CN117111696A - A medical image segmentation method and a training method for a medical image segmentation model - Google Patents
A medical image segmentation method and a training method for a medical image segmentation model Download PDFInfo
- Publication number
- CN117111696A CN117111696A CN202311153927.4A CN202311153927A CN117111696A CN 117111696 A CN117111696 A CN 117111696A CN 202311153927 A CN202311153927 A CN 202311153927A CN 117111696 A CN117111696 A CN 117111696A
- Authority
- CN
- China
- Prior art keywords
- segmentation
- image
- medical image
- medical
- image segmentation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003709 image segmentation Methods 0.000 title claims abstract description 387
- 238000000034 method Methods 0.000 title claims abstract description 95
- 238000012549 training Methods 0.000 title claims abstract description 89
- 230000011218 segmentation Effects 0.000 claims abstract description 259
- 238000000605 extraction Methods 0.000 claims description 45
- 238000004891 communication Methods 0.000 claims description 12
- 238000004590 computer program Methods 0.000 claims description 11
- 230000008569 process Effects 0.000 abstract description 25
- 238000010586 diagram Methods 0.000 description 12
- 238000002604 ultrasonography Methods 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 10
- 238000012545 processing Methods 0.000 description 7
- 208000024770 Thyroid neoplasm Diseases 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 210000001685 thyroid gland Anatomy 0.000 description 4
- 208000009453 Thyroid Nodule Diseases 0.000 description 3
- 238000013473 artificial intelligence Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000003062 neural network model Methods 0.000 description 3
- 201000002510 thyroid cancer Diseases 0.000 description 3
- 238000002583 angiography Methods 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000011176 pooling Methods 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 1
- 206010054107 Nodule Diseases 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000004791 biological behavior Effects 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 208000006170 carotid stenosis Diseases 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 238000003058 natural language processing Methods 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/18—Packaging or power distribution
- G06F1/183—Internal mounting support structures, e.g. for printed circuit boards, internal connecting means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
- G06N3/0455—Auto-encoder networks; Encoder-decoder networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/082—Learning methods modifying the architecture, e.g. adding, deleting or silencing nodes or connections
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/0985—Hyperparameter optimisation; Meta-learning; Learning-to-learn
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/26—Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
- G06V10/267—Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion by performing operations on regions, e.g. growing, shrinking or watersheds
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Software Systems (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Mathematical Physics (AREA)
- Molecular Biology (AREA)
- Data Mining & Analysis (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Multimedia (AREA)
- Human Computer Interaction (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Medical Informatics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Databases & Information Systems (AREA)
- Image Analysis (AREA)
Abstract
Description
技术领域Technical field
本申请涉及图像处理技术领域,具体而言,涉及一种医疗图像分割方法及医疗图像分割模型的训练方法。The present application relates to the field of image processing technology, specifically, to a medical image segmentation method and a training method of a medical image segmentation model.
背景技术Background technique
随着医疗技术的发展,对医疗图像分割模型的分割精度越来越高。以甲状腺癌为例,近年来,甲状腺癌的发病率呈快速上升趋势,2020年全球癌症调查结果显示甲状腺癌发病具有女性多于男性、城市高于农村的分布特点。With the development of medical technology, the segmentation accuracy of medical image segmentation models is getting higher and higher. Take thyroid cancer as an example. In recent years, the incidence rate of thyroid cancer has been rising rapidly. The results of the 2020 Global Cancer Survey show that the incidence of thyroid cancer is more common in women than in men, and in urban areas than in rural areas.
其中,超声作为甲状腺病变的首选检查方法,可在发现病灶的同时对其生物学行为进行初步判断,具有便捷、安全等优势。科技的高速发展促使人工智能(ArtificialIntelligence,AI)技术广泛应用于医学大数据的超声影像中,其优势显而易见。在日常超负荷工作量和复杂高风险的检查压力下,超声AI系统能优化检查流程、规范诊断标准、缩短检查与报告时间,显著提高超声医师的诊断信心和工作效率。基于人工智能的甲状腺结节超声图像分割进而辅助医生更快速的定位结节位置,确认结节形态,以方便对结节良恶性进行判断。可以预见该项技术在未来助力超声诊断与治疗技术、人才培养等方面具有广阔的创新与发展前景。Among them, ultrasound is the preferred examination method for thyroid lesions. It can detect lesions and make preliminary judgments on their biological behavior at the same time. It has the advantages of convenience and safety. The rapid development of science and technology has led to the widespread application of artificial intelligence (AI) technology in ultrasound images of medical big data, and its advantages are obvious. Under the pressure of daily overloaded workload and complex and high-risk examinations, the ultrasound AI system can optimize the examination process, standardize diagnostic standards, shorten examination and reporting time, and significantly improve the diagnostic confidence and work efficiency of ultrasound doctors. Ultrasound image segmentation of thyroid nodules based on artificial intelligence can assist doctors to locate the nodule location more quickly and confirm the nodule shape to facilitate the judgment of benign and malignant nodules. It is foreseeable that this technology will have broad innovation and development prospects in assisting ultrasound diagnosis and treatment technology, talent training and other aspects in the future.
因此,需要一种准确度较高的甲状腺结节超声图像分割方法,从而可以辅助医生在检查中进行快速、准确的诊断。推及其他医疗图像,与甲状腺图像结节超声图像类似,同样需要一种准确度较高的分割方法。Therefore, a more accurate method for segmenting ultrasound images of thyroid nodules is needed, which can assist doctors in making quick and accurate diagnoses during examinations. Extended to other medical images, similar to thyroid images and nodule ultrasound images, a more accurate segmentation method is also needed.
在现有技术中,一般主要是通过改进医疗图像分割模型的架构或者进行数据增强,来提升分割的精度。但是,由于医疗数据的隐私性、数据标注的专业性,缺少大规模高质量的医疗分割图像数据,从而导致分割模型的精度较低。In the existing technology, the accuracy of segmentation is generally improved by improving the architecture of the medical image segmentation model or performing data enhancement. However, due to the privacy of medical data and the professionalism of data annotation, there is a lack of large-scale and high-quality medical segmentation image data, resulting in low accuracy of segmentation models.
发明内容Contents of the invention
本申请实施例的目的在于提供一种医疗图像分割方法及医疗图像分割模型的训练方法,用以解决现有技术中由于医疗数据的隐私性、数据标注的专业性,缺少大规模高质量的医疗分割图像数据,从而导致分割模型的精度较低的技术问题。The purpose of the embodiments of this application is to provide a medical image segmentation method and a medical image segmentation model training method to solve the problem of lack of large-scale and high-quality medical data in the existing technology due to the privacy of medical data and the professionalism of data annotation. Technical problems in segmenting image data, resulting in lower accuracy of segmentation models.
第一方面,本申请实施例提供一种医疗图像分割方法,包括:获取待处理医疗图像;将所述待处理医疗图像输入预先训练好的医疗图像分割模型中,得到所述医疗图像分割模型输出的分割结果;其中,所述医疗图像分割模型包括自然图像分割模块,所述自然图像分割模块包括图像编码器、图像解码器以及分割适配器,所述分割适配器嵌入所述图像编码器中,通过对所述分割适配器的参数进行更新实现对所述图像编码器进行训练。In a first aspect, embodiments of the present application provide a medical image segmentation method, which includes: acquiring a medical image to be processed; inputting the medical image to be processed into a pre-trained medical image segmentation model to obtain the output of the medical image segmentation model segmentation results; wherein, the medical image segmentation model includes a natural image segmentation module, the natural image segmentation module includes an image encoder, an image decoder, and a segmentation adapter, and the segmentation adapter is embedded in the image encoder. The parameters of the segmentation adapter are updated to implement training of the image encoder.
在上述方案中,可以利用预先训练好的医疗图像分割模型对待处理医疗图像进行分割,从而得到对应的分割结果。其中,上述医疗图像分割模型包括自然图像分割模块,可以在自然图像分割模块的基础上引入分割适配器,这样,在对医疗图像分割模型进行训练的过程中,可以冻结主干网络(即图像编码器),只利用少量的医疗分割图像数据去训练分割适配器,得到训练好的医疗图像分割模型。因此,即使缺少大规模高质量的医疗分割图像数据,也可以通过上述方式训练得到分割精度较高的医疗图像分割模型。In the above solution, a pre-trained medical image segmentation model can be used to segment the medical image to be processed, thereby obtaining the corresponding segmentation result. Among them, the above-mentioned medical image segmentation model includes a natural image segmentation module, and a segmentation adapter can be introduced based on the natural image segmentation module. In this way, during the training process of the medical image segmentation model, the backbone network (i.e., image encoder) can be frozen , only use a small amount of medical segmentation image data to train the segmentation adapter, and obtain a trained medical image segmentation model. Therefore, even if there is a lack of large-scale and high-quality medical segmentation image data, a medical image segmentation model with higher segmentation accuracy can be trained through the above method.
在可选的实施方式中,所述将所述待处理医疗图像输入预先训练好的医疗图像分割模型中,得到所述医疗图像分割模型输出的分割结果,包括:将所述待处理医疗图像输入所述图像编码器中,得到所述图像编码器输出的编码结果;将所述编码结果输入所述图像解码器中,得到所述图像解码器输出的所述分割结果。在上述方案中,可以利用自然图像分割模块对待处理医疗图像进行图像分割,从而得到对应的分割结果。其中,由于自然图像分割模块具有强大的分割能力,因此可以使得整个医疗图像分割模型在医疗图像中可以有较高精度的分割效果。In an optional embodiment, inputting the medical image to be processed into a pre-trained medical image segmentation model to obtain a segmentation result output by the medical image segmentation model includes: inputting the medical image to be processed In the image encoder, the encoding result output by the image encoder is obtained; the encoding result is input into the image decoder, and the segmentation result output by the image decoder is obtained. In the above solution, the natural image segmentation module can be used to segment the medical image to be processed, thereby obtaining the corresponding segmentation result. Among them, because the natural image segmentation module has powerful segmentation capabilities, the entire medical image segmentation model can achieve higher-precision segmentation effects in medical images.
在可选的实施方式中,所述医疗图像分割方法还包括:利用如下步骤对所述医疗图像分割模型进行训练:获取医疗分割图像数据以及待训练的医疗图像分割模型;针对所述自然图像分割模块加载对应的预训练参数;利用所述医疗分割图像数据对所述医疗图像分割模型中的分割适配器以及所述图像解码器的参数进行更新,得到训练好的医疗图像分割模型。在上述方案中,在对医疗图像分割模型进行训练的过程中,可以冻结图像编码器,只利用少量的医疗分割图像数据去训练分割适配器,同时训练图像解码器,从而得到训练好的医疗图像分割模型。因此,即使缺少大规模高质量的医疗分割图像数据,也可以通过上述方式训练得到分割精度较高的医疗图像分割模型。In an optional embodiment, the medical image segmentation method further includes: training the medical image segmentation model using the following steps: obtaining medical segmentation image data and the medical image segmentation model to be trained; segmenting the natural image The module loads corresponding pre-training parameters; uses the medical segmentation image data to update the parameters of the segmentation adapter and the image decoder in the medical image segmentation model to obtain a trained medical image segmentation model. In the above solution, during the training process of the medical image segmentation model, the image encoder can be frozen, only a small amount of medical segmentation image data is used to train the segmentation adapter, and the image decoder is trained at the same time, thereby obtaining the trained medical image segmentation Model. Therefore, even if there is a lack of large-scale and high-quality medical segmentation image data, a medical image segmentation model with higher segmentation accuracy can be trained through the above method.
在可选的实施方式中,所述医疗图像分割模型还包括:空间多尺度信息特征提取模块;所述将所述待处理医疗图像输入预先训练好的医疗图像分割模型中,得到所述医疗图像分割模型输出的分割结果,包括:将所述待处理医疗图像输入所述空间多尺度信息特征提取模块,得到所述空间多尺度信息特征提取模块输出的特征数据;将所述待处理医疗图像以及所述特征数据输入所述图像编码器中,得到所述图像编码器输出的编码结果;将所述编码结果输入所述图像解码器中,得到所述图像解码器输出的所述分割结果。在上述方案中,可以引入空间多尺度信息特征提取模块,在对待处理医疗图像进行图像分割之前,先基于上述待处理医疗图像向主干网络传递多尺度空间信息,从而提高训练得到的医疗图像分割模型的分割精度。In an optional embodiment, the medical image segmentation model further includes: a spatial multi-scale information feature extraction module; the medical image to be processed is input into a pre-trained medical image segmentation model to obtain the medical image. The segmentation result output by the segmentation model includes: inputting the medical image to be processed into the spatial multi-scale information feature extraction module to obtain the feature data output by the spatial multi-scale information feature extraction module; inputting the medical image to be processed and The characteristic data is input into the image encoder to obtain the encoding result output by the image encoder; the encoding result is input into the image decoder to obtain the segmentation result output by the image decoder. In the above solution, a spatial multi-scale information feature extraction module can be introduced. Before image segmentation of the medical image to be processed, multi-scale spatial information is transferred to the backbone network based on the medical image to be processed, thereby improving the trained medical image segmentation model. segmentation accuracy.
在可选的实施方式中,所述医疗图像分割方法还包括:利用如下步骤对所述医疗图像分割模型进行训练:获取医疗分割图像数据以及待训练的医疗图像分割模型;针对所述自然图像分割模块加载对应的预训练参数;利用所述医疗分割图像数据对所述医疗图像分割模型中的分割适配器、所述图像解码器以及所述空间多尺度信息特征提取模块的参数进行更新,得到训练好的医疗图像分割模型。在上述方案中,在对医疗图像分割模型进行训练的过程中,可以冻结图像编码器,只利用少量的医疗分割图像数据去训练分割适配器,同时训练图像解码器以及空间多尺度信息特征提取模块,从而得到训练好的医疗图像分割模型。因此,即使缺少大规模高质量的医疗分割图像数据,也可以通过上述方式训练得到分割精度较高的医疗图像分割模型。In an optional embodiment, the medical image segmentation method further includes: training the medical image segmentation model using the following steps: obtaining medical segmentation image data and the medical image segmentation model to be trained; segmenting the natural image The module loads the corresponding pre-training parameters; uses the medical segmentation image data to update the parameters of the segmentation adapter, the image decoder and the spatial multi-scale information feature extraction module in the medical image segmentation model to obtain a well-trained Medical image segmentation model. In the above solution, during the training process of the medical image segmentation model, the image encoder can be frozen, using only a small amount of medical segmentation image data to train the segmentation adapter, and training the image decoder and spatial multi-scale information feature extraction module at the same time. Thus, the trained medical image segmentation model is obtained. Therefore, even if there is a lack of large-scale and high-quality medical segmentation image data, a medical image segmentation model with higher segmentation accuracy can be trained through the above method.
第二方面,本申请实施例提供一种医疗图像分割模型的训练方法,包括:获取医疗分割图像数据以及待训练的医疗图像分割模型,其中,所述医疗图像分割模型包括自然图像分割模块,所述自然图像分割模块包括图像编码器、图像解码器以及分割适配器,所述分割适配器嵌入所述图像编码器中;针对所述自然图像分割模块加载对应的预训练参数;利用所述医疗分割图像数据对所述医疗图像分割模型中的分割适配器以及所述图像解码器的参数进行更新,得到训练好的医疗图像分割模型。In a second aspect, embodiments of the present application provide a training method for a medical image segmentation model, which includes: obtaining medical segmentation image data and a medical image segmentation model to be trained, wherein the medical image segmentation model includes a natural image segmentation module, so The natural image segmentation module includes an image encoder, an image decoder and a segmentation adapter, and the segmentation adapter is embedded in the image encoder; corresponding pre-training parameters are loaded for the natural image segmentation module; and the medical segmentation image data is used The parameters of the segmentation adapter and the image decoder in the medical image segmentation model are updated to obtain a trained medical image segmentation model.
在上述方案中,上述医疗图像分割模型包括自然图像分割模块,可以在自然图像分割模块的基础上引入分割适配器,这样,在对医疗图像分割模型进行训练的过程中,可以冻结主干网络(即图像编码器),只利用少量的医疗分割图像数据去训练分割适配器,得到训练好的医疗图像分割模型。因此,即使缺少大规模高质量的医疗分割图像数据,也可以通过上述方式训练得到分割精度较高的医疗图像分割模型。In the above solution, the above medical image segmentation model includes a natural image segmentation module, and a segmentation adapter can be introduced based on the natural image segmentation module. In this way, during the training process of the medical image segmentation model, the backbone network (i.e. image Encoder), only uses a small amount of medical segmentation image data to train the segmentation adapter, and obtains a trained medical image segmentation model. Therefore, even if there is a lack of large-scale and high-quality medical segmentation image data, a medical image segmentation model with higher segmentation accuracy can be trained through the above method.
在可选的实施方式中,所述医疗图像分割模型还包括:空间多尺度信息特征提取模块,所述利用所述医疗分割图像数据对所述医疗图像分割模型中的分割适配器以及所述图像解码器的参数进行更新,得到训练好的医疗图像分割模型,包括:利用所述医疗分割图像数据对所述医疗图像分割模型中的分割适配器、所述图像解码器以及所述空间多尺度信息特征提取模块的参数进行更新,得到训练好的医疗图像分割模型。In an optional embodiment, the medical image segmentation model further includes: a spatial multi-scale information feature extraction module, which uses the medical segmentation image data to decode the segmentation adapter and the image in the medical image segmentation model. The parameters of the medical image segmentation model are updated to obtain a trained medical image segmentation model, which includes: using the medical segmentation image data to extract features of the segmentation adapter, the image decoder and the spatial multi-scale information in the medical image segmentation model. The parameters of the module are updated to obtain the trained medical image segmentation model.
第三方面,本申请实施例提供一种医疗图像分割装置,包括:第一获取模块,用于获取待处理医疗图像;输入模块,用于将所述待处理医疗图像输入预先训练好的医疗图像分割模型中,得到所述医疗图像分割模型输出的分割结果;其中,所述医疗图像分割模型包括自然图像分割模块,所述自然图像分割模块包括图像编码器、图像解码器以及分割适配器,所述分割适配器嵌入所述图像编码器中,通过对所述分割适配器的参数进行更新实现对所述图像编码器进行训练。In a third aspect, embodiments of the present application provide a medical image segmentation device, including: a first acquisition module for acquiring medical images to be processed; and an input module for inputting the medical images to be processed into pre-trained medical images. In the segmentation model, the segmentation result output by the medical image segmentation model is obtained; wherein the medical image segmentation model includes a natural image segmentation module, and the natural image segmentation module includes an image encoder, an image decoder, and a segmentation adapter, and the A segmentation adapter is embedded in the image encoder, and the image encoder is trained by updating parameters of the segmentation adapter.
在上述方案中,可以利用预先训练好的医疗图像分割模型对待处理医疗图像进行分割,从而得到对应的分割结果。其中,上述医疗图像分割模型包括自然图像分割模块,可以在自然图像分割模块的基础上引入分割适配器,这样,在对医疗图像分割模型进行训练的过程中,可以冻结主干网络(即图像编码器),只利用少量的医疗分割图像数据去训练分割适配器,得到训练好的医疗图像分割模型。因此,即使缺少大规模高质量的医疗分割图像数据,也可以通过上述方式训练得到分割精度较高的医疗图像分割模型。In the above solution, a pre-trained medical image segmentation model can be used to segment the medical image to be processed, thereby obtaining the corresponding segmentation result. Among them, the above-mentioned medical image segmentation model includes a natural image segmentation module, and a segmentation adapter can be introduced based on the natural image segmentation module. In this way, during the training process of the medical image segmentation model, the backbone network (i.e., image encoder) can be frozen , only use a small amount of medical segmentation image data to train the segmentation adapter, and obtain a trained medical image segmentation model. Therefore, even if there is a lack of large-scale and high-quality medical segmentation image data, a medical image segmentation model with higher segmentation accuracy can be trained through the above method.
在可选的实施方式中,所述输入模块具体用于:将所述待处理医疗图像输入所述图像编码器中,得到所述图像编码器输出的编码结果;将所述编码结果输入所述图像解码器中,得到所述图像解码器输出的所述分割结果。在上述方案中,可以利用自然图像分割模块对待处理医疗图像进行图像分割,从而得到对应的分割结果。其中,由于自然图像分割模块具有强大的分割能力,因此可以使得整个医疗图像分割模型在医疗图像中可以有较高精度的分割效果。In an optional implementation, the input module is specifically configured to: input the medical image to be processed into the image encoder to obtain the encoding result output by the image encoder; input the encoding result into the In the image decoder, the segmentation result output by the image decoder is obtained. In the above solution, the natural image segmentation module can be used to segment the medical image to be processed, thereby obtaining the corresponding segmentation result. Among them, because the natural image segmentation module has powerful segmentation capabilities, the entire medical image segmentation model can achieve higher-precision segmentation effects in medical images.
在可选的实施方式中,所述医疗图像分割装置还包括:第一训练模块,用于利用如下步骤对所述医疗图像分割模型进行训练:获取医疗分割图像数据以及待训练的医疗图像分割模型;针对所述自然图像分割模块加载对应的预训练参数;利用所述医疗分割图像数据对所述医疗图像分割模型中的分割适配器以及所述图像解码器的参数进行更新,得到训练好的医疗图像分割模型。在上述方案中,在对医疗图像分割模型进行训练的过程中,可以冻结图像编码器,只利用少量的医疗分割图像数据去训练分割适配器,同时训练图像解码器,从而得到训练好的医疗图像分割模型。因此,即使缺少大规模高质量的医疗分割图像数据,也可以通过上述方式训练得到分割精度较高的医疗图像分割模型。In an optional embodiment, the medical image segmentation device further includes: a first training module for training the medical image segmentation model using the following steps: obtaining medical segmentation image data and the medical image segmentation model to be trained ; Load corresponding pre-training parameters for the natural image segmentation module; use the medical segmentation image data to update the parameters of the segmentation adapter and the image decoder in the medical image segmentation model to obtain trained medical images Segmentation model. In the above solution, during the training process of the medical image segmentation model, the image encoder can be frozen, only a small amount of medical segmentation image data is used to train the segmentation adapter, and the image decoder is trained at the same time, thereby obtaining the trained medical image segmentation Model. Therefore, even if there is a lack of large-scale and high-quality medical segmentation image data, a medical image segmentation model with higher segmentation accuracy can be trained through the above method.
在可选的实施方式中,所述医疗图像分割模型还包括:空间多尺度信息特征提取模块;所述输入模块具体用于:将所述待处理医疗图像输入所述空间多尺度信息特征提取模块,得到所述空间多尺度信息特征提取模块输出的特征数据;将所述待处理医疗图像以及所述特征数据输入所述图像编码器中,得到所述图像编码器输出的编码结果;将所述编码结果输入所述图像解码器中,得到所述图像解码器输出的所述分割结果。在上述方案中,可以引入空间多尺度信息特征提取模块,在对待处理医疗图像进行图像分割之前,先基于上述待处理医疗图像向主干网络传递多尺度空间信息,从而提高训练得到的医疗图像分割模型的分割精度。In an optional implementation, the medical image segmentation model further includes: a spatial multi-scale information feature extraction module; the input module is specifically configured to: input the medical image to be processed into the spatial multi-scale information feature extraction module , obtain the feature data output by the spatial multi-scale information feature extraction module; input the medical image to be processed and the feature data into the image encoder to obtain the encoding result output by the image encoder; convert the The encoding result is input into the image decoder, and the segmentation result output by the image decoder is obtained. In the above solution, a spatial multi-scale information feature extraction module can be introduced. Before image segmentation of the medical image to be processed, multi-scale spatial information is transferred to the backbone network based on the medical image to be processed, thereby improving the trained medical image segmentation model. segmentation accuracy.
在可选的实施方式中,所述医疗图像分割装置还包括:第二训练模块,用于利用如下步骤对所述医疗图像分割模型进行训练:获取医疗分割图像数据以及待训练的医疗图像分割模型;针对所述自然图像分割模块加载对应的预训练参数;利用所述医疗分割图像数据对所述医疗图像分割模型中的分割适配器、所述图像解码器以及所述空间多尺度信息特征提取模块的参数进行更新,得到训练好的医疗图像分割模型。在上述方案中,在对医疗图像分割模型进行训练的过程中,可以冻结图像编码器,只利用少量的医疗分割图像数据去训练分割适配器,同时训练图像解码器以及空间多尺度信息特征提取模块,从而得到训练好的医疗图像分割模型。因此,即使缺少大规模高质量的医疗分割图像数据,也可以通过上述方式训练得到分割精度较高的医疗图像分割模型。In an optional embodiment, the medical image segmentation device further includes: a second training module for training the medical image segmentation model using the following steps: obtaining medical segmentation image data and the medical image segmentation model to be trained ; Load corresponding pre-training parameters for the natural image segmentation module; use the medical segmentation image data to perform segmentation adapter, the image decoder and the spatial multi-scale information feature extraction module in the medical image segmentation model. The parameters are updated to obtain the trained medical image segmentation model. In the above solution, during the training process of the medical image segmentation model, the image encoder can be frozen, using only a small amount of medical segmentation image data to train the segmentation adapter, and training the image decoder and spatial multi-scale information feature extraction module at the same time. Thus, the trained medical image segmentation model is obtained. Therefore, even if there is a lack of large-scale and high-quality medical segmentation image data, a medical image segmentation model with higher segmentation accuracy can be trained through the above method.
第四方面,本申请实施例提供一种医疗图像分割模型的训练装置,包括:第二获取模块,用于获取医疗分割图像数据以及待训练的医疗图像分割模型,其中,所述医疗图像分割模型包括自然图像分割模块,所述自然图像分割模块包括图像编码器、图像解码器以及分割适配器,所述分割适配器嵌入所述图像编码器中;加载模块,用于针对所述自然图像分割模块加载对应的预训练参数;更新模块,用于利用所述医疗分割图像数据对所述医疗图像分割模型中的分割适配器以及所述图像解码器的参数进行更新,得到训练好的医疗图像分割模型。In a fourth aspect, embodiments of the present application provide a training device for a medical image segmentation model, including: a second acquisition module for acquiring medical segmentation image data and a medical image segmentation model to be trained, wherein the medical image segmentation model It includes a natural image segmentation module, which includes an image encoder, an image decoder, and a segmentation adapter. The segmentation adapter is embedded in the image encoder. A loading module is used to load the corresponding natural image segmentation module for the natural image segmentation module. Pre-training parameters; an update module, configured to use the medical segmentation image data to update the parameters of the segmentation adapter and the image decoder in the medical image segmentation model to obtain a trained medical image segmentation model.
在上述方案中,上述医疗图像分割模型包括自然图像分割模块,可以在自然图像分割模块的基础上引入分割适配器,这样,在对医疗图像分割模型进行训练的过程中,可以冻结主干网络(即图像编码器),只利用少量的医疗分割图像数据去训练分割适配器,得到训练好的医疗图像分割模型。因此,即使缺少大规模高质量的医疗分割图像数据,也可以通过上述方式训练得到分割精度较高的医疗图像分割模型。In the above solution, the above medical image segmentation model includes a natural image segmentation module, and a segmentation adapter can be introduced based on the natural image segmentation module. In this way, during the training process of the medical image segmentation model, the backbone network (i.e. image Encoder), only uses a small amount of medical segmentation image data to train the segmentation adapter, and obtains a trained medical image segmentation model. Therefore, even if there is a lack of large-scale and high-quality medical segmentation image data, a medical image segmentation model with higher segmentation accuracy can be trained through the above method.
在可选的实施方式中,所述医疗图像分割模型还包括:空间多尺度信息特征提取模块,所述更新模块具体用于:利用所述医疗分割图像数据对所述医疗图像分割模型中的分割适配器、所述图像解码器以及所述空间多尺度信息特征提取模块的参数进行更新,得到训练好的医疗图像分割模型。In an optional embodiment, the medical image segmentation model further includes: a spatial multi-scale information feature extraction module, and the update module is specifically configured to: use the medical segmentation image data to perform segmentation in the medical image segmentation model. The parameters of the adapter, the image decoder and the spatial multi-scale information feature extraction module are updated to obtain a trained medical image segmentation model.
第五方面,本申请实施例提供一种电子设备,包括:处理器、存储器和总线;所述处理器和所述存储器通过所述总线完成相互间的通信;所述存储器存储有可被所述处理器执行的计算机程序指令,所述处理器调用所述计算机程序指令能够执行如第一方面所述的医疗图像分割方法或者如第二方面所述的医疗图像分割模型的训练方法。In a fifth aspect, embodiments of the present application provide an electronic device, including: a processor, a memory and a bus; the processor and the memory complete communication with each other through the bus; the memory stores information that can be used by the Computer program instructions executed by a processor, which can execute the medical image segmentation method as described in the first aspect or the training method of the medical image segmentation model as described in the second aspect by calling the computer program instructions.
第六方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储计算机程序指令,所述计算机程序指令被计算机运行时,使所述计算机执行如第一方面所述的医疗图像分割方法或者如第二方面所述的医疗图像分割模型的训练方法。In a sixth aspect, embodiments of the present application provide a computer-readable storage medium. The computer-readable storage medium stores computer program instructions. When the computer program instructions are run by a computer, they cause the computer to execute as described in the first aspect. The medical image segmentation method or the training method of the medical image segmentation model as described in the second aspect.
为使本申请的上述目的、特征和优点能更明显易懂,下文特举本申请实施例,并配合所附附图,作详细说明如下。In order to make the above-mentioned objects, features and advantages of the present application more obvious and easy to understand, embodiments of the present application are cited below and described in detail with reference to the attached drawings.
附图说明Description of drawings
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。In order to more clearly illustrate the technical solutions of the embodiments of the present application, the drawings required to be used in the embodiments of the present application will be briefly introduced below. It should be understood that the following drawings only show some embodiments of the present application, therefore This should not be regarded as limiting the scope. For those of ordinary skill in the art, other relevant drawings can be obtained based on these drawings without exerting creative efforts.
图1为本申请实施例提供的一种医疗图像分割方法的流程图;Figure 1 is a flow chart of a medical image segmentation method provided by an embodiment of the present application;
图2为本申请实施例提供的一种ViT结构的示意图;Figure 2 is a schematic diagram of a ViT structure provided by an embodiment of the present application;
图3为本申请实施例提供的一种ViT+Adaper结构的示意图;Figure 3 is a schematic diagram of a ViT+Adaper structure provided by an embodiment of the present application;
图4为本申请实施例提供的一种SMS结构的示意图;Figure 4 is a schematic diagram of an SMS structure provided by an embodiment of the present application;
图5为本申请实施例提供的一种医疗图像分割模型的训练方法的流程图;Figure 5 is a flow chart of a training method for a medical image segmentation model provided by an embodiment of the present application;
图6为本申请实施例提供一种医疗图像分割装置的结构框图;Figure 6 is a structural block diagram of a medical image segmentation device according to an embodiment of the present application;
图7为本申请实施例提供的一种医疗图像分割模型的训练装置的结构框图;Figure 7 is a structural block diagram of a training device for a medical image segmentation model provided by an embodiment of the present application;
图8为本申请实施例提供的一种电子设备的结构框图。FIG. 8 is a structural block diagram of an electronic device provided by an embodiment of the present application.
具体实施方式Detailed ways
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。The technical solutions in the embodiments of the present application will be described below with reference to the drawings in the embodiments of the present application.
请参照图1,图1为本申请实施例提供的一种医疗图像分割方法的流程图,该医疗图像分割方法可以包括如下步骤:Please refer to Figure 1. Figure 1 is a flow chart of a medical image segmentation method provided by an embodiment of the present application. The medical image segmentation method may include the following steps:
步骤S101:获取待处理医疗图像。Step S101: Obtain the medical image to be processed.
步骤S102:将待处理医疗图像输入预先训练好的医疗图像分割模型中,得到医疗图像分割模型输出的分割结果。Step S102: Input the medical image to be processed into the pre-trained medical image segmentation model, and obtain the segmentation result output by the medical image segmentation model.
具体的,在上述步骤S101中,待处理医疗图像是指当前需要进行图像分割的医疗图像。医疗图像是指在医疗行业中使用的图像,需要说明的是,本申请实施例对医疗图像的具体实施方式不作具体的限定,本领域技术人员可以根据实际情况进行合适的调整,例如:医疗图像可以包括甲状腺超声图像、乳腺超声图像、颈动脉造影图像等。Specifically, in the above step S101, the medical image to be processed refers to the medical image that currently requires image segmentation. Medical images refer to images used in the medical industry. It should be noted that the embodiments of this application do not specifically limit the specific implementation of medical images. Those skilled in the art can make appropriate adjustments according to the actual situation, for example: medical images It can include thyroid ultrasound images, breast ultrasound images, carotid angiography images, etc.
此外,本申请实施例对获取上述待处理医疗图像的具体实施方式同样不作具体的限定,本领域技术人员同样可以根据实际情况进行合适的调整。举例来说,可以接收外部设备的待处理医疗图像;或者,可以读取本地或者云端存储的待处理医疗图像;或者,可以实时采集待处理医疗图像等。In addition, the embodiments of the present application also do not specifically limit the specific implementation methods for obtaining the above-mentioned medical images to be processed, and those skilled in the art can also make appropriate adjustments according to the actual situation. For example, medical images to be processed from an external device can be received; or medical images to be processed stored locally or in the cloud can be read; or medical images to be processed can be collected in real time.
在上述步骤S102中,医疗图像分割模型是指用于对上述待处理医疗图像进行图像分割的神经网络模型,其中,上述步骤S102中的医疗图像分割模型是预先训练好的医疗图像分割模型。In the above-mentioned step S102, the medical image segmentation model refers to a neural network model used for image segmentation of the above-mentioned medical image to be processed, wherein the medical image segmentation model in the above-mentioned step S102 is a pre-trained medical image segmentation model.
下面对本申请实施例提供的一种医疗图像分割模型的结构进行介绍。该医疗图像分割模型可以包括自然图像分割模块(Segment Anything Model,SAM);自然图像分割模块可以包括图像编码器、图像解码器以及分割适配器,其中,分割适配器可以嵌入在图像编码器中。The structure of a medical image segmentation model provided by the embodiment of the present application is introduced below. The medical image segmentation model may include a natural image segmentation module (Segment Anything Model, SAM); the natural image segmentation module may include an image encoder, an image decoder, and a segmentation adapter, where the segmentation adapter may be embedded in the image encoder.
在上述自然图像分割模块中,图像编码器可以基于标准的视觉变形器(VisionTransformer,ViT),而注意力机制可以由14*14大小的窗口注意力以及四个等间隔的全局注意力构成;图像解码器是一个基于Transformer的解码器,包括可以处理不同提示(文本,点,框等)掩码信息的动态预测头。In the above natural image segmentation module, the image encoder can be based on the standard Vision Transformer (ViT), and the attention mechanism can be composed of a 14*14 size window attention and four equally spaced global attentions; image The decoder is a Transformer-based decoder, including a dynamic prediction head that can handle mask information for different hints (text, points, boxes, etc.).
请参照图2,图2为本申请实施例提供的一种ViT结构的示意图。该ViT结构中包括层归一化(Layer Norm)、多注意力头(Muti-Head Attention)以及多层感知机(MultilayerPerceptron,MLP)。其中,Layer Norm用于对每个Token进行Norm处理;MLP可以包括全连接层、GELU激活函数以及Dropout。Please refer to Figure 2, which is a schematic diagram of a ViT structure provided by an embodiment of the present application. The ViT structure includes layer normalization (Layer Norm), multi-head attention (Muti-Head Attention) and multi-layer perceptron (MultilayerPerceptron, MLP). Among them, Layer Norm is used to perform Norm processing on each Token; MLP can include fully connected layers, GELU activation functions and Dropout.
在图2所示的ViT结构上,可以嵌入分割适配器(Adaper)。作为一种实施方式,请参照图3,图3为本申请实施例提供的一种ViT+Adaper结构的示意图。该ViT+Adaper结构在图2的基础上,分别在Muti-Head Attention层以及MLP层引入Adaper。On the ViT structure shown in Figure 2, a split adapter (Adaper) can be embedded. As an implementation manner, please refer to FIG. 3 , which is a schematic diagram of a ViT+Adaper structure provided by an embodiment of the present application. The ViT+Adaper structure is based on Figure 2 and introduces Adaper in the Muti-Head Attention layer and MLP layer respectively.
根据现在研究表明,部分参数微调方法比完全微调更有效,因为它们可以避免灾难性遗忘,并更好地推广到域外情景,特别是在低数据的情况下。Adapter作为一种有效的工具,不仅在自然语言处理中,而且在计算机视觉中,可以应用于对下游任务的大型基本视觉模型进行微调。考虑到高质量的医疗数据难以获取且不容易标注,因此,本申请实施例中引入Adapter。According to current research, partial parameter fine-tuning methods are more effective than full fine-tuning because they can avoid catastrophic forgetting and generalize better to out-of-domain scenarios, especially in the case of low data. Adapter serves as an effective tool not only in natural language processing but also in computer vision, and can be applied to fine-tune large basic vision models for downstream tasks. Considering that high-quality medical data is difficult to obtain and is not easy to label, Adapter is introduced in the embodiment of this application.
作为另一种实施方式,还可以在MLP层中引入Scaling超参数,以达到更好的channel权重学习的目的。As another implementation, Scaling hyperparameters can also be introduced in the MLP layer to achieve better channel weight learning.
需要说明的是,本申请实施例对Adapter的具体结构不作具体的限定,本领域技术人员可以根据实际情况进行合适的调整。举例来说,如图3所示,Adapter可以包括Down层、ReLU层以及Up层。It should be noted that the embodiments of the present application do not specifically limit the specific structure of the Adapter, and those skilled in the art can make appropriate adjustments according to the actual situation. For example, as shown in Figure 3, the Adapter can include a Down layer, a ReLU layer, and an Up layer.
基于上述ViT+Adaper结构,在对医疗图像分割模型进行训练的过程中,可以通过对分割适配器的参数进行更新实现对图像编码器进行训练。Based on the above ViT+Adaper structure, in the process of training the medical image segmentation model, the image encoder can be trained by updating the parameters of the segmentation adapter.
作为一种实施方式,考虑到自然图像分割模块是由千万级自然图像训练得到的模型,在自然图像分割上可以实现超高精度的图像分割,因此,在本申请实施例中,自然图像分割模块可以预先加载预训练参数。As an implementation manner, considering that the natural image segmentation module is a model trained by tens of millions of natural images, ultra-high-precision image segmentation can be achieved in natural image segmentation. Therefore, in the embodiment of the present application, natural image segmentation Modules can be pre-loaded with pre-trained parameters.
在针对医疗图像分割模型进行训练的过程中,可以冻结主干网络(即自然图像分割模块中图像编码器),只对Adapter部分进行训练。也就是说,在对医疗图像分割模型进行训练的过程中,图像编码器的参数不会发生改变,而Adapter的参数会进行迭代更新,直至得到训练好的医疗图像分割模型。During the training process of the medical image segmentation model, the backbone network (i.e., the image encoder in the natural image segmentation module) can be frozen and only the Adapter part is trained. In other words, during the training process of the medical image segmentation model, the parameters of the image encoder will not change, and the parameters of the Adapter will be iteratively updated until the trained medical image segmentation model is obtained.
可以理解的是,由于自然图像分割模块预先加载了针对自然图像进行分割时精度较高的预训练参数,因此可以提升在此基础上训练得到的医疗图像分割模型的分割能力;此外,由于仅需要对Adapter部分进行训练,因此,只需要利用少量的医疗分割图像数据对医疗图像分割模型进行训练便可以得到精度较高的医疗图像分割模型,从而解决了现有技术中由于医疗数据的隐私性、数据标注的专业性,缺少大规模高质量的医疗分割图像数据,从而导致分割模型的精度较低的技术问题。It can be understood that because the natural image segmentation module is pre-loaded with pre-training parameters with higher accuracy when segmenting natural images, the segmentation capabilities of the medical image segmentation model trained on this basis can be improved; in addition, since only The Adapter part is trained. Therefore, it is only necessary to use a small amount of medical segmentation image data to train the medical image segmentation model to obtain a medical image segmentation model with higher accuracy, thereby solving the problem of privacy and privacy of medical data in the existing technology. The professionalism of data annotation and the lack of large-scale and high-quality medical segmentation image data lead to technical problems such as low accuracy of segmentation models.
需要说明的是,现有技术中的自然图像分割模块一般包括图像编码器、图像解码器以及掩码解码器,但是在本申请实施例中,由于只采样图像编码以及图像解码的部分,不需要动态掩码输入,因此,可以省略掩码解码器。It should be noted that the natural image segmentation module in the prior art generally includes an image encoder, an image decoder and a mask decoder. However, in the embodiment of the present application, since only the image encoding and image decoding parts are sampled, there is no need to Dynamic mask input, therefore, the mask decoder can be omitted.
除此之外,本申请实施例对上述步骤S102中的分割结果的具体实施方式不作具体的限定,本领域技术人员可以根据实际情况进行合适的调整。举例来说,当医疗图像包括甲状腺超声图像时,分割结果可以包括甲状腺结节的位置;或者,当医疗图像包括颈动脉造影图像时,分割结果可以包括颈动脉斑块的位置等。In addition, the embodiment of the present application does not specifically limit the specific implementation of the segmentation result in the above step S102, and those skilled in the art can make appropriate adjustments according to the actual situation. For example, when the medical image includes a thyroid ultrasound image, the segmentation result may include the location of the thyroid nodule; or when the medical image includes a carotid angiography image, the segmentation result may include the location of the carotid artery plaque, etc.
在上述方案中,可以利用预先训练好的医疗图像分割模型对待处理医疗图像进行分割,从而得到对应的分割结果。其中,上述医疗图像分割模型包括自然图像分割模块,可以在自然图像分割模块的基础上引入分割适配器,这样,在对医疗图像分割模型进行训练的过程中,可以冻结主干网络(即图像编码器),只利用少量的医疗分割图像数据去训练分割适配器,得到训练好的医疗图像分割模型。因此,即使缺少大规模高质量的医疗分割图像数据,也可以通过上述方式训练得到分割精度较高的医疗图像分割模型。In the above solution, a pre-trained medical image segmentation model can be used to segment the medical image to be processed, thereby obtaining the corresponding segmentation result. Among them, the above-mentioned medical image segmentation model includes a natural image segmentation module, and a segmentation adapter can be introduced based on the natural image segmentation module. In this way, during the training process of the medical image segmentation model, the backbone network (i.e., image encoder) can be frozen , only use a small amount of medical segmentation image data to train the segmentation adapter, and obtain a trained medical image segmentation model. Therefore, even if there is a lack of large-scale and high-quality medical segmentation image data, a medical image segmentation model with higher segmentation accuracy can be trained through the above method.
进一步的,在上述实施例的基础上,上述步骤S102具体可以包括如下步骤:Further, based on the above embodiment, the above step S102 may specifically include the following steps:
步骤1),将待处理医疗图像输入图像编码器中,得到图像编码器输出的编码结果。Step 1): Input the medical image to be processed into the image encoder to obtain the encoding result output by the image encoder.
步骤2),将编码结果输入图像解码器中,得到图像解码器输出的分割结果。Step 2): Input the encoding result into the image decoder to obtain the segmentation result output by the image decoder.
具体的,在上述步骤1)中,图像编码器可以基于标准的视觉变形器(VisionTransformer,ViT),而注意力机制可以由14*14大小的窗口注意力以及四个等间隔的全局注意力构成。如图3所示,可以将待处理医疗图像输入上述图像编码器中,待处理医疗图像经过Layer Norm、Muti-Head Attention、Adaper以及MLP,最终可以得到图像编码器输出的编码结果。Specifically, in the above step 1), the image encoder can be based on the standard visual transformer (VisionTransformer, ViT), and the attention mechanism can be composed of a 14*14 size window attention and four equally spaced global attentions. . As shown in Figure 3, the medical image to be processed can be input into the above-mentioned image encoder. The medical image to be processed passes through Layer Norm, Muti-Head Attention, Adaper and MLP, and finally the encoding result output by the image encoder can be obtained.
作为一种实施方式,可以对待处理医疗图像进行16倍下采样后,作为图像编码器的输入。As an implementation manner, the medical image to be processed can be down-sampled 16 times and used as the input of the image encoder.
在上述步骤2)中,图像解码器是一个基于Transformer的解码器,包括可以处理不同提示(文本,点,框等)掩码信息的动态预测头。可以将编码结果输入上述图像解码器中,最终可以得到图像解码器输出的分割结果。In step 2) above, the image decoder is a Transformer-based decoder, including a dynamic prediction head that can handle mask information for different cues (text, points, boxes, etc.). The encoding result can be input into the above image decoder, and finally the segmentation result output by the image decoder can be obtained.
在上述方案中,可以利用自然图像分割模块对待处理医疗图像进行图像分割,从而得到对应的分割结果。其中,由于自然图像分割模块具有强大的分割能力,因此可以使得整个医疗图像分割模型在医疗图像中可以有较高精度的分割效果。In the above solution, the natural image segmentation module can be used to segment the medical image to be processed, thereby obtaining the corresponding segmentation result. Among them, because the natural image segmentation module has powerful segmentation capabilities, the entire medical image segmentation model can achieve higher-precision segmentation effects in medical images.
进一步的,在上述实施例的基础上,可以利用如下步骤对上述实施例中的医疗图像分割模型进行训练:Further, based on the above embodiments, the following steps can be used to train the medical image segmentation model in the above embodiments:
步骤1),获取医疗分割图像数据以及待训练的医疗图像分割模型。Step 1), obtain medical segmentation image data and the medical image segmentation model to be trained.
步骤2),针对自然图像分割模块加载对应的预训练参数。Step 2), load the corresponding pre-training parameters for the natural image segmentation module.
步骤3),利用医疗分割图像数据对医疗图像分割模型中的分割适配器以及图像解码器的参数进行更新,得到训练好的医疗图像分割模型。Step 3), use the medical segmentation image data to update the parameters of the segmentation adapter and image decoder in the medical image segmentation model to obtain a trained medical image segmentation model.
具体的,在上述步骤1)中,医疗分割图像数据是指已经分割好并且标注好的医疗图像。可以理解的是,由于本申请实施例中引入了Adaper,因此,上述医疗分割图像数据的数量不需要太大,即只需少量的医疗分割图像数据即可对医疗图像分割模型进行训练。Specifically, in the above step 1), the medical segmentation image data refers to the medical images that have been segmented and labeled. It can be understood that since Adaper is introduced in the embodiment of the present application, the amount of the above medical segmentation image data does not need to be too large, that is, only a small amount of medical segmentation image data is needed to train the medical image segmentation model.
需要说明的是,本申请实施例对获取上述医疗分割图像数据的具体实施方式同样不作具体的限定,本领域技术人员同样可以根据实际情况进行合适的调整。举例来说,可以接收外部设备的医疗分割图像数据;或者,可以读取本地或者云端存储的医疗分割图像数据等。It should be noted that the embodiments of the present application also do not specifically limit the specific implementation manner for obtaining the above-mentioned medical segmentation image data, and those skilled in the art can also make appropriate adjustments according to the actual situation. For example, medical segmentation image data from an external device can be received; or medical segmentation image data stored locally or in the cloud can be read.
医疗图像分割模型是指用于对上述待处理医疗图像进行图像分割的神经网络模型,其中,上述步骤1)中的医疗图像分割模型是指未进行训练或者未训练好的医疗图像分割模型。可以理解的是,上述步骤1)中的医疗图像分割模型与上述步骤S102中的医疗图像分割模型的结构相同,两者的区别仅在于其模型参数存在不同。The medical image segmentation model refers to the neural network model used for image segmentation of the above-mentioned medical image to be processed, wherein the medical image segmentation model in the above step 1) refers to an untrained or untrained medical image segmentation model. It can be understood that the medical image segmentation model in the above step 1) has the same structure as the medical image segmentation model in the above step S102, and the only difference between them is that their model parameters are different.
与获取上述医疗分割图像数据类似,本申请实施例对获取上述待训练的医疗图像分割模型的具体实施方式同样不作具体的限定,本领域技术人员同样可以根据实际情况进行合适的调整。举例来说,可以接收外部设备的待训练的医疗图像分割模型;或者,可以读取本地或者云端存储的待训练的医疗图像分割模型等。Similar to obtaining the above-mentioned medical segmentation image data, the embodiments of the present application also do not specifically limit the specific implementation of obtaining the above-mentioned medical image segmentation model to be trained. Those skilled in the art can also make appropriate adjustments according to the actual situation. For example, a medical image segmentation model to be trained from an external device can be received; or a medical image segmentation model to be trained stored locally or in the cloud can be read.
在上述步骤2)中,考虑到自然图像分割模块是由千万级自然图像训练得到的模型,在自然图像分割上可以实现超高精度的图像分割,因此,可以针对自然图像分割模块加载对应的预训练参数。In the above step 2), considering that the natural image segmentation module is a model trained by tens of millions of natural images, ultra-high-precision image segmentation can be achieved in natural image segmentation. Therefore, the corresponding module can be loaded for the natural image segmentation module. Pre-training parameters.
在上述步骤3)中,在针对医疗图像分割模型进行训练的过程中,可以冻结主干网络(即自然图像分割模块中图像编码器),利用医疗分割图像数据对医疗图像分割模型中的分割适配器以及图像解码器的参数进行更新,得到训练好的医疗图像分割模型。In the above step 3), during the training process of the medical image segmentation model, the backbone network (i.e., the image encoder in the natural image segmentation module) can be frozen, and the medical segmentation image data is used to train the segmentation adapter in the medical image segmentation model and The parameters of the image decoder are updated to obtain the trained medical image segmentation model.
在上述方案中,在对医疗图像分割模型进行训练的过程中,可以冻结图像编码器,只利用少量的医疗分割图像数据去训练分割适配器,同时训练图像解码器,从而得到训练好的医疗图像分割模型。因此,即使缺少大规模高质量的医疗分割图像数据,也可以通过上述方式训练得到分割精度较高的医疗图像分割模型。In the above solution, during the training process of the medical image segmentation model, the image encoder can be frozen, only a small amount of medical segmentation image data is used to train the segmentation adapter, and the image decoder is trained at the same time, thereby obtaining the trained medical image segmentation Model. Therefore, even if there is a lack of large-scale and high-quality medical segmentation image data, a medical image segmentation model with higher segmentation accuracy can be trained through the above method.
进一步的,在上述实施例的基础上,医疗图像分割模型还可以包括:空间多尺度信息特征提取模块(Spatial Multi-Scale,SMS)。请参照图4,图4为本申请实施例提供的一种SMS结构的示意图,该空间多尺度信息特征提取模块可以采用从ResNet借鉴的标准卷积系统。Further, based on the above embodiments, the medical image segmentation model may also include: a spatial multi-scale information feature extraction module (Spatial Multi-Scale, SMS). Please refer to Figure 4, which is a schematic diagram of an SMS structure provided by an embodiment of the present application. The spatial multi-scale information feature extraction module can adopt a standard convolution system borrowed from ResNet.
作为一种实施方式,空间多尺度信息特征提取模块可以包括三个卷积和一个最大池化层;之后使用一个3×3的卷积层将通道数量增加一倍,并减小特征映射的大小;接着应用多个1×1的卷积层将特征映射投影到D维;这样就得到了一个包含D维特征图的特征金字塔{F1,F2,F3,F4},分辨率分别为原图的1/8、1/16、1/32、1/64;然后将上述包含D维特征图的特征金字塔进行映射平面化,并拼接成新特征作为特征交互,得到空间多尺度信息特征提取模块的输出。As an implementation method, the spatial multi-scale information feature extraction module can include three convolutions and a maximum pooling layer; then a 3×3 convolution layer is used to double the number of channels and reduce the size of the feature map ; Then apply multiple 1×1 convolutional layers to project the feature map to D dimension; in this way, a feature pyramid {F1, F2, F3, F4} containing D-dimensional feature maps is obtained, with resolutions of the original image. 1/8, 1/16, 1/32, 1/64; then the above feature pyramid containing the D-dimensional feature map is mapped and flattened, and spliced into new features as feature interactions to obtain the spatial multi-scale information feature extraction module. output.
空间多尺度信息特征提取模块用于给自然图像分割模块传递多尺度空间信息。其中,为了不改变自然图像分割模块的原有结构,空间多尺度信息特征提取模块可以与patch嵌入层并行,对图像的局部空间上下文进行建模。因此,空间多尺度信息特征提取模块的输出可以输入给后面的分割适配器,再由其与第i个图像编码器模块一起进行运算。The spatial multi-scale information feature extraction module is used to transfer multi-scale spatial information to the natural image segmentation module. Among them, in order not to change the original structure of the natural image segmentation module, the spatial multi-scale information feature extraction module can be used in parallel with the patch embedding layer to model the local spatial context of the image. Therefore, the output of the spatial multi-scale information feature extraction module can be input to the subsequent segmentation adapter, which then performs operations together with the i-th image encoder module.
进一步的,在上述实施例的基础上,上述步骤S102具体可以包括如下步骤:Further, based on the above embodiment, the above step S102 may specifically include the following steps:
步骤1),将待处理医疗图像输入空间多尺度信息特征提取模块,得到空间多尺度信息特征提取模块输出的特征数据。Step 1): Input the medical image to be processed into the spatial multi-scale information feature extraction module to obtain the feature data output by the spatial multi-scale information feature extraction module.
步骤2),将待处理医疗图像以及特征数据输入图像编码器中,得到图像编码器输出的编码结果。Step 2): Input the medical image to be processed and the feature data into the image encoder to obtain the encoding result output by the image encoder.
步骤3),将编码结果输入图像解码器中,得到图像解码器输出的分割结果。Step 3): Input the encoding result into the image decoder to obtain the segmentation result output by the image decoder.
具体的,在上述步骤1)中,空间多尺度信息特征提取模块可以依次包括三个卷积、一个最大池化层一个3×3的卷积层、多个1×1的卷积层,这样就得到了一个包含D维特征图的特征金字塔{F1,F2,F3,F4},分辨率分别为原图的1/8、1/16、1/32、1/64;然后将上述包含D维特征图的特征金字塔进行映射平面化,并拼接成新特征作为特征交互,得到空间多尺度信息特征提取模块输出的特征数据。Specifically, in the above step 1), the spatial multi-scale information feature extraction module can sequentially include three convolutions, a maximum pooling layer, a 3×3 convolution layer, and multiple 1×1 convolution layers, so that A feature pyramid {F1, F2, F3, F4} containing D-dimensional feature maps is obtained, with resolutions of 1/8, 1/16, 1/32, and 1/64 of the original image respectively; then the above containing D The feature pyramid of the dimensional feature map is mapped and flattened, and spliced into new features as feature interactions to obtain the feature data output by the spatial multi-scale information feature extraction module.
在上述步骤2)中,图像编码器可以基于标准的视觉变形器(Vision Transformer,ViT),而注意力机制可以由14*14大小的窗口注意力以及四个等间隔的全局注意力构成。如图3所示,可以将待处理医疗图像以及特征数据输入上述图像编码器中,待处理医疗图像以及特征数据经过Layer Norm、Muti-Head Attention、Adaper以及MLP,最终可以得到图像编码器输出的编码结果。In the above step 2), the image encoder can be based on the standard Vision Transformer (ViT), and the attention mechanism can be composed of a 14*14 size window attention and four equally spaced global attentions. As shown in Figure 3, the medical image and feature data to be processed can be input into the above-mentioned image encoder. The medical image and feature data to be processed go through Layer Norm, Muti-Head Attention, Adaper and MLP, and finally the output of the image encoder can be obtained. Encoding results.
其中,待处理医疗图像可以输入图像编码器中的Layer Norm,而特征数据可以输入图像编码器中的Adaper。Among them, the medical image to be processed can be input into the Layer Norm in the image encoder, and the feature data can be input into the Adaper in the image encoder.
在上述步骤3)中,图像解码器是一个基于Transformer的解码器,包括可以处理不同提示(文本,点,框等)掩码信息的动态预测头。可以将编码结果输入上述图像解码器中,最终可以得到图像解码器输出的分割结果。In step 3) above, the image decoder is a Transformer-based decoder, including a dynamic prediction head that can handle mask information for different cues (text, points, boxes, etc.). The encoding result can be input into the above image decoder, and finally the segmentation result output by the image decoder can be obtained.
在上述方案中,可以引入空间多尺度信息特征提取模块,在对待处理医疗图像进行图像分割之前,先基于上述待处理医疗图像向主干网络传递多尺度空间信息,从而提高训练得到的医疗图像分割模型的分割精度。In the above solution, a spatial multi-scale information feature extraction module can be introduced. Before image segmentation of the medical image to be processed, multi-scale spatial information is transferred to the backbone network based on the medical image to be processed, thereby improving the trained medical image segmentation model. segmentation accuracy.
进一步的,在上述实施例的基础上,可以利用如下步骤对医疗图像分割模型进行训练:Further, based on the above embodiments, the following steps can be used to train the medical image segmentation model:
步骤1),获取医疗分割图像数据以及待训练的医疗图像分割模型。Step 1), obtain medical segmentation image data and the medical image segmentation model to be trained.
步骤2),针对自然图像分割模块加载对应的预训练参数。Step 2), load the corresponding pre-training parameters for the natural image segmentation module.
步骤3),利用医疗分割图像数据对医疗图像分割模型中的分割适配器、图像解码器以及空间多尺度信息特征提取模块的参数进行更新,得到训练好的医疗图像分割模型。Step 3), use the medical segmentation image data to update the parameters of the segmentation adapter, image decoder and spatial multi-scale information feature extraction module in the medical image segmentation model to obtain a trained medical image segmentation model.
具体的,在上述步骤1)中,与上述实施例类似,本申请实施例对获取上述医疗分割图像数据以及待训练的医疗图像分割模型的具体实施方式同样不作具体的限定,本领域技术人员同样可以根据实际情况进行合适的调整。举例来说,可以接收外部设备的医疗分割图像数据以及待训练的医疗图像分割模型;或者,可以读取本地或者云端存储的医疗分割图像数据以及待训练的医疗图像分割模型等。Specifically, in the above-mentioned step 1), similar to the above-mentioned embodiments, the embodiments of the present application also do not specifically limit the specific implementation methods of obtaining the above-mentioned medical segmentation image data and the medical image segmentation model to be trained. Those skilled in the art will also Appropriate adjustments can be made according to the actual situation. For example, the medical segmentation image data from an external device and the medical image segmentation model to be trained can be received; or the medical segmentation image data stored locally or in the cloud and the medical image segmentation model to be trained can be read.
在上述步骤2)中,考虑到自然图像分割模块是由千万级自然图像训练得到的模型,在自然图像分割上可以实现超高精度的图像分割,因此,可以针对自然图像分割模块加载对应的预训练参数。In the above step 2), considering that the natural image segmentation module is a model trained by tens of millions of natural images, ultra-high-precision image segmentation can be achieved in natural image segmentation. Therefore, the corresponding module can be loaded for the natural image segmentation module. Pre-training parameters.
在上述步骤3)中,在针对医疗图像分割模型进行训练的过程中,可以冻结主干网络(即自然图像分割模块中图像编码器),利用医疗分割图像数据对医疗图像分割模型中的分割适配器、图像解码器以及空间多尺度信息特征提取模块的参数进行更新,得到训练好的医疗图像分割模型。In the above step 3), during the training process of the medical image segmentation model, the backbone network (i.e., the image encoder in the natural image segmentation module) can be frozen, and the medical segmentation image data is used to train the segmentation adapter, The parameters of the image decoder and spatial multi-scale information feature extraction module are updated to obtain the trained medical image segmentation model.
在上述方案中,在对医疗图像分割模型进行训练的过程中,可以冻结图像编码器,只利用少量的医疗分割图像数据去训练分割适配器,同时训练图像解码器以及空间多尺度信息特征提取模块,从而得到训练好的医疗图像分割模型。因此,即使缺少大规模高质量的医疗分割图像数据,也可以通过上述方式训练得到分割精度较高的医疗图像分割模型。In the above solution, during the training process of the medical image segmentation model, the image encoder can be frozen, using only a small amount of medical segmentation image data to train the segmentation adapter, and training the image decoder and spatial multi-scale information feature extraction module at the same time. Thus, the trained medical image segmentation model is obtained. Therefore, even if there is a lack of large-scale and high-quality medical segmentation image data, a medical image segmentation model with higher segmentation accuracy can be trained through the above method.
请参照图5,图5为本申请实施例提供的一种医疗图像分割模型的训练方法的流程图,该医疗图像分割模型的训练方法可以包括如下步骤:Please refer to Figure 5. Figure 5 is a flow chart of a training method for a medical image segmentation model provided by an embodiment of the present application. The training method for the medical image segmentation model may include the following steps:
步骤S501:获取医疗分割图像数据以及待训练的医疗图像分割模型。Step S501: Obtain medical segmentation image data and the medical image segmentation model to be trained.
步骤S502:针对自然图像分割模块加载对应的预训练参数。Step S502: Load corresponding pre-training parameters for the natural image segmentation module.
步骤S503:利用医疗分割图像数据对医疗图像分割模型中的分割适配器以及图像解码器的参数进行更新,得到训练好的医疗图像分割模型。Step S503: Use the medical segmentation image data to update the parameters of the segmentation adapter and the image decoder in the medical image segmentation model to obtain a trained medical image segmentation model.
具体的,在上述步骤S501中,医疗分割图像数据是指已经分割好并且标注好的医疗图像。可以理解的是,由于本申请实施例中引入了Adaper,因此,上述医疗分割图像数据的数量不需要太大,即只需少量的医疗分割图像数据即可对医疗图像分割模型进行训练。Specifically, in the above step S501, the medical segmentation image data refers to the medical images that have been segmented and labeled. It can be understood that since Adaper is introduced in the embodiment of the present application, the amount of the above medical segmentation image data does not need to be too large, that is, only a small amount of medical segmentation image data is needed to train the medical image segmentation model.
需要说明的是,本申请实施例对获取上述医疗分割图像数据的具体实施方式同样不作具体的限定,本领域技术人员同样可以根据实际情况进行合适的调整。举例来说,可以接收外部设备的医疗分割图像数据;或者,可以读取本地或者云端存储的医疗分割图像数据等。It should be noted that the embodiments of the present application also do not specifically limit the specific implementation manner for obtaining the above-mentioned medical segmentation image data, and those skilled in the art can also make appropriate adjustments according to the actual situation. For example, medical segmentation image data from an external device can be received; or medical segmentation image data stored locally or in the cloud can be read.
医疗图像分割模型是指用于对上述待处理医疗图像进行图像分割的神经网络模型,其中,上述步骤S501中的医疗图像分割模型是指未进行训练或者未训练好的医疗图像分割模型。作为一种实施方式,医疗图像分割模型可以包括自然图像分割模块,自然图像分割模块包括图像编码器、图像解码器以及分割适配器,分割适配器可以嵌入图像编码器中。The medical image segmentation model refers to a neural network model used for image segmentation of the above-mentioned medical image to be processed, wherein the medical image segmentation model in the above-mentioned step S501 refers to an untrained or untrained medical image segmentation model. As an implementation manner, the medical image segmentation model may include a natural image segmentation module. The natural image segmentation module includes an image encoder, an image decoder, and a segmentation adapter. The segmentation adapter may be embedded in the image encoder.
与获取上述医疗分割图像数据类似,本申请实施例对获取上述待训练的医疗图像分割模型的具体实施方式同样不作具体的限定,本领域技术人员同样可以根据实际情况进行合适的调整。举例来说,可以接收外部设备的待训练的医疗图像分割模型;或者,可以读取本地或者云端存储的待训练的医疗图像分割模型等。Similar to obtaining the above-mentioned medical segmentation image data, the embodiments of the present application also do not specifically limit the specific implementation of obtaining the above-mentioned medical image segmentation model to be trained. Those skilled in the art can also make appropriate adjustments according to the actual situation. For example, a medical image segmentation model to be trained from an external device can be received; or a medical image segmentation model to be trained stored locally or in the cloud can be read.
在上述步骤S502中,考虑到自然图像分割模块是由千万级自然图像训练得到的模型,在自然图像分割上可以实现超高精度的图像分割,因此,可以针对自然图像分割模块加载对应的预训练参数。In the above step S502, considering that the natural image segmentation module is a model trained by tens of millions of natural images, ultra-high-precision image segmentation can be achieved in natural image segmentation. Therefore, the corresponding presets can be loaded for the natural image segmentation module. training parameters.
在上述步骤S503中,在针对医疗图像分割模型进行训练的过程中,可以冻结主干网络(即自然图像分割模块中图像编码器),利用医疗分割图像数据对医疗图像分割模型中的分割适配器以及图像解码器的参数进行更新,得到训练好的医疗图像分割模型。In the above step S503, during the training process of the medical image segmentation model, the backbone network (i.e., the image encoder in the natural image segmentation module) can be frozen, and the medical segmentation image data can be used to train the segmentation adapter and image in the medical image segmentation model. The parameters of the decoder are updated to obtain the trained medical image segmentation model.
在上述方案中,上述医疗图像分割模型包括自然图像分割模块,可以在自然图像分割模块的基础上引入分割适配器,这样,在对医疗图像分割模型进行训练的过程中,可以冻结主干网络(即图像编码器),只利用少量的医疗分割图像数据去训练分割适配器,得到训练好的医疗图像分割模型。因此,即使缺少大规模高质量的医疗分割图像数据,也可以通过上述方式训练得到分割精度较高的医疗图像分割模型。In the above solution, the above medical image segmentation model includes a natural image segmentation module, and a segmentation adapter can be introduced based on the natural image segmentation module. In this way, during the training process of the medical image segmentation model, the backbone network (i.e. image Encoder), only uses a small amount of medical segmentation image data to train the segmentation adapter, and obtains a trained medical image segmentation model. Therefore, even if there is a lack of large-scale and high-quality medical segmentation image data, a medical image segmentation model with higher segmentation accuracy can be trained through the above method.
进一步的,在上述实施例的基础上,医疗图像分割模型还可以包括:空间多尺度信息特征提取模块,本申请实施例介绍另一种医疗图像分割模型的训练方法:Furthermore, based on the above embodiments, the medical image segmentation model may also include: a spatial multi-scale information feature extraction module. The embodiments of this application introduce another training method for the medical image segmentation model:
步骤1),获取医疗分割图像数据以及待训练的医疗图像分割模型。Step 1), obtain medical segmentation image data and the medical image segmentation model to be trained.
步骤2),针对自然图像分割模块加载对应的预训练参数。Step 2), load the corresponding pre-training parameters for the natural image segmentation module.
步骤3),利用医疗分割图像数据对医疗图像分割模型中的分割适配器、图像解码器以及空间多尺度信息特征提取模块的参数进行更新,得到训练好的医疗图像分割模型。Step 3), use the medical segmentation image data to update the parameters of the segmentation adapter, image decoder and spatial multi-scale information feature extraction module in the medical image segmentation model to obtain a trained medical image segmentation model.
具体的,在上述步骤1)中,与上述实施例类似,本申请实施例对获取上述医疗分割图像数据以及待训练的医疗图像分割模型的具体实施方式同样不作具体的限定,本领域技术人员同样可以根据实际情况进行合适的调整。举例来说,可以接收外部设备的医疗分割图像数据以及待训练的医疗图像分割模型;或者,可以读取本地或者云端存储的医疗分割图像数据以及待训练的医疗图像分割模型等。Specifically, in the above-mentioned step 1), similar to the above-mentioned embodiments, the embodiments of the present application also do not specifically limit the specific implementation methods of obtaining the above-mentioned medical segmentation image data and the medical image segmentation model to be trained. Those skilled in the art will also Appropriate adjustments can be made according to the actual situation. For example, the medical segmentation image data from an external device and the medical image segmentation model to be trained can be received; or the medical segmentation image data stored locally or in the cloud and the medical image segmentation model to be trained can be read.
在上述步骤2)中,考虑到自然图像分割模块是由千万级自然图像训练得到的模型,在自然图像分割上可以实现超高精度的图像分割,因此,可以针对自然图像分割模块加载对应的预训练参数。In the above step 2), considering that the natural image segmentation module is a model trained by tens of millions of natural images, ultra-high-precision image segmentation can be achieved in natural image segmentation. Therefore, the corresponding module can be loaded for the natural image segmentation module. Pre-training parameters.
在上述步骤3)中,在针对医疗图像分割模型进行训练的过程中,可以冻结主干网络(即自然图像分割模块中图像编码器),利用医疗分割图像数据对医疗图像分割模型中的分割适配器、图像解码器以及空间多尺度信息特征提取模块的参数进行更新,得到训练好的医疗图像分割模型。In the above step 3), during the training process of the medical image segmentation model, the backbone network (i.e., the image encoder in the natural image segmentation module) can be frozen, and the medical segmentation image data is used to train the segmentation adapter, The parameters of the image decoder and spatial multi-scale information feature extraction module are updated to obtain the trained medical image segmentation model.
请参照图6,图6为本申请实施例提供一种医疗图像分割装置的结构框图,该医疗图像分割装置600包括:第一获取模块601,用于获取待处理医疗图像;输入模块602,用于将所述待处理医疗图像输入预先训练好的医疗图像分割模型中,得到所述医疗图像分割模型输出的分割结果;其中,所述医疗图像分割模型包括自然图像分割模块,所述自然图像分割模块包括图像编码器、图像解码器以及分割适配器,所述分割适配器嵌入所述图像编码器中,通过对所述分割适配器的参数进行更新实现对所述图像编码器进行训练。Please refer to Figure 6. Figure 6 is a structural block diagram of a medical image segmentation device according to an embodiment of the present application. The medical image segmentation device 600 includes: a first acquisition module 601 for acquiring medical images to be processed; an input module 602 for After inputting the medical image to be processed into a pre-trained medical image segmentation model, a segmentation result output by the medical image segmentation model is obtained; wherein the medical image segmentation model includes a natural image segmentation module, and the natural image segmentation The module includes an image encoder, an image decoder, and a segmentation adapter. The segmentation adapter is embedded in the image encoder. The image encoder is trained by updating parameters of the segmentation adapter.
在上述方案中,可以利用预先训练好的医疗图像分割模型对待处理医疗图像进行分割,从而得到对应的分割结果。其中,上述医疗图像分割模型包括自然图像分割模块,可以在自然图像分割模块的基础上引入分割适配器,这样,在对医疗图像分割模型进行训练的过程中,可以冻结主干网络(即图像编码器),只利用少量的医疗分割图像数据去训练分割适配器,得到训练好的医疗图像分割模型。因此,即使缺少大规模高质量的医疗分割图像数据,也可以通过上述方式训练得到分割精度较高的医疗图像分割模型。In the above solution, a pre-trained medical image segmentation model can be used to segment the medical image to be processed, thereby obtaining the corresponding segmentation result. Among them, the above-mentioned medical image segmentation model includes a natural image segmentation module, and a segmentation adapter can be introduced based on the natural image segmentation module. In this way, during the training process of the medical image segmentation model, the backbone network (i.e., image encoder) can be frozen , only use a small amount of medical segmentation image data to train the segmentation adapter, and obtain a trained medical image segmentation model. Therefore, even if there is a lack of large-scale and high-quality medical segmentation image data, a medical image segmentation model with higher segmentation accuracy can be trained through the above method.
进一步的,在上述实施例的基础上,所述输入模块602具体用于:将所述待处理医疗图像输入所述图像编码器中,得到所述图像编码器输出的编码结果;将所述编码结果输入所述图像解码器中,得到所述图像解码器输出的所述分割结果。Further, on the basis of the above embodiments, the input module 602 is specifically configured to: input the medical image to be processed into the image encoder to obtain the encoding result output by the image encoder; The result is input into the image decoder, and the segmentation result output by the image decoder is obtained.
在上述方案中,可以利用自然图像分割模块对待处理医疗图像进行图像分割,从而得到对应的分割结果。其中,由于自然图像分割模块具有强大的分割能力,因此可以使得整个医疗图像分割模型在医疗图像中可以有较高精度的分割效果。In the above solution, the natural image segmentation module can be used to segment the medical image to be processed, thereby obtaining the corresponding segmentation result. Among them, because the natural image segmentation module has powerful segmentation capabilities, the entire medical image segmentation model can achieve higher-precision segmentation effects in medical images.
进一步的,在上述实施例的基础上,所述医疗图像分割装置600还包括:第一训练模块,用于利用如下步骤对所述医疗图像分割模型进行训练:获取医疗分割图像数据以及待训练的医疗图像分割模型;针对所述自然图像分割模块加载对应的预训练参数;利用所述医疗分割图像数据对所述医疗图像分割模型中的分割适配器以及所述图像解码器的参数进行更新,得到训练好的医疗图像分割模型。Further, on the basis of the above embodiments, the medical image segmentation device 600 also includes: a first training module for training the medical image segmentation model using the following steps: obtaining medical segmentation image data and to-be-trained Medical image segmentation model; load corresponding pre-training parameters for the natural image segmentation module; use the medical segmentation image data to update the parameters of the segmentation adapter and the image decoder in the medical image segmentation model to obtain training Good medical image segmentation model.
在上述方案中,在对医疗图像分割模型进行训练的过程中,可以冻结图像编码器,只利用少量的医疗分割图像数据去训练分割适配器,同时训练图像解码器,从而得到训练好的医疗图像分割模型。因此,即使缺少大规模高质量的医疗分割图像数据,也可以通过上述方式训练得到分割精度较高的医疗图像分割模型。In the above solution, during the training process of the medical image segmentation model, the image encoder can be frozen, only a small amount of medical segmentation image data is used to train the segmentation adapter, and the image decoder is trained at the same time, thereby obtaining the trained medical image segmentation Model. Therefore, even if there is a lack of large-scale and high-quality medical segmentation image data, a medical image segmentation model with higher segmentation accuracy can be trained through the above method.
进一步的,在上述实施例的基础上,所述医疗图像分割模型还包括:空间多尺度信息特征提取模块;所述输入模块602具体用于:将所述待处理医疗图像输入所述空间多尺度信息特征提取模块,得到所述空间多尺度信息特征提取模块输出的特征数据;将所述待处理医疗图像以及所述特征数据输入所述图像编码器中,得到所述图像编码器输出的编码结果;将所述编码结果输入所述图像解码器中,得到所述图像解码器输出的所述分割结果。Further, based on the above embodiments, the medical image segmentation model also includes: a spatial multi-scale information feature extraction module; the input module 602 is specifically used to: input the medical image to be processed into the spatial multi-scale The information feature extraction module obtains the feature data output by the spatial multi-scale information feature extraction module; inputs the medical image to be processed and the feature data into the image encoder to obtain the encoding result output by the image encoder ; Input the encoding result into the image decoder to obtain the segmentation result output by the image decoder.
在上述方案中,可以引入空间多尺度信息特征提取模块,在对待处理医疗图像进行图像分割之前,先基于上述待处理医疗图像向主干网络传递多尺度空间信息,从而提高训练得到的医疗图像分割模型的分割精度。In the above solution, a spatial multi-scale information feature extraction module can be introduced. Before image segmentation of the medical image to be processed, multi-scale spatial information is transferred to the backbone network based on the medical image to be processed, thereby improving the trained medical image segmentation model. segmentation accuracy.
进一步的,在上述实施例的基础上,所述医疗图像分割装置600还包括:第二训练模块,用于利用如下步骤对所述医疗图像分割模型进行训练:获取医疗分割图像数据以及待训练的医疗图像分割模型;针对所述自然图像分割模块加载对应的预训练参数;利用所述医疗分割图像数据对所述医疗图像分割模型中的分割适配器、所述图像解码器以及所述空间多尺度信息特征提取模块的参数进行更新,得到训练好的医疗图像分割模型。Further, on the basis of the above embodiments, the medical image segmentation device 600 also includes: a second training module for training the medical image segmentation model using the following steps: obtaining medical segmentation image data and to-be-trained Medical image segmentation model; load corresponding pre-training parameters for the natural image segmentation module; use the medical segmentation image data to segment the segmentation adapter, the image decoder and the spatial multi-scale information in the medical image segmentation model The parameters of the feature extraction module are updated to obtain the trained medical image segmentation model.
在上述方案中,在对医疗图像分割模型进行训练的过程中,可以冻结图像编码器,只利用少量的医疗分割图像数据去训练分割适配器,同时训练图像解码器以及空间多尺度信息特征提取模块,从而得到训练好的医疗图像分割模型。因此,即使缺少大规模高质量的医疗分割图像数据,也可以通过上述方式训练得到分割精度较高的医疗图像分割模型。In the above solution, during the training process of the medical image segmentation model, the image encoder can be frozen, using only a small amount of medical segmentation image data to train the segmentation adapter, and training the image decoder and spatial multi-scale information feature extraction module at the same time. Thus, the trained medical image segmentation model is obtained. Therefore, even if there is a lack of large-scale and high-quality medical segmentation image data, a medical image segmentation model with higher segmentation accuracy can be trained through the above method.
请参照图7,图7为本申请实施例提供的一种医疗图像分割模型的训练装置的结构框图,该医疗图像分割模型的训练装置700包括:第二获取模块701,用于获取医疗分割图像数据以及待训练的医疗图像分割模型,其中,所述医疗图像分割模型包括自然图像分割模块,所述自然图像分割模块包括图像编码器、图像解码器以及分割适配器,所述分割适配器嵌入所述图像编码器中;加载模块702,用于针对所述自然图像分割模块加载对应的预训练参数;更新模块703,用于利用所述医疗分割图像数据对所述医疗图像分割模型中的分割适配器以及所述图像解码器的参数进行更新,得到训练好的医疗图像分割模型。Please refer to Figure 7. Figure 7 is a structural block diagram of a training device 700 for a medical image segmentation model provided by an embodiment of the present application. The training device 700 for the medical image segmentation model includes: a second acquisition module 701 for acquiring medical segmentation images. data and a medical image segmentation model to be trained, wherein the medical image segmentation model includes a natural image segmentation module, the natural image segmentation module includes an image encoder, an image decoder and a segmentation adapter, the segmentation adapter is embedded in the image In the encoder; the loading module 702 is used to load the corresponding pre-training parameters for the natural image segmentation module; the update module 703 is used to use the medical segmentation image data to segment the segmentation adapter and the segmentation adapter in the medical image segmentation model. The parameters of the above image decoder are updated to obtain the trained medical image segmentation model.
在上述方案中,上述医疗图像分割模型包括自然图像分割模块,可以在自然图像分割模块的基础上引入分割适配器,这样,在对医疗图像分割模型进行训练的过程中,可以冻结主干网络(即图像编码器),只利用少量的医疗分割图像数据去训练分割适配器,得到训练好的医疗图像分割模型。因此,即使缺少大规模高质量的医疗分割图像数据,也可以通过上述方式训练得到分割精度较高的医疗图像分割模型。In the above solution, the above medical image segmentation model includes a natural image segmentation module, and a segmentation adapter can be introduced based on the natural image segmentation module. In this way, during the training process of the medical image segmentation model, the backbone network (i.e. image Encoder), only uses a small amount of medical segmentation image data to train the segmentation adapter, and obtains a trained medical image segmentation model. Therefore, even if there is a lack of large-scale and high-quality medical segmentation image data, a medical image segmentation model with higher segmentation accuracy can be trained through the above method.
进一步的,在上述实施例的基础上,所述医疗图像分割模型还包括:空间多尺度信息特征提取模块,所述更新模块703具体用于:利用所述医疗分割图像数据对所述医疗图像分割模型中的分割适配器、所述图像解码器以及所述空间多尺度信息特征提取模块的参数进行更新,得到训练好的医疗图像分割模型。Further, based on the above embodiments, the medical image segmentation model also includes: a spatial multi-scale information feature extraction module, and the update module 703 is specifically used to: use the medical segmentation image data to segment the medical image. The parameters of the segmentation adapter, the image decoder and the spatial multi-scale information feature extraction module in the model are updated to obtain a trained medical image segmentation model.
请参照图8,图8为本申请实施例提供的一种电子设备的结构框图,该电子设备800包括:至少一个处理器801,至少一个通信接口802,至少一个存储器803和至少一个通信总线804。其中,通信总线804用于实现这些组件直接的连接通信,通信接口802用于与其他节点设备进行信令或数据的通信,存储器803存储有处理器801可执行的机器可读指令。当电子设备800运行时,处理器801与存储器803之间通过通信总线804通信,机器可读指令被处理器801调用时执行上述医疗图像分割方法或者医疗图像分割模型的训练方法。Please refer to Figure 8. Figure 8 is a structural block diagram of an electronic device provided by an embodiment of the present application. The electronic device 800 includes: at least one processor 801, at least one communication interface 802, at least one memory 803 and at least one communication bus 804. . Among them, the communication bus 804 is used to realize direct connection communication between these components, the communication interface 802 is used to communicate signaling or data with other node devices, and the memory 803 stores machine-readable instructions executable by the processor 801. When the electronic device 800 is running, the processor 801 and the memory 803 communicate through the communication bus 804, and when the machine-readable instructions are called by the processor 801, the above-mentioned medical image segmentation method or the training method of the medical image segmentation model is executed.
例如,本申请实施例的处理器801通过通信总线804从存储器803读取计算机程序并执行该计算机程序,作为一种实施方式,可以实现如下方法:步骤S101:获取待处理医疗图像。步骤S102:将待处理医疗图像输入预先训练好的医疗图像分割模型中,得到医疗图像分割模型输出的分割结果。作为另一种实施方式,可以实现如下方法:步骤S501:获取医疗分割图像数据以及待训练的医疗图像分割模型。步骤S502:针对自然图像分割模块加载对应的预训练参数。步骤S503:利用医疗分割图像数据对医疗图像分割模型中的分割适配器以及图像解码器的参数进行更新,得到训练好的医疗图像分割模型。For example, the processor 801 in the embodiment of the present application reads the computer program from the memory 803 through the communication bus 804 and executes the computer program. As an implementation manner, the following method can be implemented: Step S101: Obtain the medical image to be processed. Step S102: Input the medical image to be processed into the pre-trained medical image segmentation model, and obtain the segmentation result output by the medical image segmentation model. As another implementation manner, the following method can be implemented: Step S501: Obtain medical segmentation image data and the medical image segmentation model to be trained. Step S502: Load corresponding pre-training parameters for the natural image segmentation module. Step S503: Use the medical segmentation image data to update the parameters of the segmentation adapter and the image decoder in the medical image segmentation model to obtain a trained medical image segmentation model.
其中,处理器801包括一个或多个,其可以是一种集成电路芯片,具有信号的处理能力。上述的处理器801可以是通用处理器,包括中央处理器(Central Processing Unit,简称CPU)、微控制单元(Micro Controller Unit,简称MCU)、网络处理器(NetworkProcessor,简称NP)或者其他常规处理器;还可以是专用处理器,包括神经网络处理器(Neural-network Processing Unit,简称NPU)、图形处理器(Graphics Processing Unit,简称GPU)、数字信号处理器(Digital Signal Processor,简称DSP)、专用集成电路(Application Specific Integrated Circuits,简称ASIC)、现场可编程门阵列(FieldProgrammable Gate Array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。并且,在处理器801为多个时,其中的一部分可以是通用处理器,另一部分可以是专用处理器。The processor 801 includes one or more integrated circuit chips, which may be integrated circuit chips, and have signal processing capabilities. The above-mentioned processor 801 can be a general-purpose processor, including a central processing unit (Central Processing Unit, CPU for short), a micro control unit (Micro Controller Unit, MCU for short), a network processor (Network Processor, NP for short), or other conventional processors. ; It can also be a dedicated processor, including a neural network processor (Neural-network Processing Unit, referred to as NPU), a graphics processor (Graphics Processing Unit, referred to as GPU), a digital signal processor (Digital Signal Processor, referred to as DSP), a dedicated Integrated circuits (Application Specific Integrated Circuits, ASIC for short), Field Programmable Gate Array (FPGA for short) or other programmable logic devices, discrete gate or transistor logic devices, and discrete hardware components. Moreover, when there are multiple processors 801, some of them may be general-purpose processors and another part may be special-purpose processors.
存储器803包括一个或多个,其可以是,但不限于,随机存取存储器(RandomAccess Memory,简称RAM),只读存储器(Read Only Memory,简称ROM),可编程只读存储器(Programmable Read-Only Memory,简称PROM),可擦除可编程只读存储器(ErasableProgrammable Read-Only Memory,简称EPROM),电可擦除可编程只读存储器(ElectricErasable Programmable Read-Only Memory,简称EEPROM)等。The memory 803 includes one or more, which may be, but is not limited to, random access memory (RandomAccess Memory, RAM for short), read-only memory (Read Only Memory, ROM for short), programmable read-only memory (Programmable Read-Only) Memory (PROM for short), Erasable Programmable Read-Only Memory (EPROM for short), Electrically Erasable Programmable Read-Only Memory (EEPROM for short), etc.
可以理解,图8所示的结构仅为示意,电子设备800还可包括比图8中所示更多或者更少的组件,或者具有与图8所示不同的配置。图8中所示的各组件可以采用硬件、软件或其组合实现。于本申请实施例中,电子设备800可以是,但不限于台式机、笔记本电脑、智能手机、智能穿戴设备、车载设备等实体设备,还可以是虚拟机等虚拟设备。另外,电子设备800也不一定是单台设备,还可以是多台设备的组合,例如服务器集群,等等。It can be understood that the structure shown in FIG. 8 is only illustrative, and the electronic device 800 may also include more or fewer components than shown in FIG. 8 , or have a different configuration than that shown in FIG. 8 . Each component shown in Figure 8 can be implemented in hardware, software, or a combination thereof. In this embodiment of the present application, the electronic device 800 may be, but is not limited to, a desktop computer, a laptop computer, a smartphone, a smart wearable device, a vehicle-mounted device, or other physical device, or it may be a virtual device such as a virtual machine. In addition, the electronic device 800 is not necessarily a single device, but can also be a combination of multiple devices, such as a server cluster, etc.
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储计算机程序指令,所述计算机程序指令被计算机运行时,使所述计算机执行前述方法实施例所述的医疗图像分割方法或者医疗图像分割模型的训练方法。Embodiments of the present application also provide a computer-readable storage medium. The computer-readable storage medium stores computer program instructions. When the computer program instructions are run by a computer, they cause the computer to perform the medical treatment described in the foregoing method embodiments. Image segmentation method or training method of medical image segmentation model.
在本申请所提供的实施例中,应该理解到,所揭露装置和方法,可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,又例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些通信接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。In the embodiments provided in this application, it should be understood that the disclosed devices and methods can be implemented in other ways. The device embodiments described above are only illustrative. For example, the division of the units is only a logical function division. In actual implementation, there may be other division methods. For example, multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented. On the other hand, the coupling or direct coupling or communication connection between each other shown or discussed may be through some communication interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
另外,作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。In addition, units described as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
再者,在本申请各个实施例中的各功能模块可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或两个以上模块集成形成一个独立的部分。Furthermore, each functional module in each embodiment of the present application can be integrated together to form an independent part, each module can exist alone, or two or more modules can be integrated to form an independent part.
需要说明的是,功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。It should be noted that if functions are implemented in the form of software function modules and sold or used as independent products, they can be stored in a computer-readable storage medium. Based on this understanding, the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product. The computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application. The aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes.
在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。In this document, relational terms such as first, second, etc. are used merely to distinguish one entity or operation from another entity or operation and do not necessarily require or imply the existence of any such entity or operation between these entities or operations. Actual relationship or sequence.
以上所述仅为本申请的实施例而已,并不用于限制本申请的保护范围,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。The above descriptions are only examples of the present application and are not intended to limit the scope of protection of the present application. For those skilled in the art, the present application may have various modifications and changes. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of this application shall be included in the protection scope of this application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311153927.4A CN117111696A (en) | 2023-09-07 | 2023-09-07 | A medical image segmentation method and a training method for a medical image segmentation model |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311153927.4A CN117111696A (en) | 2023-09-07 | 2023-09-07 | A medical image segmentation method and a training method for a medical image segmentation model |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117111696A true CN117111696A (en) | 2023-11-24 |
Family
ID=88812657
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311153927.4A Pending CN117111696A (en) | 2023-09-07 | 2023-09-07 | A medical image segmentation method and a training method for a medical image segmentation model |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117111696A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118447038A (en) * | 2024-04-17 | 2024-08-06 | 中国科学院自动化研究所 | Interactive image segmentation method and device, electronic equipment and storage medium |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210397966A1 (en) * | 2020-06-18 | 2021-12-23 | Shanghai United Imaging Intelligence Co., Ltd. | Systems and methods for image segmentation |
CN115170807A (en) * | 2022-09-05 | 2022-10-11 | 浙江大华技术股份有限公司 | Image segmentation and model training method, device, equipment and medium |
WO2023065070A1 (en) * | 2021-10-18 | 2023-04-27 | 中国科学院深圳先进技术研究院 | Multi-domain medical image segmentation method based on domain adaptation |
CN116433914A (en) * | 2023-04-28 | 2023-07-14 | 齐鲁工业大学(山东省科学院) | Two-dimensional medical image segmentation method and system |
-
2023
- 2023-09-07 CN CN202311153927.4A patent/CN117111696A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210397966A1 (en) * | 2020-06-18 | 2021-12-23 | Shanghai United Imaging Intelligence Co., Ltd. | Systems and methods for image segmentation |
WO2023065070A1 (en) * | 2021-10-18 | 2023-04-27 | 中国科学院深圳先进技术研究院 | Multi-domain medical image segmentation method based on domain adaptation |
CN115170807A (en) * | 2022-09-05 | 2022-10-11 | 浙江大华技术股份有限公司 | Image segmentation and model training method, device, equipment and medium |
CN116433914A (en) * | 2023-04-28 | 2023-07-14 | 齐鲁工业大学(山东省科学院) | Two-dimensional medical image segmentation method and system |
Non-Patent Citations (2)
Title |
---|
JUNDE WU 等: "Medical SAM Adapter: Adapting Segment Anything Model for Medical Image Segmentation", pages 1 - 13, Retrieved from the Internet <URL:https://arxiv.org/abs/2304.12620> * |
ZHE CHEN 等: "Vision Transformer Adapter for Dense Predictions", pages 1 - 20, Retrieved from the Internet <URL:https://arxiv.org/abs/2205.08534> * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118447038A (en) * | 2024-04-17 | 2024-08-06 | 中国科学院自动化研究所 | Interactive image segmentation method and device, electronic equipment and storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022001623A1 (en) | Image processing method and apparatus based on artificial intelligence, and device and storage medium | |
CN112116605A (en) | A pancreas CT image segmentation method based on integrated deep convolutional neural network | |
CN113936011B (en) | CT image lung lobe image segmentation system based on attention mechanism | |
CN111080660A (en) | Image segmentation method and device, terminal equipment and storage medium | |
CN113888466A (en) | Pulmonary nodule image detection method and system based on CT image | |
CN110942466B (en) | Cerebral artery segmentation method and device based on deep learning technology | |
CN112446892A (en) | Cell nucleus segmentation method based on attention learning | |
CN111401309B (en) | CNN training and remote sensing image target identification method based on wavelet transformation | |
CN114037699B (en) | Pathological image classification method, equipment, system and storage medium | |
CN113361536B (en) | Image semantic segmentation model training, image semantic segmentation method and related device | |
CN113361535B (en) | Image segmentation model training, image segmentation method and related device | |
CN112785581A (en) | Training method and device for extracting and training large blood vessel CTA (computed tomography angiography) imaging based on deep learning | |
CN116051549A (en) | A solar cell defect segmentation method, system, medium and equipment | |
CN112420170A (en) | Method for improving image classification accuracy of computer aided diagnosis system | |
CN113239977B (en) | Training method, device and equipment of multi-domain image conversion model and storage medium | |
CN112529930A (en) | Context learning medical image segmentation method based on focus fusion | |
CN115880317A (en) | Medical image segmentation method based on multi-branch feature fusion refining | |
CN115018805A (en) | Segmentation model training method, image segmentation method, device, equipment and medium | |
CN117111696A (en) | A medical image segmentation method and a training method for a medical image segmentation model | |
CN110019952B (en) | Video description method, system and device | |
CN114708465B (en) | Image classification method and device, electronic equipment and storage medium | |
CN114783597B (en) | Method and device for diagnosing multi-class diseases, electronic equipment and storage medium | |
CN114708353B (en) | Image reconstruction method, device, electronic device and storage medium | |
CN116645503A (en) | Three-dimensional medical image segmentation method, device, equipment and storage medium | |
CN114782768A (en) | Training method of pre-training network model, medical image processing method and equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20231124 |
|
RJ01 | Rejection of invention patent application after publication |