CN117078737B - 一种线性裂缝长度计算方法 - Google Patents

一种线性裂缝长度计算方法 Download PDF

Info

Publication number
CN117078737B
CN117078737B CN202311336746.5A CN202311336746A CN117078737B CN 117078737 B CN117078737 B CN 117078737B CN 202311336746 A CN202311336746 A CN 202311336746A CN 117078737 B CN117078737 B CN 117078737B
Authority
CN
China
Prior art keywords
image
matrix
crack
linear
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311336746.5A
Other languages
English (en)
Other versions
CN117078737A (zh
Inventor
黎曦
陈振武
贾磊
孟安鑫
吴国华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Urban Transport Planning Center Co Ltd
Original Assignee
Shenzhen Urban Transport Planning Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Urban Transport Planning Center Co Ltd filed Critical Shenzhen Urban Transport Planning Center Co Ltd
Priority to CN202311336746.5A priority Critical patent/CN117078737B/zh
Publication of CN117078737A publication Critical patent/CN117078737A/zh
Application granted granted Critical
Publication of CN117078737B publication Critical patent/CN117078737B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/10Image enhancement or restoration using non-spatial domain filtering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/12Edge-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/194Segmentation; Edge detection involving foreground-background segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/28Quantising the image, e.g. histogram thresholding for discrimination between background and foreground patterns
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/42Global feature extraction by analysis of the whole pattern, e.g. using frequency domain transformations or autocorrelation
    • G06V10/422Global feature extraction by analysis of the whole pattern, e.g. using frequency domain transformations or autocorrelation for representing the structure of the pattern or shape of an object therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/56Extraction of image or video features relating to colour
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/176Urban or other man-made structures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20048Transform domain processing
    • G06T2207/20056Discrete and fast Fourier transform, [DFT, FFT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30132Masonry; Concrete
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/06Recognition of objects for industrial automation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Geometry (AREA)
  • Quality & Reliability (AREA)
  • Image Processing (AREA)

Abstract

本发明提出一种线性裂缝长度计算方法,属于图像处理技术领域。包括以下步骤:S1.获取消除光照不均匀的图像;S2.获取图像中线性裂缝;S3.提取线性裂缝边缘轮廓;S4.计算线性裂缝轮廓矩阵中非零元素在x轴方向的分布范围全部列对应的非零像素值对应的y1值和y2值;S5.计算y1值和y2值的平均值;S6.构建裂缝中线矩阵,计算裂缝中线矩阵中全部元素的和裂缝中线像素的数量;S7.通过裂缝中线像素的总数量、单个像素的长度、边缘像素总数量之间的关系,得到裂缝的长度。解决线性裂缝长度测量和计算不准确的问题。本发明实现判断裂缝的发育和严重程度,通过裂缝长度的发育速度,判断裂缝修复的紧急程度,做出合理的养护预案。

Description

一种线性裂缝长度计算方法
技术领域
本申请涉及一种线性裂缝长度计算方法,属于图像处理技术领域。
背景技术
道路运营过程中,由于车辆荷载、周围环境的作用以及材料性能衰退等因素的影响,道路表面会逐渐出现裂缝、坑槽、车辙、松散等病害,其中,线性裂缝出现最早、数量最多,伴随着道路的整个使用期,并随着路龄的增长而加重。道路裂缝的危害不仅仅是影响路容美观和行车舒适度,如果不及时对裂缝进行密封修补,更容易进一步扩展,使雨水和其它杂物沿裂缝进入面层结构与路基,对道路造成结构性的破坏,导致路面承载能力下降,加速路面局部或成片损坏,从而缩短道路的使用寿命。
道路养护人员在针对道路线性裂缝的养护工作中,将线性裂缝的长度指标作为重要的参考依据之一。线性裂缝的长度越长,表明裂缝发育时间越长,对道路行车的舒适性影响越大,对道路内部材料的服役影响越大。
裂缝通常沿长度方向发育,裂缝长度可用于评估裂缝的发育程度,当裂缝长度达到一定程度时,需要分析裂缝产生的原因,以及对道路稳定性、安全性的影响,分析路面裂缝维修的紧急程度。同时,路面裂缝养护维修时,可通过裂缝长度估算修复工程材料用量,实现资源合理规划和节约成本的目的。
目前在线性裂缝的长度测量和计算中,通常采用人工测量的方式。而线性裂缝发育过程中,通常为不规则地沿某一方向延伸,延伸方向具有随机性。因此,人工测量的方式较难准确测量得到裂缝的实际长度,通常也只是测量裂缝起终点的直线距离,与实际裂缝长度存在较大偏差。
有研究人员提出了申请号为202110376345.7,发明名称为一种道路裂缝图片识别与处理方法。该方法直接使用检测车拍摄到的道路图片,进行图像预处理操作,然后采用自动编解码的方式,标注图像中的裂缝区域和非裂缝区域。该方法主要通过图像处理的方式,实现了从背景图像中识别裂缝的目的,均未考虑到如何基于图像的信息,准确测算线性裂缝的长度。
裂缝作为道路表面数量最多的病害,裂缝长度对于指导道路养护材料的使用、养护资金的分配具有重要意义,合理的方案可以降低成本、提高道路质量,延长道路寿命。因此,亟待一种线性裂缝长度计算方法解决线性裂缝长度测量和计算不准确的技术问题。
发明内容
在下文中给出了关于本发明的简要概述,以便提供关于本发明的某些方面的基本理解。应当理解,这个概述并不是关于本发明的穷举性概述。它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
鉴于此,为解决现有技术中存在线性裂缝长度测量和计算不准确的技术问题,本发明提供一种线性裂缝长度计算方法。
方案一、一种线性裂缝长度计算方法,包括以下步骤:
S1.获取消除光照不均匀的图像;
S2.获取图像中的线性裂缝;
S3.提取线性裂缝边缘轮廓;
S4.计算线性裂缝轮廓矩阵中非零元素在x轴方向的分布范围全部列对应的非零像素值对应的y1值和y2值;
S5.计算y1值和y2值的平均值;
S6.构建裂缝中线矩阵,计算裂缝中线矩阵中全部元素的和裂缝中线像素的数量;
S7.通过裂缝中线像素的总数量、单个像素的长度、边缘像素总数量之间的关系,得到裂缝的长度。
优选的,获取消除光照不均匀的图像的方法是:
S11.将路面病害图像进行处理,得到地面区域图像矩阵和光照区域图像矩阵,包括以下步骤;
S111.将路面病害图像的长度记为a,宽度记为b;
S112.将路面病害图像等分为个小图像区域,沿长度方向每段长度为/>,沿宽度方向每段长度为/>
S113.将路面病害图像由左到右、由上到下依次编号为A1,A2,A3,…,Ai,…,Ac2
S114.对任意一张路面病害图像Ai,以路面病害图像左上角点位坐标原点,向右记为x轴正方向,向下记为y轴正方向;采集路面病害图像的图像矩阵由地面区域和光照区域组成,将路面病害图像的图像矩阵记为,地面区域图像矩阵记为/>,将光照区域图像矩阵记为/>,路面病害图像的图像矩阵、地面区域图像矩阵和光照区域图像矩阵的关系为:/>
S12.通过二维离散傅里叶变换,将图像矩阵由时域矩阵转变为频域矩阵,设置频率阈值,将频域矩阵与频率阈值进行比较,生成新的频域矩阵,将频域矩阵转变为时域矩阵,包括以下步骤;
S121.采用二维离散傅里叶变换,将图像矩阵由时域矩阵转变为频域矩阵/>,具体如下:
式中,j为虚数单位,e=0,1,2,…,L-1;f=0,1,2,…,M-1;其中,L为图像矩阵沿x轴方向的像素数量,M为图像矩阵/>沿y轴方向的像素数量;u为x方向的角频率,v为y方向的角频率;
S122.确定频率阈值,将频域矩阵/>与频率阈值/>进行比较,生成新的频域矩阵/>
时,保留对应图像信息,生成新的频域矩阵/>
时,删除对应图像信息,生成新的频域矩阵/>
S123.采用傅里叶逆变换,将频域矩阵转变为时域矩阵/>
式中,x=0,1,2,…,L-1;y=0,1,2,…,M-1;
S13.提取图像高频分量,通过图像像素灰度信息,去除光照区域,基于图像灰度信息,获得消除光照不均匀的图像,包括以下步骤;
S131.统计时域矩阵中灰度级数量k,将灰度级按照从小大的顺序排列;
S132.将灰度级进行编码,将首个灰度级编码为0,全部灰度级依次编码为0,1,2…,k-1;
S133.记录路面病害图像Ai中每种灰度级j对应像素的数量
S134.计算各像素值出现的概率
S135.计算图像Ai灰度的累积分布概率
式中,N为灰度级排序值,n依次取值为1,2,3…,k;
S136.将累积分布频率乘以(k-1),将计算结果记为/>,即:采集图像的图像矩阵与地面区域图像矩阵间的转变矩阵:
S137.建立采集图像的图像矩阵与地面区域图像矩阵/>的关系:
S138.将地面区域图像矩阵转变为图像,依次完成/>个小图像区域中不均匀光照的去除。
优选的,获取图像中的线性裂缝的方法是:
S21.将消除光照不均匀的图像作为训练样本,训练线性裂缝图像识别模型,输出包含线性裂缝的RGB图像,将图像依次编码为AA1-AAn,n为线性裂缝图像的总数量;
S22.将RGB图像转变为灰度图像;
S23.对灰度图像进行线性裂缝区域和背景区域的区分,得到新的二值化图像,将二值化图像依次编码为F1-Fn,n为线性裂缝图像的总数量,对灰度图像进行线性裂缝区域和背景区域的区分,得到新的二值化图像的方法包括以下步骤;
S231.统计全部图像像素值,确定像素值的分布范围,最小值记为dmin,最大值记为dmax,像素分布范围即为(dmin,dmax);
S232.设灰度值阈值dt,以灰度值阈值dt为临界点,将像素分布范围划分为两个区间:X区间(dmin,dt)和Y区间(dt,dmax),统计X区间和Y区间范围内像素的数量n1和n2,并计算X、Y两个区间像素数量在整个图像中的权重ee1和ee2,计算两个区间的平均像素值dc1和dd2,计算X、Y区间图像像素方差E:
式中,灰度值阈值dt取值范围为[dmin,dmax],且像素增加步长为1个像素;
S234.遍历全部灰度值阈值dt,依次得到X、Y区间图像像素方差E,记录方差中最大值Emax,方差对应的灰度值阈值dt为线性裂缝图像背景与线性裂缝区域的临界像素值,将灰度阈值记为dtm;
S235.以灰度阈值dtm为分界点,将图像划分为由像素值0和1组成的二值化图像,其中,灰度值小于dtm的像素点,全部变为0;灰度值大于等于dtm的像素点,像素值变为1;
S24.将二值化图像作为训练样本,训练线性裂缝提取模型,输出图像中的线性裂缝。
优选的,提取线性裂缝边缘轮廓的方法是:
S31.线性裂缝图像包含x轴和y轴两个方向,构建两个3×3的矩阵,其中,一个矩阵的中间行为0元素,另一个矩阵的中间列为0元素,其余元素保证非零,在非零元素的行或列中,中间元素与其它元素不同;
S32.选取线性裂缝图像AAi,i为第i张线性裂缝图像,线性裂缝图像矩阵记为,分别进行卷积操作;
S33.对比和/>中全部位置的元素,将最大值作为输出矩阵元素;
S34.结合和/>的结构特点及卷积操作的特性,在线性裂缝轮廓矩阵中提取线性裂缝边缘轮廓。
优选的,计算线性裂缝轮廓矩阵中非零元素在x轴方向的分布范围全部列对应的非零像素值对应的y1值和y2值的方法是:
S41.将线性裂缝轮廓矩阵中,非零元素在x轴方向的分布范围,记为[Xmin,Xmax];
S42.将线性裂缝轮廓矩阵中,第Xmin列对应的非零像素值,记录为对应的y值;非零像素值对应的y值分别记为y1和y2;其中,当Xmin列对应1个非零像素时,另y1=y2;依次计算[Xmin,Xmax]范围全部列对应的非零像素值对应的y1值和y2值。
优选的,构建裂缝中线矩阵的方法是:构建与线性裂缝图像AAi矩阵相同尺寸的零矩阵OAi,搜索[Xmin,Xmax]范围中全部的位置,将对应位置元素替换为1,形成裂缝中线矩阵/>
计算裂缝中线矩阵中全部元素的和裂缝中线像素的数量的方法是:
优选的,得到线性裂缝的长度的方法是,通过下述公式计算:
其中,为线性裂缝的长度,/>为单个像素的长度。
方案二、一种电子设备,包括存储器和处理器,存储器存储有计算机程序,所述的处理器执行所述计算机程序时实现方案一所述的一种线性裂缝长度计算方法的步骤。
方案三、一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现方案一所述的一种线性裂缝长度计算方法。
本发明的有益效果如下:
1、本发明将整张图像进行划分得到若干子图像;然后针对每张子图像,通过二维离散傅里叶变换,将图像矩阵由时域转变为频域空间,然后通过滤波的方式,初步消除光照区域的影响;然后,对图像中灰度信息进行统计分析,分析灰度累计分布概率分布特征,计算得到采集图像的图像矩阵与地面区域图像矩阵间的转变矩阵,进而得到地面区域图像矩阵与光照部分图像矩阵。
2、本发明先后通过二维离散傅里叶变换和灰度值变换的方式,实现了两级方式去除不均匀光照的影响;同时,将图像划分为若干子图的方式,可有效避免图像局部灰度变换效果差的问题,可获得更佳的去除效果。本发明实现了不均匀光照条件下,路面检测图像质量的提升,可以为后续数据分析提供更精准的数据,提高养护和管理人员的决策准确性和效率,提高养护业务的质量。通过及时发现并修复路面病害,可避免交通事故的发生,保障道路通行能力和通行安全。
3、本发明基于遍历搜索方法确定灰度阈值,实现裂缝区域的提取以及非裂缝区域准确区分;采用标准化方式,将统一裂缝区域的灰度值和非裂缝区域的灰度值,提高了裂缝区域的特征显著性,实现了裂缝区域的有效提取。
4、本发明基于裂缝长度分析,判断裂缝的发育程度和严重程度,同时,通过裂缝长度的发育速度,判断裂缝修复的紧急程度,进而做出合理的养护预案。
5、本发明计算得到的路面裂缝长度,可用于计算路面养护材料工程量,进而合理安排养护人员和养护材料购置,节约养护成本。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为一种线性裂缝长度计算方法流程示意图;
图2为路面采集原始图像示意图;
图3为提取线性裂缝图像示意图;
图4为线性裂缝边缘轮廓示意图;
图5为线性裂缝中线示意图。
具体实施方式
为了使本申请实施例中的技术方案及优点更加清楚明白,以下结合附图对本申请的示例性实施例进行进一步详细的说明,显然,所描述的实施例仅是本申请的一部分实施例,而不是所有实施例的穷举。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
实施例1、参照图1-图5说明本实施方式,一种线性裂缝长度计算方法,包括以下步骤:
S1.获取消除光照不均匀的图像;
S11.将路面病害图像进行处理,得到地面区域图像矩阵和光照区域图像矩阵,包括以下步骤;
S111.将路面病害图像的长度记为a,宽度记为b;
S112.将路面病害图像等分为个小图像区域,沿长度方向每段长度为/>,沿宽度方向每段长度为/>
S113.将路面病害图像由左到右、由上到下依次编号为A1,A2,A3,…,Ai,…,Ac2
S114.对任意一张路面病害图像Ai,以路面病害图像左上角点位坐标原点,向右记为x轴正方向,向下记为y轴正方向;采集路面病害图像的图像矩阵由地面区域和光照区域组成,将路面病害图像的图像矩阵记为,地面区域图像矩阵记为/>,将光照区域图像矩阵记为/>,路面病害图像的图像矩阵、地面区域图像矩阵和光照区域图像矩阵的关系为:/>
S12.通过二维离散傅里叶变换,将图像矩阵由时域矩阵转变为频域矩阵,设置频率阈值,将频域矩阵与频率阈值进行比较,生成新的频域矩阵,将频域矩阵转变为时域矩阵,包括以下步骤;
S121.采用二维离散傅里叶变换,将图像矩阵由时域矩阵转变为频域矩阵/>,具体如下:
式中,j为虚数单位,e=0,1,2,…,L-1;f=0,1,2,…,M-1;其中,L为图像矩阵沿x轴方向的像素数量,M为图像矩阵/>沿y轴方向的像素数量;u为x方向的角频率,v为y方向的角频率;
S122.确定频率阈值,将频域矩阵/>与频率阈值/>进行比较,生成新的频域矩阵/>
时,保留对应图像信息,生成新的频域矩阵/>
时,删除对应图像信息,生成新的频域矩阵/>
频率阈值确定方法为:
1.在无光照环境下,采用工业相机采集路面病害图像,图像数量为NUM,采用二维离散傅里叶变换将图像矩阵由时域信息转变为频域信息,并建立频域矩阵PW;
2.在有光照环境下,采用工业相机采集路面病害图像,图像数量也为NUM,采用二维离散傅里叶变换将图像矩阵由时域信息转变为频域信息,并建立频域矩阵PY;
3.计算PW与PY矩阵的差集矩阵PC,
PC为光照分布对应的频率矩阵;
4.计算矩阵PC中元素的最大值,该值为频率阈值;
S123.采用傅里叶逆变换,将频域矩阵转变为时域矩阵/>
式中,x=0,1,2,…,L-1;y=0,1,2,…,M-1。
S13.提取图像高频分量,通过图像像素灰度信息,去除光照区域,基于图像灰度信息,获得消除光照不均匀的图像,包括以下步骤;
S131.统计时域矩阵中灰度级数量k,将灰度级按照从小大的顺序排列;
S132.将灰度级进行编码,将首个灰度级编码为0,全部灰度级依次编码为0,1,2…,k-1;
S133.记录路面病害图像Ai中每种灰度级j对应像素的数量
S134.计算各像素值出现的概率
S135.计算图像Ai灰度的累积分布概率
式中,N为灰度级排序值,n依次取值为1,2,3…,k;
S136.将累积分布频率乘以(k-1),将计算结果记为/>,即:采集图像的图像矩阵与地面区域图像矩阵间的转变矩阵:
S137.建立采集图像的图像矩阵与地面区域图像矩阵/>的关系:
S138.将地面区域图像矩阵转变为图像,依次完成/>个小图像区域中不均匀光照的去除。
S2.获取图像中的线性裂缝;
S21.将消除光照不均匀的图像作为训练样本,训练线性裂缝图像识别模型,输出包含线性裂缝的RGB图像,将图像依次编码为AA1-AAn,n为线性裂缝图像的总数量;
S22.将RGB图像转变为灰度图像;
采集图像的类型为RGB图像,而此种图像类型在图像处理过程中,难度较大,因此,将RGB图像转变为灰度图像进行处理,首先,提取RGB图像在R、G、B三个通道的数值,依次记为aa、bb、cc,结合由心理学公式确定的彩色图像与灰度图像间的关系,采用下式计算图像灰度值dd:
S23.对灰度图像进行线性裂缝区域和背景区域的区分,得到新的二值化图像,将二值化图像依次编码为F1-Fn,n为线性裂缝图像的总数量,对灰度图像进行线性裂缝区域和背景区域的区分,得到新的二值化图像的方法包括以下步骤;
S231.统计全部图像像素值,确定像素值的分布范围,最小值记为dmin,最大值记为dmax,像素分布范围即为(dmin,dmax);
S232.设灰度值阈值dt,以灰度值阈值dt为临界点,将像素分布范围划分为两个区间:X区间(dmin,dt)和Y区间(dt,dmax),统计X区间和Y区间范围内像素的数量n1和n2,并计算X、Y两个区间像素数量在整个图像中的权重ee1和ee2,计算两个区间的平均像素值dc1和dd2,计算X、Y区间图像像素方差E:
式中,灰度值阈值dt取值范围为[dmin,dmax],且像素增加步长为1个像素;
S234.遍历全部灰度值阈值dt,依次得到X、Y区间图像像素方差E,记录方差中最大值Emax,方差对应的灰度值阈值dt为线性裂缝图像背景与线性裂缝区域的临界像素值,将灰度阈值记为dtm;
S235.以灰度阈值dtm为分界点,将图像划分为由像素值0和1组成的二值化图像,其中,灰度值小于dtm的像素点,全部变为0;灰度值大于等于dtm的像素点,像素值变为1。
S24.将二值化图像作为训练样本,训练线性裂缝提取模型,输出图像中的线性裂缝;
S3.提取线性裂缝边缘轮廓;
S31.线性裂缝图像包含x轴和y轴两个方向,构建两个3×3的矩阵,其中,一个矩阵的中间行为0元素,另一个矩阵的中间列为0元素,其余元素保证非零,同时,考虑到裂缝会沿某个方向扩展延伸的特性,因此,在非零元素的行或列中,中间元素与其它元素不同,矩阵如下:
其中,为线性裂缝图像x轴矩阵,/>为线性裂缝图像y轴矩阵;
S32.选取线性裂缝图像AAi,i为第i张线性裂缝图像,线性裂缝图像矩阵记为,分别进行如下卷积操作:
式中,为线性裂缝图像/>与线性裂缝图像x轴矩阵/>的卷积结果矩阵;/>为线性裂缝图像/>与线性裂缝图像y轴矩阵/>的卷积结果矩阵;
S33.对比和/>中全部位置的元素,将最大值作为输出矩阵元素,即线性裂缝轮廓矩阵/>为:
S34.结合和/>的结构特点及卷积操作的特性,在线性裂缝轮廓矩阵中提取线性裂缝边缘轮廓;
S4.计算线性裂缝轮廓矩阵中非零元素在x轴方向的分布范围全部列对应的非零像素值对应的y1值和y2值;
S41.将线性裂缝轮廓矩阵中,非零元素在x轴方向的分布范围,记为[Xmin,Xmax];
S42.将线性裂缝轮廓矩阵中,第Xmin列对应的非零像素值,记录为对应的y值;非零像素值对应的y值分别记为y1和y2;其中,当Xmin列对应1个非零像素时,另y1=y2;依次计算[Xmin,Xmax]范围全部列对应的非零像素值对应的y1值和y2值;
S5.计算y1值和y2值的平均值,/>
S6.构建裂缝中线矩阵,计算裂缝中线矩阵中全部元素的和裂缝中线像素的数量;
构建与线性裂缝图像AAi矩阵相同尺寸的零矩阵OAi,搜索[Xmin,Xmax]范围中全部的位置,将对应位置元素替换为1,形成裂缝中线矩阵/>
计算裂缝中线矩阵中全部元素的和裂缝中线像素的数量SS的方法是:
S7.通过裂缝中线像素的总数量、单个像素的长度、边缘像素总数量之间的关系,得到裂缝的长度,公式为:
其中,为线性裂缝的长度,/>为单个像素的长度。
具体的,单个像素的长度,是指裂缝图像中1个像素的长度,代表的实际道路中裂缝的实际长度;跟地图的比例尺相像,如,图像中1个像素长度,可能代表路面1m的长度。
本发明实现了非均匀光照条件下沥青路面线性裂缝长度的计算。可基于裂缝长度分析,判断裂缝的发育程度和严重程度,同时,也可通过裂缝长度的发育速度,判断裂缝修复的紧急程度,进而做出合理的养护预案。裂缝作为道路表面数量最多的病害,裂缝长度对于指导道路养护材料的使用、养护资金的分配具有重要意义,合理的方案可以降低成本、提高道路质量,延长道路寿命。
本实施例的技术原理:
首先,将整张图像进行划分得到若干子图像;其次,针对每张子图像,通过二维离散傅里叶变换,将图像矩阵由时域转变为频域空间,再次,通过滤波的方式,初步消除光照区域的影响;再次,对图像中灰度信息进行统计分析,分析灰度累计分布概率分布特征,计算得到采集图像的图像矩阵与地面区域图像矩阵间的转变矩阵,进而得到地面区域图像矩阵与光照部分图像矩阵。用智能识别算法,实现了裂缝图像的识别和提取。然后,将RGB图像转变为灰度图像;为了消除背景的干扰基于遍历搜索方法确定灰度阈值的方式,实现裂缝区域的提取以及非裂缝区域准确区分;采用标准化方式,将统一裂缝区域的灰度值和非裂缝区域的灰度值,提高了裂缝区域的特征显著性,实现了裂缝区域的提取。裂缝区域提取后,通过构建双向三阶矩阵和卷积算法操作,提取得到了裂缝的边缘轮廓;并基于裂缝的边缘轮廓,找到轮廓中线,在此基础上,计算轮廓中线像素之和,即可得到裂缝的长度。本发明通过二维离散傅里叶变换和灰度值变换的方式,实现了两级方式去除不均匀光照的影响;同时,将图像划分为若干子图的方式,可有效避免图像局部灰度变换效果差的问题,可获得更佳的去除效果。本发明的线性裂缝长度获取方式考虑到了裂缝的全部信息,计算结果更加准确。
实施例2、本发明的计算机装置可以是包括有处理器以及存储器等装置,例如包含中央处理器的单片机等。并且,处理器用于执行存储器中存储的计算机程序时实现上述的一种线性裂缝长度计算方法的步骤。
所称处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列 (Field-Programmable Gate Array,FPGA) 或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器可以包括高速随机存取存储器,还可以包括非易失性存储器,例如硬盘、内存、插接式硬盘,智能存储卡(Smart Media Card, SMC),安全数字(Secure Digital, SD)卡,闪存卡(Flash Card)、至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
实施例3、计算机可读存储介质实施例
本发明的计算机可读存储介质可以是被计算机装置的处理器所读取的任何形式的存储介质,包括但不限于非易失性存储器、易失性存储器、铁电存储器等,计算机可读存储介质上存储有计算机程序,当计算机装置的处理器读取并执行存储器中所存储的计算机程序时,可以实现上述的一种线性裂缝长度计算方法的步骤。
所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。
尽管根据有限数量的实施例描述了本发明,但是受益于上面的描述,本技术领域内的技术人员明白,在由此描述的本发明的范围内,可以设想其它实施例。此外,应当注意,本说明书中使用的语言主要是为了可读性和教导的目的而选择的,而不是为了解释或者限定本发明的主题而选择的。因此,在不偏离所附权利要求书的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。对于本发明的范围,对本发明所做的公开是说明性的,而非限制性的,本发明的范围由所附权利要求书限定。

Claims (5)

1.一种线性裂缝长度计算方法,其特征在于,包括以下步骤:
S1.获取消除光照不均匀的图像,方法是:
S11.将路面病害图像进行处理,得到地面区域图像矩阵和光照区域图像矩阵,包括以下步骤;
S111.将路面病害图像的长度记为a,宽度记为b;
S112.将路面病害图像等分为个小图像区域,沿长度方向每段长度为/>,沿宽度方向每段长度为/>
S113.将路面病害图像由左到右、由上到下依次编号为A1,A2,A3,…,Ai,…,Ac2
S114.对任意一张路面病害图像Ai,以路面病害图像左上角点为坐标原点,向右记为x轴正方向,向下记为y轴正方向;采集路面病害图像的图像矩阵由地面区域和光照区域组成,将路面病害图像的图像矩阵记为,地面区域图像矩阵记为/>,将光照区域图像矩阵记为/>,路面病害图像的图像矩阵、地面区域图像矩阵和光照区域图像矩阵的关系为:/>
S12.通过二维离散傅里叶变换,将图像矩阵由时域矩阵转变为频域矩阵,设置频率阈值,将频域矩阵与频率阈值进行比较,生成新的频域矩阵,将频域矩阵转变为时域矩阵,包括以下步骤;
S121.采用二维离散傅里叶变换,将图像矩阵由时域矩阵转变为频域矩阵/>,具体如下:
式中,为虚数单位;其中,L为图像矩阵/>沿x轴方向的像素数量,M为图像矩阵沿y轴方向的像素数量;u为x方向的角频率,v为y方向的角频率;
S122.确定频率阈值,将频域矩阵/>与频率阈值/>进行比较,生成新的频域矩阵/>
时,保留对应图像信息,生成新的频域矩阵/>
时,删除对应图像信息,生成新的频域矩阵/>
S123.采用傅里叶逆变换,将频域矩阵转变为时域矩阵/>
式中,x=0,1,2,…,L-1;y=0,1,2,…,M-1;
S13.提取图像高频分量,通过图像像素灰度信息,去除光照区域,基于图像灰度信息,获得消除光照不均匀的图像,包括以下步骤;
S131.统计时域矩阵中灰度级数量k,将灰度级按照从小到大的顺序排列;
S132.将灰度级进行编码,将首个灰度级编码为1,全部灰度级依次编码为1,2,3…,k;
S133.记录路面病害图像Ai中每种灰度级j对应像素的数量
S134.计算各像素值出现的概率
S135.计算图像Ai灰度的累积分布概率
式中,o为灰度级排序值,o依次取值为1,2,3…,k;
S136.将累积分布频率乘以(k-1),将计算结果记为/>,即:采集图像的图像矩阵与地面区域图像矩阵间的转变矩阵:
S137.建立采集图像的图像矩阵与地面区域图像矩阵/>的关系:
S138.将地面区域图像矩阵转变为图像,依次完成/>个小图像区域中不均匀光照的去除;
S2.获取图像中的线性裂缝,方法是:
S21.将消除光照不均匀的图像作为训练样本,训练线性裂缝图像识别模型,输出包含线性裂缝的RGB图像,将图像依次编码为AA1-AAn,n为线性裂缝图像的总数量;
S22.将RGB图像转变为灰度图像;
S23.对灰度图像进行线性裂缝区域和背景区域的区分,得到新的二值化图像,将二值化图像依次编码为F1-Fn,n为线性裂缝图像的总数量,对灰度图像进行线性裂缝区域和背景区域的区分,得到新的二值化图像的方法包括以下步骤;
S231.统计全部图像像素值,确定像素值的分布范围,最小值记为dmin,最大值记为dmax,像素分布范围即为(dmin,dmax);
S232.设灰度值阈值dt,以灰度值阈值dt为临界点,将像素分布范围划分为两个区间:X区间(dmin,dt)和Y区间(dt,dmax),统计X区间和Y区间范围内像素的数量n1和n2,并计算X、Y两个区间像素数量在整个图像中的权重ee1和ee2,计算两个区间的平均像素值dc1和dc2,计算X、Y区间图像像素方差E:
式中,灰度值阈值dt取值范围为[dmin,dmax],且像素增加步长为1个像素;
S234.遍历全部灰度值阈值dt,依次得到X、Y区间图像像素方差E,记录方差中最大值Emax,方差中最大值Emax对应的灰度值阈值dt为线性裂缝图像背景与线性裂缝区域的临界像素值,将临界像素值记为灰度阈值dtm;
S235.以灰度阈值dtm为分界点,将图像划分为由像素值0和1组成的二值化图像,其中,灰度值小于dtm的像素点,全部变为0;灰度值大于等于dtm的像素点,像素值变为1;
S24.将二值化图像作为训练样本,训练线性裂缝提取模型,输出图像中的线性裂缝;
S3.提取线性裂缝边缘轮廓,方法是:
S31.线性裂缝图像包含x轴和y轴两个方向,构建两个3×3的矩阵,其中,一个矩阵的中间行为0元素,另一个矩阵的中间列为0元素,其余元素保证非零,在非零元素的行或列中,中间元素与其它元素不同;
S32.选取线性裂缝图像AAd,d为第d张线性裂缝图像,线性裂缝图像矩阵记为,分别进行卷积操作:
式中,为线性裂缝图像与线性裂缝图像x轴矩阵的卷积结果矩阵;/>为线性裂缝图像与线性裂缝图像y轴矩阵的卷积结果矩阵;
S33.对比和/>中全部位置的元素,将最大值作为输出矩阵元素,即线性裂缝轮廓矩阵/>
S34.结合和/>的结构特点及卷积操作的特性,在线性裂缝轮廓矩阵/>中提取线性裂缝边缘轮廓;
S4.计算线性裂缝轮廓矩阵中非零元素在x轴方向的分布范围全部列对应的非零像素值对应的y1值和y2值,方法是:
S41.将线性裂缝轮廓矩阵中,非零元素在x轴方向的分布范围,记为[Xmin,Xmax];
S42.将线性裂缝轮廓矩阵中,第Xmin列对应的非零像素值,记录为对应的y值;非零像素值对应的y值分别记为y1和y2;其中,当Xmin列对应1个非零像素时,另y1=y2;依次计算[Xmin,Xmax]范围全部列对应的非零像素值对应的y1值和y2值;
S5.计算y1值和y2值的平均值
S6.构建裂缝中线矩阵,计算裂缝中线矩阵中全部元素和裂缝中线像素的数量;
S7.通过裂缝中线像素的总数量、单个像素的长度和边缘像素总数量之间的关系,得到线性裂缝的长度。
2.根据权利要求1所述一种线性裂缝长度计算方法,其特征在于,构建裂缝中线矩阵的方法是:构建与线性裂缝图像AAd矩阵相同尺寸的零矩阵OAi,搜索[Xmin,Xmax]范围中全部的位置,将对应位置元素替换为1,形成裂缝中线矩阵/>
计算裂缝中线像素的数量的方法是:
3.根据权利要求2所述一种线性裂缝长度计算方法,其特征在于,得到线性裂缝的长度的方法是,通过下述公式计算:
其中,为线性裂缝的长度,/>为单个像素的长度。
4.一种电子设备,其特征在于,包括存储器和处理器,存储器存储有计算机程序,所述的处理器执行所述计算机程序时实现权利要求1-3任一项所述的一种线性裂缝长度计算方法的步骤。
5.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1-3任一项所述的一种线性裂缝长度计算方法。
CN202311336746.5A 2023-10-17 2023-10-17 一种线性裂缝长度计算方法 Active CN117078737B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311336746.5A CN117078737B (zh) 2023-10-17 2023-10-17 一种线性裂缝长度计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311336746.5A CN117078737B (zh) 2023-10-17 2023-10-17 一种线性裂缝长度计算方法

Publications (2)

Publication Number Publication Date
CN117078737A CN117078737A (zh) 2023-11-17
CN117078737B true CN117078737B (zh) 2024-03-29

Family

ID=88706482

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311336746.5A Active CN117078737B (zh) 2023-10-17 2023-10-17 一种线性裂缝长度计算方法

Country Status (1)

Country Link
CN (1) CN117078737B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011179874A (ja) * 2010-02-26 2011-09-15 East Nippon Expressway Co Ltd 舗装路面のクラックの抽出と損傷レベルの評価方法
CN110738642A (zh) * 2019-10-08 2020-01-31 福建船政交通职业学院 基于Mask R-CNN的钢筋混凝土裂缝识别及测量方法及存储介质
CN115082542A (zh) * 2022-06-29 2022-09-20 杭州电子科技大学 基于图论的隧道裂缝长度测量方法
CN115424232A (zh) * 2022-11-04 2022-12-02 深圳市城市交通规划设计研究中心股份有限公司 一种路面坑槽的识别和评价方法、电子设备及存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018165753A1 (en) * 2017-03-14 2018-09-20 University Of Manitoba Structure defect detection using machine learning algorithms

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011179874A (ja) * 2010-02-26 2011-09-15 East Nippon Expressway Co Ltd 舗装路面のクラックの抽出と損傷レベルの評価方法
CN110738642A (zh) * 2019-10-08 2020-01-31 福建船政交通职业学院 基于Mask R-CNN的钢筋混凝土裂缝识别及测量方法及存储介质
CN115082542A (zh) * 2022-06-29 2022-09-20 杭州电子科技大学 基于图论的隧道裂缝长度测量方法
CN115424232A (zh) * 2022-11-04 2022-12-02 深圳市城市交通规划设计研究中心股份有限公司 一种路面坑槽的识别和评价方法、电子设备及存储介质

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
基于无人机图像和卷积神经网络的桥梁裂缝识别技术研究;付志旭;中国优秀硕士学位论文全文数据库工程科技II辑(第01期);第C034-570页 *
结构表面裂缝数字图像法识别研究综述与前景展望;刘宇飞 等;土木工程学报;第54卷(第6期);第79-98页 *
高通滤波-直方图均衡化相结合实现图像增强;唐思源;科技传播;第123、189页 *

Also Published As

Publication number Publication date
CN117078737A (zh) 2023-11-17

Similar Documents

Publication Publication Date Title
CN108364280B (zh) 结构裂缝自动化描绘及宽度精准测量方法与设备
Shi et al. Automatic road crack detection using random structured forests
Safaei et al. An automatic image processing algorithm based on crack pixel density for pavement crack detection and classification
Chen et al. Pavement crack detection and classification based on fusion feature of LBP and PCA with SVM
Tran et al. A two-step sequential automated crack detection and severity classification process for asphalt pavements
CN116758059B (zh) 一种用于路基路面的视觉无损检测方法
CN114998852A (zh) 一种基于深度学习的公路路面病害智能检测方法
CN117078738B (zh) 一种线性裂缝宽度计算方法
CN115393727A (zh) 一种路面线性裂缝识别方法、电子设备及存储介质
CN103440657A (zh) 一种在线道路裂缝筛查方法
CN114519714B (zh) 一种显示屏脏污缺陷判定的方法和系统
CN109635733B (zh) 基于视觉显著性和队列修正的停车场和车辆目标检测方法
CN115170479A (zh) 一种沥青路面修补病害自动提取方法
CN109815961B (zh) 一种基于局部纹理二值模式的路面修补类病害检测方法
CN117078737B (zh) 一种线性裂缝长度计算方法
CN117079146B (zh) 一种线性裂缝演化规律分析方法
CN117079144B (zh) 一种非均匀光照下沥青路面检测图像线性裂缝提取方法
Safaei Pixel and region-based image processing algorithms for detection and classification of pavement cracks
CN115376106A (zh) 基于雷达图的车型识别方法、装置、设备及介质
CN115690431A (zh) 条码图像二值化方法、装置、存储介质及计算机设备
CN113538418A (zh) 基于形态学分析的轮胎x射线图像缺陷提取模型构建方法
CN117115576B (zh) 一种基于图像的路面裂缝能量分析方法
CN117115665B (zh) 一种基于路面裂缝分析方法的静态影响参数分析方法
CN117078233B (zh) 一种基于路网养护综合评价指标的养护决策方法
CN117557572B (zh) 基于计算机视觉的公路施工质量检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant