CN117107168A - 一种超高强塑积的低密度钢板及其制备方法 - Google Patents

一种超高强塑积的低密度钢板及其制备方法 Download PDF

Info

Publication number
CN117107168A
CN117107168A CN202310984145.9A CN202310984145A CN117107168A CN 117107168 A CN117107168 A CN 117107168A CN 202310984145 A CN202310984145 A CN 202310984145A CN 117107168 A CN117107168 A CN 117107168A
Authority
CN
China
Prior art keywords
equal
percent
strength
low
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310984145.9A
Other languages
English (en)
Other versions
CN117107168B (zh
Inventor
周雯
张绍龙
胡锋
胡丞杨
吴开明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Science and Engineering WUSE
Original Assignee
Wuhan University of Science and Engineering WUSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Science and Engineering WUSE filed Critical Wuhan University of Science and Engineering WUSE
Priority to CN202310984145.9A priority Critical patent/CN117107168B/zh
Publication of CN117107168A publication Critical patent/CN117107168A/zh
Application granted granted Critical
Publication of CN117107168B publication Critical patent/CN117107168B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/04Hardening by cooling below 0 degrees Celsius
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0231Warm rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明涉及一种超高强塑积的低密度钢板及其制备方法,所述钢板包含下述质量百分比的化学成分:C:0.26~0.40%,Mn:5.60~11.50%,Si:0.25~0.75%,Al:3.70~7.50%,Cr:0.20~0.50%,Ni:0.20~0.35%,Mo:0.20~0.30%,Nb:0.02~0.04%,P≤0.010%,S≤0.002%,余量为Fe及不可避免的杂质;且上述元素含量必须同时满足如下关系:4.00%≤Al+Si≤8.00%,Mn/Al≥1.50,0.50%≤Mo+Ni+Cr≤1.00%;其制备方法包括:冶炼并铸造成坯→热轧→固溶处理→温轧→退火+深冷+回火;本发明制得的钢板成品厚度为2.1~2.4mm,密度为6.50~6.80,屈服强度为1039~1334MPa,抗拉强度为1590~1740MPa,延伸率≥30.2%,强塑积≥52.4GPa%,同时具有高强度和高塑性,可用于冷成型零件,为汽车行业提供了抗撞击的轻量化材料。

Description

一种超高强塑积的低密度钢板及其制备方法
技术领域
本发明涉及低密度钢制造技术领域,特别是一种超高强塑积的低密度钢板及其制备方法。
背景技术
随着汽车行业的快速发展,汽车产量及保有量迅速增加,在给人们出行带来便利的同时,也面临着油耗、安全、环保三大问题。为应对这三大问题,各国相关专业人士普遍认为,在保证安全要求的情况下尽可能减轻车身重量是最为有效的方法之一。早期研究者为了得到低密度钢,通常在钢中加入大量的Ni和Cr,但是由于Ni和Cr较昂贵,随后被Al取代。在钢中每增加1wt%的Al,钢的密度将会降低1.3%,且其低密度钢具有较高的强度和延性等特点,因此有着良好的应用前景。
近年来对有关Fe-Mn-Al-C低密度钢已有了大量的研究,其工艺大多为热轧+冷轧+退火。如公开号为CN 113025794A的中国发明专利申请,公开了《一种提高Fe-Mn-Al-C系低密度钢强度的方法》,其发明的Fe-Mn-Al-C系低密度高强度钢的屈服强度达1370-1900MPa,实现超高强度水平,同时延伸率保持在8%以上,但其成分中含有较高的贵金属Cr、Mo和Ti,制造成本较高;公开号为CN108486492A的中国发明专利申请,《1200MPa级高强度高塑性低密度钢板及其制造方法》,其发明的低密度钢板在获得高强度的同时仍能够保证良好的塑性,同样问题是合金中具有较高的贵金属合金元素。公开号为CN108950392A和CN106521318A的中国发明专利申请,公开了《一种超高延性低密度钢及其制备方法》和《一种高强度Fe-Mn-Al-C系低密度铸钢及其制备方法》,获得了超高延性低密度钢,但其抗拉强度较低,无法满足市场需求。公开号为CN108396244A的中国发明专利申请,公开了《一种冷轧中锰高铝低密度钢及其制备方法》,制得的冷轧中锰高铝低密度钢屈服强度1170~1230MPa,抗拉强度1280~1320MPa,延伸率16~17%,强塑积≥21GPa%,但其因具有较高的C含量,钢材的焊接性能差,不利于后期加工。
由于冷轧过程会产生强烈的加工硬化效应,大大提高了对轧机、轧辊等轧制设备的要求,且冷轧无法充分利用к-碳化物的弥散强化作用,因此一些研究者采用温轧代替冷轧,并获得较好的综合性能。如公开号为CN115216703A的中国发明专利申请,公开了《一种超高强度低密度钢及其制备方法》,充分利用к-碳化物弥散强化作用提高低密度钢的强度,但断后延伸率相对较低,有待进一步提高。
发明内容
本发明的目的即是针对目前现有的低密度钢板存在强度和强塑性不能同时兼备的问题,提供一种超高强塑积低密度钢及其热处理方法。通过本发明的成分及方法得到的低密度钢为分层结构,其组织为马氏体、铁素体和高稳定的残余奥氏体,其抗拉强度≥1590MPa,延伸率≥30.2%,强塑积≥52.4GPa%,具有良好的加工性能,以及抗撞击性能。
本发明的一种超高强塑积的低密度钢板,所述钢板包含下述质量百分比的化学成分:C:0.26~0.40%,Mn:5.60~11.50%,Si:0.25~0.75%,Al:3.70~7.50%,Cr:0.20~0.50%,Ni:0.20~0.35%,Mo:0.20~0.30%,Nb:0.02~0.04%,P≤0.010%,S≤0.002%,余量为Fe及不可避免的杂质;且上述元素含量必须同时满足如下关系:4.00%≤Al+Si≤8.00%,Mn/Al≥1.50,0.50%≤Mo+Ni+Cr≤1.00%。
优选地,本发明的一种超高强塑积的低密度钢板,所述钢板包含下述质量百分比的化学成分:C:0.29~0.37%,Mn:6.91~10.52%,Si:0.36~0.67%,Al:4.38~6.24%,Cr:0.22~0.47%,Ni:0.23~0.31%,Mo:0.21~0.27%,Nb:0.02~0.04%,P≤0.010%,S≤0.002%,余量为Fe及不可避免的杂质;且上述元素含量必须同时满足如下关系:4.00%≤Al+Si≤8.00%,Mn/Al≥1.50,0.50%≤Mo+Ni+Cr≤1.00%。
本发明制得的钢板的成品厚度为2.1~2.4mm,密度为6.50~6.80g/cm3,屈服强度为1039~1334MPa,抗拉强度为1590~1740MPa,延伸率≥30.2%,强塑积≥52.4GPa%。
本发明的一种超高强塑积的低密度钢板的制备方法,包括下述步骤:
(1)冶炼和铸造:将铁水按照钢板的化学成分要求进行冶炼并铸造或连铸成铸坯,铸坯厚度为14.6~15.1mm;
(2)热轧:将铸坯加热至1150~1250℃并保温1.5~2.0h,随后经过多道次热轧,开轧温度为1000~1100℃,终轧温度850~900℃,轧制后热轧板厚度为4.5~5.0mm,最终淬火至室温;
(3)固溶处理:将热轧板加热至1050~1100℃,保温时间90~120min,随后淬火至室温得固溶处理板;
(4)温轧:将固溶处理板加热至300~600℃,保温10~15min后进行温轧,每道次压下量0.15~0.25mm,且每轧一道次均要放入炉内保温,最终温轧板厚度为2.1~2.4mm;
(5)退火+深冷+回火:将温轧板加热至700~800℃(奥氏体开始转变温度和奥氏体转变结束温度之间),保温15~20min随后淬火至室温;再进行深冷和回火处理,其中深冷温度为-80~-196℃,深冷时间6~12h;回火温度300~500℃,回火时间为2~4h,回火完成后淬火至室温,即得。
以下详述本发明中主要化学成分限定量的理由:
本发明的低密度钢是以 C-Al-Mn-Si 为主要合金元素,其中C在钢中起到固溶强化的作用,且 C 促进奥氏体形成并析出碳化物达到析出强化效果;然而,碳含量的增加,钢材的焊接性能变差,冷脆性和时效敏感性增大。考虑到钢板的强韧性匹配性,本发明所述钢板中C的质量百分比为0.26~0.40%。Mn能与Fe无限固溶,提高钢材的强度且Mn元素可以稳定奥氏体基体,保证良好的塑性,因此Mn的质量百分比为5.60~11.50%。Al的添加可降低钢的密度、提高层错能,且Al是铁素体强稳定性元素,它提升铁素体稳定性使δ铁素体可稳定存在,但Al含量过高会使钢的热加工性能变差,故Al的质量百分比3.70~7.50%。此外本发明的成分设计中增加了Mn/Al≥1.50的限制条件,其可以有效控制к-碳化物在热轧过程中的析出,抑制热轧过程中裂纹的形成。添加 Si 可以辅助 Al 降低钢的密度,但Si过量影响钢的表面质量,因此Si的质量百分比0.25~0.75%。本发明还添加了合金元素Mo、Ni和Cr,有利于提高钢的强度,考虑到钢的成本,其质量百分比之和的范围为0.50%≤Mo+Ni+Cr≤1.00%。此外本发明还添加了合金元素Nb,是为了细化钢中组织且使碳化物分散,起到细晶强化和弥散强化作用。
以下详述本发明低密度钢板的生产工艺及工艺参数设定理由:
本发明通过冶炼并铸造成坯→热轧→固溶处理→温轧→退火+深冷+回火工艺制造出成品钢,其中热轧是为了消除在铸造成坯过程中所形成的空洞等缺陷,固溶处理可以使各相充分溶解、强化固溶体且软化金属,以便后续继续进行温轧。相较于传统的冷轧,本发明采用的温轧的轧制方式降低了对轧制设备的要求,在利用加工硬化提高强度的同时保留了一定的塑性变形能力,另外温轧过程中к-碳化物的析出进一步提高了钢的强度。温轧过后进行了退火+深冷的热处理工艺,得到了δ铁素体和更加稳定的奥氏体,使得低密度钢具有超高延伸率和加工硬化能力,且深冷过程产生非常细小的马氏体组织,提高了钢的屈服强度和抗拉强度。最终得到了组织为δ铁素体(40~60%)+残余奥氏体(25~35%)+马氏体(10~15%)+к-碳化物(0~1%)的低密度钢,其抗拉强度≥1590MPa,延伸率≥30.2%,强塑积≥52.4GPa%。
本发明提供一种具有高强度、高塑性的一种汽车用低密度钢板及其生产工艺。通过本发明的成分及生产方法得到的低密度钢为分层结构,其组织为马氏体、铁素体和高稳定的残余奥氏体,其密度为6.50~6.80g/cm3,抗拉强度≥1590MPa,延伸率≥30.2%,强塑积≥52.4GPa%,可用于冷成型零件,为汽车行业提供了抗撞击的轻量化材料。
附图说明
图1是本发明的热处理工艺图;
图2是本发明实施例1生产的低密度钢板的OM组织图。
具体实施方式
为了更好地解释本发明的技术方案,下面结合具体实施例对本发明的技术方案进行进一步的说明,下述实施例仅仅是示例性的说明本发明的技术方案,并不以任何形式限制本发明。下述各实施例序号仅仅为了描述,不代表实施例的优劣。
下表1为本发明各实施例及对比例的化学成分取值列表;
下表2为本发明各实施例及对比例的主要工艺参数取值列表;
下表3为本发明实施例及对比例的主要力学性能试验结果列表。
参见图1,本发明各实施例的一种超高强塑积的低密度钢板的制备方法,包括下述步骤:
(1)冶炼和铸造:将铁水按照钢板的化学成分要求进行冶炼并铸造或连铸成铸坯,铸坯厚度为14.6~15.1mm;
(2)热轧:将铸坯加热至1150~1250℃并保温1.5~2.0h,随后经过多道次热轧,开轧温度为1000~1100℃,终轧温度850~900℃,轧制后热轧板厚度为4.5~5.0mm,最终淬火至室温;
(3)固溶处理:将热轧板加热至1050~1100℃,保温时间90~120min,随后淬火至室温得固溶处理板;
(4)温轧:将固溶处理板加热至300~600℃,保温10~15min后进行温轧,每道次压下量0.15~0.25mm,且每轧一道次均要放入炉内保温,最终温轧板厚度为2.1~2.4mm;
(5)退火+深冷+回火:将温轧板加热至700~800℃(奥氏体开始转变温度和奥氏体转变结束温度之间),保温15~20min随后淬火至室温;再进行深冷和回火处理,其中深冷温度为-80~-196℃,深冷时间6~12h;回火温度300~500℃,回火时间为2~4h,回火完成后淬火至室温,即得。
表1 本发明各实施例及对比例的化学成分列表(wt,%)
表2 本发明各实施例及对比例的主要工艺参数取值列表
表3 本发明各实施例及对比例的主要力学性能试验结果列表
由上表3可以看出,本发明制备得到的钢材屈服强度≥1039MPa,抗拉强度≥1590MPa,延伸率≥30.2%,且值得注意的是本发明钢板的强塑积均达到了52.4GPa%以上。本发明通过在300~600℃温轧避免了к-碳化物在晶界的析出且降低了轧制过程由于内应力过大发生开裂的问题。此外,本发明通过深冷处理在低密度钢中引入了超细马氏体组织,提高了低密度钢的屈服强度和抗拉强度。综上所述,本发明制备的钢材大幅度提高了低密度钢的强塑积,且与传统的冷轧相比,温轧更适用于工业化生产。而对比例1和对比例2的钢板,由于其轧制工艺为冷轧,会导致大量的к-碳化物会在晶界处析出,且未通过深冷处理引入超细马氏体组织,从而造成强度和塑性的严重损失,其屈服强度<1000MPa,抗拉强度<1300MPa,延伸率<18%,强塑积只有21 GPa%左右。参见图2,图2是本发明实施例1生产的低密度钢板的OM组织图,从图中可以看出,铁素体和奥氏体呈层片状沿着厚度方向交替均匀排列,细小马氏体分布于奥氏体间。
上述实施例仅仅是为解释本发明而例举的具体实例,并不以任何形式限制本发明,任何人根据上述作内容和形式做出的不偏离本发明权利要求保护范围的非实质性的改变,均应认为落入本发明权利要求的保护范围。本发明不局限于上述具体的实施实例。

Claims (4)

1.一种超高强塑积的低密度钢板,其特征在于所述钢板包含下述质量百分比的化学成分:C:0.26~0.40%,Mn:5.60~11.50%,Si:0.25~0.75%,Al:3.70~7.50%,Cr:0.20~0.50%,Ni:0.20~0.35%,Mo:0.20~0.30%,Nb:0.02~0.04%,P≤0.010%,S≤0.002%,余量为Fe及不可避免的杂质;且上述元素含量必须同时满足如下关系:4.00%≤Al+Si≤8.00%,Mn/Al≥1.50,0.50%≤Mo+Ni+Cr≤1.00%。
2.根据权利要求1所述的一种超高强塑积的低密度钢板,其特征在于所述钢板包含下述质量百分比的化学成分:C:0.29~0.37%,Mn:6.91~10.52%,Si:0.36~0.67%,Al:4.38~6.24%,Cr:0.22~0.47%,Ni:0.23~0.31%,Mo:0.21~0.27%,Nb:0.02~0.04%,P≤0.010%,S≤0.002%,余量为Fe及不可避免的杂质;且上述元素含量必须同时满足如下关系:4.00%≤Al+Si≤8.00%,Mn/Al≥1.50,0.50%≤Mo+Ni+Cr≤1.00%。
3.根据权利要求1或2所述的一种超高强塑积的低密度钢板,其特征在于:所述钢板的成品厚度为2.1~2.4mm,密度为6.50~6.80g/cm3,屈服强度为1039~1334MPa,抗拉强度为1590~1740MPa,延伸率≥30.2%,强塑积≥52.4GPa%。
4.如权利要求1或2所述的一种超高强塑积的低密度钢板的制备方法,其特征在于包括下述步骤:
(1)冶炼和铸造:将铁水按照钢板的化学成分要求进行冶炼并铸造或连铸成铸坯,铸坯厚度为14.6~15.1mm;
(2)热轧:将铸坯加热至1150~1250℃并保温1.5~2.0h,随后经过多道次热轧,开轧温度为1000~1100℃,终轧温度850~900℃,轧制后热轧板厚度为4.5~5.0mm,最终淬火至室温;
(3)固溶处理:将热轧板加热至1050~1100℃,保温时间90~120min,随后淬火至室温得固溶处理板;
(4)温轧:将固溶处理板加热至300~600℃,保温10~15min后进行温轧,每道次压下量0.15~0.25mm,且每轧一道次均要放入炉内保温,最终温轧板厚度为2.1~2.4mm;
(5)退火+深冷+回火:将温轧板加热至700~800℃(奥氏体开始转变温度和奥氏体转变结束温度之间),保温15~20min随后淬火至室温;再进行深冷和回火处理,其中深冷温度为-80~-196℃,深冷时间6~12h;回火温度300~500℃,回火时间为2~4h,回火完成后淬火至室温,即得。
CN202310984145.9A 2023-08-07 2023-08-07 一种超高强塑积的低密度钢板及其制备方法 Active CN117107168B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310984145.9A CN117107168B (zh) 2023-08-07 2023-08-07 一种超高强塑积的低密度钢板及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310984145.9A CN117107168B (zh) 2023-08-07 2023-08-07 一种超高强塑积的低密度钢板及其制备方法

Publications (2)

Publication Number Publication Date
CN117107168A true CN117107168A (zh) 2023-11-24
CN117107168B CN117107168B (zh) 2024-05-24

Family

ID=88803095

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310984145.9A Active CN117107168B (zh) 2023-08-07 2023-08-07 一种超高强塑积的低密度钢板及其制备方法

Country Status (1)

Country Link
CN (1) CN117107168B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11199985A (ja) * 1998-01-16 1999-07-27 Nippon Steel Corp 超高硬度高靱性鋼及びその製造方法
CN106086658A (zh) * 2016-06-20 2016-11-09 上海大学 一种高强度中碳含铬低锰轻质钢及制备方法
CN108546812A (zh) * 2018-05-14 2018-09-18 东北大学 一种高强中锰钢板的制备方法
US20180363082A1 (en) * 2015-12-15 2018-12-20 Tata Steel Ijmuiden B.V. High strength hot dip galvanised steel strip
CN111218621A (zh) * 2020-01-08 2020-06-02 湖南科技大学 一种超高强塑积trip钢及其制备方法
US20210108279A1 (en) * 2019-10-12 2021-04-15 Northeastern University Ultrahigh-Strength Ultrahigh-Toughness and Low-Density Dual-Phase Lamellar Steel Plate and Preparation Method Therefor
CN113186461A (zh) * 2021-04-15 2021-07-30 鞍钢股份有限公司 一种高强塑积深冷轧制钢板及制备方法
CN114717478A (zh) * 2022-04-06 2022-07-08 攀钢集团攀枝花钢铁研究院有限公司 轻质高强钢及其生产方法
US20220275493A1 (en) * 2019-09-03 2022-09-01 Nippon Steel Corporation Steel sheet

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11199985A (ja) * 1998-01-16 1999-07-27 Nippon Steel Corp 超高硬度高靱性鋼及びその製造方法
US20180363082A1 (en) * 2015-12-15 2018-12-20 Tata Steel Ijmuiden B.V. High strength hot dip galvanised steel strip
CN106086658A (zh) * 2016-06-20 2016-11-09 上海大学 一种高强度中碳含铬低锰轻质钢及制备方法
CN108546812A (zh) * 2018-05-14 2018-09-18 东北大学 一种高强中锰钢板的制备方法
US20220275493A1 (en) * 2019-09-03 2022-09-01 Nippon Steel Corporation Steel sheet
US20210108279A1 (en) * 2019-10-12 2021-04-15 Northeastern University Ultrahigh-Strength Ultrahigh-Toughness and Low-Density Dual-Phase Lamellar Steel Plate and Preparation Method Therefor
CN111218621A (zh) * 2020-01-08 2020-06-02 湖南科技大学 一种超高强塑积trip钢及其制备方法
CN113186461A (zh) * 2021-04-15 2021-07-30 鞍钢股份有限公司 一种高强塑积深冷轧制钢板及制备方法
CN114717478A (zh) * 2022-04-06 2022-07-08 攀钢集团攀枝花钢铁研究院有限公司 轻质高强钢及其生产方法

Also Published As

Publication number Publication date
CN117107168B (zh) 2024-05-24

Similar Documents

Publication Publication Date Title
EP4089197A1 (en) Chain steel for use in mine and manufacturing method therefor
CN113106338B (zh) 一种超高强度高塑性热冲压成形钢的制备方法
CN108486492B (zh) 1200MPa级高强度高塑性低密度钢板及其制造方法
US11466334B2 (en) Nitrogen-containing microalloyed spring steel and preparation method thereof
CN110079740B (zh) 一种高韧性热轧530MPa级汽车冷冲压桥壳钢板及其制造方法
CN109695006A (zh) 一种耐腐蚀链板用钢及其制造方法
CN102912219A (zh) 一种高强塑积trip钢板及其制备方法
CN111074148B (zh) 一种800MPa级热冲压桥壳钢及其制造方法
WO2020062564A1 (zh) 一种超高钢q960e厚板及制造方法
CN111172466B (zh) 一种塑性增强的抗拉强度590MPa级冷轧双相钢及其生产方法
CN109072387B (zh) 屈服比优异的超高强度高延展性钢板及其制造方法
EP4414473A1 (en) High-strength steel with good weather resistance and manufacturing method therefor
CN110551878A (zh) 一种超高强度超高韧性低密度双相层状钢板及其制备方法
KR20230024905A (ko) 가소성이 우수한 초고강도 강 및 이의 제조 방법
CN108728728B (zh) 一种具有极低屈强比的高锰钢及其制造方法
CN114134388B (zh) 一种抗拉强度1300MPa级薄规格超高强钢板及其制造方法
CN102418047B (zh) 一种非调质处理耐疲劳的钢板及其制造方法
EP4159887A9 (en) Electro-galvanized super-strength dual-phase steel resistant to delayed cracking, and manufacturing method therefor
JP2002167652A (ja) 高強度・高耐疲労特性に優れた薄板材
CN113373370A (zh) 一种1100MPa级桥壳钢及其制造方法
CN114231853B (zh) 一种强塑积大于98GPa%的TWIP钢及制备方法
CN114058967B (zh) 一种具有良好疲劳性能的700MPa级汽车用钢及生产方法
CN115679194B (zh) 一种塑料模具钢板及其制造方法
CN117107168B (zh) 一种超高强塑积的低密度钢板及其制备方法
CN111979470A (zh) 具有良好弯折性能超高强度冷轧马氏体钢板的生产方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant