锈,采用超声波清清洗机进行超声波清洗,再用酒精擦拭晾干,放置在喷砂机内,采用120目的白刚玉砂对工件表面进行喷砂处理,使表面粗糙度Ra达到3;
将复合陶瓷粉末喷涂在表面进行前处理的海洋设备工件表面,采用热喷涂技术依次喷涂过渡层(镍基合金涂层)和纳米陶瓷复合涂层:喷涂过渡层的工艺参数为:氩气流量4.2m3/h、氢气流量3.4m3/h、电流600A、电压130V、喷涂距离150mm、送粉量40g/min;喷涂纳米陶瓷复合涂层的工艺参数为:氩气流量4.8m3/h、氢气流量4.5m3/h、电流600A、电压160V、喷涂距离160mm、送粉量32g/min。喷涂前需进行预试验,以确定单位时间内的喷涂厚度,从而控制过渡层和纳米陶瓷复合涂层的厚度分别为0.2mm和0.1mm。
最后对于制备完成的抗海生物污损的纳米陶瓷复合涂层进行精磨后处理。
实施例3
将氧化铬粉末与氧化钛粉末进行混合,其中氧化钛粉末占纳米陶瓷复合涂层原料粉末体积的3%,其余粉末体积为余量,,混合得到的复合陶瓷粉末,将复合陶瓷粉末在450℃下烧结2h,得到粒径为15μm-90μm的中空结构复合陶瓷粉末;
对海洋设备工件表面进行除油、除锈,采用超声波清清洗机进行超声波清洗,再用酒精擦拭晾干,放置在喷砂机内,采用20目的白刚玉砂对工件表面进行喷砂处理,使表面粗糙度Ra达到7;
将复合陶瓷粉末喷涂在表面进行前处理的海洋设备工件表面,采用热喷涂技术依次喷涂过渡层(镍基合金涂层)和纳米陶瓷复合涂层:喷涂过渡层的工艺参数为:氩气流量3.4m3/h、氢气流量4.2m3/h、电流320A、电压150V、喷涂距离80mm、送粉量28g/min;喷涂纳米陶瓷复合涂层的工艺参数为:氩气流量3.6m3/h、氢气流量3.7m3/h、电流400A、电压120V、喷涂距离100mm、送粉量70g/min。喷涂前需进行预试验,以确定单位时间内的喷涂厚度,从而控制过渡层和纳米陶瓷复合涂层的厚度分别为0.01mm和1mm。
最后对于制备完成的抗海生物污损的纳米陶瓷复合涂层进行精磨后处理。
对比例1
市售常规微米粉末制备的涂层(进口产品,厂家为欧瑞康美科)。
对比例2
同实施例1,区别仅在于,烧结的温度为400℃,时间为0.5h。
对比例3
同实施例1,区别仅在于,将氧化铝粉末与氧化钛粉末进行混合,其中氧化钛粉末占纳米陶瓷复合涂层原料粉末体积的60%,其余粉末体积为余量。
对比例4
同实施例1,区别仅在于,控制纳米陶瓷复合涂层的厚度为0.01mm。(厚度过小会使硬度、结合力等参数性能变差)
对比例5
同实施例1,区别仅在于,控制纳米陶瓷复合涂层的厚度为2mm。(最大厚度为1mm即可,再厚没必要,造成原料的浪费)
性能测试
测定实施例1-3以及对比例1-5制备的涂层的孔隙率、硬度、结合力、腐蚀电位,硬度测试标准为ASTM E384-17,结合力测试标准为ASTM C633-13,腐蚀电位采用PDP测试方法,使用孔隙率测试仪测定孔隙率。测试结果见表1。
表1实施例与对比例孔隙率、硬度、结合力、腐蚀电位测试结果
孔隙率 结合力 硬度HV0.3 腐蚀电位
实施例1 2.3% 56.6MPa 644 -0.92V
实施例2 1.5% 39.9MPa 865 -0.91V
实施例3 1.9% 37.8MPa 760 -0.99V
对比例1 3% 35MPa 800 -0.9V
由表1数据可以看出,本发明实施例制备的涂层组织致密、孔隙率低于常规微米粉末所制备的陶瓷涂层,结合力≥35MPa,腐蚀电≤-0.9V,耐腐蚀、耐磨、耐疲劳,与基体结合牢固。
根据实验结果可以看出,本发明制备的涂层可以在光照下产生强烈的氧化能力,可以把很多难以分解的有机污染物氧化分解为二氧化碳和水等无机物,从而去除海洋装备表面附着的海生物等。
以上,仅为本申请较佳的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。

Claims (9)

1.一种抗海生物污损的纳米陶瓷复合涂层,其特征在于,所述纳米陶瓷复合涂层厚度为0.1mm-1mm,原料由氧化铝/氧化铬粉末和氧化钛粉末组成,其中氧化钛粉末占纳米陶瓷复合涂层原料体积的3%-40%,其余粉末体积为余量。
2.根据权利要求1所述的抗海生物污损的纳米陶瓷复合涂层,其特征在于,所述原料氧化铝、氧化铬、氧化钛的粒径均为15μm-90μm。
3.根据权利要求1所述的抗海生物污损的纳米陶瓷复合涂层,其特征在于,所述氧化钛粉末占纳米陶瓷复合涂层原料体积的13%。
4.一种权利要求1-3任一项所述的抗海生物污损的纳米陶瓷复合涂层的制备方法,其特征在于,包括以下步骤:
将氧化铝、氧化铬、氧化钛和碳化铬粉末混合得到的复合陶瓷粉末进行烧结,之后喷涂在表面进行前处理的海洋设备工件表面,在海洋设备工件表面制备得到所述抗海生物污损的纳米陶瓷复合涂层。
5.根据权利要求4所述的抗海生物污损的纳米陶瓷复合涂层的制备方法,其特征在于,所述烧结的温度为450℃-1200℃,时间为1-2h。
6.根据权利要求4所述的抗海生物污损的纳米陶瓷复合涂层的制备方法,其特征在于,所述喷涂的方法包括大气等离子喷涂和超音速喷涂。
7.根据权利要求4所述的抗海生物污损的纳米陶瓷复合涂层的制备方法,其特征在于,海洋设备工件表面进行前处理的过程包括对工件表面进行除油、除锈以及毛化处理。
8.根据权利要求4所述的抗海生物污损的纳米陶瓷复合涂层的制备方法,其特征在于,在表面进行前处理的海洋设备工件表面喷涂复合陶瓷粉末之前,还包括在表面进行前处理的海洋设备工件表面制备过渡层的步骤。
9.根据权利要求8所述的抗海生物污损的纳米陶瓷复合涂层的制备方法,其特征在于,所述过渡层为镍铬合金涂层,厚度为0.01mm-0.2mm。
CN202311144044.7A 2023-09-06 2023-09-06 一种抗海生物污损的纳米陶瓷复合涂层及其制备方法 Pending CN117142841A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311144044.7A CN117142841A (zh) 2023-09-06 2023-09-06 一种抗海生物污损的纳米陶瓷复合涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311144044.7A CN117142841A (zh) 2023-09-06 2023-09-06 一种抗海生物污损的纳米陶瓷复合涂层及其制备方法

Publications (1)

Publication Number Publication Date
CN117142841A true CN117142841A (zh) 2023-12-01

Family

ID=88900438

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311144044.7A Pending CN117142841A (zh) 2023-09-06 2023-09-06 一种抗海生物污损的纳米陶瓷复合涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN117142841A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101096308A (zh) * 2007-05-29 2008-01-02 武汉理工大学 热喷涂用抗海水腐蚀磨损和生物污损的复合陶瓷粉及制备
CN102650029A (zh) * 2012-04-25 2012-08-29 常州大学 一种热作模具钢表面纳米陶瓷复合涂层材料的制备方法
US20150321963A1 (en) * 2014-05-12 2015-11-12 National Research Council Of Canada Mechanical part with a nanostructured tio2-cr2o3 ceramic coating and method for depositing a nanostructured tio2-cr2o3 ceramic coating on a substrate
CN109231971A (zh) * 2018-11-13 2019-01-18 普施耐(苏州)工业技术有限公司 一种无溶剂型可喷涂的陶瓷纳米颗粒复合耐磨涂层
CN112479702A (zh) * 2020-11-27 2021-03-12 安徽盈锐优材科技有限公司 一种等离子喷涂用氧化铬氧化钛复合粉末的制备方法
CN219136889U (zh) * 2022-11-29 2023-06-06 山东北溟科技有限公司 用于海洋装备的防腐复合涂层及零件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101096308A (zh) * 2007-05-29 2008-01-02 武汉理工大学 热喷涂用抗海水腐蚀磨损和生物污损的复合陶瓷粉及制备
CN102650029A (zh) * 2012-04-25 2012-08-29 常州大学 一种热作模具钢表面纳米陶瓷复合涂层材料的制备方法
US20150321963A1 (en) * 2014-05-12 2015-11-12 National Research Council Of Canada Mechanical part with a nanostructured tio2-cr2o3 ceramic coating and method for depositing a nanostructured tio2-cr2o3 ceramic coating on a substrate
CN109231971A (zh) * 2018-11-13 2019-01-18 普施耐(苏州)工业技术有限公司 一种无溶剂型可喷涂的陶瓷纳米颗粒复合耐磨涂层
CN112479702A (zh) * 2020-11-27 2021-03-12 安徽盈锐优材科技有限公司 一种等离子喷涂用氧化铬氧化钛复合粉末的制备方法
CN219136889U (zh) * 2022-11-29 2023-06-06 山东北溟科技有限公司 用于海洋装备的防腐复合涂层及零件

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
杨振凯;王海军;刘明;王晶晨;: "超音速等离子喷涂制备Cr_2O_3-16TiO_2陶瓷涂层研究", 特种铸造及有色合金, no. 11, pages 88 - 91 *
杨振凯等: "超音速等离子喷涂制备Cr2O3-16TiO2陶瓷涂层研究", 特种铸造及有色合金, vol. 35, no. 11, pages 88 - 91 *
段忠清;张宝霞;王泽华;: "等离子喷涂Cr_2O_3-8%TiO_2涂层参数优化研究", 表面技术, no. 04 *
王东生;田宗军;张少伍;曲光;沈理达;黄因慧;: "常规和纳米陶瓷等离子喷涂层抗冲蚀性能的对比", 材料保护, no. 01, pages 300 *

Similar Documents

Publication Publication Date Title
Xiang et al. Structure and cavitation erosion behavior of HVOF sprayed multi-dimensional WC–10Co4Cr coating
CN109365803B (zh) 一种粉末表面稀土改性的铝合金复杂构件增材制造方法
CN108265259B (zh) 一种用于TiAl合金的防护涂层及其制备方法
Çelik et al. Effects of some parameters on corrosion behaviour of plasma-sprayed coatings
CN103103597A (zh) 一种钛合金自润滑复合膜及其制备方法
CN114231882B (zh) 一种抗空蚀复合涂层及其制备方法
Kumar et al. Evolution and adoption of microwave claddings in modern engineering applications
CN108385053A (zh) 一种提高等离子喷涂涂层致密度的方法
CN114262862A (zh) Q235钢表面耐磨疏水涂层及其制备方法
Li et al. Mechanical, tribological, and oxidation resistance properties of NiCrAlY coating by atmospheric plasma spraying
CN117142841A (zh) 一种抗海生物污损的纳米陶瓷复合涂层及其制备方法
Xin et al. Corrosion and wear properties of micro-arc oxidation treated Ti6Al4V alloy prepared by selective electron beam melting
CN113005388A (zh) 超疏水耐蚀防污铝基非晶涂层及其制备方法
CN112474234A (zh) 一种热喷涂绝缘涂层及其制备方法
CN109778169B (zh) 一种具有耐磨性和耐热性的超疏水铝合金表面及其制备方法
JP2006137143A (ja) プラスチック基複合材料およびその製造方法
CN109137042A (zh) 一种钛合金表面高耐磨复合陶瓷涂层及其制备方法
CN114752881B (zh) 一种抗cmas腐蚀热障涂层的制备方法以及由此得到的热障涂层
CN112524116B (zh) 一种液压活塞杆及其表面复合功能涂层和制备方法
CN114632949A (zh) 一种增材制造金属零件表面防腐防污复合处理方法
CN112275593B (zh) 一种改进涂层微观结构的方法
Pelczar et al. The effect of BN or SiC addition on PEO properties of coatings formed on AZ91 magnesium alloy
KR101981672B1 (ko) 부식방지 유압실린더의 제조방법
Zeng et al. Microstructure and tribological properties of laser cladded TiAlSi composite coatings reinforced by yttria-stabilized zirconia
Shang et al. Effects of Ce (NO3) 3 concentration on microstructure and properties of plasma electrolytic oxidation layer on 6061 alloy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination