CN117070794A - Preparation method of morphology controllable magnetic nanoalloy and its application in microwave absorption - Google Patents
Preparation method of morphology controllable magnetic nanoalloy and its application in microwave absorption Download PDFInfo
- Publication number
- CN117070794A CN117070794A CN202311072439.0A CN202311072439A CN117070794A CN 117070794 A CN117070794 A CN 117070794A CN 202311072439 A CN202311072439 A CN 202311072439A CN 117070794 A CN117070794 A CN 117070794A
- Authority
- CN
- China
- Prior art keywords
- organic
- magnetic
- nanoalloy
- acetylacetonate
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 34
- 238000010521 absorption reaction Methods 0.000 title abstract description 29
- 239000011593 sulfur Substances 0.000 claims abstract description 66
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 66
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 59
- 239000002243 precursor Substances 0.000 claims abstract description 57
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 50
- 239000002904 solvent Substances 0.000 claims abstract description 48
- 150000001412 amines Chemical class 0.000 claims abstract description 47
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 46
- 150000003624 transition metals Chemical class 0.000 claims abstract description 44
- 229910052976 metal sulfide Inorganic materials 0.000 claims abstract description 24
- -1 phosphorus compound Chemical class 0.000 claims abstract description 22
- 229910052742 iron Inorganic materials 0.000 claims abstract description 21
- 238000006243 chemical reaction Methods 0.000 claims abstract description 16
- 238000000034 method Methods 0.000 claims abstract description 13
- 230000007704 transition Effects 0.000 claims abstract description 13
- 239000011574 phosphorus Substances 0.000 claims abstract description 12
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 12
- 238000009835 boiling Methods 0.000 claims abstract description 11
- 238000011065 in-situ storage Methods 0.000 claims abstract description 10
- 239000011261 inert gas Substances 0.000 claims abstract description 10
- 238000006477 desulfuration reaction Methods 0.000 claims abstract description 8
- 230000023556 desulfurization Effects 0.000 claims abstract description 8
- 239000007788 liquid Substances 0.000 claims abstract description 6
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 claims description 36
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 claims description 24
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 claims description 22
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 22
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 claims description 21
- 235000019345 sodium thiosulphate Nutrition 0.000 claims description 21
- YUKQRDCYNOVPGJ-UHFFFAOYSA-N thioacetamide Chemical compound CC(N)=S YUKQRDCYNOVPGJ-UHFFFAOYSA-N 0.000 claims description 20
- DLFVBJFMPXGRIB-UHFFFAOYSA-N thioacetamide Natural products CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 claims description 20
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 claims description 19
- 239000006096 absorbing agent Substances 0.000 claims description 17
- 239000010955 niobium Substances 0.000 claims description 15
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 claims description 14
- 229910052758 niobium Inorganic materials 0.000 claims description 14
- 239000005416 organic matter Substances 0.000 claims description 13
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 claims description 12
- LZKLAOYSENRNKR-LNTINUHCSA-N iron;(z)-4-oxoniumylidenepent-2-en-2-olate Chemical compound [Fe].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O LZKLAOYSENRNKR-LNTINUHCSA-N 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 10
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 10
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 claims description 6
- 229910052779 Neodymium Inorganic materials 0.000 claims description 6
- 229910000073 phosphorus hydride Inorganic materials 0.000 claims description 6
- BWHDROKFUHTORW-UHFFFAOYSA-N tritert-butylphosphane Chemical compound CC(C)(C)P(C(C)(C)C)C(C)(C)C BWHDROKFUHTORW-UHFFFAOYSA-N 0.000 claims description 6
- LFKXWKGYHQXRQA-FDGPNNRMSA-N (z)-4-hydroxypent-3-en-2-one;iron Chemical compound [Fe].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O LFKXWKGYHQXRQA-FDGPNNRMSA-N 0.000 claims description 4
- 239000007983 Tris buffer Substances 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 239000011651 chromium Substances 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 239000011572 manganese Substances 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 4
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 239000010944 silver (metal) Substances 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- WLPUWLXVBWGYMZ-UHFFFAOYSA-N tricyclohexylphosphine Chemical compound C1CCCCC1P(C1CCCCC1)C1CCCCC1 WLPUWLXVBWGYMZ-UHFFFAOYSA-N 0.000 claims description 4
- RMZAYIKUYWXQPB-UHFFFAOYSA-N trioctylphosphane Chemical compound CCCCCCCCP(CCCCCCCC)CCCCCCCC RMZAYIKUYWXQPB-UHFFFAOYSA-N 0.000 claims description 4
- RYSXWUYLAWPLES-MTOQALJVSA-N (Z)-4-hydroxypent-3-en-2-one titanium Chemical compound [Ti].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O RYSXWUYLAWPLES-MTOQALJVSA-N 0.000 claims description 3
- HYZQBNDRDQEWAN-LNTINUHCSA-N (z)-4-hydroxypent-3-en-2-one;manganese(3+) Chemical compound [Mn+3].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O HYZQBNDRDQEWAN-LNTINUHCSA-N 0.000 claims description 3
- SHWZFQPXYGHRKT-FDGPNNRMSA-N (z)-4-hydroxypent-3-en-2-one;nickel Chemical compound [Ni].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O SHWZFQPXYGHRKT-FDGPNNRMSA-N 0.000 claims description 3
- KLFRPGNCEJNEKU-FDGPNNRMSA-L (z)-4-oxopent-2-en-2-olate;platinum(2+) Chemical compound [Pt+2].C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O KLFRPGNCEJNEKU-FDGPNNRMSA-L 0.000 claims description 3
- 239000004201 L-cysteine Substances 0.000 claims description 3
- 235000013878 L-cysteine Nutrition 0.000 claims description 3
- XEHUIDSUOAGHBW-UHFFFAOYSA-N chromium;pentane-2,4-dione Chemical compound [Cr].CC(=O)CC(C)=O.CC(=O)CC(C)=O.CC(=O)CC(C)=O XEHUIDSUOAGHBW-UHFFFAOYSA-N 0.000 claims description 3
- FJDJVBXSSLDNJB-LNTINUHCSA-N cobalt;(z)-4-hydroxypent-3-en-2-one Chemical compound [Co].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O FJDJVBXSSLDNJB-LNTINUHCSA-N 0.000 claims description 3
- ZKXWKVVCCTZOLD-UHFFFAOYSA-N copper;4-hydroxypent-3-en-2-one Chemical compound [Cu].CC(O)=CC(C)=O.CC(O)=CC(C)=O ZKXWKVVCCTZOLD-UHFFFAOYSA-N 0.000 claims description 3
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 claims description 3
- CHACQUSVOVNARW-LNKPDPKZSA-M silver;(z)-4-oxopent-2-en-2-olate Chemical compound [Ag+].C\C([O-])=C\C(C)=O CHACQUSVOVNARW-LNKPDPKZSA-M 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- BRWIZMBXBAOCCF-UHFFFAOYSA-N hydrazinecarbothioamide Chemical compound NNC(N)=S BRWIZMBXBAOCCF-UHFFFAOYSA-N 0.000 claims description 2
- 229910045601 alloy Inorganic materials 0.000 abstract description 48
- 239000000956 alloy Substances 0.000 abstract description 48
- 230000005415 magnetization Effects 0.000 abstract description 11
- 238000001035 drying Methods 0.000 abstract description 4
- 238000010438 heat treatment Methods 0.000 abstract description 3
- 238000002156 mixing Methods 0.000 abstract description 2
- 238000000926 separation method Methods 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 14
- 239000000843 powder Substances 0.000 description 12
- 229910000859 α-Fe Inorganic materials 0.000 description 11
- 229910021645 metal ion Inorganic materials 0.000 description 10
- 239000002244 precipitate Substances 0.000 description 10
- 239000002135 nanosheet Substances 0.000 description 8
- 239000013078 crystal Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 239000011358 absorbing material Substances 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000002121 nanofiber Substances 0.000 description 6
- 125000003277 amino group Chemical group 0.000 description 5
- 238000004140 cleaning Methods 0.000 description 5
- 239000004615 ingredient Substances 0.000 description 5
- 230000000877 morphologic effect Effects 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 230000035484 reaction time Effects 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical group CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 229910002546 FeCo Inorganic materials 0.000 description 3
- 229910002545 FeCoNi Inorganic materials 0.000 description 3
- 229910015136 FeMn Inorganic materials 0.000 description 3
- 229910002555 FeNi Inorganic materials 0.000 description 3
- 229910005335 FePt Inorganic materials 0.000 description 3
- 229910005438 FeTi Inorganic materials 0.000 description 3
- 229910000604 Ferrochrome Inorganic materials 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 229920001084 poly(chloroprene) Polymers 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000013110 organic ligand Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- DLIJPAHLBJIQHE-UHFFFAOYSA-N butylphosphane Chemical compound CCCCP DLIJPAHLBJIQHE-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- YACLQRRMGMJLJV-UHFFFAOYSA-N chloroprene Chemical compound ClC(=C)C=C YACLQRRMGMJLJV-UHFFFAOYSA-N 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- SYECJBOWSGTPLU-UHFFFAOYSA-N hexane-1,1-diamine Chemical compound CCCCCC(N)N SYECJBOWSGTPLU-UHFFFAOYSA-N 0.000 description 1
- 235000000396 iron Nutrition 0.000 description 1
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 description 1
- 239000006247 magnetic powder Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- SRVJKTDHMYAMHA-WUXMJOGZSA-N thioacetazone Chemical compound CC(=O)NC1=CC=C(\C=N\NC(N)=S)C=C1 SRVJKTDHMYAMHA-WUXMJOGZSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1026—Alloys containing non-metals starting from a solution or a suspension of (a) compound(s) of at least one of the alloy constituents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K9/00—Screening of apparatus or components against electric or magnetic fields
- H05K9/0073—Shielding materials
- H05K9/0081—Electromagnetic shielding materials, e.g. EMI, RFI shielding
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K9/00—Screening of apparatus or components against electric or magnetic fields
- H05K9/0073—Shielding materials
- H05K9/0081—Electromagnetic shielding materials, e.g. EMI, RFI shielding
- H05K9/009—Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive fibres, e.g. metal fibres, carbon fibres, metallised textile fibres, electro-conductive mesh, woven, non-woven mat, fleece, cross-linked
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Electromagnetism (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Textile Engineering (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
技术领域Technical field
本申请涉及微波吸收材料技术领域,具体而言,涉及一种形貌可控磁性纳米合金的制备方法和在微波吸收的应用。The present application relates to the technical field of microwave absorbing materials. Specifically, it relates to a preparation method of a shape-controllable magnetic nanoalloy and its application in microwave absorption.
背景技术Background technique
微波吸收器主要用于飞机、坦克或导弹等的隐身涂层和电子器件中抗电磁干扰的封装层,其作用机理是对入射的电磁波产生大量的损耗,减少电磁波反射。在电子器件内部,错中复杂的电路和信号发生器产生复杂的电磁环境,所以需要对电磁波敏感配件进行防护。微波吸收器能损耗环境中电磁波,保护电磁波敏感零件免受环境中电磁波的干扰,保证电子器件的正常运行。Microwave absorbers are mainly used for stealth coatings on aircraft, tanks or missiles and for anti-electromagnetic interference packaging layers in electronic devices. Their mechanism of action is to produce a large amount of loss to incident electromagnetic waves and reduce electromagnetic wave reflection. Inside electronic devices, complex circuits and signal generators create complex electromagnetic environments, so electromagnetic wave sensitive accessories need to be protected. Microwave absorbers can reduce electromagnetic waves in the environment, protect electromagnetic wave-sensitive parts from interference by electromagnetic waves in the environment, and ensure the normal operation of electronic devices.
目前商用的微波吸收器通常采用铁氧体粉末填充氯丁橡胶,在电子器件工作时解决电磁兼容问题,保护电子器件的正常工作,主要应用于RFID、无线充电等技术中,并在手机、数码相机等消费品中大量使用。Currently commercial microwave absorbers usually use ferrite powder filled with neoprene to solve electromagnetic compatibility problems when electronic devices are working and protect the normal operation of electronic devices. They are mainly used in RFID, wireless charging and other technologies, and are used in mobile phones, digital devices, etc. It is widely used in consumer products such as cameras.
然而,随着5G技术(Sub-6 GHz)的发展成熟,电频电子由于低频电磁波的波长较长,不易被现有的电磁波吸收器衰减,需要微波吸收器具有更高的复磁导率和复介电常数。目前的铁氧体材料在GHz的磁导率随频率升高趋向于1,并且为了实现阻抗匹配,介电常数也较低,在低频的吸收性能较差。并且,由于现有吸波材料性能的限制,目前的微波吸收器的厚度较大,不利于很多实际应用场景。因此,开发低频段和宽频段的高效微波吸收器是亟待解决的问题。However, with the development of 5G technology (Sub-6 GHz), electric frequency electronics are not easily attenuated by existing electromagnetic wave absorbers due to the longer wavelength of low-frequency electromagnetic waves. Microwave absorbers need to have higher complex magnetic permeability and Complex dielectric constant. The magnetic permeability of current ferrite materials at GHz tends to 1 as the frequency increases, and in order to achieve impedance matching, the dielectric constant is also low, and the absorption performance at low frequencies is poor. Moreover, due to limitations in the performance of existing microwave absorbing materials, the thickness of current microwave absorbers is relatively large, which is not conducive to many practical application scenarios. Therefore, the development of efficient microwave absorbers in low and wide frequency bands is an urgent problem to be solved.
发明内容Contents of the invention
基于上述的不足,本申请提供了一种形貌可控磁性纳米合金的制备方法和在微波吸收的应用,以部分或全部地改善相关技术中微波吸收材料对低频段和宽频段电磁波的吸收效率低的问题。Based on the above shortcomings, this application provides a preparation method of a morphology-controllable magnetic nanoalloy and its application in microwave absorption to partially or fully improve the absorption efficiency of microwave absorbing materials in related technologies for low-frequency and wide-band electromagnetic waves. low question.
本申请是这样实现的:This application is implemented as follows:
在第一方面,本申请的示例提供了一种形貌可控磁性纳米合金的制备方法,包括:In a first aspect, examples of the present application provide a method for preparing a morphology-controllable magnetic nanoalloy, including:
制备前驱体:将过渡金属源、硫源与有机胺溶剂混合,在惰性气体的保护下升温至预设温度进行反应,固液分离,干燥,得到含有金属硫化物的前驱体;过渡金属源包括有机铁和有机过渡金属,有机过渡金属中的过渡元素不是铁元素;预设温度不高于有机胺溶剂的沸点;Preparing the precursor: Mix the transition metal source, the sulfur source and the organic amine solvent, raise the temperature to the preset temperature under the protection of an inert gas for reaction, separate the solid and liquid, and dry to obtain a precursor containing metal sulfide; the transition metal source includes Organic iron and organic transition metals, the transition element in organic transition metals is not iron; the preset temperature is not higher than the boiling point of the organic amine solvent;
制备磁性纳米合金:在惰性气体保护下,将前驱体与三配位磷化合物反应以进行脱硫,并去除前驱体中的有机物,原位制得磁性纳米合金。Preparation of magnetic nanoalloy: Under the protection of inert gas, react the precursor with a three-coordinated phosphorus compound to desulfurize and remove organic matter in the precursor to prepare the magnetic nanoalloy in situ.
在上述实现过程中,在惰性气体的保护下加热以后,混合液中的过渡金属源和硫源可以在有机胺溶剂的作用下,形成一定形貌结构的含有金属硫化物的前驱体。然后在后续的脱硫反应中去除前驱体中的硫元素和有机物,可以原位制得基本维持前驱体形貌结构的磁性纳米合金。本申请示例制得的磁性纳米合金具有高的饱和磁化强度,在宽频和低频段具有良好的电磁波吸收效率。In the above implementation process, after heating under the protection of inert gas, the transition metal source and sulfur source in the mixed liquid can form a precursor containing metal sulfide with a certain morphological structure under the action of the organic amine solvent. Then, the sulfur element and organic matter in the precursor are removed in the subsequent desulfurization reaction, and a magnetic nanoalloy that basically maintains the morphology and structure of the precursor can be produced in situ. The magnetic nanoalloy prepared in the example of this application has high saturation magnetization and good electromagnetic wave absorption efficiency in broadband and low frequency bands.
结合第一方面,在本申请可选的示例中,有机过渡金属中的过渡元素选自Co、Ni、Ag、Cu、Pt、Cr、Nb、Nd、Ti或Mn中的至少一种。In conjunction with the first aspect, in an optional example of the present application, the transition element in the organic transition metal is selected from at least one of Co, Ni, Ag, Cu, Pt, Cr, Nb, Nd, Ti or Mn.
在上述实现过程中,上述过渡金属与铁形成的磁性纳米合金具有较高的饱和磁化强度,在宽频和低频段具有良好的电磁波吸收效率。In the above implementation process, the magnetic nanoalloy formed by the transition metal and iron has high saturation magnetization and good electromagnetic wave absorption efficiency in broadband and low frequency bands.
结合第一方面,在本申请可选的示例中,有机铁选自乙酰丙酮铁或乙酰丙酮亚铁中的至少一种;有机过渡金属选自乙酰丙酮钴、乙酰丙酮镍、乙酰丙酮银、乙酰丙酮铜、乙酰丙酮铂、乙酰丙酮铬、乙酰丙酮铌、乙酰丙酮钕、乙酰丙酮钛或乙酰丙酮锰中的至少一种。In conjunction with the first aspect, in an optional example of this application, the organic iron is selected from at least one of iron acetylacetonate or ferrous acetylacetonate; the organic transition metal is selected from cobalt acetylacetonate, nickel acetylacetonate, silver acetylacetonate, acetylacetonate At least one of copper acetylacetonate, platinum acetylacetonate, chromium acetylacetonate, niobium acetylacetonate, neodymium acetylacetonate, titanium acetylacetonate or manganese acetylacetonate.
结合第一方面,在本申请可选的示例中,硫源选自硫脲、氨基硫脲、硫代硫酸钠、硫代乙酰胺或L-半胱氨酸中的至少一种。In connection with the first aspect, in an optional example of the present application, the sulfur source is selected from at least one of thiourea, thiosemicarbazone, sodium thiosulfate, thioacetamide or L-cysteine.
结合第一方面,在本申请可选的示例中,有机胺溶剂选自二乙烯三胺、三乙烯四胺、己二胺或丙二胺中的至少一种。In conjunction with the first aspect, in an optional example of the present application, the organic amine solvent is selected from at least one of diethylenetriamine, triethylenetetramine, hexamethylenediamine or propylenediamine.
在上述实现过程中,有机金属源中的有机配体选自乙酰丙酮,能够和硫脲、硫代硫酸钠或硫代乙酰胺等硫源在有机胺溶剂中分散均匀。并且,乙酰丙酮作为有机配体的有机金属源在有机胺溶剂中分解析出金属离子的温度,与硫脲、硫代硫酸钠或硫代乙酰胺等硫源在有机胺溶剂中析出硫元素离子的析出温度相差不大,能够在低于有机胺溶剂沸点的温度下几乎同时析出金属离子和硫元素的离子,反应形成金属硫化物。并且,二乙烯三胺、三乙烯四胺、己二胺或丙二胺等有机胺溶剂能够在反应形成前驱体的过程中作为金属硫化物的支撑体,能够形成络合物制约金属硫化物的结晶体形貌,获得一定形貌结构的前驱体。In the above implementation process, the organic ligand in the organic metal source is selected from acetylacetone, and can be evenly dispersed in the organic amine solvent with sulfur sources such as thiourea, sodium thiosulfate or thioacetamide. Moreover, the temperature at which acetylacetone, as an organic metal source of organic ligands, decomposes and releases metal ions in an organic amine solvent, and sulfur sources such as thiourea, sodium thiosulfate, or thioacetamide, releases sulfur element ions in an organic amine solvent. The precipitation temperature of the solvent is not much different. It can precipitate metal ions and sulfur ions almost simultaneously at a temperature lower than the boiling point of the organic amine solvent, and react to form metal sulfide. In addition, organic amine solvents such as diethylenetriamine, triethylenetetramine, hexamethylenediamine or propylenediamine can serve as a support for metal sulfides during the reaction to form precursors, and can form complexes to limit the formation of metal sulfides. Crystal morphology, obtaining a precursor with a certain morphological structure.
结合第一方面,在本申请可选的示例中,三配位磷化合物选自三正辛基膦、三环己基膦、三烷基膦、三(4-三氟甲苯基)膦或三叔丁基膦中的至少一种。In conjunction with the first aspect, in an optional example of the present application, the three-coordinated phosphorus compound is selected from tri-n-octylphosphine, tricyclohexylphosphine, trialkylphosphine, tris(4-trifluorotolyl)phosphine or tritertiary phosphine At least one kind of butylphosphine.
可选的,将前驱体与三配位磷化合物反应以进行脱硫,并去除有机物的温度为270-290℃,反应2-4h。Optionally, react the precursor with a three-coordinated phosphorus compound for desulfurization, and remove organic matter at a temperature of 270-290°C for 2-4 hours.
在上述实现过程中,三正辛基膦、三环己基膦、三烷基膦、三(4-三氟甲苯基)膦或三叔丁基膦等三配位磷化合物,能够在270-290℃温度下与前驱体中的金属硫化物反应,对金属硫化物进行脱硫,同时去除前驱体中的有机物,以获得基本不含硫化物和有机物的磁性纳米合金,且磁性纳米合金的形貌结构基本与前驱体的形貌结构基本一致。In the above implementation process, tri-coordinated phosphorus compounds such as tri-n-octylphosphine, tricyclohexylphosphine, trialkylphosphine, tris(4-trifluorotolyl)phosphine or tritert-butylphosphine can be used at 270-290 React with the metal sulfide in the precursor at ℃ temperature to desulfurize the metal sulfide and remove the organic matter in the precursor to obtain a magnetic nanoalloy that is basically free of sulfide and organic matter, and the morphology structure of the magnetic nanoalloy It is basically consistent with the morphology and structure of the precursor.
结合第一方面,在本申请可选的示例中,过渡金属源中,铁元素与过渡元素的摩尔比为1:0.01-0.4;过渡金属源中的金属元素和硫源中的硫元素的摩尔比为1:0.5-2。Combined with the first aspect, in an optional example of this application, the molar ratio of iron element to transition element in the transition metal source is 1:0.01-0.4; the molar ratio of the metal element in the transition metal source and the sulfur element in the sulfur source The ratio is 1:0.5-2.
可选的,预设温度不低于180℃。Optional, the preset temperature is not lower than 180℃.
可选的,预设温度为180-200℃。Optional, the preset temperature is 180-200℃.
在上述实现过程中,过渡金属源中,铁元素与过渡元素的摩尔比为1:0.01-0.4,可以获得铁基过渡金属磁性纳米合金。过渡金属源中的金属元素和硫源中的硫元素的摩尔比为1:0.5-2,可以获得不同成分的金属硫化物,以获得不同形貌和成分的铁基磁性纳米合金。In the above implementation process, the molar ratio of iron element to transition element in the transition metal source is 1:0.01-0.4, and an iron-based transition metal magnetic nanoalloy can be obtained. The molar ratio of the metal elements in the transition metal source and the sulfur element in the sulfur source is 1:0.5-2, and metal sulfides of different compositions can be obtained to obtain iron-based magnetic nanoalloys with different morphologies and compositions.
并且,在180-200℃的条件下使混合液中的原料进行反应,基本可以同时析出金属离子和硫元素的离子,可以反应形成金属硫化物的小晶种,还能使有机胺溶剂保持相对稳定配合调节金属硫化物结晶的生长,调节前驱体的结构形貌。Moreover, when the raw materials in the mixed liquid are reacted at 180-200°C, metal ions and sulfur ions can be precipitated basically at the same time, which can react to form small crystal seeds of metal sulfides, and can also keep the organic amine solvent relatively stable. Stable coordination regulates the growth of metal sulfide crystals and adjusts the structural morphology of the precursor.
结合第一方面,在本申请可选的示例中,磁性纳米合金的结构为一维结构,硫源选自硫代乙酰胺,有机胺溶剂选自二乙烯三胺或己二胺中的至少一种。磁性纳米合金为二维结构,硫源选自硫脲,有机胺溶剂选自三乙烯四胺;或者,硫源选自硫代硫酸钠,所述有机胺溶剂选自二乙烯三胺。磁性纳米合金为三维结构,硫源选自硫代硫酸钠,有机胺溶剂选自三乙烯四胺。Combined with the first aspect, in an optional example of the present application, the structure of the magnetic nanoalloy is a one-dimensional structure, the sulfur source is selected from thioacetamide, and the organic amine solvent is selected from at least one of diethylenetriamine or hexamethylenediamine. kind. The magnetic nanoalloy has a two-dimensional structure, the sulfur source is selected from thiourea, and the organic amine solvent is selected from triethylenetetramine; or the sulfur source is selected from sodium thiosulfate, and the organic amine solvent is selected from diethylenetriamine. The magnetic nanoalloy has a three-dimensional structure, the sulfur source is selected from sodium thiosulfate, and the organic amine solvent is selected from triethylenetetramine.
在上述实现过程中,本申请示例提供了一种可以调控磁性纳米合金形貌结构的方法,其中,硫源选自硫代乙酰胺、有机胺溶剂选自二乙烯三胺,或者硫源选自硫代乙酰胺、有机胺溶剂选自己二胺,可以制备一维纳米纤维结构的磁性纳米合金。硫源选自硫脲、有机胺溶剂选自三乙烯四胺,或者硫源选自硫代硫酸钠、有机胺溶剂选自二乙烯三胺,可以制备二维纳米片结构的磁性纳米合金。硫源选自硫代硫酸钠,有机胺溶剂选自三乙烯四胺,以制备三维块状结构的磁性纳米合金。In the above implementation process, the example of this application provides a method that can control the morphology and structure of magnetic nanoalloys, in which the sulfur source is selected from thioacetamide, the organic amine solvent is selected from diethylenetriamine, or the sulfur source is selected from Thioacetamide and organic amine solvents are selected from hexanediamine, which can prepare magnetic nanoalloys with one-dimensional nanofiber structures. The sulfur source is selected from thiourea and the organic amine solvent is selected from triethylenetetramine. Alternatively, the sulfur source is selected from sodium thiosulfate and the organic amine solvent is selected from diethylenetriamine. A magnetic nanoalloy with a two-dimensional nanosheet structure can be prepared. The sulfur source is selected from sodium thiosulfate, and the organic amine solvent is selected from triethylenetetramine to prepare a magnetic nanoalloy with a three-dimensional block structure.
通过调控反应物硫源的种类和选用不同的溶剂,可以调控前驱体的结构形貌,以便于在后续高温脱硫后原位制得特定形貌的磁性纳米合金。一维、二维或三维结构的磁性纳米合金与现有铁氧体磁性粉体相比较而言,具有更高效的低频微波吸收性能和更宽的微波吸收带宽。By controlling the type of reactant sulfur source and selecting different solvents, the structure and morphology of the precursor can be controlled, so that magnetic nanoalloys with specific morphologies can be produced in situ after subsequent high-temperature desulfurization. Compared with existing ferrite magnetic powders, magnetic nanoalloys with one-dimensional, two-dimensional or three-dimensional structures have more efficient low-frequency microwave absorption properties and wider microwave absorption bandwidth.
在第二方面,本申请的示例提供了一种磁性纳米合金,磁性纳米合金的化学成分包括铁元素和除铁以外的过渡金属元素中的至少一种,磁性纳米合金的结构包括一维和/或二维结构。In a second aspect, examples of the present application provide a magnetic nanoalloy, the chemical composition of the magnetic nanoalloy includes at least one of iron elements and transition metal elements other than iron, and the structure of the magnetic nanoalloy includes one-dimensional and/or Two-dimensional structure.
在第三方面,本申请提供一种根据第二方面提供的磁性纳米合金在制备微波吸收器的应用。In a third aspect, the present application provides an application of the magnetic nanoalloy provided in the second aspect in preparing a microwave absorber.
在上述实现过程中,本申请提供磁性纳米合金制备微波吸收器,由于磁性纳米合金具有高的饱和磁化强度,在宽频和低频段具有良好的电磁波吸收效率,能够提高微波吸收器的吸波效果。In the above implementation process, this application provides a microwave absorber prepared from magnetic nanoalloy. Since the magnetic nanoalloy has high saturation magnetization and good electromagnetic wave absorption efficiency in broadband and low frequency bands, it can improve the absorption effect of the microwave absorber.
附图说明Description of the drawings
为了更清楚地说明本申请实施例或现有技术中的技术方案,以下将对实施例或现有技术描述中所需要使用的附图作简单地介绍。In order to more clearly explain the embodiments of the present application or the technical solutions in the prior art, the drawings required to be used in the description of the embodiments or the prior art will be briefly introduced below.
图1为本申请示例提供的纳米磁性合金的制备流程示意图;Figure 1 is a schematic diagram of the preparation process of the nanomagnetic alloy provided as an example in this application;
图2为本申请实施例1提供的二维FeNb纳米片的SEM图;Figure 2 is an SEM image of the two-dimensional FeNb nanosheets provided in Example 1 of the present application;
图3为本申请实施例2提供的一维FeNb纳米纤维的SEM图;Figure 3 is an SEM image of the one-dimensional FeNb nanofiber provided in Example 2 of the present application;
图4为本申请实施例3提供的三维FeNb颗粒的SEM图;Figure 4 is an SEM image of the three-dimensional FeNb particles provided in Example 3 of the present application;
图5为本申请测试例提供的磁化曲线;Figure 5 is the magnetization curve provided by the test example of this application;
图6为本申请测试例提供的频率-微波吸收强度曲线。Figure 6 is the frequency-microwave absorption intensity curve provided by the test example of this application.
具体实施方式Detailed ways
下面将结合实施例对本申请的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本申请,而不应视为限制本申请的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。The embodiments of the present application will be described in detail below with reference to examples, but those skilled in the art will understand that the following examples are only used to illustrate the present application and should not be regarded as limiting the scope of the present application. If the specific conditions are not specified in the examples, the conditions should be carried out according to the conventional conditions or the conditions recommended by the manufacturer. If the manufacturer of the reagents or instruments used is not indicated, they are all conventional products that can be purchased commercially.
目前,通常采用铁氧体粉末等吸波材料填充氯丁橡胶制备微波吸收器。但是,目前的基于铁氧体粉末等吸波材料的微波吸收器无法适用于低频段的电磁波的吸收,现有的微波吸收器的吸收频率范围较窄。At present, microwave absorbers are usually made of chloroprene filled with absorbing materials such as ferrite powder. However, current microwave absorbers based on absorbing materials such as ferrite powder are not suitable for absorbing electromagnetic waves in the low frequency band, and the absorption frequency range of existing microwave absorbers is narrow.
基于此,本申请示例提供了一种磁性纳米合金及其制备方法,以改善微波吸收材料在低频段和宽频范围内吸波能力较差的问题。Based on this, this application example provides a magnetic nanoalloy and a preparation method thereof to improve the problem of poor microwave absorption capabilities of microwave absorbing materials in low frequency bands and wide frequency ranges.
以下结合附图对本申请示例提供的磁性纳米合金的制备方法进行详细描述。The preparation method of the magnetic nanoalloy provided in the examples of this application is described in detail below with reference to the accompanying drawings.
请参阅图1,本申请示例提供的形貌可控磁性纳米合金的制备方法包括:Please refer to Figure 1. The preparation method of the morphology controllable magnetic nanoalloy provided in the example of this application includes:
S1、制备前驱体S1. Preparation of precursor
将过渡金属源、硫源与有机胺溶剂混合,在惰性气体的保护下升温至预设温度进行反应,固液分离,干燥,得到含有金属硫化物的前驱体;过渡金属源包括有机铁和有机过渡金属,有机过渡金属中的过渡元素不是铁元素;预设温度不高于有机胺溶剂的沸点。Mix the transition metal source, the sulfur source and the organic amine solvent, raise the temperature to a preset temperature under the protection of an inert gas for reaction, separate the solid and liquid, and dry to obtain a precursor containing metal sulfide; the transition metal source includes organic iron and organic Transition metals, the transition element in organic transition metals is not iron; the preset temperature is not higher than the boiling point of the organic amine solvent.
将过渡金属源、硫源分散在有机胺溶剂中,在以便于后续升温后,使得过渡金属源能够分解析出金属离子,与硫源中析出的硫元素的离子反应形成金属硫化物。以有机胺作为溶剂,且反应时的温度不超过有机胺溶剂的沸点,可以利用有机胺作为金属硫化物的有机支撑体,并且配合硫源一起调节并限制金属硫化物晶种的生长,获得一定形貌结构的前驱体。The transition metal source and the sulfur source are dispersed in the organic amine solvent to facilitate subsequent heating, so that the transition metal source can decompose and release metal ions, and react with the ions of sulfur element precipitated in the sulfur source to form metal sulfides. Using an organic amine as a solvent, and the reaction temperature does not exceed the boiling point of the organic amine solvent, the organic amine can be used as an organic support for the metal sulfide, and the sulfur source can be used to regulate and limit the growth of the metal sulfide seed crystal to obtain a certain The precursor of morphological structure.
在一种可能的实施例中,机胺溶剂选自二乙烯三胺、三乙烯四胺、己二胺或丙二胺中的至少一种。In a possible embodiment, the organic amine solvent is selected from at least one of diethylenetriamine, triethylenetetramine, hexamethylenediamine or propylenediamine.
进一步的,本申请不限制过渡金属源的具体类型,相关人员可以根据需要进行相应的选择。Furthermore, this application does not limit the specific type of transition metal source, and relevant personnel can make corresponding selections as needed.
在一种可能的实施例中,有机过渡金属中的过渡元素可以选自Co、Ni、Ag、Cu、Pt、Cr、Nb、Nd、Ti或Mn中的至少一种。In a possible embodiment, the transition element in the organic transition metal may be selected from at least one of Co, Ni, Ag, Cu, Pt, Cr, Nb, Nd, Ti or Mn.
示例性的,过渡元素可以选自Nb。Illustratively, the transition element may be selected from Nb.
在一种可能的实施例中,有机铁可以选自乙酰丙酮铁或乙酰丙酮亚铁中的至少一种。In a possible embodiment, the organic iron may be selected from at least one of iron acetylacetonate or ferrous acetylacetonate.
示例性的,有机铁可以选自乙酰丙酮铁。Illustratively, the organic iron may be selected from iron acetylacetonate.
示例性的,有机铁可以选自乙酰丙酮亚铁。Illustratively, the organic iron may be selected from ferrous acetylacetonate.
在一种可能的实施例中,有机过渡金属可以选自乙酰丙酮钴、乙酰丙酮镍、乙酰丙酮银、乙酰丙酮铜、乙酰丙酮铂、乙酰丙酮铬、乙酰丙酮铌、乙酰丙酮钕、乙酰丙酮钛或乙酰丙酮锰中的至少一种。In a possible embodiment, the organic transition metal may be selected from the group consisting of cobalt acetylacetonate, nickel acetylacetonate, silver acetylacetonate, copper acetylacetonate, platinum acetylacetonate, chromium acetylacetonate, niobium acetylacetonate, neodymium acetylacetonate, and titanium acetylacetonate. or at least one of manganese acetylacetonate.
示例性的,有机过渡金属可以选自乙酰丙酮铌。Illustratively, the organic transition metal may be selected from niobium acetylacetonate.
进一步的,过渡金属源中,铁元素与过渡元素的摩尔比可以为1:0.01-0.4,以获得铁基过渡金属磁性纳米合金。Further, in the transition metal source, the molar ratio of iron element to transition element can be 1:0.01-0.4 to obtain an iron-based transition metal magnetic nanoalloy.
示例性的,铁元素与过渡元素的摩尔比可以为1:0.01、1:0.05、1:0.1、1:0.15、1:0.2、1:0.25、1:0.3、1:0.35或1:0.4中的一者或任意两者之间的范围。For example, the molar ratio of iron element to transition element may be 1:0.01, 1:0.05, 1:0.1, 1:0.15, 1:0.2, 1:0.25, 1:0.3, 1:0.35 or 1:0.4. one of or any range in between.
在一种可能的实施例中,硫源选自硫脲、氨基硫脲、硫代硫酸钠、硫代乙酰胺或L-半胱氨酸中的至少一种。In a possible embodiment, the sulfur source is selected from at least one of thiourea, thiosemicarbazide, sodium thiosulfate, thioacetamide or L-cysteine.
进一步的,过渡金属源中的金属元素和硫源中的硫元素的摩尔比可以为1:0.5-2。Further, the molar ratio of the metal element in the transition metal source and the sulfur element in the sulfur source can be 1:0.5-2.
示例性的,过渡金属源中的金属元素和硫源中的硫元素的摩尔比为可以为1:0.5、1:0.6、1:0.7、1:0.8、1:0.9、1:1.0、1:1.1、1:1.2、1:1.3、1:1.4、1:1.5、1:1.6、1:1.7、1:1.8、1:1.9或2.0中的一者或任意两者之间的范围。For example, the molar ratio of the metal element in the transition metal source and the sulfur element in the sulfur source can be 1:0.5, 1:0.6, 1:0.7, 1:0.8, 1:0.9, 1:1.0, 1: One of 1.1, 1:1.2, 1:1.3, 1:1.4, 1:1.5, 1:1.6, 1:1.7, 1:1.8, 1:1.9 or 2.0 or the range between any two.
硫脲、硫代硫酸钠或硫代乙酰胺等硫源与乙酰丙酮铁等有机铁和乙酰丙酮铌等有机过渡金属在有机胺溶剂中混合,能够在一定温度下反应形成含有金属硫化物的、具有特定形貌结构的前驱体。Sulfur sources such as thiourea, sodium thiosulfate or thioacetamide are mixed with organic irons such as iron acetylacetonate and organic transition metals such as niobium acetylacetonate in organic amine solvents, which can react at a certain temperature to form metal sulfides. Precursors with specific morphological structures.
其中,前驱体中含有有机物,部分或全部的有机物部分来自于有机胺溶剂及其络合物支撑体。The precursor contains organic matter, and part or all of the organic matter comes from the organic amine solvent and its complex support.
示例性的,特定形貌结构包括一维结构、二维结构和三维结构中的至少一种。Exemplarily, the specific morphological structure includes at least one of a one-dimensional structure, a two-dimensional structure and a three-dimensional structure.
其中,一维结构是指线状的纤维结构,二维结构是指片状结构,三维结构是指块状结构,例如颗粒结构。Among them, the one-dimensional structure refers to the linear fiber structure, the two-dimensional structure refers to the sheet structure, and the three-dimensional structure refers to the block structure, such as particle structure.
进一步的,为了便于调控前驱体的形貌结构,请继续参阅图1、本申请示例提供的制备方法包括:Further, in order to facilitate the control of the morphology structure of the precursor, please continue to refer to Figure 1. The preparation methods provided in the examples of this application include:
S101、一维结构的制备S101. Preparation of one-dimensional structure
硫源选自硫代乙酰胺,有机胺溶剂选自二乙烯三胺或己二胺中的至少一种。The sulfur source is selected from thioacetamide, and the organic amine solvent is selected from at least one of diethylenetriamine or hexamethylenediamine.
示例性的,制备前驱体时,预设温度可以为180-200℃。For example, when preparing the precursor, the preset temperature may be 180-200°C.
示例性的,硫源选自硫代乙酰胺,有机胺溶剂选自二乙烯三胺时,可以升温至180℃,预设温度低于二乙烯三胺的沸点,且能使过渡金属源和硫源基本同时析出相应的金属离子和硫元素的离子。反应时间3h左右之后,离心清洗,干燥后可以获得纳米纤维状的含有金属硫化物的前驱体。For example, when the sulfur source is selected from thioacetamide and the organic amine solvent is selected from diethylenetriamine, the temperature can be raised to 180°C. The preset temperature is lower than the boiling point of diethylenetriamine, and the transition metal source and sulfur can be The source basically precipitates corresponding metal ions and sulfur ions at the same time. After the reaction time is about 3 hours, the nanofiber-shaped precursor containing metal sulfide can be obtained after centrifugal cleaning and drying.
示例性的,硫源选自硫代乙酰胺,有机胺溶剂选自己二胺时,可以升温至200℃,预设温度低于己二胺的沸点,且能使过渡金属源和硫源基本同时析出相应的金属离子和硫元素的离子。反应时间3h左右之后,离心清洗,干燥后可以获得纳米纤维状的含有金属硫化物的前驱体。For example, when the sulfur source is selected from thioacetamide and the organic amine solvent is hexamethylenediamine, the temperature can be raised to 200°C. The preset temperature is lower than the boiling point of hexamethylenediamine, and the transition metal source and the sulfur source can be basically simultaneously The corresponding metal ions and sulfur ions are precipitated. After the reaction time is about 3 hours, the nanofiber-shaped precursor containing metal sulfide can be obtained after centrifugal cleaning and drying.
硫代乙酰胺能够在二乙烯三胺或己二胺中,在200℃左右温度下析出-S-2,与乙酰丙酮铁等有机金属源在二乙烯三胺或己二胺中分解析出的铁离子等金属离子的温度相近,几乎可以同时析出生成金属硫化物的小晶种。Thioacetamide can precipitate -S -2 in diethylenetriamine or hexamethylenediamine at a temperature of about 200°C, and can be separated from organic metal sources such as iron acetylacetonate in diethylenetriamine or hexamethylenediamine. Metal ions such as iron ions have similar temperatures and can precipitate almost simultaneously to form small seeds of metal sulfides.
与硫代硫酸钠等硫源相比,硫代乙酰胺和硫脲中含有碳硫双键,键能约为577kJ/mol,键能较大。高键能的硫源中S析出的慢,反应更倾向于形成一维和二维的纳米晶;而低键能的硫源中S较快析出,形成大量的晶种,反应中倾向于堆叠成三维结构。并且,硫代乙酰胺中含有氨基,硫脲中不含氨基,含有氨基的硫代乙酰胺倾向于形成一维结晶;不含氨基的硫脲倾向于形成二维结晶。Compared with sulfur sources such as sodium thiosulfate, thioacetamide and thiourea contain carbon-sulfur double bonds, with a bond energy of approximately 577kJ/mol, and a larger bond energy. In sulfur sources with high bond energy, S precipitates slowly, and the reaction tends to form one-dimensional and two-dimensional nanocrystals; while in sulfur sources with low bond energy, S precipitates quickly, forming a large number of crystal seeds, which tend to stack during the reaction. Three-dimensional structure. Moreover, thioacetamide contains amino groups, while thiourea does not contain amino groups. Thioacetamide containing amino groups tends to form one-dimensional crystals; thiourea without amino groups tends to form two-dimensional crystals.
进一步的,请继续参阅图1,本申请示例提供的本申请示例提供的制备方法包括:Further, please continue to refer to Figure 1. The preparation method provided by the example of this application includes:
S102、二维结构的制备S102. Preparation of two-dimensional structure
硫源选自硫脲,有机胺溶剂选自三乙烯四胺;或者,硫源选自硫代硫酸钠,有机胺溶剂选自二乙烯三胺。The sulfur source is selected from thiourea, and the organic amine solvent is selected from triethylenetetramine; alternatively, the sulfur source is selected from sodium thiosulfate, and the organic amine solvent is selected from diethylenetriamine.
示例性的,硫源选自硫脲,有机胺溶剂选自三乙烯四胺时,可以升温至200℃,预设温度低于三乙烯四胺的沸点,且能使过渡金属源和硫脲基本同时析出相应的金属离子和硫元素的离子。反应时间3h左右之后,离心清洗,干燥后可以获得纳米片状的含有金属硫化物的前驱体。For example, when the sulfur source is selected from thiourea and the organic amine solvent is selected from triethylenetetramine, the temperature can be raised to 200°C. The preset temperature is lower than the boiling point of triethylenetetramine and can make the transition metal source and thiourea basically At the same time, the corresponding metal ions and sulfur ions are precipitated. After the reaction time is about 3 hours, the nanosheet-shaped precursor containing metal sulfide can be obtained after centrifugal cleaning and drying.
示例性的,硫源选自硫代硫酸钠,有机胺溶剂选自二乙烯三胺时,可以升温至180℃,预设温度低于二乙烯三胺的沸点,且能使过渡金属源和硫脲基本同时析出相应的金属离子和硫元素的离子。反应时间3h左右之后,离心清洗可以获得纳米片状的含有金属硫化物的前驱体。For example, when the sulfur source is selected from sodium thiosulfate and the organic amine solvent is selected from diethylenetriamine, the temperature can be raised to 180°C. The preset temperature is lower than the boiling point of diethylenetriamine, and the transition metal source and sulfur can be Urea basically precipitates corresponding metal ions and sulfur ions at the same time. After a reaction time of about 3 hours, centrifugal cleaning can obtain a nanosheet-shaped precursor containing metal sulfide.
硫代乙酰胺和硫脲中均含有碳硫双键,键能约为577kJ/mol,键能较大,但是硫脲中不含有胺基,硫离子析出较快,因此,在200℃左右的预设温度下,反应3h左右,可以获得片状的前驱体。Both thioacetamide and thiourea contain carbon-sulfur double bonds with a bond energy of about 577kJ/mol, which is a relatively large bond energy. However, thiourea does not contain an amine group and sulfide ions precipitate quickly. Therefore, at around 200°C At the preset temperature, after reacting for about 3 hours, a flaky precursor can be obtained.
硫代硫酸钠的键能相对较低,析出硫离子的速度较快,在二乙烯三胺的限制作用下,可以形成纳米片状的前驱体。The bond energy of sodium thiosulfate is relatively low and it precipitates sulfide ions quickly. Under the restriction of diethylenetriamine, it can form a nanosheet precursor.
与三乙烯四胺相比,二乙烯三胺能够配合硫代硫酸钠,在反应时能够配合限制金属硫化物的生长,以获得纳米片状的前驱体。Compared with triethylenetetramine, diethylenetriamine can cooperate with sodium thiosulfate and can limit the growth of metal sulfide during the reaction to obtain a nanosheet precursor.
进一步的,请继续参阅图1,本申请示例提供的本申请示例提供的制备方法包括:Further, please continue to refer to Figure 1. The preparation method provided by the example of this application includes:
S103、三维结构的制备S103. Preparation of three-dimensional structure
硫源选自硫代硫酸钠,有机胺溶剂选自三乙烯四胺。The sulfur source is selected from sodium thiosulfate, and the organic amine solvent is selected from triethylenetetramine.
示例性的,硫源选自硫代硫酸钠,有机胺溶剂选自三乙烯四胺时,可以升温至200℃,预设温度低于三乙烯四胺的沸点,且能使过渡金属源和硫脲基本同时析出相应的金属离子和硫元素的离子。反应时间3h左右之后,离心清洗可以获得块状的含有金属硫化物的前驱体。进一步的,请继续参阅图1,本本申请示例提供的本申请示例提供的制备方法包括:For example, when the sulfur source is selected from sodium thiosulfate and the organic amine solvent is selected from triethylenetetramine, the temperature can be raised to 200°C. The preset temperature is lower than the boiling point of triethylenetetramine, and the transition metal source and sulfur can be Urea basically precipitates corresponding metal ions and sulfur ions at the same time. After a reaction time of about 3 hours, centrifugal cleaning can obtain a massive precursor containing metal sulfide. Further, please continue to refer to Figure 1. The preparation method provided by the example of this application includes:
S2、制备磁性纳米合金S2. Preparation of magnetic nanoalloys
在惰性气体保护下,将前驱体与三配位磷化合物反应以进行脱硫,并去除前驱体中的有机物,原位制得磁性纳米合金。Under the protection of inert gas, the precursor is reacted with a three-coordinated phosphorus compound to desulfurize and remove organic matter in the precursor to prepare the magnetic nanoalloy in situ.
利用三配位磷化合物与前驱体反应,可以在高温下脱除前驱体中的硫元素。同时,在三配位磷化合物脱硫反应的温度条件下,能够去除前驱体中的有机物,例如使有机胺溶剂支撑体分解,获得基本不含有硫元素和有机物的与前驱体形貌结构基本一致的磁性纳米合金。The sulfur element in the precursor can be removed at high temperature by using a three-coordinated phosphorus compound to react with the precursor. At the same time, under the temperature conditions of the desulfurization reaction of the three-coordinated phosphorus compound, the organic matter in the precursor can be removed, for example, the organic amine solvent support is decomposed, and the morphology and structure of the precursor is basically consistent with the morphology and structure of the precursor, which basically does not contain sulfur elements and organic matter. Magnetic nanoalloys.
与前驱体形貌结构基本一致的磁性纳米合金是指,例如前驱体为一维纤维结构,可以原位制得一维纤维结构的磁性纳米合金;例如前驱体为二维片状结构,可以原位制得二维片状结构的磁性纳米合金;例如前驱体为三维块状结构,可以原位制得三维块状结构的磁性纳米合金。A magnetic nanoalloy whose morphology and structure is basically consistent with the precursor refers to, for example, the precursor having a one-dimensional fiber structure, and a magnetic nanoalloy with a one-dimensional fiber structure can be produced in situ; for example, the precursor has a two-dimensional sheet structure, which can be produced in-situ. Magnetic nanoalloys with a two-dimensional sheet-like structure are prepared in situ; for example, if the precursor is a three-dimensional bulk structure, a magnetic nanoalloy with a three-dimensional bulk structure can be prepared in situ.
示例性的,三配位磷化合物可以选自三正辛基膦、三环己基膦、三烷基膦、三(4-三氟甲苯基)膦或三叔丁基膦中的至少一种。Exemplarily, the three-coordinated phosphorus compound may be selected from at least one of tri-n-octylphosphine, tricyclohexylphosphine, trialkylphosphine, tris(4-trifluorotolyl)phosphine or tritert-butylphosphine.
示例性的,三配位磷化合物选自三烷基膦,脱硫反应时,加热至280℃反应3小时,获得磁性纳米合金。For example, the three-coordinated phosphorus compound is selected from trialkyl phosphine. During the desulfurization reaction, the compound is heated to 280°C and reacted for 3 hours to obtain a magnetic nanoalloy.
通过上述制备方法,本申请示例提供一种磁性纳米合金,包括一维结构或二维结构中的至少一种。磁性纳米合金的磁性纳米合金化学成分含有Fe元素,以及Co、Ni、Ag、Cu、Pt、Cr、Nb、Ti或Mn元素中的至少一种。Through the above preparation method, the example of this application provides a magnetic nanoalloy, including at least one of a one-dimensional structure or a two-dimensional structure. The chemical composition of the magnetic nanoalloy contains Fe element and at least one of Co, Ni, Ag, Cu, Pt, Cr, Nb, Ti or Mn elements.
进一步的,磁性纳米合金还可以包括三维结构。Furthermore, magnetic nanoalloys can also include three-dimensional structures.
示例性的,磁性纳米合金可以为一维纳米纤维状的FeNb合金、FeCo合金、FeNi合金、FeAg合金、FeCu合金、FePt合金、FeCr合金、FeNd合金、FeTi合金、FeMn合金、FeCoNi合金、FeCoNb合金、FeCoNbMn合金或FeCoNiMn合金。Exemplarily, the magnetic nanoalloy can be a one-dimensional nanofiber FeNb alloy, FeCo alloy, FeNi alloy, FeAg alloy, FeCu alloy, FePt alloy, FeCr alloy, FeNd alloy, FeTi alloy, FeMn alloy, FeCoNi alloy, FeCoNb alloy , FeCoNbMn alloy or FeCoNiMn alloy.
示例性的,磁性纳米合金可以为二维纳米片状的FeNb合金、FeCo合金、FeNi合金、FeAg合金、FeCu合金、FePt合金、FeCr合金、FeNd合金、FeTi合金、FeMn合金、FeCoNi合金、FeCoNb合金、FeCoNbMn合金或FeCoNiMn合金。Exemplarily, the magnetic nanoalloy can be a two-dimensional nanosheet FeNb alloy, FeCo alloy, FeNi alloy, FeAg alloy, FeCu alloy, FePt alloy, FeCr alloy, FeNd alloy, FeTi alloy, FeMn alloy, FeCoNi alloy, FeCoNb alloy , FeCoNbMn alloy or FeCoNiMn alloy.
示例性的,磁性纳米合金可以为三维块状的FeNb合金、FeCo合金、FeNi合金、FeAg合金、FeCu合金、FePt合金、FeCr合金、FeNd合金、FeTi合金、FeMn合金、FeCoNi合金、FeCoNb合金、FeCoNbMn合金或FeCoNiMn合金。Exemplarily, the magnetic nanoalloy can be a three-dimensional bulk FeNb alloy, FeCo alloy, FeNi alloy, FeAg alloy, FeCu alloy, FePt alloy, FeCr alloy, FeNd alloy, FeTi alloy, FeMn alloy, FeCoNi alloy, FeCoNb alloy, FeCoNbMn alloy or FeCoNiMn alloy.
进一步的,为了便于后续获得同时具有一维纤维结构、二维片状结构和三维块状结构中的两种或三种结构的磁性纳米合金,可以将相对应的一维结构的前驱体、二维结构的前驱体和三维结构的前驱体中的两者或三种进行混合,然后进行脱硫反应并去除前驱体中的有机物。Furthermore, in order to facilitate the subsequent acquisition of magnetic nanoalloys with two or three structures of one-dimensional fiber structure, two-dimensional sheet structure and three-dimensional bulk structure, the corresponding one-dimensional structure precursor, two-dimensional structure can be Two or three of the three-dimensional structure precursor and the three-dimensional structure precursor are mixed, and then a desulfurization reaction is performed to remove organic matter in the precursor.
进一步的,本申请示例还提供一种微波吸收器,微波吸收器通过本申请示例提供的磁性纳米合金制备获得。Furthermore, the examples of this application also provide a microwave absorber, which is prepared by the magnetic nanoalloy provided in the examples of this application.
示例性的,可以将磁性纳米合金与环氧树脂溶液均匀混合,流延成型获得微波吸收薄膜。For example, the magnetic nanoalloy and the epoxy resin solution can be uniformly mixed and tape-cast to obtain a microwave absorbing film.
以下结合实施例对本申请的提供的磁性纳米合金作进一步的详细描述。The magnetic nanoalloy provided by the present application will be described in further detail below with reference to examples.
实施例1Example 1
实施例1提供一种磁性纳米合金,制备方法如下:Embodiment 1 provides a magnetic nanoalloy, and the preparation method is as follows:
(1)原料准备:将70mmol乙酰丙酮铁,30mmol乙酰丙酮铌和100mmol硫代硫酸钠混合在150mL二乙烯三胺中。将溶液倒入250mL三颈烧瓶中剧烈搅拌至完全溶解。具体成分如表1所示。(1) Raw material preparation: Mix 70mmol iron acetylacetonate, 30mmol niobium acetylacetonate and 100mmol sodium thiosulfate in 150mL diethylenetriamine. Pour the solution into a 250mL three-neck flask and stir vigorously until completely dissolved. The specific ingredients are shown in Table 1.
(2)前驱体制备:并向三颈烧瓶中不断通入Ar气,在惰性气体中进行反应。将混合溶液升温到200℃反应3小时,待反应结束后自然冷却。离心清洗得到纳米片状前驱体。(2) Precursor preparation: Continuously pass Ar gas into the three-neck flask, and carry out the reaction in an inert gas. The mixed solution was heated to 200°C to react for 3 hours, and then cooled naturally after the reaction was completed. Centrifuge and clean to obtain the nanosheet precursor.
(3)磁性纳米合金制备:将10g步骤(2)获得的纳米纤维前驱体粉末置于20mL三烷基膦溶液搅拌均匀,通入氩气,在氩气气氛中加热到280℃反应3小时,待自然冷却,离心清洗。产物的SEM图如图2所示,得到二维FeNb纳米片粉末。(3) Preparation of magnetic nanoalloy: Place 10g of the nanofiber precursor powder obtained in step (2) into 20mL of trialkylphosphine solution and stir evenly, add argon gas, and heat to 280°C for 3 hours in an argon atmosphere. After natural cooling, centrifuge and clean. The SEM picture of the product is shown in Figure 2, and two-dimensional FeNb nanosheet powder is obtained.
实施例2Example 2
实施例2与实施例1的区别在于,步骤(1)中,将70mmol乙酰丙酮铁,30mmol乙酰丙酮铌和100mmol硫代乙酰胺混合在150mL己二胺中。具体成分如表1所示。产物的SEM图如图3所示,得到一维FeNb纳米纤维粉末。The difference between Example 2 and Example 1 is that in step (1), 70 mmol iron acetylacetonate, 30 mmol niobium acetylacetonate and 100 mmol thioacetamide are mixed in 150 mL hexamethylenediamine. The specific ingredients are shown in Table 1. The SEM picture of the product is shown in Figure 3, and one-dimensional FeNb nanofiber powder is obtained.
实施例3Example 3
实施例3与实施例1的区别在于,步骤(1)中,将70mmol乙酰丙酮铁,30mmol乙酰丙酮铌和100mmol硫代硫酸钠混合在150mL三乙烯四胺中。具体成分如表1所示。产物的SEM图如图4所示,得到三维FeNb颗粒状粉末。The difference between Example 3 and Example 1 is that in step (1), 70 mmol iron acetylacetonate, 30 mmol niobium acetylacetonate and 100 mmol sodium thiosulfate are mixed in 150 mL triethylenetetramine. The specific ingredients are shown in Table 1. The SEM image of the product is shown in Figure 4, and a three-dimensional FeNb granular powder is obtained.
实施例4Example 4
实施例4与实施例1的区别在于,步骤(1)中,将70mmol乙酰丙酮铁,30mmol乙酰丙酮铌和100mmol硫脲混合在150mL三乙烯四胺中。具体成分如表1所示。获得二维FeNb纳米片粉末。The difference between Example 4 and Example 1 is that in step (1), 70 mmol iron acetylacetonate, 30 mmol niobium acetylacetonate and 100 mmol thiourea are mixed in 150 mL triethylenetetramine. The specific ingredients are shown in Table 1. Two-dimensional FeNb nanosheet powder was obtained.
实施例5Example 5
实施例5与实施例1的区别在于,步骤(1)中,将70mmol乙酰丙酮铁,30mmol乙酰丙酮铌和100mmol硫代乙酰胺混合在150mL二乙烯三胺中。具体成分如表1所示。获得一维FeNb纳米纤维粉末。The difference between Example 5 and Example 1 is that in step (1), 70 mmol iron acetylacetonate, 30 mmol niobium acetylacetonate and 100 mmol thioacetamide are mixed in 150 mL diethylenetriamine. The specific ingredients are shown in Table 1. One-dimensional FeNb nanofiber powder was obtained.
测试例test case
分别将实施例1-5提供的磁性纳米合金制备成1.5mm厚的薄膜,以Fe2O3微米球粉末制得的薄膜作为对比例1,以羰基铁粉制得的薄膜作为对比例2,以微米片状铁镍粉制得的薄膜作为对比例3。制备方法包括:将6g质量的目标粉体与4g环氧树脂溶液均匀混合,并加入10-20mg固化剂,在玻璃板上流延成厚度为1.5mm的膜。以市面上所购买的铁氧体填充氯丁橡胶作为对比例4。The magnetic nanoalloys provided in Examples 1-5 were respectively prepared into 1.5mm thick films. The film prepared with Fe 2 O 3 micron spherical powder was used as Comparative Example 1, and the film prepared with carbonyl iron powder was used as Comparative Example 2. A film prepared from micron flake iron-nickel powder was used as Comparative Example 3. The preparation method includes: uniformly mixing 6g of target powder with 4g of epoxy resin solution, adding 10-20mg of curing agent, and casting the mixture onto a glass plate to form a film with a thickness of 1.5mm. The commercially available ferrite-filled chloroprene rubber was used as comparative example 4.
采用振动样品磁强计(VSM-8604)来分别测试根据实施例1~5制得的薄膜以及对比例4的磁化曲线,测试的磁场强度为-2T~2T。测试的结果如图5所示。图5中,(a)曲线为实施例1,(b)曲线为实施例2,(c)曲线为实施例3,(d)曲线为实施例4,(e)曲线为实施例5,(f)曲线为对比例4。A vibrating sample magnetometer (VSM-8604) was used to test the magnetization curves of the films prepared according to Examples 1 to 5 and Comparative Example 4 respectively. The tested magnetic field intensity was -2T to 2T. The test results are shown in Figure 5. In Figure 5, the curve (a) is Example 1, the curve (b) is Example 2, the curve (c) is Example 3, the curve (d) is Example 4, the curve (e) is Example 5, ( f) The curve is Comparative Example 4.
结果分析:与对比例4中铁氧体的氯丁橡胶膜相比,根据实施例1-5制得的微波吸收薄膜具有更高的饱和磁化强度(约为180emu/g),远大于铁氧体的饱和磁化强度(约为90emu/g)。Result analysis: Compared with the ferrite chloroprene rubber film in Comparative Example 4, the microwave absorption film prepared according to Examples 1-5 has a higher saturation magnetization (about 180 emu/g), which is much greater than that of ferrite. Saturation magnetization (about 90emu/g).
采用安捷伦N5227B测试根据实施例1-5制得的微波吸收薄膜,和对比例4铁氧体填充环氧树脂微波吸收器的电磁性能和微波吸收强度,以考察微波吸收器的电磁波损耗性能。测试温度为25℃,测试频率为2-18GHz,所得的结果如图6所示。图6中,(a)曲线为实施例1,(b)曲线为实施例2,(c)曲线为实施例3,(d)曲线为实施例4,(e)曲线为实施例5,(f)曲线为对比例4。Agilent N5227B was used to test the electromagnetic properties and microwave absorption intensity of the microwave absorbing films prepared according to Examples 1-5 and the ferrite-filled epoxy resin microwave absorber of Comparative Example 4 to examine the electromagnetic wave loss performance of the microwave absorber. The test temperature is 25°C and the test frequency is 2-18GHz. The results are shown in Figure 6. In Figure 6, the curve (a) is Example 1, the curve (b) is Example 2, the curve (c) is Example 3, the curve (d) is Example 4, the curve (e) is Example 5, ( f) The curve is Comparative Example 4.
采用上述方法,对对比例1-3提供的微波吸收薄膜进行电磁性能和微波吸收强度测试,对比例一的铁氧体的饱和磁化强度为90emu/g,微波吸收强度为-32dB,微波吸收带宽为5.5GHz;对比例二的饱和磁化强度为120emu/g,微波吸收强度为-45dB,微波吸收带宽为3GHz;对比例3的饱和磁化强度为120emu/g,微波吸收强度为-40dB,微波吸收带宽为3.5GHz。Using the above method, the electromagnetic properties and microwave absorption intensity of the microwave absorption films provided in Comparative Examples 1-3 were tested. The saturation magnetization intensity of the ferrite in Comparative Example 1 was 90emu/g, the microwave absorption intensity was -32dB, and the microwave absorption bandwidth is 5.5GHz; the saturation magnetization intensity of Comparative Example 2 is 120emu/g, the microwave absorption intensity is -45dB, and the microwave absorption bandwidth is 3GHz; the saturation magnetization intensity of Comparative Example 3 is 120emu/g, the microwave absorption intensity is -40dB, and the microwave absorption bandwidth is 3GHz. The bandwidth is 3.5GHz.
结果分析:由图6可知,与对比例四中铁氧体橡胶膜相比,根据实施例1-5提供的磁性纳米合金制备的薄膜,具有更高的微波吸收强度(RL<-50dB)和更宽的微波吸收带宽(大于6GHz)。Result analysis: It can be seen from Figure 6 that compared with the ferrite rubber film in Comparative Example 4, the film prepared according to the magnetic nanoalloy provided in Examples 1-5 has higher microwave absorption intensity (RL<-50dB) and more Wide microwave absorption bandwidth (greater than 6GHz).
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。The above descriptions are only preferred embodiments of the present application and are not intended to limit the present application. For those skilled in the art, the present application may have various modifications and changes. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of this application shall be included in the protection scope of this application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311072439.0A CN117070794A (en) | 2023-08-23 | 2023-08-23 | Preparation method of morphology controllable magnetic nanoalloy and its application in microwave absorption |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311072439.0A CN117070794A (en) | 2023-08-23 | 2023-08-23 | Preparation method of morphology controllable magnetic nanoalloy and its application in microwave absorption |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117070794A true CN117070794A (en) | 2023-11-17 |
Family
ID=88719212
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311072439.0A Pending CN117070794A (en) | 2023-08-23 | 2023-08-23 | Preparation method of morphology controllable magnetic nanoalloy and its application in microwave absorption |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117070794A (en) |
-
2023
- 2023-08-23 CN CN202311072439.0A patent/CN117070794A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Excellent microwave-absorbing properties of elliptical Fe3O4 nanorings made by a rapid microwave-assisted hydrothermal approach | |
JP5892662B2 (en) | L10 type FeNi alloy particles and method for producing the same, magnetic composition and magnet | |
Yang et al. | Controlled synthesis of core–shell iron–silica nanoparticles and their magneto-dielectricproperties in polymer composites | |
Yao et al. | The effect of polymerization temperature and reaction time on microwave absorption properties of Co-doped ZnNi ferrite/polyaniline composites | |
Lakshmi et al. | Enhanced microwave absorption properties of PMMA modified MnFe 2 O 4–polyaniline nanocomposites | |
CN110290691A (en) | A kind of composite wave-absorbing material of lamellar MXene loaded cobalt ferrite and preparation method thereof | |
CN111014712A (en) | A Co/MnO@C composite electromagnetic wave absorbing material and its preparation method and application | |
JP3728411B2 (en) | Method for producing magnetic particle, magnetic particle and magnetic material | |
Yu et al. | Surface morphology of magnetic carbon foam regulated electromagnetic properties for microwave absorption | |
CN109943285B (en) | High-performance wave-absorbing material core-shell structure CoxFe3-xO4@MoS2Nano-composite and synthesis method thereof | |
TW201518342A (en) | Insulator-coated powder for magnetic member | |
Yan et al. | Microwave absorption property of the diatomite coated by Fe-CoNiP films | |
Jang et al. | High-throughput thermal plasma synthesis of Fe x Co 1− x nano-chained particles with unusually high permeability and their electromagnetic wave absorption properties at high frequency (1–26 GHz) | |
Sun et al. | Multi-scale structural design of multilayer magnetic composite materials for ultra-wideband microwave absorption | |
He et al. | The combined sol-gel and ascorbic acid reduction strategy enabling Ba2Co2Fe12O22 hexaferrite/graphene composite with enhanced microwave absorption ability | |
Raju | Ultra-high frequency electromagnetic waves absorption of NiCoCuZn ferrites | |
Ma et al. | Study on enhanced microwave absorption characteristics of annealed Fe3O4 | |
CN117070794A (en) | Preparation method of morphology controllable magnetic nanoalloy and its application in microwave absorption | |
RU2336588C2 (en) | Magnetic soft filler and composite polymer magnetic material based on it | |
Tyagi et al. | Reaction kinetic, magnetic and microwave absorption studies of SrFe 12 O 19/CoFe 2 O 4 ferrite nanocrystals | |
Bhattacharyya et al. | Mg0. 5Zn0. 5Fe2O4-polyurethane thin nanocomposite coating as broadband microwave absorber | |
JP2025013303A (en) | Method for preparing NFC antenna for mobile phone and electromagnetic wave absorbing material thereof | |
JP2011132581A (en) | Method for producing nanoparticle of nickel-iron alloy with high saturation magnetization, and nanoparticle of nickel-iron alloy with high saturation magnetization | |
CN107622855A (en) | Carbon magnetic superstructure composite material and its preparation method and application | |
JP3990658B2 (en) | Electromagnetic wave absorber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |