CN117069881A - Low cis-polybutadiene rubber and preparation method and application thereof - Google Patents
Low cis-polybutadiene rubber and preparation method and application thereof Download PDFInfo
- Publication number
- CN117069881A CN117069881A CN202210507031.0A CN202210507031A CN117069881A CN 117069881 A CN117069881 A CN 117069881A CN 202210507031 A CN202210507031 A CN 202210507031A CN 117069881 A CN117069881 A CN 117069881A
- Authority
- CN
- China
- Prior art keywords
- molecular weight
- polybutadiene rubber
- low
- low cis
- range
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920002857 polybutadiene Polymers 0.000 title claims abstract description 131
- 239000005064 Low cis polybutadiene Substances 0.000 title claims abstract description 112
- 238000002360 preparation method Methods 0.000 title claims abstract description 21
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims abstract description 68
- 229920005669 high impact polystyrene Polymers 0.000 claims abstract description 64
- 239000004797 high-impact polystyrene Substances 0.000 claims abstract description 64
- 238000009826 distribution Methods 0.000 claims abstract description 51
- 239000011347 resin Substances 0.000 claims abstract description 47
- 229920005989 resin Polymers 0.000 claims abstract description 47
- 230000002902 bimodal effect Effects 0.000 claims abstract description 34
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 claims description 50
- 238000006243 chemical reaction Methods 0.000 claims description 27
- 239000003999 initiator Substances 0.000 claims description 26
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 21
- 239000007822 coupling agent Substances 0.000 claims description 17
- 238000005859 coupling reaction Methods 0.000 claims description 15
- 239000003963 antioxidant agent Substances 0.000 claims description 12
- 230000003078 antioxidant effect Effects 0.000 claims description 12
- 239000005062 Polybutadiene Substances 0.000 claims description 11
- 239000001569 carbon dioxide Substances 0.000 claims description 11
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 11
- 125000000129 anionic group Chemical group 0.000 claims description 10
- 238000010528 free radical solution polymerization reaction Methods 0.000 claims description 10
- 241001550224 Apha Species 0.000 claims description 8
- 229910052736 halogen Inorganic materials 0.000 claims description 8
- 150000002367 halogens Chemical class 0.000 claims description 8
- 239000000178 monomer Substances 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 239000003960 organic solvent Substances 0.000 claims description 7
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 5
- VHHHONWQHHHLTI-UHFFFAOYSA-N hexachloroethane Chemical compound ClC(Cl)(Cl)C(Cl)(Cl)Cl VHHHONWQHHHLTI-UHFFFAOYSA-N 0.000 claims description 5
- LXEXBJXDGVGRAR-UHFFFAOYSA-N trichloro(trichlorosilyl)silane Chemical compound Cl[Si](Cl)(Cl)[Si](Cl)(Cl)Cl LXEXBJXDGVGRAR-UHFFFAOYSA-N 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 230000035484 reaction time Effects 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 2
- 235000021355 Stearic acid Nutrition 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 claims description 2
- 150000007524 organic acids Chemical class 0.000 claims description 2
- 239000008117 stearic acid Substances 0.000 claims description 2
- 125000001979 organolithium group Chemical group 0.000 claims 6
- YTUUEOBZXXUZJL-UHFFFAOYSA-N 2,3-diethylpentane-1,2,3-triol Chemical compound CCC(O)(CC)C(O)(CC)CO YTUUEOBZXXUZJL-UHFFFAOYSA-N 0.000 claims 1
- GFTPTQVIOIDDRL-UHFFFAOYSA-N 2,3-dimethylbutane-1,2,3-triol Chemical compound CC(C)(O)C(C)(O)CO GFTPTQVIOIDDRL-UHFFFAOYSA-N 0.000 claims 1
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 239000003607 modifier Substances 0.000 claims 1
- 229920000642 polymer Polymers 0.000 abstract description 15
- 239000000243 solution Substances 0.000 description 42
- 229920001971 elastomer Polymers 0.000 description 33
- 239000005060 rubber Substances 0.000 description 33
- 229910052744 lithium Inorganic materials 0.000 description 21
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 20
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 18
- 238000006116 polymerization reaction Methods 0.000 description 17
- 239000001089 [(2R)-oxolan-2-yl]methanol Substances 0.000 description 16
- 239000002904 solvent Substances 0.000 description 15
- BSYVTEYKTMYBMK-UHFFFAOYSA-N tetrahydrofurfuryl alcohol Chemical compound OCC1CCCO1 BSYVTEYKTMYBMK-UHFFFAOYSA-N 0.000 description 15
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 14
- 239000000047 product Substances 0.000 description 14
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 12
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 12
- 125000001931 aliphatic group Chemical group 0.000 description 12
- 239000000126 substance Substances 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 8
- 239000012745 toughening agent Substances 0.000 description 8
- 239000003153 chemical reaction reagent Substances 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 239000004721 Polyphenylene oxide Substances 0.000 description 6
- 239000007795 chemical reaction product Substances 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- 229920000570 polyether Polymers 0.000 description 6
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 5
- RRQYJINTUHWNHW-UHFFFAOYSA-N 1-ethoxy-2-(2-ethoxyethoxy)ethane Chemical compound CCOCCOCCOCC RRQYJINTUHWNHW-UHFFFAOYSA-N 0.000 description 4
- GAODDBNJCKQQDY-UHFFFAOYSA-N 2-methyl-4,6-bis(octylsulfanylmethyl)phenol Chemical compound CCCCCCCCSCC1=CC(C)=C(O)C(CSCCCCCCCC)=C1 GAODDBNJCKQQDY-UHFFFAOYSA-N 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 4
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 4
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 4
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 229940019778 diethylene glycol diethyl ether Drugs 0.000 description 4
- POLCUAVZOMRGSN-UHFFFAOYSA-N dipropyl ether Chemical compound CCCOCCC POLCUAVZOMRGSN-UHFFFAOYSA-N 0.000 description 4
- -1 ether compound Chemical group 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 3
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 3
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 150000001335 aliphatic alkanes Chemical class 0.000 description 3
- 150000001924 cycloalkanes Chemical class 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000002808 molecular sieve Substances 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- SSDSCDGVMJFTEQ-UHFFFAOYSA-N octadecyl 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)CCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 SSDSCDGVMJFTEQ-UHFFFAOYSA-N 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 239000005049 silicon tetrachloride Substances 0.000 description 3
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 3
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 2
- ZZMVLMVFYMGSMY-UHFFFAOYSA-N 4-n-(4-methylpentan-2-yl)-1-n-phenylbenzene-1,4-diamine Chemical compound C1=CC(NC(C)CC(C)C)=CC=C1NC1=CC=CC=C1 ZZMVLMVFYMGSMY-UHFFFAOYSA-N 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 2
- BVTJGGGYKAMDBN-UHFFFAOYSA-N Dioxetane Chemical compound C1COO1 BVTJGGGYKAMDBN-UHFFFAOYSA-N 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- KEQFTVQCIQJIQW-UHFFFAOYSA-N N-Phenyl-2-naphthylamine Chemical compound C=1C=C2C=CC=CC2=CC=1NC1=CC=CC=C1 KEQFTVQCIQJIQW-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical group COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 150000008378 aryl ethers Chemical class 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 150000004292 cyclic ethers Chemical class 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- WGOPGODQLGJZGL-UHFFFAOYSA-N lithium;butane Chemical compound [Li+].CC[CH-]C WGOPGODQLGJZGL-UHFFFAOYSA-N 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 description 1
- BBEAZDGZMVABIC-UHFFFAOYSA-N 1,1,1,3,3,3-hexachloropropane Chemical compound ClC(Cl)(Cl)CC(Cl)(Cl)Cl BBEAZDGZMVABIC-UHFFFAOYSA-N 0.000 description 1
- CNJRPYFBORAQAU-UHFFFAOYSA-N 1-ethoxy-2-(2-methoxyethoxy)ethane Chemical compound CCOCCOCCOC CNJRPYFBORAQAU-UHFFFAOYSA-N 0.000 description 1
- CAQYAZNFWDDMIT-UHFFFAOYSA-N 1-ethoxy-2-methoxyethane Chemical group CCOCCOC CAQYAZNFWDDMIT-UHFFFAOYSA-N 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- FIYMNUNPPYABMU-UHFFFAOYSA-N 2-benzyl-5-chloro-1h-indole Chemical compound C=1C2=CC(Cl)=CC=C2NC=1CC1=CC=CC=C1 FIYMNUNPPYABMU-UHFFFAOYSA-N 0.000 description 1
- FXKCGNGFVRNMQD-UHFFFAOYSA-N 4-n,4-n-diphenyl-1-n-propan-2-ylbenzene-1,4-diamine Chemical compound C1=CC(NC(C)C)=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 FXKCGNGFVRNMQD-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 101150095057 DPB2 gene Proteins 0.000 description 1
- 101150030825 DPB3 gene Proteins 0.000 description 1
- 101150115749 DPB4 gene Proteins 0.000 description 1
- 239000005063 High cis polybutadiene Substances 0.000 description 1
- 241001441571 Hiodontidae Species 0.000 description 1
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 1
- XOBKSJJDNFUZPF-UHFFFAOYSA-N Methoxyethane Chemical group CCOC XOBKSJJDNFUZPF-UHFFFAOYSA-N 0.000 description 1
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 1
- OUBMGJOQLXMSNT-UHFFFAOYSA-N N-isopropyl-N'-phenyl-p-phenylenediamine Chemical compound C1=CC(NC(C)C)=CC=C1NC1=CC=CC=C1 OUBMGJOQLXMSNT-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000012490 blank solution Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- CCZVEWRRAVASGL-UHFFFAOYSA-N lithium;2-methanidylpropane Chemical compound [Li+].CC(C)[CH2-] CCZVEWRRAVASGL-UHFFFAOYSA-N 0.000 description 1
- UBJFKNSINUCEAL-UHFFFAOYSA-N lithium;2-methylpropane Chemical compound [Li+].C[C-](C)C UBJFKNSINUCEAL-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- JKAJLDZOBJSTEW-UHFFFAOYSA-N n,n-dimethyl-1-(oxolan-2-yl)methanamine Chemical compound CN(C)CC1CCCO1 JKAJLDZOBJSTEW-UHFFFAOYSA-N 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 230000002572 peristaltic effect Effects 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F136/00—Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
- C08F136/02—Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
- C08F136/04—Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
- C08F136/06—Butadiene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/38—Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/38—Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
- C08F2/42—Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation using short-stopping agents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F279/00—Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
- C08F279/02—Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
本发明涉及聚合物制备领域,公开了一种低顺式聚丁二烯橡胶及其制备方法和应用。该低顺式聚丁二烯橡胶的分子量呈双峰分布,且具有如下特征:双峰分布的高分子量组分的数均分子量与低分子量组分的数均分子量之比为5‑6;双峰分布的低分子量组分的数均分子量为30000‑50000,分子量分布指数为1‑1.1;双峰分布的高分子量组分的数均分子量为150000‑300000,分子量分布指数为1‑1.1;低顺式聚丁二烯橡胶在100℃时门尼粘度ML1+4为45‑65;在25℃时5重量%的苯乙烯溶液的粘度为10‑28厘泊。该低顺式聚丁二烯橡胶具有高支化度、低5%苯乙烯溶液粘度以及高门尼粘度,能够适用于高光泽HIPS树脂。The invention relates to the field of polymer preparation and discloses a low cis polybutadiene rubber and its preparation method and application. The molecular weight of the low cis polybutadiene rubber has a bimodal distribution, and has the following characteristics: the ratio of the number average molecular weight of the high molecular weight component of the bimodal distribution to the number average molecular weight of the low molecular weight component is 5-6; The number average molecular weight of the low molecular weight component with peak distribution is 30000-50000 and the molecular weight distribution index is 1-1.1; the number average molecular weight of the high molecular weight component with bimodal distribution is 150000-300000 and the molecular weight distribution index is 1-1.1; low The Mooney viscosity ML 1+4 of cis-polybutadiene rubber is 45-65 at 100°C; the viscosity of a 5 wt% styrene solution at 25°C is 10-28 centipoise. The low cis polybutadiene rubber has a high branching degree, low 5% styrene solution viscosity and high Mooney viscosity, and can be suitable for high-gloss HIPS resin.
Description
技术领域Technical Field
本发明涉及聚合物制备领域,具体涉及一种低顺式聚丁二烯橡胶及其制备方法和应用。The invention relates to the field of polymer preparation, and in particular to a low-cis polybutadiene rubber and a preparation method and application thereof.
背景技术Background Art
连续本体HIPS根据用途不同可以分为高流动HIPS、高光泽HIPS、亚光HIPS、高抗冲HIPS和超高抗冲HIPS。聚丁二烯橡胶由于玻璃化温度低、低温抗冲击性能好,是连续本体HIPS首选的增韧橡胶。按照微观结构不同,HIPS增韧用聚丁二烯橡胶分为高顺式聚丁二烯橡胶和低顺式聚丁二烯橡胶,其中低顺式聚丁二烯橡胶的凝胶含量低、不含过渡金属、色泽好、顺反呈无规分布、无结晶倾向、低温抗冲击性能好、分子量可以自由调节、1,2-结构单元含量适中、接枝和交联反应活性高,是连续本体HIPS树脂改性的首选增韧橡胶。Continuous bulk HIPS can be divided into high flow HIPS, high gloss HIPS, matte HIPS, high impact HIPS and ultra-high impact HIPS according to different uses. Polybutadiene rubber is the first choice for the toughening rubber of continuous bulk HIPS due to its low glass transition temperature and good low-temperature impact resistance. According to different microstructures, polybutadiene rubber used for HIPS toughening is divided into high cis polybutadiene rubber and low cis polybutadiene rubber. Among them, low cis polybutadiene rubber has low gel content, does not contain transition metals, has good color, has random distribution of cis and trans, has no crystallization tendency, has good low-temperature impact resistance, can freely adjust molecular weight, has moderate content of 1,2-structural units, and has high grafting and cross-linking reaction activity. It is the first choice for toughening rubber modification of continuous bulk HIPS resin.
在合理的橡胶粒径范围内,随着橡胶粒径的增大,橡胶颗粒更容易诱发银纹和剪切带,从而更好的耗散冲击能量,改善HIPS树脂的抗冲击性能。橡胶粒径的增大,对光的散射作用减弱,HIPS树脂的光泽性下降。在HIPS生产过程中,增韧橡胶溶解在苯乙烯单体中,采用热引发(或自由基引发)。聚合初期,橡胶相为连续相,随着接枝反应的进行,当聚苯乙烯相的溶液粘度与橡胶相溶液粘度相等时开始出现相反转,所以,橡胶的溶液粘度越大,出现相反转的时间越晚,橡胶相中将包藏更多的聚苯乙烯,从而形成更大的橡胶粒径。一般来说,制备高光泽HIPS需要5%苯乙烯溶液粘度小于50厘泊的增韧橡胶,以获得小于1μm的橡胶颗粒。Within a reasonable range of rubber particle size, as the rubber particle size increases, the rubber particles are more likely to induce silver streaks and shear bands, thereby better dissipating impact energy and improving the impact resistance of HIPS resin. As the rubber particle size increases, the scattering effect on light weakens, and the gloss of the HIPS resin decreases. In the HIPS production process, the toughened rubber is dissolved in the styrene monomer and thermal initiation (or free radical initiation) is used. In the early stage of polymerization, the rubber phase is the continuous phase. As the grafting reaction proceeds, when the solution viscosity of the polystyrene phase is equal to the solution viscosity of the rubber phase, a phase inversion begins to occur. Therefore, the greater the viscosity of the rubber solution, the later the phase inversion occurs, and more polystyrene will be contained in the rubber phase, thereby forming a larger rubber particle size. Generally speaking, the preparation of high-gloss HIPS requires a toughened rubber with a 5% styrene solution viscosity of less than 50 centipoise to obtain rubber particles less than 1μm.
CN109503747A公开了一种门尼粘度40-65,25℃时5重量%的苯乙烯溶液的粘度为80-120厘泊的低顺式聚丁二烯橡胶及其在HIPS/ABS树脂中的应用。CN109251262A公开了一种分子量呈三峰分布的低顺式聚丁二烯橡胶及其在HIPS树脂中的应用。CN109251263A公开了一种重均分子量17-38万,分子量分布2-3的低顺式聚丁二烯橡胶及其在HIPS/ABS树脂中的应用。CN109503746A公开了一种门尼粘度40-65,25℃时5重量%的苯乙烯溶液的粘度为140-190厘泊的低顺式聚丁二烯橡胶及其在HIPS/ABS树脂中的应用。CN106589247A公开了一种门尼粘度50-70,25℃时5重量%的苯乙烯溶液的粘度为40-60厘泊的低顺式聚丁二烯橡胶及其在HIPS/ABS树脂中的应用。上述现有技术为了保证产品的门尼粘度在合适的范围,以获得良好的加工性能,产品的5%苯乙烯溶液粘度均较高,限制了其在高光泽HIPS领域的应用。CN109503747A discloses a low cis polybutadiene rubber with a Mooney viscosity of 40-65 and a viscosity of 80-120 centipoise of a 5 wt% styrene solution at 25°C and its application in HIPS/ABS resin. CN109251262A discloses a low cis polybutadiene rubber with a trimodal molecular weight distribution and its application in HIPS resin. CN109251263A discloses a low cis polybutadiene rubber with a weight average molecular weight of 170,000-380,000 and a molecular weight distribution of 2-3 and its application in HIPS/ABS resin. CN109503746A discloses a low cis polybutadiene rubber with a Mooney viscosity of 40-65 and a viscosity of 140-190 centipoise of a 5 wt% styrene solution at 25°C and its application in HIPS/ABS resin. CN106589247A discloses a low cis polybutadiene rubber with a Mooney viscosity of 50-70 and a viscosity of 40-60 centipoise of a 5 wt% styrene solution at 25°C and its application in HIPS/ABS resin. In order to ensure that the Mooney viscosity of the product is within a suitable range to obtain good processing performance, the 5% styrene solution viscosity of the product is relatively high, which limits its application in the field of high gloss HIPS.
市场上成型的低顺式聚丁二烯橡胶星型产品,几乎都采用四氯化硅偶联,得到四臂支化的星型低顺式聚丁二烯橡胶。对于超高光泽连续本体HIPS树脂,需要尽可能降低增韧橡胶的5%苯乙烯溶液粘度。现有的四臂偶联的星型低顺式聚丁二烯橡胶,5%苯乙烯溶液粘度不可能无限降低,否则其门尼粘度会降低到无法加工的程度。目前,市场上5%苯乙烯溶液粘度最低的低顺式聚丁二烯橡胶产品是日本旭化成的720AX,其5%苯乙烯溶液粘度在20-30厘泊范围内,但其100℃门尼粘度在40以下,加工时冷流现象十分严重。The star-shaped low-cis polybutadiene rubber products formed on the market are almost all coupled with silicon tetrachloride to obtain four-arm branched star-shaped low-cis polybutadiene rubber. For ultra-high gloss continuous bulk HIPS resin, it is necessary to reduce the 5% styrene solution viscosity of the toughened rubber as much as possible. The 5% styrene solution viscosity of the existing four-arm coupled star-shaped low-cis polybutadiene rubber cannot be infinitely reduced, otherwise its Mooney viscosity will be reduced to the point where it cannot be processed. At present, the low-cis polybutadiene rubber product with the lowest 5% styrene solution viscosity on the market is 720AX from Asahi Chemical of Japan. Its 5% styrene solution viscosity is in the range of 20-30 centipoise, but its 100°C Mooney viscosity is below 40, and the cold flow phenomenon is very serious during processing.
因此,亟需开发一种5%苯乙烯溶液粘度更低、门尼粘度适中的低顺式聚丁二烯橡胶产品,以满足高品质HIPS树脂产品升级需求。Therefore, there is an urgent need to develop a low-cis polybutadiene rubber product with lower 5% styrene solution viscosity and moderate Mooney viscosity to meet the demand for upgrading high-quality HIPS resin products.
发明内容Summary of the invention
本发明的目的是为了克服现有技术存在的上述问题,提供一种低顺式聚丁二烯橡胶及其制备方法与应用,该低顺式聚丁二烯橡胶具有高支化度、低5%苯乙烯溶液粘度以及高门尼粘度,能够适用于高光泽HIPS树脂。The purpose of the present invention is to overcome the above-mentioned problems existing in the prior art and to provide a low-cis polybutadiene rubber and a preparation method and application thereof. The low-cis polybutadiene rubber has a high degree of branching, a low 5% styrene solution viscosity and a high Mooney viscosity and can be suitable for high-gloss HIPS resin.
为了实现上述目的,本发明一方面提供一种低顺式聚丁二烯橡胶,其特征在于,所述低顺式聚丁二烯橡胶的分子量呈双峰分布,且所述低顺式聚丁二烯橡胶具有如下特征:In order to achieve the above object, the present invention provides a low-cis polybutadiene rubber on one hand, characterized in that the molecular weight of the low-cis polybutadiene rubber is bimodal distribution, and the low-cis polybutadiene rubber has the following characteristics:
(1)双峰分布的高分子量组分的数均分子量Mn2与低分子量组分的数均分子量Mn1之比为5-6;(1) The ratio of the number average molecular weight Mn2 of the high molecular weight component of the bimodal distribution to the number average molecular weight Mn1 of the low molecular weight component is 5-6;
(2)双峰分布的低分子量组分的数均分子量Mn1在30,000-50,000范围内,分子量分布指数Mw1/Mn1为1-1.1;(2) The number average molecular weight Mn1 of the low molecular weight component of the bimodal distribution is in the range of 30,000-50,000, and the molecular weight distribution index Mw1/Mn1 is 1-1.1;
(3)双峰分布的高分子量组分的数均分子量Mn2在150,000-300,000范围内,分子量分布指数Mw2/Mn2为1-1.1;(3) The number average molecular weight Mn2 of the high molecular weight component of the bimodal distribution is in the range of 150,000-300,000, and the molecular weight distribution index Mw2/Mn2 is 1-1.1;
(4)所述低顺式聚丁二烯橡胶在100℃时的门尼粘度ML1+4在45-65范围内;(4) The Mooney viscosity ML 1+4 of the low cis polybutadiene rubber at 100° C. is in the range of 45-65;
(5)所述低顺式聚丁二烯橡胶在25℃时5重量%的苯乙烯溶液的粘度在10-28厘泊范围内。(5) The viscosity of a 5 wt% styrene solution of the low-cis polybutadiene rubber at 25° C. is in the range of 10-28 centipoise.
本发明第二方面提供一种低顺式聚丁二烯橡胶的制备方法,其特征在于,所述制备方法包括以下步骤:A second aspect of the present invention provides a method for preparing low-cis polybutadiene rubber, characterized in that the preparation method comprises the following steps:
(1)在有机溶剂中,在有机锂引发剂和结构调节剂的存在下,将1,3-丁二烯进行阴离子溶液聚合反应,至1,3-丁二烯的转化率为99%以上,得到聚丁二烯活性链;其中,所述1,3-丁二烯与所述有机锂引发剂的摩尔比为550-950:1;(1) in an organic solvent, in the presence of an organic lithium initiator and a structure regulator, subjecting 1,3-butadiene to anionic solution polymerization until the conversion rate of 1,3-butadiene is above 99%, thereby obtaining a polybutadiene active chain; wherein the molar ratio of the 1,3-butadiene to the organic lithium initiator is 550-950:1;
(2)在6官能团偶联剂的存在下,将所述聚丁二烯活性链进行偶联反应;所述偶联剂与所述有机锂引发剂的摩尔比为0.14-0.19:1;(2) in the presence of a hexafunctional coupling agent, subjecting the polybutadiene active chain to a coupling reaction; the molar ratio of the coupling agent to the organic lithium initiator is 0.14-0.19:1;
(3)在终止剂的存在下,将所述偶联反应的产物进行终止。(3) terminating the product of the coupling reaction in the presence of a terminator.
本发明第三方面提供一种由上述制备方法制得的低顺式聚丁二烯橡胶。The third aspect of the present invention provides a low-cis polybutadiene rubber prepared by the above preparation method.
本发明第四方面提供一种上述低顺式聚丁二烯橡胶在HIPS树脂中的应用。A fourth aspect of the present invention provides a use of the low-cis polybutadiene rubber in a HIPS resin.
本发明提供的低顺式聚丁二烯橡胶及其制备方法与应用获得以下有益的效果:The low-cis polybutadiene rubber provided by the present invention and its preparation method and application achieve the following beneficial effects:
本发明提供的低顺式聚丁二烯橡胶具有较高门尼粘度、超低的5%苯乙烯溶液粘度、凝胶含量和卤素含量低、APHA色度好、分子量分布适宜,用于连续本体HIPS树脂增韧时,能够显著改善HIPS树脂的光泽度。The low cis polybutadiene rubber provided by the invention has high Mooney viscosity, ultra-low 5% styrene solution viscosity, low gel content and halogen content, good APHA chromaticity, and suitable molecular weight distribution. When used for toughening continuous bulk HIPS resin, it can significantly improve the glossiness of HIPS resin.
具体实施方式DETAILED DESCRIPTION
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。The endpoints and any values of the ranges disclosed in this article are not limited to the precise ranges or values, and these ranges or values should be understood to include values close to these ranges or values. For numerical ranges, the endpoint values of each range, the endpoint values of each range and the individual point values, and the individual point values can be combined with each other to obtain one or more new numerical ranges, which should be regarded as specifically disclosed in this article.
本发明第一方面提供一种低顺式聚丁二烯橡胶,其特征在于,所述低顺式聚丁二烯橡胶的分子量呈双峰分布,且所述低顺式聚丁二烯橡胶具有如下特征:The first aspect of the present invention provides a low-cis polybutadiene rubber, characterized in that the molecular weight of the low-cis polybutadiene rubber is bimodal distribution, and the low-cis polybutadiene rubber has the following characteristics:
(1)双峰分布的高分子量组分的数均分子量Mn2与低分子量组分的数均分子量Mn1之比为5-6;(1) The ratio of the number average molecular weight Mn2 of the high molecular weight component of the bimodal distribution to the number average molecular weight Mn1 of the low molecular weight component is 5-6;
(2)双峰分布的低分子量组分的数均分子量Mn1在30,000-50,000范围内,分子量分布指数Mw1/Mn1为1-1.1;(2) The number average molecular weight Mn1 of the low molecular weight component of the bimodal distribution is in the range of 30,000-50,000, and the molecular weight distribution index Mw1/Mn1 is 1-1.1;
(3)双峰分布的高分子量组分的数均分子量Mn2在150,000-300,000范围内,分子量分布指数Mw2/Mn2为1-1.1;(3) The number average molecular weight Mn2 of the high molecular weight component of the bimodal distribution is in the range of 150,000-300,000, and the molecular weight distribution index Mw2/Mn2 is 1-1.1;
(4)所述低顺式聚丁二烯橡胶在100℃时的门尼粘度ML1+4在45-65范围内;(4) The Mooney viscosity ML 1+4 of the low cis polybutadiene rubber at 100° C. is in the range of 45-65;
(5)所述低顺式聚丁二烯橡胶在25℃时5重量%的苯乙烯溶液的粘度在10-28厘泊范围内。(5) The viscosity of a 5 wt% styrene solution of the low-cis polybutadiene rubber at 25° C. is in the range of 10-28 centipoise.
本发明提供的低顺式聚丁二烯橡胶具有高的门尼粘度、低的5%苯乙烯溶液粘度,并且该低顺式聚丁二烯橡胶的分子量具有上述特征时,能够获得更多的小粒径橡胶,将上述低顺式聚丁二烯橡胶用于连续本体HIPS树脂增韧时,能够显著改善HIPS树脂的光泽度。The low cis polybutadiene rubber provided by the present invention has high Mooney viscosity and low 5% styrene solution viscosity. When the molecular weight of the low cis polybutadiene rubber has the above characteristics, more small-size rubber can be obtained. When the low cis polybutadiene rubber is used for toughening continuous bulk HIPS resin, the glossiness of the HIPS resin can be significantly improved.
具体地,本发明中,控制双峰分布中的高分子量组分的数均分子量满足上述范围时,能够使得所述低顺式聚丁二烯橡胶在100℃时的门尼粘度ML1+4在45-65的范围内。本发明中,控制双峰分布中的低分子量组分的数均分子量满足上述范围时,能够使得所述低顺式聚丁二烯橡胶在25℃是的5重量%的苯乙烯溶液粘度在10-28厘泊范围内。Specifically, in the present invention, when the number average molecular weight of the high molecular weight component in the bimodal distribution is controlled to meet the above range, the Mooney viscosity ML 1+4 of the low cis polybutadiene rubber at 100°C can be within the range of 45-65. In the present invention, when the number average molecular weight of the low molecular weight component in the bimodal distribution is controlled to meet the above range, the viscosity of the 5 wt% styrene solution of the low cis polybutadiene rubber at 25°C can be within the range of 10-28 centipoise.
进一步地,控制双峰分布中的低分子量组分以及高分子量组分各自的数均分子量之比(Mn2/Mn1)满足上述范围时,能够使得低顺式聚丁二烯橡胶具有较高的支化臂数,进而确保低顺式聚丁二烯橡胶在25℃时的5%苯乙烯溶液粘度较低时,门尼粘度能够保持在合适的范围,从而具有良好的加工性能。Furthermore, when the ratio of the number average molecular weights of the low molecular weight component and the high molecular weight component in the bimodal distribution (Mn2/Mn1) is controlled to meet the above range, the low cis polybutadiene rubber can have a higher number of branched arms, thereby ensuring that when the viscosity of the 5% styrene solution of the low cis polybutadiene rubber at 25°C is low, the Mooney viscosity can be maintained in an appropriate range, thereby having good processing performance.
进一步地,双峰分布的低分子量组分的数均分子量Mn1在35,000-45,000范围内。Further, the number average molecular weight Mn1 of the low molecular weight component of the bimodal distribution is in the range of 35,000-45,000.
进一步地,双峰分布的高分子量组分的数均分子量Mn2在180,000-270,000范围内。Further, the number average molecular weight Mn2 of the high molecular weight component of the bimodal distribution is in the range of 180,000-270,000.
进一步地,所述低顺式聚丁二烯橡胶在100℃时的门尼粘度ML1+4在50-60范围内。Furthermore, the Mooney viscosity ML 1+4 of the low-cis polybutadiene rubber at 100° C. is in the range of 50-60.
进一步地,所述低顺式聚丁二烯橡胶在25℃时5重量%的苯乙烯溶液的粘度在12-26厘泊范围内,优选在15-24厘泊范围内。Furthermore, the viscosity of a 5 wt% styrene solution of the low-cis polybutadiene rubber at 25° C. is in the range of 12-26 centipoise, preferably in the range of 15-24 centipoise.
根据本发明,所述低顺式聚丁二烯橡胶的数均分子量Mn在140,000-260,000的范围内,分子量分布指数Mw/Mn为1.1-1.5。According to the present invention, the number average molecular weight Mn of the low-cis polybutadiene rubber is in the range of 140,000-260,000, and the molecular weight distribution index Mw/Mn is 1.1-1.5.
本发明中,当所述低顺式聚丁二烯橡胶的数均分子量以及分子量分布指数满足上述范围时,能够使得所述低顺式聚丁二烯橡胶具有合适的粒径分布和在25℃时的5重量%的苯乙烯溶液粘度,将上述低顺式聚丁二烯橡胶用于连续本体HIPS树脂增韧时,能够使得HIPS树脂的综合性能优异。In the present invention, when the number average molecular weight and the molecular weight distribution index of the low cis polybutadiene rubber meet the above ranges, the low cis polybutadiene rubber can have a suitable particle size distribution and a 5 wt% styrene solution viscosity at 25°C. When the low cis polybutadiene rubber is used for toughening a continuous bulk HIPS resin, the comprehensive performance of the HIPS resin can be excellent.
进一步地,所述低顺式聚丁二烯橡胶的数均分子量Mn在160,000-240,000的范围内,分子量分布指数Mw/Mn为1.15-1.45。Furthermore, the number average molecular weight Mn of the low-cis polybutadiene rubber is in the range of 160,000-240,000, and the molecular weight distribution index Mw/Mn is 1.15-1.45.
根据本发明,双峰分布的低分子量组分与高分子量组分的重量比为0.01-0.25:1。According to the present invention, the weight ratio of the low molecular weight component to the high molecular weight component of the bimodal distribution is 0.01-0.25:1.
本发明中,当双峰分布的低分子量组分与高分子量组分的重量比满足上述范围时,能够实现对低顺式聚丁二烯橡胶的支化程度的控制,从而实现对低顺式聚丁二烯橡胶门尼粘度的控制,使得所述低顺式聚丁二烯橡胶具有高支化度以及适宜的门尼粘度,以获得良好的加工性能,从而有利于产品凝胶含量和色度的控制,在作为增韧剂时,能够制得综合性能更优的HIPS树脂。In the present invention, when the weight ratio of the low molecular weight component to the high molecular weight component of the bimodal distribution satisfies the above range, the degree of branching of the low cis polybutadiene rubber can be controlled, thereby achieving control of the Mooney viscosity of the low cis polybutadiene rubber, so that the low cis polybutadiene rubber has a high degree of branching and a suitable Mooney viscosity to obtain good processing performance, thereby facilitating the control of the gel content and chromaticity of the product, and when used as a toughening agent, a HIPS resin with better comprehensive performance can be obtained.
本发明中,双峰分布的低分子量组分与高分子量组分的重量比采用GPC方法测得。In the present invention, the weight ratio of the low molecular weight component to the high molecular weight component of the bimodal distribution is measured by the GPC method.
进一步地,双峰分布的低分子量组分与高分子量组分的重量比为0.04-0.18:1。Furthermore, the weight ratio of the low molecular weight component to the high molecular weight component of the bimodal distribution is 0.04-0.18:1.
根据本发明,所述低顺式聚丁二烯橡胶中1,2-结构含量与1,4-结构含量的重量比为0.06-0.25:1。According to the present invention, the weight ratio of the 1,2-structure content to the 1,4-structure content in the low-cis polybutadiene rubber is 0.06-0.25:1.
本发明中,术语“1,2-结构”是指丁二烯以1,2-聚合方式形成的结构单元,术语“1,4-结构”是指丁二烯以1,4-聚合方式形成的结构单元。控制所述低顺式聚丁二烯橡胶中,1,2-结构含量与1,4-结构含量的重量比满足上述范围时,将所述低顺式聚丁二烯橡胶用于制备HIPS树脂时,能够控制连续本体HIPS树脂聚合相反转之前的接枝率和聚合后期的交联度。In the present invention, the term "1,2-structure" refers to a structural unit formed by 1,2-polymerization of butadiene, and the term "1,4-structure" refers to a structural unit formed by 1,4-polymerization of butadiene. When the weight ratio of the 1,2-structure content to the 1,4-structure content in the low cis polybutadiene rubber is controlled to meet the above range, when the low cis polybutadiene rubber is used to prepare HIPS resin, the grafting rate before the polymerization phase inversion of the continuous bulk HIPS resin and the crosslinking degree in the later stage of polymerization can be controlled.
进一步地,所述低顺式聚丁二烯橡胶中1,2-结构含量与1,4-结构含量的重量比为0.08-0.2:1。Furthermore, the weight ratio of 1,2-structure content to 1,4-structure content in the low-cis polybutadiene rubber is 0.08-0.2:1.
根据本发明,所述低顺式聚丁二烯橡胶的凝胶含量≤150mg/kg,优选≤100mg/kg,更优选≤50mg/kg。低顺式聚丁二烯橡胶中的凝胶会在HIPS树脂中产生晶点,形成应力集中,导致HIPS树脂的力学性能下降,同时光泽度变差。凝胶含量越低,制备得到的HIPS树脂越不容易产生缺陷,综合性能越好。According to the present invention, the gel content of the low cis polybutadiene rubber is ≤150 mg/kg, preferably ≤100 mg/kg, and more preferably ≤50 mg/kg. The gel in the low cis polybutadiene rubber will produce crystal points in the HIPS resin, forming stress concentration, resulting in a decrease in the mechanical properties of the HIPS resin and a deterioration in gloss. The lower the gel content, the less likely the prepared HIPS resin is to have defects and the better the overall performance.
根据本发明,所述低顺式聚丁二烯橡胶的金属含量≤100mg/kg,优选≤50mg/kg,更优选≤30mg/kg。低顺式聚丁二烯橡胶中的金属,特别是变价金属,会导致产品的颜色变差,本发明中,所述低顺式聚丁二烯橡胶中具有低的金属含量,使得由该低顺式聚丁二烯橡胶制得的HIPS树脂具有低的黄色指数。According to the present invention, the metal content of the low cis polybutadiene rubber is ≤100 mg/kg, preferably ≤50 mg/kg, and more preferably ≤30 mg/kg. The metals in the low cis polybutadiene rubber, especially the variable valence metals, can cause the color of the product to deteriorate. In the present invention, the low cis polybutadiene rubber has a low metal content, so that the HIPS resin prepared from the low cis polybutadiene rubber has a low yellow index.
根据本发明,所述低顺式聚丁二烯橡胶的卤素含量≤150mg/kg,优选≤100mg/kg,更优选≤50mg/kg。本发明中,所述低顺式聚丁二烯橡胶中具有低的卤素含量,能够避免由于低顺式聚丁二烯橡胶中卤素含量过高而导致APHA色度上升,同时导致HIPS树脂的黄色指数上升。According to the present invention, the halogen content of the low cis polybutadiene rubber is ≤150 mg/kg, preferably ≤100 mg/kg, and more preferably ≤50 mg/kg. In the present invention, the low cis polybutadiene rubber has a low halogen content, which can avoid the increase of APHA chromaticity due to excessive halogen content in the low cis polybutadiene rubber, and at the same time, the increase of the yellow index of the HIPS resin.
根据本发明,所述低顺式聚丁二烯橡胶的APHA色度≤10,优选≤7,更优选≤5。本发明中,所述低顺式聚丁二烯橡胶具有低的APHA色度,表明低顺式聚丁二烯橡胶溶液具有高的澄清透明度,避免了由于低顺式聚丁二烯橡胶的APHA色度增大,而导致HIPS树脂的黄色指数升高。According to the present invention, the APHA chromaticity of the low cis polybutadiene rubber is ≤10, preferably ≤7, and more preferably ≤5. In the present invention, the low cis polybutadiene rubber has a low APHA chromaticity, indicating that the low cis polybutadiene rubber solution has high clarity and transparency, avoiding the increase in the yellowness index of the HIPS resin due to the increase in the APHA chromaticity of the low cis polybutadiene rubber.
本发明第二方面提供一种低顺式聚丁二烯橡胶的制备方法,其特征在于,所述制备方法包括以下步骤:A second aspect of the present invention provides a method for preparing low-cis polybutadiene rubber, characterized in that the preparation method comprises the following steps:
(1)在有机溶剂中,在有机锂引发剂和结构调节剂的存在下,将1,3-丁二烯进行阴离子溶液聚合反应,至1,3-丁二烯的转化率为99%以上,得到聚丁二烯活性链;其中,所述1,3-丁二烯与所述有机锂引发剂的摩尔比为550-950:1;(1) in an organic solvent, in the presence of an organic lithium initiator and a structure regulator, subjecting 1,3-butadiene to anionic solution polymerization until the conversion rate of 1,3-butadiene is above 99%, thereby obtaining a polybutadiene active chain; wherein the molar ratio of the 1,3-butadiene to the organic lithium initiator is 550-950:1;
(2)在6官能团偶联剂的存在下,将所述聚丁二烯活性链进行偶联反应;所述偶联剂与所述有机锂引发剂的摩尔比为0.14-0.19:1;(2) in the presence of a hexafunctional coupling agent, subjecting the polybutadiene active chain to a coupling reaction; the molar ratio of the coupling agent to the organic lithium initiator is 0.14-0.19:1;
(3)在终止剂的存在下,将所述偶联反应的产物进行终止。(3) terminating the product of the coupling reaction in the presence of a terminator.
本发明中,采用上述制备方法能够获得本发明第一方面所述的低顺式聚丁二烯橡胶。特别地,本发明中,在6官能团偶联剂的存在下,对聚丁二烯活性链进行偶联,同时控制偶联剂与有机锂引发剂的摩尔比满足上述范围时,能够使得制得的低顺式聚丁二烯橡胶具有较高门尼粘度、超低的5%苯乙烯溶液粘度、凝胶含量和卤素含量低、APHA色度好、分子量分布适宜,用于连续本体HIPS树脂增韧时,能够显著改善HIPS树脂的光泽度。In the present invention, the low cis polybutadiene rubber described in the first aspect of the present invention can be obtained by adopting the above preparation method. In particular, in the present invention, in the presence of a 6-functional coupling agent, the polybutadiene active chain is coupled, and when the molar ratio of the coupling agent to the organic lithium initiator is controlled to meet the above range, the low cis polybutadiene rubber obtained can have a high Mooney viscosity, an ultra-low 5% styrene solution viscosity, low gel content and halogen content, good APHA chromaticity, and appropriate molecular weight distribution. When used for toughening continuous bulk HIPS resin, the gloss of the HIPS resin can be significantly improved.
根据本发明,步骤(1)中,所述阴离子溶液聚合反应将获得1,3-丁二烯的聚合物活性链,该反应过程将控制为使得1,3-丁二烯聚合得到数均分子量为30,000-50,000的聚丁二烯活性链,优选得到数均分子量为35,000-45,000。特别是使得该聚丁二烯活性链的分子量分布指数为1.0-1.1。According to the present invention, in step (1), the anionic solution polymerization reaction will obtain a polymer active chain of 1,3-butadiene, and the reaction process will be controlled so that 1,3-butadiene is polymerized to obtain a polybutadiene active chain with a number average molecular weight of 30,000-50,000, preferably a number average molecular weight of 35,000-45,000. In particular, the molecular weight distribution index of the polybutadiene active chain is 1.0-1.1.
本发明中,步骤(1)中,所述有机溶剂可以本领域常用的有机溶剂,例如烷烃类溶剂和/或环烷烃类溶剂。其中,所述烷烃类溶剂优选为C4-C8的烷烃类溶剂中的至少一种,更优选为正戊烷、正己烷、正庚烷和异辛烷中的至少一种。其中,所述环烷烃类溶剂优选为C4-C8的环烷烃类溶剂中的至少一种,更优选为环戊烷和/或环己烷。In the present invention, in step (1), the organic solvent may be an organic solvent commonly used in the art, such as an alkane solvent and/or a cycloalkane solvent. The alkane solvent is preferably at least one of C4-C8 alkane solvents, more preferably at least one of n-pentane, n-hexane, n-heptane and isooctane. The cycloalkane solvent is preferably at least one of C4-C8 cycloalkane solvents, more preferably cyclopentane and/or cyclohexane.
本发明中,所述有机溶剂的用量可以在较宽范围内变动,优选地,以所述有机溶剂和1,3-丁二烯的总重量为基准,1,3-丁二烯的含量为10-20重量%。In the present invention, the amount of the organic solvent can vary within a wide range. Preferably, the content of 1,3-butadiene is 10-20% by weight based on the total weight of the organic solvent and 1,3-butadiene.
本发明中,对所述有机锂引发剂的种类没有特别限定,可以采用本领域常规的用于聚丁二烯橡胶制备的各种有机锂引发剂,优选地,所述有机锂引发剂为式R1Li所示的化合物,其中,R1选自C1-C10的烷基;更优选地,所述有机锂引发剂为正丁基锂、仲丁基锂、异丁基锂和叔丁基锂中的一种或多种,更优选为正丁基锂和/或仲丁基锂,更进一步优选为正丁基锂。其中,所述有机锂引发剂以溶液形式加入聚合体系中,有机锂引发剂的溶剂例如可以为己烷、环己烷、庚烷等中的一种或多种,浓度优选为0.1-1.0mol/L。In the present invention, there is no particular limitation on the type of the organic lithium initiator, and various organic lithium initiators conventionally used in the preparation of polybutadiene rubber in the art can be used. Preferably, the organic lithium initiator is a compound represented by the formula R 1 Li, wherein R 1 is selected from a C1-C10 alkyl group; more preferably, the organic lithium initiator is one or more of n-butyl lithium, sec-butyl lithium, isobutyl lithium and tert-butyl lithium, more preferably n-butyl lithium and/or sec-butyl lithium, and further preferably n-butyl lithium. The organic lithium initiator is added to the polymerization system in the form of a solution, and the solvent of the organic lithium initiator can be, for example, one or more of hexane, cyclohexane, heptane, etc., and the concentration is preferably 0.1-1.0 mol/L.
本发明中,所述有机锂引发剂的用量可以根据单体的用量以及需要得到的低顺式聚丁二烯橡胶的数均分子量大小进行合理地选择,其用量可以在较宽范围内变动,优选地,1,3-丁二烯和所述有机锂引发剂的摩尔比为550-950:1,更优选为600-850:1,从而控制步骤(1)中得到的聚丁二烯活性链具有本发明所要求的数均分子量。In the present invention, the amount of the organic lithium initiator can be reasonably selected according to the amount of the monomer and the number average molecular weight of the low cis polybutadiene rubber to be obtained, and the amount can vary within a wide range. Preferably, the molar ratio of 1,3-butadiene to the organic lithium initiator is 550-950:1, more preferably 600-850:1, so as to control the polybutadiene active chain obtained in step (1) to have the number average molecular weight required by the present invention.
根据本发明,步骤(1)的阴离子溶液聚合反应将使得1,3-丁二烯的转化率为99%以上,例如99-100%;优选情况下,所述阴离子溶液聚合反应的条件包括:温度为40-100℃,优选为50-90℃;时间为20-100min,优选30-60min;表压为0.1-1MPa,优选为0.2-0.5MPa。According to the present invention, the anionic solution polymerization reaction in step (1) will make the conversion rate of 1,3-butadiene more than 99%, for example, 99-100%; preferably, the conditions of the anionic solution polymerization reaction include: temperature of 40-100°C, preferably 50-90°C; time of 20-100min, preferably 30-60min; gauge pressure of 0.1-1MPa, preferably 0.2-0.5MPa.
本发明中,所述阴离子溶液聚合反应在结构调节剂的存在下进行,本发明中,对于所述结构调节剂的种类没有特别限定,可以本领域中常规的种类的结构调节剂,优选地,所述结构调节剂为醚类化合物结构调节剂和/或胺类化合物结构调节剂。In the present invention, the anionic solution polymerization reaction is carried out in the presence of a structure regulator. In the present invention, there is no particular limitation on the type of the structure regulator, and any conventional type of structure regulator in the art can be used. Preferably, the structure regulator is an ether compound structure regulator and/or an amine compound structure regulator.
优选地,所述醚类化合物结构调节剂为脂肪族单醚、脂肪族多醚、芳香醚和环状醚中的一种或多种。Preferably, the ether compound structure regulator is one or more of aliphatic monoether, aliphatic polyether, aromatic ether and cyclic ether.
更优选地,所述脂肪族单醚为脂肪族对称单醚和脂肪族不对称单醚中的一种或多种,所述脂肪族对称单醚为甲醚、乙醚、丙醚和丁醚中的一种或多种,所述脂肪族不对称单醚为甲乙醚。More preferably, the aliphatic monoether is one or more of aliphatic symmetric monoether and aliphatic asymmetric monoether, the aliphatic symmetric monoether is one or more of methyl ether, ethyl ether, propyl ether and butyl ether, and the aliphatic asymmetric monoether is methyl ethyl ether.
更优选地,所述脂肪族多醚为脂肪族对称多醚和脂肪族不对称多醚中的一种或多种,所述脂肪族对称多醚为乙二醇二C1-C4烷基醚、二乙二醇二C1-C4烷基醚和二甘醇二C1-C4烷基醚中的一种或多种,优选为乙二醇二甲醚、乙二醇二乙醚、二乙二醇二甲醚、二乙二醇二乙醚和二甘醇二乙醚中的一种或多种,所述脂肪族不对称多醚为乙二醇甲乙醚和/或二甘醇甲乙醚。More preferably, the aliphatic polyether is one or more of an aliphatic symmetrical polyether and an aliphatic asymmetrical polyether, the aliphatic symmetrical polyether is one or more of ethylene glycol di-C1-C4 alkyl ether, diethylene glycol di-C1-C4 alkyl ether and diethylene glycol di-C1-C4 alkyl ether, preferably one or more of ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether and diethylene glycol diethyl ether, and the aliphatic asymmetric polyether is ethylene glycol methyl ethyl ether and/or diethylene glycol methyl ethyl ether.
优选地,所述芳香醚为苯甲醚和/或二苯醚。Preferably, the aromatic ether is anisole and/or diphenyl ether.
优选地,所述环状醚为四氢呋喃、四氢糠醇C1-C4烷基醚和1,4-二氧环己烷中的一种或多种,优选为四氢呋喃、四氢糠醇甲醚、四氢糠醇乙醚、四氢糠醇丙基醚、四氢糠醇异丙基醚、四氢糠醇丁基醚和1,4-二氧环己烷中的一种或多种。Preferably, the cyclic ether is one or more of tetrahydrofuran, tetrahydrofurfuryl alcohol C1-C4 alkyl ether and 1,4-dioxetane, preferably one or more of tetrahydrofuran, tetrahydrofurfuryl alcohol methyl ether, tetrahydrofurfuryl alcohol ethyl ether, tetrahydrofurfuryl alcohol propyl ether, tetrahydrofurfuryl alcohol isopropyl ether, tetrahydrofurfuryl alcohol butyl ether and 1,4-dioxetane.
优选地,所述胺类化合物结构调节剂例优选为N,N,N’,N’-四甲基乙二胺、N,N-二甲基四氢糠胺、三乙胺和三丙胺中的一种或多种。Preferably, the amine compound structure regulator is preferably one or more of N,N,N',N'-tetramethylethylenediamine, N,N-dimethyltetrahydrofurfurylamine, triethylamine and tripropylamine.
在本发明的一种优选的实施方式中,所述结构调节剂为四氢呋喃、四氢糠醇甲醚、四氢糠醇乙醚、四氢糠醇丙基醚、四氢糠醇异丙基醚、四氢糠醇丁基醚、乙二醇二甲醚、乙二醇二乙醚、二乙二醇二甲醚、二乙二醇二乙醚和二甘醇二乙醚中的一种或多种,更优选为四氢糠醇甲醚、四氢糠醇乙醚和四氢糠醇丙基醚中的一种或多种,特别优选为四氢糠醇乙醚。In a preferred embodiment of the present invention, the structure regulator is one or more of tetrahydrofuran, tetrahydrofurfuryl alcohol methyl ether, tetrahydrofurfuryl alcohol ethyl ether, tetrahydrofurfuryl alcohol propyl ether, tetrahydrofurfuryl alcohol isopropyl ether, tetrahydrofurfuryl alcohol butyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether and diethylene glycol diethyl ether, more preferably one or more of tetrahydrofurfuryl alcohol methyl ether, tetrahydrofurfuryl alcohol ethyl ether and tetrahydrofurfuryl alcohol propyl ether, particularly preferably tetrahydrofurfuryl alcohol ethyl ether.
根据本发明,所述结构调节剂与所述有机锂引发剂的摩尔比为0.02-2:1。当结构调节剂与有机锂引发剂的摩尔比满足上述范围时,能够保证制得的低顺式聚丁二烯橡胶中乙烯基的含量满足本发明所限定范围的同时,同时提高反应速率。According to the present invention, the molar ratio of the structure regulator to the organic lithium initiator is 0.02-2: 1. When the molar ratio of the structure regulator to the organic lithium initiator meets the above range, it can ensure that the vinyl content in the prepared low cis polybutadiene rubber meets the range defined by the present invention while increasing the reaction rate.
根据本发明,步骤(2)中,通过偶联反应,使得所得的聚合物呈现双峰分布,将控制所述偶联反应以得到双峰分布的聚丁二烯橡胶,双峰中的低分子量组分的数均分子量在30,000-50,000范围内,分子量分布指数为1-1.1;双峰中的高分子量组分的数均分子量在150,000-300,000范围内,分子量分布指数为1-1.1;双峰中高分子量组分与低分子量组份的数均分子量之比为5-6;双峰中的低分子量组分与高分子量组分的重量比为0.01-0.25:1;低顺式聚丁二烯橡胶的分子量分布为1.1-1.5。According to the present invention, in step (2), the obtained polymer presents a bimodal distribution through a coupling reaction, and the coupling reaction is controlled to obtain a bimodal polybutadiene rubber, wherein the number average molecular weight of the low molecular weight component in the bimodal is in the range of 30,000-50,000, and the molecular weight distribution index is 1-1.1; the number average molecular weight of the high molecular weight component in the bimodal is in the range of 150,000-300,000, and the molecular weight distribution index is 1-1.1; the ratio of the number average molecular weight of the high molecular weight component to the low molecular weight component in the bimodal is 5-6; the weight ratio of the low molecular weight component to the high molecular weight component in the bimodal is 0.01-0.25:1; and the molecular weight distribution of the low cis polybutadiene rubber is 1.1-1.5.
根据本发明,所述6官能团偶联剂选自六氯乙硅烷、六氯乙烷、1,1,1,3,3,3-六氯丙烷、丙三醇三乙酯和丙三醇三甲酯中的至少一种。进一步地,为了进一步提高偶联反应的稳定性和重复性,所述6官能团偶联剂优选六氯乙硅烷和/或六氯乙烷。According to the present invention, the 6-functional coupling agent is selected from at least one of hexachlorodisilane, hexachloroethane, 1,1,1,3,3,3-hexachloropropane, glycerol triethyl ester and glycerol trimethyl ester. Further, in order to further improve the stability and repeatability of the coupling reaction, the 6-functional coupling agent is preferably hexachlorodisilane and/or hexachloroethane.
根据本发明,步骤(2)中,所述偶联剂与所述有机锂引发剂的摩尔比为0.15-0.18:1。According to the present invention, in step (2), the molar ratio of the coupling agent to the organic lithium initiator is 0.15-0.18:1.
本发明中,当偶联剂与有机锂引发剂的摩尔比满足上述范围时,由此制得的低顺式聚丁二烯橡胶具有更好的支化程度,以获得理想的门尼粘度。In the present invention, when the molar ratio of the coupling agent to the organic lithium initiator satisfies the above range, the low cis polybutadiene rubber prepared thereby has a better branching degree to obtain an ideal Mooney viscosity.
根据本发明,所述偶联反应的条件包括:反应温度为40-100℃,反应时间为15-40min,表压为0.1-1MPa。According to the present invention, the conditions of the coupling reaction include: reaction temperature of 40-100° C., reaction time of 15-40 min, and gauge pressure of 0.1-1 MPa.
进一步地,所述偶联反应的条件包括:反应温度为60-100℃,反应时间为20-40min,表压为0.1-0.5MPa。Furthermore, the conditions of the coupling reaction include: reaction temperature of 60-100° C., reaction time of 20-40 min, and gauge pressure of 0.1-0.5 MPa.
本发明中,优选地,所述步骤(1)和(2)中在保护气氛中进行,所述保护气氛由选自氮气、氖气和氩气中的一种或多种的非活泼性气体提供。In the present invention, preferably, steps (1) and (2) are carried out in a protective atmosphere, and the protective atmosphere is provided by one or more inactive gases selected from nitrogen, neon and argon.
本发明中,步骤(3)中,通过采用终止剂可以终止所述偶联反应和引发聚合反应,即可获得包含低顺式聚丁二烯橡胶的聚合溶液。In the present invention, in step (3), the coupling reaction and the polymerization reaction can be terminated by using a terminator, so that a polymerization solution containing low-cis polybutadiene rubber can be obtained.
根据本发明,所述终止剂为C1-C4的醇、有机酸和二氧化碳中的一种或多种,优选为异丙醇、硬脂酸、柠檬酸和二氧化碳中的一种或多种,更优选为二氧化碳。采用二氧化碳进行终止反应,二氧化碳能够与聚合体系中的金属离子形成碳酸盐而从聚合物中分离,从而避免金属离子的显色反应,产品具有更低的色度。这里的二氧化碳可以以气体的方式(例如通入表压为0.2-1MPa(例如可以为0.3-0.6MPa)的二氧化碳气体)通入到反应体系中,也可以以干冰水溶液的形式(例如浓度为0.1-5重量%)引入到反应体系中。According to the present invention, described terminator is one or more in alcohol, organic acid and carbon dioxide of C1-C4, is preferably one or more in isopropyl alcohol, stearic acid, citric acid and carbon dioxide, more preferably carbon dioxide.Adopt carbon dioxide to carry out termination reaction, carbon dioxide can form carbonate with the metal ion in polymerization system and separate from polymkeric substance, thus avoid the chromogenic reaction of metal ion, product has lower chroma.Carbon dioxide here can be passed into reaction system in the mode of gas (for example, passing into the carbon dioxide gas that gauge pressure is 0.2-1MPa (for example, can be 0.3-0.6MPa)), can also be introduced into reaction system in the form of dry ice aqueous solution (for example concentration is 0.1-5 weight %).
根据本发明,相对于100重量份的1,3-丁二烯单体,所述终止剂的用量为0.1-0.2重量份。According to the present invention, the amount of the terminator is 0.1-0.2 parts by weight relative to 100 parts by weight of 1,3-butadiene monomer.
根据本发明,为了提高低顺式聚丁二烯橡胶的抗氧化性能,优选地,所述方法还包括:将步骤(3)终止得到的产物与抗氧剂进行混合。According to the present invention, in order to improve the antioxidant properties of low-cis polybutadiene rubber, preferably, the method further comprises: mixing the product obtained after termination of step (3) with an antioxidant.
本发明中,对于抗氧剂的种类没有特别限定,可以为本领域中的常规看样机,例如,所述抗氧剂选自4,6-二(辛硫甲基)邻甲酚(商品名:防老剂1520)、β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳醇酯(商品名:防老剂1076)、N-(1,3-二甲基丁基)-N’-苯基对苯二胺(商品名为:防老剂4020)、N-异丙苯基-N’-苯基对苯二胺(商品名为:防老剂4010NA)和N-苯基-2-萘胺(商品名为:防老剂D)中的一种或多种,优选为防老剂1520和防老剂1076的混合物,特别是重量比可以为0.5-5:1、优选为1:1的防老剂1520和防老剂1076的组合。In the present invention, there is no particular limitation on the type of antioxidant, and it can be a conventional antioxidant in the art. For example, the antioxidant is selected from one or more of 4,6-bis(octylthiomethyl)-o-cresol (trade name: antioxidant 1520), β-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate (trade name: antioxidant 1076), N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (trade name: antioxidant 4020), N-isopropylphenyl-N'-phenyl-p-phenylenediamine (trade name: antioxidant 4010NA) and N-phenyl-2-naphthylamine (trade name: antioxidant D), preferably a mixture of antioxidant 1520 and antioxidant 1076, in particular a combination of antioxidant 1520 and antioxidant 1076 in a weight ratio of 0.5-5:1, preferably 1:1.
根据本发明,所述抗氧剂的用量可以在较宽范围内变动,优选地,所述抗氧剂和1,3-丁二烯的用量的重量比为0.1-0.3:100。According to the present invention, the dosage of the antioxidant can vary within a wide range. Preferably, the weight ratio of the antioxidant to 1,3-butadiene is 0.1-0.3:100.
本发明中,为了将所述低顺式聚丁二烯橡胶从终止或者引入抗氧化剂的反应产物中提取出来,还可以将这样的反应产物进行蒸汽凝聚处理以脱除溶剂并进行干燥以除去水分,而后获得干燥的低顺式聚丁二烯橡胶。In the present invention, in order to extract the low-cis polybutadiene rubber from the reaction product in which the antioxidant is terminated or introduced, such reaction product can also be subjected to steam condensation treatment to remove the solvent and dried to remove moisture, and then obtain dry low-cis polybutadiene rubber.
本发明第三方面提供一种由上述制备方法制备得到的低顺式聚丁二烯橡胶。The third aspect of the present invention provides a low-cis polybutadiene rubber prepared by the above preparation method.
本发明第四方面提供一种低顺式聚丁二烯橡胶在HIPS树脂中的应用。A fourth aspect of the present invention provides an application of low-cis polybutadiene rubber in HIPS resin.
本发明中,所述低顺式聚丁二烯橡胶作为增韧剂在HIPS树脂中的应用。In the present invention, the low-cis polybutadiene rubber is used as a toughening agent in HIPS resin.
本发明中,尽管所述增韧剂含有本发明上述方法所得的低顺式聚丁二烯橡胶即可获得高光泽的HIPS树脂,为了获得综合性能更为优良的HIPS树脂,优选情况下,苯乙烯和以干重计的增韧剂的重量比为550-1900:100,更优选为800-1600:100。所述增韧剂优选为低顺式聚丁二烯橡胶。In the present invention, although the toughening agent contains the low cis polybutadiene rubber obtained by the above method of the present invention, a high gloss HIPS resin can be obtained, in order to obtain a HIPS resin with better comprehensive performance, preferably, the weight ratio of styrene to the toughening agent on a dry weight basis is 550-1900:100, more preferably 800-1600:100. The toughening agent is preferably a low cis polybutadiene rubber.
采用本发明的方法制备得到的HIPS树脂在具有优异的力学性能,特别是抗冲击强度的同时,具有更高的光泽度;优选地,所述HIPS树脂的60°的表面光泽度在90以上,优选为在92以上,更优选为在95以上。The HIPS resin prepared by the method of the present invention has excellent mechanical properties, especially impact strength, and higher gloss; preferably, the surface gloss of the HIPS resin at 60° is above 90, preferably above 92, and more preferably above 95.
以下将通过实施例对本发明进行详细描述。以下实施例中,The present invention will be described in detail below by way of examples. In the following examples,
分子结构:低顺式聚丁二烯橡胶中1,2-聚合结构单元和1,4-聚合结构单元的含量采用Bruker AVANCE400型超导核磁共振波仪(1H-NMR)测试,1H核的共振频率为300.13MHz,谱宽2747.253Hz,脉冲宽度5.0μs,数据点16K,样品管直径5mm,溶剂为氘代氯仿CDCl3,样品浓度为15%(W/V),测试温度为常温,扫描次数为16次,以四甲基硅烷化学位移为0ppm定标。Molecular structure: The contents of 1,2-polymer structural units and 1,4-polymer structural units in low cis-polybutadiene rubber were tested using a Bruker AVANCE400 superconducting nuclear magnetic resonance wave instrument (1H-NMR). The resonance frequency of the 1H nucleus was 300.13 MHz, the spectrum width was 2747.253 Hz, the pulse width was 5.0 μs, the data point was 16 K, the sample tube diameter was 5 mm, the solvent was deuterated chloroform CDCl3, the sample concentration was 15% (W/V), the test temperature was room temperature, the number of scans was 16, and the chemical shift of tetramethylsilane was calibrated as 0 ppm.
分子量和分子量分布:采用日本东曹公司HLC-8320型凝胶渗透色谱仪测定,配备TSKgelSuperMultiporeHZ-N、TSKgelSuperMultiporeHZ标准柱,溶剂为色谱纯THF,窄分布聚苯乙烯为标样,将聚合物样品配制成质量浓度为1mg/mL的四氢呋喃溶液,进样量为10.00μL,流速为0.35mL/min,测试温度为40.0℃。Molecular weight and molecular weight distribution: Determined by HLC-8320 gel permeation chromatograph of Tosoh Corporation of Japan, equipped with TSKgelSuperMultiporeHZ-N and TSKgelSuperMultiporeHZ standard columns, the solvent was chromatographically pure THF, narrow distribution polystyrene was used as standard, the polymer sample was prepared into a tetrahydrofuran solution with a mass concentration of 1 mg/mL, the injection volume was 10.00 μL, the flow rate was 0.35 mL/min, and the test temperature was 40.0°C.
25℃下5重量%橡胶的苯乙烯溶液粘度:采用北京燕山石油化工公司企业标准Q/SH3155.SXL.C26-2019测定,采用芬氏粘度计在25℃下恒温测定。利用在一定时间内,流体通过毛细管的流动阻力,测定25℃时橡胶在苯乙烯(溶液浓度5%重量百分比)的粘度。准确配制5%橡胶含量的苯乙烯溶液,向粘度计球中充入溶液,当溶液液面达到球的上部刻线时,开启计时器,当溶液液面达到球的下部刻线时,停计时器,记录溶液由上部刻线处刚好流到下部刻线时所经过的时间,准确到0.1秒。仪器:恒温水浴和粘度计;测试条件:25℃恒温。Viscosity of 5 wt% rubber styrene solution at 25°C: measured using Beijing Yanshan Petrochemical Company corporate standard Q/SH3155.SXL.C26-2019, and measured at a constant temperature of 25°C using a Finn viscometer. The viscosity of rubber in styrene (solution concentration 5% by weight) at 25°C is measured using the flow resistance of the fluid through the capillary within a certain period of time. Accurately prepare a styrene solution with a 5% rubber content, fill the viscometer ball with the solution, start the timer when the solution level reaches the upper mark of the ball, stop the timer when the solution level reaches the lower mark of the ball, and record the time it takes for the solution to flow from the upper mark to the lower mark, accurate to 0.1 seconds. Instrument: constant temperature water bath and viscometer; test conditions: constant temperature of 25°C.
凝胶含量:采用重量法测定。具体过程如下:将橡胶样品加入到苯乙烯中,在25℃的温度下于振荡器中振荡16小时使可溶物完全溶解,制备成含橡胶含量为5重量%的苯乙烯溶液,并将橡胶样品的质量记为C(以克计);将360目洁净镍网称重,并将洁净镍网的质量记为B(以克计);然后用镍网过滤上述溶液;过滤后用苯乙烯冲洗镍网,将镍网在150℃、常压下烘干30分钟后,称重,并将其质量记为A(以克计);按照以下公式计算凝胶含量:凝胶含量%=[(A-B)/C]×100%。Gel content: Determined by weight method. The specific process is as follows: add the rubber sample to styrene, shake in an oscillator at 25°C for 16 hours to completely dissolve the soluble matter, prepare a styrene solution containing 5% by weight of rubber, and record the mass of the rubber sample as C (in grams); weigh a 360-mesh clean nickel mesh, and record the mass of the clean nickel mesh as B (in grams); then filter the above solution with the nickel mesh; rinse the nickel mesh with styrene after filtration, dry the nickel mesh at 150°C and normal pressure for 30 minutes, weigh it, and record its mass as A (in grams); calculate the gel content according to the following formula: Gel content % = [(A-B)/C] × 100%.
门尼粘度采用台湾Gotech公司生产的GT-7080-S2型门尼粘度仪,按照GB/T1232.1标准测定,其中,预热时间为1min,转动时间为4min,测试温度为100℃。The Mooney viscosity was measured using a GT-7080-S2 Mooney viscometer produced by Taiwan Gotech Company in accordance with GB/T1232.1 standard, with a preheating time of 1 min, a rotation time of 4 min, and a test temperature of 100°C.
金属含量采用美国珀金埃尔默(PE)公司的Optima 8300型全谱直读ICP光谱仪测试,中阶梯光栅,固态检测器,紫外光区和可见光区双光路双固态检测器,采用平板等离子体技术,保证了仪器具有最低的氩气消耗量。仪器操作参数:高频功率1300W,等离子气流量15L/min,雾化气流量0.55L/min,辅助气流量0.2L/min,蠕动泵速1.50mL/min,积分时间10s,等离子体轴向观测。分析谱线:Ni 231.604nm,Al308.215nm,Li670.784nm,Fe238.204nm,Ca 317.933nm,Mg 285.213nm。试剂:硝酸:优级纯,国药集团化学试剂有限公司,含量65%-68%;Ni、Al、Li、Fe、Ca、Mg基础标液:100μg/mL,国家计量科学研究院;所用水为去离子水。样品制备:准确称取样品2.000g于瓷坩埚中,置于高温电阻炉内逐级升温至500℃,灰化完全后取出,加5mL10%(V%)稀硝酸,在电热板上缓慢加热直至完全溶解,溶液蒸至尽干,加入1mL浓硝酸,转入50mL容量瓶中,蒸馏水定容,同时制备试剂空白溶液。The metal content was tested by the Optima 8300 full-spectrum direct-reading ICP spectrometer of PerkinElmer (PE) in the United States, with a medium-step grating, solid-state detector, dual-path dual solid-state detector in the ultraviolet and visible light regions, and flat-plate plasma technology to ensure that the instrument has the lowest argon consumption. Instrument operating parameters: high-frequency power 1300W, plasma gas flow 15L/min, atomizing gas flow 0.55L/min, auxiliary gas flow 0.2L/min, peristaltic pump speed 1.50mL/min, integration time 10s, plasma axial observation. Analysis spectral lines: Ni 231.604nm, Al308.215nm, Li670.784nm, Fe238.204nm, Ca 317.933nm, Mg 285.213nm. Reagents: Nitric acid: high-grade pure, Sinopharm Chemical Reagent Co., Ltd., content 65%-68%; Ni, Al, Li, Fe, Ca, Mg basic standard solution: 100μg/mL, National Institute of Metrology; deionized water is used. Sample preparation: Accurately weigh 2.000g of sample in a porcelain crucible, place it in a high-temperature resistance furnace and gradually heat it to 500℃, take it out after complete ashing, add 5mL10% (V%) dilute nitric acid, slowly heat on a hot plate until completely dissolved, evaporate the solution to dryness, add 1mL concentrated nitric acid, transfer to a 50mL volumetric flask, distill water to volume, and prepare a reagent blank solution at the same time.
卤素含量:采用燃烧离子色谱法按照EN14582-2016标准测试。Halogen content: tested by combustion ion chromatography according to EN14582-2016 standard.
APHA色度:将LCBR样品配制成5%苯乙烯溶液,采用LICO620色度仪测定,比色管直径11mm。APHA chromaticity: The LCBR sample was prepared into a 5% styrene solution and measured using a LICO620 colorimeter with a colorimetric tube diameter of 11 mm.
HIPS的悬臂梁缺口冲击强度按GB/T1843-1996标准测量(kJ/m2),60°光泽度按照ASTM D526(60°)测定。The Izod notched impact strength of HIPS is measured according to GB/T1843-1996 standard (kJ/m 2 ), and the 60° glossiness is measured according to ASTM D526 (60°).
以下二氧化碳的压力均指表压。The following carbon dioxide pressures refer to gauge pressure.
环己烷和己烷由国药试剂公司提供,聚合级,分子筛浸泡至水含量低于10ppm;丁二烯,燕山石化提供,聚合级;THF由国药试剂公司提供,色谱纯,己烷稀释10倍后采用分子筛浸泡15天以上,体系中用量按照纯物质计;四氢糠醇乙醚由国药试剂公司提供,分析纯,己烷稀释20倍后采用分子筛浸泡15天以上,体系中用量按照纯物质计;正丁基锂由百灵威试剂有限公司提供,1.6mol.L-1,稀释至0.4mol.L-1;六氯乙烷和六氯乙硅烷由伊诺凯试剂公司提供,分析纯,稀释至0.1mol.L-1;防老剂1520和1076由国药试剂公司提供,稀释至质量浓度为10%,体系中用量按照纯物质计;Cyclohexane and hexane were provided by Sinopharm Reagent Company, polymerization grade, and the molecular sieve was soaked until the water content was less than 10ppm; butadiene was provided by Yanshan Petrochemical, polymerization grade; THF was provided by Sinopharm Reagent Company, chromatographic grade, hexane was diluted 10 times and then soaked in molecular sieve for more than 15 days, and the amount used in the system was calculated as pure substance; tetrahydrofurfuryl alcohol ethyl ether was provided by Sinopharm Reagent Company, analytical grade, hexane was diluted 20 times and then soaked in molecular sieve for more than 15 days, and the amount used in the system was calculated as pure substance; n-butyl lithium was provided by J&K Reagent Co., Ltd., 1.6 mol.L -1 , diluted to 0.4 mol.L -1 ; hexachloroethane and hexachlorodisilane were provided by Inokai Reagent Company, analytical grade, diluted to 0.1 mol.L -1 ; antioxidants 1520 and 1076 were provided by Sinopharm Reagent Company, diluted to a mass concentration of 10%, and the amount used in the system was calculated as pure substance;
聚丁二烯橡胶720AX,购自日本旭化成,分子结构参数见表3;Polybutadiene rubber 720AX, purchased from Asahi Chemical, Japan, molecular structure parameters are shown in Table 3;
聚丁二烯橡胶730A,购自日本旭化成,分子结构参数见表3。Polybutadiene rubber 730A was purchased from Asahi Chemical Industry Co., Ltd., Japan. The molecular structure parameters are shown in Table 3.
实施例1Example 1
本实施例用于说明本发明的LCBR橡胶及其制备方法。This example is used to illustrate the LCBR rubber and the preparation method thereof of the present invention.
(1)在氮气保护下,将非极性烃类溶剂、1,3-丁二烯单体和结构调节剂(种类和用量见表1所示,表中所列用量均以纯化合物计量)加入反应器内,并加热至指定温度后加入有机锂引发剂(种类和用量见表1所示,表中所列用量均以纯化合物计量),而后在该温度和指定反应压力下进行阴离子溶液聚合反应(条件见表1所示),至1,3-丁二烯的转化率为100%;(1) under nitrogen protection, a non-polar hydrocarbon solvent, 1,3-butadiene monomer and a structure regulator (the types and amounts are shown in Table 1, and the amounts listed in the table are all measured by pure compounds) are added into a reactor, and after heating to a specified temperature, an organic lithium initiator (the types and amounts are shown in Table 1, and the amounts listed in the table are all measured by pure compounds) is added, and then an anionic solution polymerization reaction is carried out at the temperature and a specified reaction pressure (conditions are shown in Table 1) until the conversion rate of 1,3-butadiene is 100%;
(2)而后向阴离子溶液聚合反应的产物中加入偶联剂(其种类和用量见表2所示,表中所列用量均以纯化合物计量),以在指定温度和压力下进行偶联反应(条件见表2所示);(2) then adding a coupling agent (its type and amount are shown in Table 2, and the amounts listed in the table are all measured based on pure compounds) to the product of the anionic solution polymerization reaction to carry out a coupling reaction at a specified temperature and pressure (conditions are shown in Table 2);
(3)采用终止剂(其种类和用量见表2所示)终止偶联反应,而后加入抗氧剂(重量比为1:1的1520和1076的组合抗氧剂1.2g)进行混合,最终得到LCBR橡胶的聚合溶液,将所得聚合溶液进行蒸汽凝聚脱溶剂处理并干燥,即可得到LCBR橡胶PB1。所得聚合物进行结构和性能测定,结果见表3所示。(3) The coupling reaction was terminated by using a terminator (its type and amount are shown in Table 2), and then an antioxidant (1.2 g of a combination of 1520 and 1076 in a weight ratio of 1:1) was added and mixed to finally obtain a polymerization solution of LCBR rubber. The obtained polymerization solution was subjected to steam condensation desolventization treatment and dried to obtain LCBR rubber PB1. The structure and properties of the obtained polymer were measured, and the results are shown in Table 3.
实施例2-9Embodiment 2-9
本实施例用于说明本发明的LCBR橡胶及其制备方法。This example is used to illustrate the LCBR rubber and the preparation method thereof of the present invention.
根据实施例1所述的方法,不同的是,采用表1和2所示的参数进行反应,从而分别得到LCBR橡胶PB2-PB9,所得聚合物进行结构和性能测定,结果见表3所示。The method described in Example 1 is different in that the reaction is carried out using the parameters shown in Tables 1 and 2 to obtain LCBR rubbers PB2-PB9 respectively. The structures and properties of the obtained polymers are measured, and the results are shown in Table 3.
对比例1Comparative Example 1
根据实施例1所述的方法,不同的是,步骤(2)偶联剂为四氯化硅;从而得到LCBR橡胶DPB1,所得聚合物进行结构和性能测定,结果见表3所示。The method described in Example 1 is different in that the coupling agent in step (2) is silicon tetrachloride; thereby LCBR rubber DPB1 is obtained. The structure and properties of the obtained polymer are measured, and the results are shown in Table 3.
对比例2Comparative Example 2
根据实施例1所述的方法,不同的是,步骤(2)中偶联剂为四氯化硅,且用量为2.28mmol,得到LCBR橡胶DPB2,所得聚合物进行结构和性能测定,结果见表3所示。According to the method described in Example 1, except that in step (2), the coupling agent is silicon tetrachloride, and the amount used is 2.28 mmol, to obtain LCBR rubber DPB2. The structure and properties of the obtained polymer are measured, and the results are shown in Table 3.
对比例3Comparative Example 3
根据实施例1所述的方法,不同的是,步骤(1)中丁基锂的用量为6mmol,步骤(2)六氯硅烷为1mmol,从而得到LCBR橡胶DPB3,所得聚合物进行结构和性能测定,结果见表3所示。The method described in Example 1 is used, except that the amount of butyl lithium used in step (1) is 6 mmol, and the amount of hexachlorosilane used in step (2) is 1 mmol, thereby obtaining LCBR rubber DPB3. The structure and properties of the obtained polymer are measured, and the results are shown in Table 3.
对比例4Comparative Example 4
根据实施例1所述的方法,不同的是,步骤(1)中,正丁基锂的用量为15mmol,步骤(2)中六氯硅烷用量为2.55mmol,从而得到LCBR橡胶DPB4,其所得聚合物进行结构和性能测定,结果见表3所示。The method described in Example 1 is different in that in step (1), the amount of n-butyl lithium used is 15 mmol, and in step (2), the amount of hexachlorosilane used is 2.55 mmol, thereby obtaining LCBR rubber DPB4. The structure and properties of the obtained polymer are measured, and the results are shown in Table 3.
对比例5Comparative Example 5
根据实施例1所述的方法,不同的是,步骤(2)中六氯硅烷用量为1.23mmol,从而得到LCBR橡胶DPB5,其所得聚合物进行结构和性能测定,结果见表3所示。The method described in Example 1 is different in that the amount of hexachlorosilane used in step (2) is 1.23 mmol, thereby obtaining LCBR rubber DPB5. The structure and properties of the obtained polymer are measured, and the results are shown in Table 3.
对比例6Comparative Example 6
根据实施例1所述的方法,不同的是,步骤(2)中六氯硅烷用量为1.9mmol,从而得到LCBR橡胶DPB6分子量呈单峰分布,其所得聚合物进行结构和性能测定,结果见表3所示。The method described in Example 1 is different in that the amount of hexachlorosilane used in step (2) is 1.9 mmol, so that the molecular weight of the LCBR rubber DPB6 obtained is unimodal distribution. The structure and properties of the obtained polymer are measured, and the results are shown in Table 3.
表1Table 1
表2Table 2
表3Table 3
注:Area1/Area2是双峰分布的低分子量组分与高分子量组分的重量比。Note: Area1/Area2 is the weight ratio of the low molecular weight component to the high molecular weight component of the bimodal distribution.
表3(续)Table 3 (continued)
通过表3可以看出,本发明所制备得到的低顺式聚丁二烯橡胶的5%苯乙烯溶液粘度极低、门尼粘度较高、分子量分布适中、凝胶含量、卤素含量和金属含量低,特别适合作为高光泽HIPS的增韧剂。It can be seen from Table 3 that the 5% styrene solution of the low cis polybutadiene rubber prepared in the present invention has extremely low viscosity, high Mooney viscosity, moderate molecular weight distribution, low gel content, halogen content and metal content, and is particularly suitable as a toughening agent for high gloss HIPS.
应用例1Application Example 1
本实施例用于说明本发明的HIPS树脂及其制备方法。This example is used to illustrate the HIPS resin and its preparation method of the present invention.
将100g低顺式聚丁二烯橡胶PB1、120g乙苯和900g苯乙烯单体进行混合,再加入40g矿物油(北京燕山石化公司化工一厂提供,密度0.85-0.88g/ml,下同)和0.2g过氧-2-乙基己基碳酸叔丁酯进行混合,并在搅拌速率为400rpm、聚合温度为110℃下聚合2h,而后升温至120℃下聚合2h;在搅拌速率为150rpm下,升温至140℃下聚合2h,最后升温至150℃下聚合2h,将反应产物经真空闪蒸、脱出未反应单体和溶剂后得到HIPS树脂P1。100 g of low-cis polybutadiene rubber PB1, 120 g of ethylbenzene and 900 g of styrene monomer were mixed, and then 40 g of mineral oil (provided by Beijing Yanshan Petrochemical Company Chemical Plant No. 1, density 0.85-0.88 g/ml, the same below) and 0.2 g of tert-butyl peroxy-2-ethylhexyl carbonate were added and mixed, and polymerized at a stirring rate of 400 rpm and a polymerization temperature of 110° C. for 2 h, and then heated to 120° C. for polymerization for 2 h; at a stirring rate of 150 rpm, the temperature was raised to 140° C. for polymerization for 2 h, and finally the temperature was raised to 150° C. for polymerization for 2 h, and the reaction product was subjected to vacuum flash evaporation to remove unreacted monomers and solvents to obtain HIPS resin P1.
将该HIPS树脂进行干燥后进行结构和性能测定,结果见表4所示。After the HIPS resin was dried, its structure and performance were measured. The results are shown in Table 4.
应用例2-9Application Example 2-9
本实施例用于说明本发明的HIPS树脂及其制备方法。This example is used to illustrate the HIPS resin and its preparation method of the present invention.
根据应用例1所述的方法,不同的是,分别采用低顺式聚丁二烯橡胶PB2-PB9代替低顺式聚丁二烯橡胶PB1,从而将反应产物经真空闪蒸、脱出未反应单体和溶剂后分别得到HIPS树脂P2-P9。The method described in Application Example 1 is different in that low cis polybutadiene rubbers PB2-PB9 are used instead of low cis polybutadiene rubber PB1, so that the reaction products are subjected to vacuum flash evaporation and unreacted monomers and solvents are removed to obtain HIPS resins P2-P9 respectively.
将该HIPS树脂进行干燥后进行结构和性能测定,结果见表4所示。After the HIPS resin was dried, its structure and performance were measured. The results are shown in Table 4.
对比应用例1-6Comparative Application Examples 1-6
根据应用例1所述的方法,不同的是,分别采用低顺式聚丁二烯橡胶DPB1-DPB6代替低顺式聚丁二烯橡胶PB1,从而将反应产物经真空闪蒸、脱出未反应单体和溶剂后分别得到HIPS树脂DP1-DP6。The method described in Application Example 1 is different in that low cis polybutadiene rubbers DPB1-DPB6 are used instead of low cis polybutadiene rubber PB1, so that the reaction products are subjected to vacuum flash evaporation and unreacted monomers and solvents are removed to obtain HIPS resins DP1-DP6 respectively.
将该HIPS树脂进行干燥后进行结构和性能测定,结果见表4所示。After the HIPS resin was dried, its structure and performance were measured. The results are shown in Table 4.
对比应用例7-8Comparative Application Examples 7-8
根据应用例1所述的方法,不同的是,分别采用日本旭化成产品720AX和730A代替低顺式聚丁二烯橡胶PB1,从而将反应产物经真空闪蒸、脱出未反应单体和溶剂后分别得到HIPS树脂DP7-DP8。The method described in Application Example 1 is different in that Japanese Asahi Chemical products 720AX and 730A are used instead of low-cis polybutadiene rubber PB1, so that the reaction products are subjected to vacuum flash evaporation and unreacted monomers and solvents are removed to obtain HIPS resins DP7-DP8 respectively.
将该HIPS树脂进行干燥后进行结构和性能测定,结果见表4所示。After the HIPS resin was dried, its structure and performance were measured. The results are shown in Table 4.
表4Table 4
通过表4可以看出,通过采用含有本发明的低顺式聚丁二烯橡胶作为增韧剂,能够在保证HIPS树脂的冲击强度的前提下,获得光泽度优异的HIPS树脂,本发明所得的HIPS树脂相比于采用市场上流行的增韧剂所得的HIPS树脂来说,在光泽度方面具有大幅度改善。It can be seen from Table 4 that by using the low-cis polybutadiene rubber of the present invention as a toughening agent, a HIPS resin with excellent gloss can be obtained while ensuring the impact strength of the HIPS resin. The HIPS resin obtained by the present invention has a significant improvement in gloss compared to the HIPS resin obtained by using a toughening agent popular on the market.
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。The preferred embodiments of the present invention are described in detail above, but the present invention is not limited thereto. Within the technical concept of the present invention, the technical solution of the present invention can be subjected to a variety of simple modifications, including the combination of various technical features in any other suitable manner, and these simple modifications and combinations should also be regarded as the contents disclosed by the present invention and belong to the protection scope of the present invention.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210507031.0A CN117069881A (en) | 2022-05-10 | 2022-05-10 | Low cis-polybutadiene rubber and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210507031.0A CN117069881A (en) | 2022-05-10 | 2022-05-10 | Low cis-polybutadiene rubber and preparation method and application thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117069881A true CN117069881A (en) | 2023-11-17 |
Family
ID=88712143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210507031.0A Pending CN117069881A (en) | 2022-05-10 | 2022-05-10 | Low cis-polybutadiene rubber and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117069881A (en) |
-
2022
- 2022-05-10 CN CN202210507031.0A patent/CN117069881A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5832158B2 (en) | Ternary copolymer rubber having star-shaped block structure, and process for preparing and using the same | |
CN102532377B (en) | Low cis-polybutadiene rubber as well as preparation method and application thereof | |
KR100425243B1 (en) | Linear block copolymer and method for preparing thereof | |
CN101463110B (en) | Emulsion polystyrene-isoprene-butadiene terpolymer and preparation method thereof | |
CN109503746B (en) | Low cis-polybutadiene rubber and preparation method thereof, HIPS resin and preparation method thereof, and ABS resin | |
CN108690167A (en) | A kind of copolymer and preparation method thereof of ethylene and conjugated diene | |
CN109503900B (en) | Toughening agent composition and preparation method thereof, and styrene resin and preparation method thereof | |
CN109251264B (en) | Low cis-polybutadiene rubber and preparation method thereof, and HIPS resin and preparation method thereof | |
CN109251263B (en) | Low cis-polybutadiene rubber and preparation method thereof, and HIPS resin and preparation method thereof | |
CN109503747B (en) | Low cis-polybutadiene rubber and preparation method thereof, HIPS resin and preparation method thereof, and ABS resin | |
CN117069881A (en) | Low cis-polybutadiene rubber and preparation method and application thereof | |
CN113698536B (en) | Liquid styrene-butadiene polymer, preparation method and application thereof, composition, polymer coating, adhesive and crosslinking agent | |
CN107286296B (en) | Application of butadiene-b-isoprene polymer | |
CN115716889A (en) | Liquid polybutadiene, preparation method and application thereof, composition and application thereof, polymer coating, adhesive and crosslinking agent | |
CN114656583A (en) | Preparation method of functionalized liquid 1,2-polybutadiene rubber | |
CN117070005A (en) | Toughening agent composition, preparation method and application thereof, ABS resin and preparation method thereof | |
TW202144442A (en) | Liquid polybutadiene, preparation method and application, composition, polymer coating and adhesive and crosslinking agent thereof | |
CN111978447B (en) | Low cis-polybutadiene rubber, preparation method and application thereof, aromatic vinyl resin and preparation method thereof | |
CN114085434B (en) | Low cis-polybutadiene rubber, preparation method and application thereof, HIPS resin and preparation method thereof | |
CN111978445B (en) | Low cis-polybutadiene rubber, preparation method and application thereof, and aromatic vinyl resin and preparation method | |
CN115260348B (en) | PHS resin with high molecular weight and narrow distribution, and preparation method and application thereof | |
RU2818076C1 (en) | Liquid polybutadiene and method for production thereof and use thereof, composition, polymer coating, adhesive material and cross-linking agent | |
CN118515797A (en) | Composite structure regulator and application thereof, styrene-butadiene polymer and preparation method and application thereof | |
CN113461857B (en) | Low cis polybutadiene rubber and preparation method thereof, HIPS and preparation method thereof | |
CN113698558B (en) | Styrene-butadiene copolymer and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |