CN117126540A - 明胶基弹性体生胶、导电明胶弹性体材料及其制备方法 - Google Patents

明胶基弹性体生胶、导电明胶弹性体材料及其制备方法 Download PDF

Info

Publication number
CN117126540A
CN117126540A CN202310603553.5A CN202310603553A CN117126540A CN 117126540 A CN117126540 A CN 117126540A CN 202310603553 A CN202310603553 A CN 202310603553A CN 117126540 A CN117126540 A CN 117126540A
Authority
CN
China
Prior art keywords
gelatin
elastomer
parts
solution
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310603553.5A
Other languages
English (en)
Inventor
薛佳佳
汪彤
赵怡慧
张立群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Publication of CN117126540A publication Critical patent/CN117126540A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/14Printing or colouring
    • B32B38/145Printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/092Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B2038/0052Other operations not otherwise provided for
    • B32B2038/0076Curing, vulcanising, cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • B32B2307/7145Rot proof, resistant to bacteria, mildew, mould, fungi
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/716Degradable
    • B32B2307/7163Biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Nanotechnology (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种明胶基弹性体生胶、导电明胶弹性体材料及其制备方法,涉及生物材料领域,所述弹性体生胶由包括以下组分的原料熔融得到:明胶、增塑剂和溶液A;各组分按重量份数计:明胶20‑200重量份;增塑剂100重量份;溶液A10‑30重量份。本发明所采用的原料明胶及增塑剂,具有可生物降解、可再生无毒的特点。制备得到的弹性体材料用甘油等增塑剂替代水凝胶中的水组分,不仅提高了力学性能还避免了水凝胶脱水变干的缺点。弹性体材料在具有抗菌性能的同时,抗菌溶液还与导电物质发挥协同作用,进一步提高导电弹性体材料的导电性及机械性能,对长期使用的电极、传感器等用于检测和/或监测电生理信号等应用具有重要意义。

Description

明胶基弹性体生胶、导电明胶弹性体材料及其制备方法
技术领域
本发明涉及生物材料领域,进一步地说,是涉及明胶基弹性体生胶、导电明胶弹性体材料及其制备方法。
背景技术
大多数人体运动是由低电位(称为电生理(EP)信号)驱动的,包括心电图(ECG)、眼电图(EOG)、肌电图(EMG)和脑电图(EEG)。EP信号具有丰富的信息提取能力,引起了人们的极大研究兴趣,在医疗监测和人机交互中得到了广泛的应用。
电极是捕获和分析EP信号的重要组成部分。脑电信号采集电极是将大脑产生的生物电信号传递给设备,从而转化为可识别的电信号的传感器,设计合适的电极材料使其可以应用于脑电信号采集、保证采集到的脑电信号的准确性是脑机接口获得良好性能的前提。目前,最常用的脑电采集产品是带有湿导电膏的Ag/AgCl电极传感器。湿脑电图传感器可以克服毛发引起的干扰,在有微小运动时也能获得准确的大脑电信号,广泛应用于临床和科研工作中。虽然湿电极具有稳定、信号可靠和阻抗低的特点,但是,传统的Ag/AgCl电极有很多局限性。例如,用于商业电极的减少接触阻抗的凝胶在长期测量后可能会引起皮肤刺激。此外,由于Ag/AgCl电极失去了与皮肤的接触,其刚性的特性阻碍了它们在运动过程中收集高质量的信号,并且利用导电膏的湿电极也面临使用不方便、不易快速清洁、导电膏变干无法长期稳定采集信号的问题。因此使脑电采集电极更具有可靠性和灵便性,以及如何克服头发的干扰获得高质量的信号对于研发脑电信号采集材料是一个挑战。
随着近年来柔性电子技术的兴起,柔性电极受到了极大的关注。通过持续的优化,柔性电极成为Ag/AgCl电极的有前途的替代品。具体来说,柔性电极已经实现了超过400%的卓越拉伸能力,足以确保在人体大程度运动中进行高保真测量。柔性电极能够提供顺应性和舒适的皮肤接口,降低测量阻抗,并提高信噪比(SNR)。电极凝胶的消除也增强了穿戴的舒适性,减少了皮肤刺激的风险。通过与电源和无线通信模块的集成形成独立的系统,新兴的柔性电极在个性化医疗保健和人机界面的移动和可穿戴应用中展示了卓越的功能。
明胶(Gel)是由动物的骨、皮等热分解得到的,是胶原的裂解产物,来源广泛,价格低廉,是一种典型的可再生可降解的生物材料,其降解产物易吸收且不产生炎症反应。与其他人工水凝胶相比,它具有优越的生物相容性,被广泛应用于细胞培养、软组织粘接剂、移植等领域。
此外,明胶弹性体与人体组织具有相似的杨氏模量,这有助于在电子-组织界面处实现优异的生物机械匹配。其力学性能也具有高度可调性,使明胶弹性体器件能够满足实际应用中不同的机械刚度要求。重要的是,明胶弹性体具有出色的鲁棒性,允许压缩后恢复到原来的形状。此外,明胶弹性体具有良好的透明度,是开发全透明生物电子学的理想选择。以上事实表明,导电弹性体结合了水凝胶三维网络的优越性和导电材料良好的电导性,并且比导电水凝胶具有更好的力学性能,同时还避免了长时间使用材料缺水干燥的缺点,并且具有柔韧性、延展性、质量轻和生物相容性等特点,在测量电势信号时具有高灵敏度、高信噪比和循环稳定性高的优点。导电弹性体在可穿戴电子设备如电子皮肤、柔性电极、柔性传感器等领域具有广阔的应用前景。然而,基于明胶弹性体的可穿戴压力传感器迄今为止鲜有报道,但它却是生物弹性体在未来生物医学领域最重要的发展方向。
发明内容
为解决现有技术中存在的问题,本发明提供一种明胶基弹性体生胶、导电明胶弹性体材料及其制备方法。本发明的弹性体材料具有原位固化、优异机械性能、可注射、可书写、自粘附、断裂可愈合、生物安全的特点。本发明所采用的电活性物质具有生物相容性和良好的导电性能以及导热性能,可降解。制备得到的弹性体材料在具有抗菌性能的同时,具有抗菌作用的溶液A还与电活性物质发挥协同作用,进一步提高了弹性体材料的导电性以及机械性能,对于长期使用的电极、传感器等用于检测和/或监测电生理信号等应用具有重要的意义。
本发明的目的之一是提供一种明胶基弹性体生胶,所述弹性体生胶由包括以下组分的原料熔融得到:
明胶、增塑剂和溶液A;
各组分按重量份数计:
明胶 20-200重量份;
增塑剂 100重量份;
溶液A 10-30重量份。
优选地,各组分按重量份数计:
明胶 30-150重量份;
增塑剂 100重量份;
溶液A 15-20重量份。
所述弹性体生胶的玻璃化转变温度为-90℃-65℃,凝胶化转变温度为20℃-50℃。
优选地,所述增塑剂为甘油、糖浆中的至少一种;和/或,
所述溶液A为柠檬酸溶液、醋酸溶液、硼酸溶液中的至少一种。
本发明的目的之二是提供一种明胶基弹性体生胶的制备方法,所述方法包括:
所述组分按所述重量份数熔融得到所述弹性体生胶。
优选地,所述熔融温度为55-95℃,反应时间为2-10天。
具体方案如下:
将明胶与增塑剂加入到反应器中,再加入溶液A,在55-95℃进行熔融,反应2-10天后取出,得到所述弹性体生胶。
本发明的目的之三是提供一种采用明胶基弹性体生胶的导电明胶弹性体材料,所述弹性体材料由包括以下组分的原料共混得到:
弹性体生胶、电活性物质和溶液B;
各组分按重量份数计:
弹性体生胶 100重量份;
电活性物质 1-50重量份,优选为5-40重量份;
溶液B 10-50重量份,优选为20-30重量份。
优选地,所述弹性体材料的玻璃化转变温度为-90℃-45℃,凝胶化转变温度为30℃-60℃,导电率为33.61×10-4~310.21×10-4S/m,拉伸强度为133-700KPa。
优选地,所述电活性物质为导电聚合物、导电填料、氧化石墨烯、还原氧化石墨烯、金属碳氮化物中的至少一种;
所述导电聚合物可采用本领域中常用的导电聚合物,如PEDOT:PSS、聚吡咯、聚吡啶、聚噻吩等;
所述导电填料可采用本领域中常用的导电填料,如碳纳米管、金属纳米粒子、金属纳米线、金属纳米网、非晶态金属等;
所述金属碳氮化物可采用本领域中常用的金属碳氮化物,如Mxene等;和/或,
所述溶液B为氯化钠溶液、氯化钾溶液、硫酸钠溶液、溴化锂溶液中的至少一种。
本发明提供了一种具有电活性以及抗菌性能的自愈明胶弹性体材料,采用上述弹性体生胶与电活性物质以及溶液B复合得到。通过调整电活性物质的含量和种类可以与溶液A之间发生协同作用,再通过引入溶液B的阴阳离子协同增韧及离子导电与电活性物质导电的双重导电网络,调节弹性体导电复合材料的电导率以及机械性能、功能、生物活性及应用领域,从而制得不同拉伸强度,不同导电率,不同粘附性的导电弹性体材料。再加上电活性物质的导热性能,从而使得制备得到的弹性体材料具有了断裂可愈合性能,并且愈合后的力学性能不受影响。在实际使用过程中,可以根据不同的应用角度,选择性的用电活性物质与弹性体生胶进行复合。
本发明的目的之四是提供一种导电明胶弹性体材料的制备方法,所述方法包括以下四种方法之一:
所述组分按所述重量份数混合浇铸得到所述弹性体材料;
所述组分按所述重量份数混合原位固化后得到所述弹性体材料;
所述组分按所述重量份数混合后3D打印得到所述弹性体材料;
将电活性物质通过模板印刷在两层弹性体生胶中间形成三明治结构得到所述弹性体材料。
所述浇铸具体可采用如下方案:
将弹性体生胶、电活性物质以及溶液B在哈克混炼仪中混合10-40min,温度设置为45-60℃,转速设置为50-70r/min;然后在真空压片机上压片,温度为40~60℃,压片时间为5~30min,真空度为-0.1MPa,制得所述弹性体材料。
所述原位固化具体可采用如下方案:
将电活性物质加入到溶液B中,通过超声搅拌使其充分分散后,与弹性体生胶在60℃下混合,倒入聚四氟乙烯模具,固化后得到所述弹性体材料。
所述3D打印具体可采用如下方案:
打印形状为网格状或蜘蛛网状,加入原料后料桶及针头设置温度为60-90℃,料桶加热时间10-30min,挤出气压为2-8kPa,高压电源为3-8kV,打印速度为1000-2000mm/min,打印间距为0.1-20mm。
优选地,所述3D打印为同轴3D打印。
所述同轴3D打印具体可采用如下方案:
打印形状为网格状或蜘蛛网状,加入电活性物质的料桶1保持室温,料桶1的挤出气压为0.02-4kPa,加入弹性体生胶和溶液B的料桶2及针头设置温度为60-90℃,加热10-30min,料桶2的挤出气压为2-8kPa,高压电源为3-8kV,打印速度为1000-2000mm/min,打印间距为0.1-20mm。
本发明所采用的主要原料明胶及增塑剂,具有可生物降解、可再生无毒的特点;电活性物质具有生物相容性和良好的导电性能以及导热性能,可降解。制备得到的弹性体材料在具有抗菌性能的同时,具有抗菌作用的溶液A还与导电物质发挥协同作用,进一步提高了弹性体材料的导电性以及机械性能,并且溶液B作为盐溶液的加入不仅起到了阴阳离子协同增韧,还增加了离子导电网络。本发明采用甘油等增塑剂替代水凝胶中的水组分,不仅提高了力学性能还减少了水凝胶脱水变干的缺点,对于长期使用的电极、传感器等用于检测和/或监测电生理信号等应用具有重要的意义。
此外,本发明的制备方法中,利用明胶和具有生物安全性的增塑剂混合得到生胶,然后利用电活性物质以及酸性溶液进行协同增强,整个制备过程中并无催化剂或有机溶剂的引入,安全有效,无毒副作用,可生物降解,具有优良的环保性能、导电性能和抗菌性能。再加上电活性物质的导热性能,使得本发明的弹性体材料具有了断裂可愈合性能,并且愈合后的力学性能不受影响,这在注重人体健康的今天具有非常重要的意义,并且制备成本相对于其他生物医用材料也不高。
附图说明
图1为实施例3制备得到的弹性体膜片的SEM图像;
图中可以看到弹性体膜片内的所有组分混合均匀,不存在分相的现象;
图2为实施例4制备得到的弹性体膜片的SEM图像;
图中可以看到弹性体膜片内的碳纳米管分散均匀,有助于形成导电通路;
图3为实施例5制备得到的弹性体膜片的SEM图像;
图中可以看到弹性体膜片内的银纳米线分散均匀,有助于形成导电通路。
具体实施方式
下面结合具体附图及实施例对本发明进行具体的描述,有必要在此指出的是以下实施例只用于对本发明的进一步说明,不能理解为对本发明保护范围的限制,本领域技术人员根据本发明内容对本发明做出的一些非本质的改进和调整仍属本发明的保护范围。
本发明实施例所用原料均为市售产品,具体信息如下表1:
表1
原料 规格 厂家
明胶 医用级 罗赛洛,法国
甘油 医用级 阿拉丁,美国
碳纳米管 IMC6 博宇高科,北京
银纳米线 XFJ95 先丰纳米材料,江苏
氯化钠 ≥99.5%(AT) 阿拉丁,美国
氯化钾 ≥99.5%(AT) 阿拉丁,美国
溴化钾 ≥99.5%(AT) 阿拉丁,美国
柠檬酸溶液 ≥99.5%(AR) 阿拉丁,美国
醋酸溶液 ≥99.5%(AR) 麦克林,中国
硼酸溶液 ≥99.5%(AR) 麦克林,中国
PEDOT:PSS 250G 西格玛,美国
液态金属GaIn合金 5G 西格玛,美国
实施例1
将20g明胶与40g甘油及4g柠檬酸溶液加入到反应烧瓶中,搅拌后放入真空烘箱中,温度设置为65℃,待反应3天后,取出得到所需要的均匀的弹性体生胶。
将上述弹性体生胶取出10g置于聚四氟乙烯模具中,置于真空压片机上压片,温度设置为50℃,压片时间为25min,得到厚度为1mm的弹性体膜片。
实施例2
将40g明胶、20g甘油及6g醋酸溶液加入到反应烧瓶中,搅拌后放入真空烘箱中,温度设置为65℃,待反应3天后,取出得到所需要的均匀的弹性体生胶。
将上述弹性体生胶取出10g置于聚四氟乙烯模具中,置于真空压片机上压片,温度设置为45℃,压片时间为25min,得到厚度为1mm的弹性体膜片。
实施例3
将22.5g明胶、22.5g甘油、4.5g硼酸溶液加入到反应烧瓶中,搅拌后放入真空烘箱中,温度设置为60℃,待反应3天后,取出得到所需要的均匀的弹性体生胶。
将上述弹性体生胶取出10g置于聚四氟乙烯模具中,置于真空压片机上压片,温度设置为45℃,压片时间为25min,得到厚度为1mm的弹性体膜片。
实施例4
将10g明胶、50g甘油及5g醋酸水溶液加入到反应烧瓶中,搅拌后放入真空烘箱中,温度设置为60℃,待反应3天后,取出得到所需要的均匀的弹性体生胶。
将上述弹性体生胶50g与25g加入到5g氯化钠溶液中已超声处理分散过的碳纳米管于哈克混炼仪上混合20min,温度设置为45℃,转速为60r/min。然后取10g置于聚四氟乙烯模具中,置于真空压片机上压片,温度设置为45℃,压片时间为20min,得到厚度为1mm的弹性体膜片。
实施例5
将40g明胶、20g甘油及6g硼酸溶液加入到反应烧瓶中,搅拌后放入真空烘箱中,温度设置为60℃,待反应3天后,取出得到所需要的均匀的弹性体生胶。
将上述弹性体生胶50g与25g加入到25g氯化钾溶液中已超声处理分散过的银纳米线于哈克混炼仪上混合20min,温度设置为45℃,转速为60r/min。然后取10g置于聚四氟乙烯模具中,置于真空压片机上压片,温度设置为45℃,压片时间为20min,得到厚度为1mm的弹性体膜片。
实施例6
将29.85g明胶、29.85g甘油及5g柠檬酸溶液加入到反应烧瓶中,搅拌后放入真空烘箱中,温度设置为60℃,待反应3天后,取出得到所需要的均匀的弹性体生胶。
将上述弹性体生胶50g与12.5g加入到15g溴化锂溶液中已超声处理分散过的银纳米线于哈克混炼仪上混合20min,温度设置为45℃,转速为60r/min。然后取10g置于聚四氟乙烯模具中,置于真空压片机上压片,温度设置为45℃,压片时间为20min,得到厚度为1mm的弹性体膜片。
实施例7
将29.7g明胶、29.7g甘油和5g柠檬酸溶液加入到反应烧瓶中,搅拌后放入真空烘箱中,温度设置为60℃,待反应3天后,取出得到所需要的均匀的弹性体生胶。
将上述弹性体生胶50g、13g液态金属GaIn合金和5g氯化钠溶液搅拌混合20min,温度设置为70℃,转速为100r/min。然后使用锡纸包裹方形玻璃片并放置于收集地板上,打开BP6601 3D打印机,调整打印机XYZ轴分别回到原点,检查设备连接情况,调整Z轴高度Z-offset值,设置纺丝间距为2mm。取出料桶,加入20g上述混合料后设置料桶及针头温度为80℃,待料桶加热15min后,调整挤出气压为4.0kPa,设置高压电源为3.7kV,打印速度为1500mm/min,在软件中调整模型参数,并检查打印路径,检查无误后,开始打印,得到厚度为2mm的弹性体膜片。
实施例8
将29.7g明胶、29.7g甘油和5g柠檬酸溶液加入到反应烧瓶中,搅拌后放入真空烘箱中,温度设置为60℃,待反应3天后,取出得到所需要的均匀的弹性体生胶。
将上述弹性体生胶50g与25g氯化钠溶液于哈克混炼仪上混合20min,温度设置为45℃,转速为60r/min。然后取10g置于聚四氟乙烯模具中,置于真空压片机上压片,温度设置为45℃,压片时间为20min,得到厚度为1mm的弹性体膜片。然后使用线路印刷模板将13g液态金属印刷与膜片表面,然后再在上面覆盖一层弹性体生胶,原位固化后形成弹性体膜片。
对比例1
将10g明胶与50g甘油加入到反应烧瓶中,搅拌后放入真空烘箱中,温度设置为60℃,待反应3天后,取出得到所需要的均匀的弹性体生胶。
将上述弹性体生胶取出10g置于聚四氟乙烯模具中,置于真空压片机上压片,温度设置为50℃,压片时间为25min,得到厚度为1mm的弹性体膜片。
对比例2
将29.85g明胶与29.85g甘油加入到反应烧瓶中,搅拌后放入真空烘箱中,温度设置为60℃,待反应3天后,取出得到所需要的均匀的弹性体生胶。
将上述弹性体生胶50g与0.5g聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS)于哈克混炼仪上混合20min,温度设置为45℃,转速为60r/min。然后取10g置于聚四氟乙烯模具中,置于真空压片机上压片,温度设置为45℃,压片时间为20min,得到厚度为1mm的弹性体膜片。
对比例3
将29.85g明胶、29.85g甘油及5g柠檬酸溶液加入到反应烧瓶中,搅拌后放入真空烘箱中,温度设置为60℃,待反应3天后,取出得到所需要的均匀的弹性体生胶。
将上述弹性体生胶50g与12.5g已超声处理分散过的碳纳米管于哈克混炼仪上混合20min,温度设置为45℃,转速为60r/min。然后取10g置于聚四氟乙烯模具中,置于真空压片机上压片,温度设置为45℃,压片时间为20min,得到厚度为1mm的弹性体膜片。
对比例4
将20g明胶、20g甘油和40g水加入到反应烧瓶中,搅拌后放入真空烘箱中,温度设置为65℃,待反应3天后,取出得到所需要的均匀的弹性体生胶。
将上述弹性体生胶取出10g置于聚四氟乙烯模具中,置于真空压片机上压片,温度设置为50℃,压片时间为25min,得到厚度为1mm的弹性体膜片。
对本发明实施例和对比例制备得到的弹性体膜片进行如下性能测试:
1、力学性能测试,可参考标准GB/T 16491-2008,具体测试方法如下:
将实施例1-6和对比例1-4制备得到的弹性体膜片制成哑铃型样品,使用万能实验机室温测定其机械强度。测试过程中沿轴向方向拉伸至样品断裂,拉伸速度为20mm/min。结果如表2所示,实施例1-3加了溶液A后的弹性体膜片的力学性能显著优于对比例1的弹性体膜片;实施例4-6在溶液A的基础上又加了溶液B的弹性体膜片的力学性能也显著优于对比例3只加了溶液A的弹性体膜片;并且与对比例4的明胶水凝胶的力学性能相比,弹性体膜片的力学性能显著增强。
2、导电性能测试,可参考标准JJG 508-2004,具体测试方法如下:
采用四探针电阻率测试仪测定实施例1-6和对比例1-3制备得到的弹性体膜片的电阻,为确保电阻均匀性,在样品中选择了五个位置:样品中心和距离样品中心1cm处的四个位置,分别进行了电阻率的测量,并用修正软件进行电导率的修正。结果如表2所示,实施例1-3加了溶液A后的弹性体膜片的电导率显著高于对比例1的弹性体膜片;对比例2的弹性体膜片中添加了电活性物质,电导率明显上升,但拉伸强度较低;对比例3中在添加了电活性物质的基础上添加了溶液A后,电导率和拉伸强度都有明显提升;实施例4-6在溶液A的基础上又加了溶液B的弹性体膜片的电导率和拉伸强度都显著高于对比例3只加了溶液A的弹性体膜片;说明溶液A的加入提高了弹性体材料的导电性以及机械性能,同时溶液B作为盐溶液的加入不仅起到了阴阳离子协同增韧,还增加了离子导电网络,进一步提升了弹性体材料的导电性以及机械性能。
3、粘附力测试
将直径为3cm的圆形弹性体膜片固定在推拉式张紧器上后,再将其贴附在皮肤上预加载10s,然后缓慢地从皮肤上移除,使用数字测力仪测量粘附力。结果如表2所示,实施例3和4制备得到的弹性体膜片能够与对比例4的水凝胶弹性体膜片的粘附力相当甚至更佳。
表2
4、断裂愈合后的弹性体的力学性能
将实施例4-6制备得到的弹性体膜片分别裁成两半,然后使用近红外激光在裂缝或切口附近短暂的局部熔化再凝固达到断裂愈合。对断裂愈合后的弹性体膜片进行了力学性能测试,如表3结果所示,结果显示力学性能与断裂前几乎没有差异。
表3
材料 拉伸强度(KPa) 断裂伸长率(%)
实施例4 468 114.12
实施例5 512 387.32
实施例6 589 370.21
5、抗菌性能测试,可参考标准GB/T 21510-2008,具体方法如下:
首先将两块相同大小的对比例1制备得到的弹性体膜片与实施例1的弹性体膜片室温放置7天,然后观察材料本身的变化。其次将对比例1的弹性体膜片与实施例1的弹性体膜片分别与一定菌液浓度(约106CFU/ml)的革兰氏阳性菌(金黄葡萄球菌)和革兰氏阴性菌(大肠杆菌)细菌悬液孵育12h;孵育结束后将细菌悬液(稀释适当比例)接种至固体营养培养基表面,37℃培养12-24h后,取出培养皿拍照计数,计算抑菌率。
结果显示,对比例1的弹性体膜片在放置7天后基体已经开始霉变,材料出现蓝色的霉菌斑点;而实施例1弹性体膜片没有出现任何变化,也没有霉变的迹象。细菌存活情况显示,实施例1的弹性体膜片上细胞菌落只有极少数,显著少于对比例1的弹性体膜片上的细胞菌落数,说明添加了溶液A的实施例1的弹性体膜片能有效抑制细菌的存活。

Claims (10)

1.一种明胶基弹性体生胶,其特征在于所述弹性体生胶由包括以下组分的原料熔融得到:
明胶、增塑剂和溶液A;
各组分按重量份数计:
明胶 20-200重量份;
增塑剂 100重量份;
溶液A 10-30重量份。
2.根据权利要求1所述的明胶基弹性体生胶,其特征在于:
各组分按重量份数计:
明胶 30-150重量份;
增塑剂 100重量份;
溶液A 15-20重量份。
3.根据权利要求1所述的明胶基弹性体生胶,其特征在于:
所述弹性体生胶的玻璃化转变温度为-90℃-65℃,凝胶化转变温度为20℃-50℃。
4.根据权利要求1所述的明胶基弹性体生胶,其特征在于:
所述增塑剂为甘油、糖浆中的至少一种;和/或,
所述溶液A为柠檬酸溶液、醋酸溶液、硼酸溶液中的至少一种。
5.一种如权利要求1-4任一所述的明胶基弹性体生胶的制备方法,其特征在于所述方法包括:
所述组分按所述重量份数熔融得到所述弹性体生胶。
优选地,所述熔融温度为55-95℃,反应时间为2-10天。
6.一种采用如权利要求1-3任一所述的明胶基弹性体生胶的导电明胶弹性体材料,其特征在于所述弹性体材料由包括以下组分的原料共混得到:
弹性体生胶、电活性物质和溶液B;
各组分按重量份数计:
弹性体生胶100重量份;
电活性物质1-50重量份,优选为5-40重量份;
溶液B10-50重量份,优选为20-30重量份。
7.根据权利要求6所述的导电明胶弹性体材料,其特征在于:
所述弹性体材料的玻璃化转变温度为-90℃-45℃,凝胶化转变温度为30℃-60℃,导电率为33.61×10-4~310.21×10-4S/m,拉伸强度为133-700KPa。
8.根据权利要求6所述的导电明胶弹性体材料,其特征在于:
所述电活性物质为导电聚合物、导电填料、氧化石墨烯、还原氧化石墨烯、金属碳氮化物中的至少一种;和/或,
所述溶液B为氯化钠溶液、氯化钾溶液、硫酸钠溶液、溴化锂溶液中的至少一种。
9.一种如权利要求6-8任一所述的导电明胶弹性体材料的制备方法,其特征在于所述方法包括以下四种方法之一:
所述组分按所述重量份数混合浇铸得到所述弹性体材料;
所述组分按所述重量份数混合原位固化后得到所述弹性体材料;
所述组分按所述重量份数混合后3D打印得到所述弹性体材料;
将电活性物质通过模板印刷在两层弹性体生胶中间形成三明治结构得到所述弹性体材料。
10.根据权利要求9所述的导电明胶弹性体材料的制备方法,其特征在于:
所述3D打印为同轴3D打印。
CN202310603553.5A 2022-05-26 2023-05-25 明胶基弹性体生胶、导电明胶弹性体材料及其制备方法 Pending CN117126540A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210578749 2022-05-26
CN2022105787499 2022-05-26

Publications (1)

Publication Number Publication Date
CN117126540A true CN117126540A (zh) 2023-11-28

Family

ID=88849825

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310603553.5A Pending CN117126540A (zh) 2022-05-26 2023-05-25 明胶基弹性体生胶、导电明胶弹性体材料及其制备方法

Country Status (1)

Country Link
CN (1) CN117126540A (zh)

Similar Documents

Publication Publication Date Title
CN110776652B (zh) 石墨烯基导电水凝胶和其制备方法及在柔性可穿戴式传感器上的应用
CN109044326B (zh) 一种基于印刷技术的全柔性干电极及其制备方法
CN102824168B (zh) 柔性生理干电极及其制备方法
Song et al. Ultra-stable and self-healing coordinated collagen-based multifunctional double-network organohydrogel e-skin for multimodal sensing monitoring of strain-resistance, bioelectrode, and self-powered triboelectric nanogenerator
Niu et al. Solvent‐Free and Skin‐Like Supramolecular Ion‐Conductive Elastomers with Versatile Processability for Multifunctional Ionic Tattoos and On‐Skin Bioelectronics
You et al. Flexible porous Gelatin/Polypyrrole/Reduction graphene oxide organohydrogel for wearable electronics
Liu et al. Breathable, self-adhesive dry electrodes for stable electrophysiological signal monitoring during exercise
Tian et al. Hairy‐Skin‐Adaptive Viscoelastic Dry Electrodes for Long‐Term Electrophysiological Monitoring
Xiao et al. High-adhesive flexible electrodes and their manufacture: A review
Ma et al. Stretchable porous conductive hydrogel films prepared by emulsion template method as flexible sensors
CN109878071B (zh) 一种基于3d打印制备离子型压力阵列传感器的方法
CN117126540A (zh) 明胶基弹性体生胶、导电明胶弹性体材料及其制备方法
Gao et al. Bioelectronic applications of intrinsically conductive polymers
Wei et al. Ultraflexible tattoo electrodes for epidermal and in vivo electrophysiological recording
CN113425864A (zh) 一种柔性透气的MXene基生物质表皮电极及其制备方法和应用
US20180192906A1 (en) Polymer composition and electrode for a device for the non-invasive measurement of biological electrical signals
Chen et al. Gas-permeable and stretchable on-skin electronics based on a gradient porous elastomer and self-assembled silver nanowires
Zhao et al. Recent progress on tattoo-like electronics: From materials and structural designs to versatile applications
CN103242779B (zh) 一种生物智能胶
CN113397551A (zh) 一种基于液态金属的柔性皮革电极材料及其制备方法
CN112617841A (zh) 一种柔性可拉伸的自粘附体表电极及其制备方法
Shi et al. High performance zwitterionic hydrogels for ECG/EMG signals monitoring
Zhang et al. Low-Modulus, Low-Motion-Artifact Sensor for Biological Signal Recording
CN215305947U (zh) 一种基于石墨烯的干电极
Niu et al. Ionic hydrogels-based electronic skins for electrophysiological monitoring

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination