CN117062002A - 5G NR indoor positioning method and system based on lightweight TRANSFORMER - Google Patents

5G NR indoor positioning method and system based on lightweight TRANSFORMER Download PDF

Info

Publication number
CN117062002A
CN117062002A CN202310957628.XA CN202310957628A CN117062002A CN 117062002 A CN117062002 A CN 117062002A CN 202310957628 A CN202310957628 A CN 202310957628A CN 117062002 A CN117062002 A CN 117062002A
Authority
CN
China
Prior art keywords
matrix
output
attention mechanism
relu
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310957628.XA
Other languages
Chinese (zh)
Other versions
CN117062002B (en
Inventor
李伟
孟祥旭
郑文祺
刘芷含
赵铮
蔡易楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN202310957628.XA priority Critical patent/CN117062002B/en
Publication of CN117062002A publication Critical patent/CN117062002A/en
Application granted granted Critical
Publication of CN117062002B publication Critical patent/CN117062002B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/33Services specially adapted for particular environments, situations or purposes for indoor environments, e.g. buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Image Analysis (AREA)

Abstract

A5G NR indoor positioning method and system based on lightweight TRANSFORMER relates to the technical field of computers, in particular to the technical field of machine learning in computers. The method solves the problems of low positioning precision, low efficiency and difficult deployment caused by the limited subcarrier sensing range of the existing indoor fingerprint positioning method. The method comprises the following steps: processing the CSI input data by adopting a rectangular image block operation module with independent channels to obtain an output matrix; converting the three-dimensional matrix of the output matrix into a two-dimensional matrix compatible with an attention mechanism by adopting a Reshape () function; inputting the two-dimensional matrix compatible with the attention mechanism into a multichannel attention mechanism module based on ReLU to obtain final output data; and carrying out position location on the final output data by adopting a position mapping module to obtain a mapping position. The invention is suitable for a 5G NR indoor positioning method based on lightweight TRANSFORMER in a computer.

Description

一种基于轻量级TRANSFORMER的5G NR室内定位方法及系统A 5G NR indoor positioning method and system based on lightweight TRANSFORMER

技术领域Technical field

本发明涉及计算机技术领域,特别涉及计算机中的机器学习技术领域。The present invention relates to the field of computer technology, and in particular to the field of machine learning technology in computers.

背景技术Background technique

基于信道状态信息(Channel State Information,CSI)的室内指纹定位在室内导航、人员追踪等领域得到了广泛应用。此外,5G技术的快速发展带来了更宽的信道带宽、更丰富的时空信道描述以及更大的数据量。因此,5G CSI可以提供更多的信道信息,这给基于CSI的指纹定位带来了新的特点和挑战。Indoor fingerprint positioning based on Channel State Information (CSI) has been widely used in indoor navigation, personnel tracking and other fields. In addition, the rapid development of 5G technology has brought wider channel bandwidth, richer spatiotemporal channel description, and larger data volume. Therefore, 5G CSI can provide more channel information, which brings new characteristics and challenges to CSI-based fingerprint positioning.

目前,在工程实践中有所应用的室内指纹定位方法主要可分作以下两类:At present, indoor fingerprint positioning methods used in engineering practice can be mainly divided into the following two categories:

(1)基于机器学习的方法,如2020年03月27日公开的专利文献:CN110933604A,公开了基于位置指纹时序特征的KNN室内定位方法,该方法通过计算当前时刻位置与历史位置指纹之间的相似度,得到前K个相似位置指纹,之后计算前K个相似位置指纹中每个位置指纹与上一时刻定位结果之间的距离,得到预估距离,之后分别计算前K个相似位置指纹的偏移量和权值并对前K个相似位置指纹的位置坐标进行加权求和,得到当前时刻的位置坐标,完成定位。但是这种方法不能有效利用5G CSI提供的更高的信息丰富度和特征分辨率,从而导致室内定位的精度和效率较低。(1) Methods based on machine learning, such as the patent document published on March 27, 2020: CN110933604A, which discloses the KNN indoor positioning method based on the timing characteristics of location fingerprints. This method calculates the distance between the current location and the historical location fingerprint. Similarity, get the top K similar position fingerprints, then calculate the distance between each position fingerprint in the top K similar position fingerprints and the positioning result at the previous moment, get the estimated distance, and then calculate the distance of the top K similar position fingerprints respectively The offset and weight are weighted and summed to the position coordinates of the first K similar position fingerprints to obtain the position coordinates at the current moment and complete the positioning. However, this method cannot effectively utilize the higher information richness and feature resolution provided by 5G CSI, resulting in low accuracy and efficiency of indoor positioning.

(2)基于深度学习的方法,如2022年03月15日公开的专利文献:CN114189809A,公开了基于卷积神经网络与高维5G观测特征的室内定位方法,该方法通过构建离线图像指纹库,利用指纹库训练得到卷积神经网络位置分类模型。之后将目标设备在测试点采集的5G观测值处理后输入卷积神经网络位置分类模型,通过概率加权质心法得到测试点定位坐标,完成定位。该方法能够更好地处理大规模、高维数据,并且可以自动学习更抽象和更高级的特征表示,从而提高模型的性能和准确性,但存在着难以在设备上部署、循环神经网络梯度消失和爆炸的问题。(2) Methods based on deep learning, such as the patent document published on March 15, 2022: CN114189809A, which discloses an indoor positioning method based on convolutional neural networks and high-dimensional 5G observation features. This method builds an offline image fingerprint database, The convolutional neural network position classification model is obtained by training with the fingerprint database. After that, the 5G observation values collected by the target device at the test point are processed and input into the convolutional neural network position classification model. The positioning coordinates of the test point are obtained through the probability weighted centroid method to complete the positioning. This method can better handle large-scale, high-dimensional data, and can automatically learn more abstract and advanced feature representations, thereby improving the performance and accuracy of the model. However, it has the problems of being difficult to deploy on the device and the vanishing gradient of the recurrent neural network. and explosion issues.

发明内容Contents of the invention

本发明解决现有室内指纹定位方法的子载波感知范围有限,导致的定位精度低、效率低和难以部署的问题。The present invention solves the problems of low positioning accuracy, low efficiency and difficulty in deployment caused by the limited subcarrier sensing range of existing indoor fingerprint positioning methods.

为实现上述目的,本发明提供了如下方案:In order to achieve the above objects, the present invention provides the following solutions:

本发明提供一种基于轻量级TRANSFORMER的5G NR室内定位方法,所述方法为:The present invention provides a 5G NR indoor positioning method based on lightweight TRANSFORMER. The method is:

S1、采用通道独立的矩形图像块操作模块对CSI输入数据进行处理,获得输出矩阵;S1. Use the channel-independent rectangular image block operation module to process the CSI input data and obtain the output matrix;

S2、采用Reshape()函数将所述输出矩阵的三维矩阵转换为与注意力机制相容的二维矩阵;S2. Use the Reshape() function to convert the three-dimensional matrix of the output matrix into a two-dimensional matrix that is compatible with the attention mechanism;

S3、将所述与注意力机制相容的二维矩阵输入到基于ReLU的多通道注意力机制模块中,获得最终的输出数据;S3. Input the two-dimensional matrix compatible with the attention mechanism into the multi-channel attention mechanism module based on ReLU to obtain the final output data;

S4、采用位置映射模块对所述最终的输出数据进行位置定位,获得映射位置。S4. Use the position mapping module to position the final output data to obtain the mapping position.

进一步,还有一种优选实施例,上述步骤S1中的通道独立的矩形图像块操作模块的处理流程为:Furthermore, there is another preferred embodiment. The processing flow of the channel-independent rectangular image block operation module in step S1 is as follows:

S11、将所述CSI输入数据按照不同通道进行划分,获得Hi数据;S11. Divide the CSI input data according to different channels to obtain Hi data;

S12、采用基于卷积的图像块对所述Hi数据进行图像块操作,获得输出矩阵。S12. Use convolution-based image blocks to perform image block operations on the Hi data to obtain an output matrix.

进一步,还有一种优选实施例,上述步骤S12中基于卷积的图像块的公式表示为:Furthermore, there is a preferred embodiment. The formula of the convolution-based image block in the above step S12 is expressed as:

Hp=Concat(P(H0,:),P(H1,:),...,P(HC,:));H p =Concat(P(H 0,: ),P(H 1,: ),...,P(H C,: ));

其中,为获得的输出,Hi为第i个通道的数据,C为输入通道的数量,C'为输出通道的数量,W为输入宽度,L为输入长度,Kw为用于基于分块的卷积的卷积核的宽度,Kl为用于基于分块的卷积的卷积核的长度,/>为通过将输入宽度除以内核宽度而获得的输出宽度,/>为通过将输入通过将输入内核长度而获得的输出长度。in, is the output obtained, Hi is the data of the i-th channel, C is the number of input channels, C' is the number of output channels, W is the input width, L is the input length, and K w is the volume used for the block-based The width of the convolution kernel of the product, K l is the length of the convolution kernel used for block-based convolution, /> is the output width obtained by dividing the input width by the kernel width, /> is the output length obtained by passing the input through the length of the input kernel.

进一步,还有一种优选实施例,上述步骤S12中基于卷积的图像块的设置步骤为:Furthermore, there is a preferred embodiment, the setting step of the convolution-based image block in the above step S12 is:

填充元素设置为0,Kw设置为8,Kl设置为13;The padding element is set to 0, K w is set to 8, and K l is set to 13;

将宽度方向上的步幅设置为等于卷积核的宽度,将长度方向上的步幅设置为等于卷积核的长度。Set the stride in the width direction equal to the width of the convolution kernel, and set the stride in the length direction equal to the length of the convolution kernel.

进一步,还有一种优选实施例,上述步骤S3中基于ReLU的多通道注意力机制模块的处理流程为:Furthermore, there is another preferred embodiment. The processing flow of the ReLU-based multi-channel attention mechanism module in the above step S3 is:

S31、将所述与注意力机制相容的二维矩阵进行格式转换,获得转换后的二维矩阵;S31. Convert the format of the two-dimensional matrix that is compatible with the attention mechanism to obtain the converted two-dimensional matrix;

S32、将所述转换后的二维矩阵进行维度变换,获得变换后的二维矩阵;S32. Perform dimension transformation on the converted two-dimensional matrix to obtain the transformed two-dimensional matrix;

S33、采用基于ReLU注意力机制公式对所述变换后的二维矩阵进行查询处理,获得参数矩阵Wq、键生成参数矩阵Wk和值生成参数矩阵WvS33. Use the formula based on the ReLU attention mechanism to perform query processing on the transformed two-dimensional matrix, and obtain the parameter matrix W q , the key generation parameter matrix W k and the value generation parameter matrix W v ;

S34、采用基于ReLU的注意力机制的得分公式对所述参数矩阵Wq、键生成参数矩阵Wk和值生成参数矩阵Wv进行计算,获得score数据;S34. Use the score formula of the attention mechanism based on ReLU to calculate the parameter matrix W q , the key generation parameter matrix W k and the value generation parameter matrix W v to obtain score data;

S35、将所述score数据进行正规化操作,获得最终的score数据;S35. Normalize the score data to obtain the final score data;

S36、采用ReLU激活函数对所述最终的score数据进行处理,并将处理后的结果点乘值生成参数矩阵Wv并累加,获得最终结果X矩阵;S36. Use the ReLU activation function to process the final score data, and generate the parameter matrix W v from the processed result point multiplication value and accumulate it to obtain the final result X matrix;

S37、将所述最终结果X矩阵输入到注意力机制模块中,依次通过归一化层、注意力层和归一化层处理,获得输出数据XoutputS37. Input the final result X matrix into the attention mechanism module, and process it through the normalization layer, attention layer and normalization layer in sequence to obtain the output data X output ;

S38、将所述输出数据Xoutput输入到多层感知器层中,获得最终的输出数据XoutputS38. Input the output data X output into the multi-layer perceptron layer to obtain the final output data X output .

进一步,还有一种优选实施例,上述步骤S33中的基于ReLU注意力机制公式表示为:Furthermore, there is a preferred embodiment. The formula of the ReLU-based attention mechanism in the above step S33 is expressed as:

Xoutput=Att(LN(Non-Trans(X)))+X;X output =Att(LN(Non-Trans(X)))+X;

其中,Non-Trans为未改变的维度,LN为层范数正则化,Att为基于ReLU的注意力机制。Among them, Non-Trans is the unchanged dimension, LN is layer norm regularization, and Att is the attention mechanism based on ReLU.

进一步,还有一种优选实施例,上述步骤S34中的ReLU的注意力机制的得分公式表示为:Furthermore, there is a preferred embodiment. The score formula of the ReLU attention mechanism in the above step S34 is expressed as:

score=ReLU(WqX)(ReLU(WkX)·ReLU(WvX))。score=ReLU(W q X)(ReLU(W k X) · ReLU(W v X)).

本发明所述的一种基于轻量级TRANSFORMER的5GNR室内定位方法可以全部采用计算机软件实现,因此,对应的,本发明还提供一种基于轻量级TRANSFORMER的5GNR室内定位系统,所述系统为:The 5GNR indoor positioning method based on lightweight TRANSFORMER described in the present invention can all be implemented using computer software. Therefore, correspondingly, the present invention also provides a 5GNR indoor positioning system based on lightweight TRANSFORMER. The system is :

用于采用通道独立的矩形图像块操作模块对CSI输入数据进行处理,获得输出矩阵的存储装置;A storage device used to process CSI input data using a channel-independent rectangular image block operation module to obtain an output matrix;

用于将所述输出矩阵的三维矩阵转换为与注意力机制相容的二维矩阵的存储装置;A storage device for converting the three-dimensional matrix of the output matrix into a two-dimensional matrix compatible with the attention mechanism;

用于采用Reshape()函数将所述与注意力机制相容的二维矩阵输入到基于ReLU的多通道注意力机制模块中,获得最终的输出数据的存储装置;A storage device used to input the two-dimensional matrix compatible with the attention mechanism into the multi-channel attention mechanism module based on ReLU using the Reshape() function to obtain the final output data;

用于采用位置映射模块对所述最终的输出数据进行位置定位,获得映射位置的存储装置。A storage device for positioning the final output data using a position mapping module to obtain a mapping position.

本发明还提供一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器运行时执行上述任意一项所述的一种基于轻量级TRANSFORMER的5GNR室内定位方法。The present invention also provides a computer-readable storage medium. A computer program is stored on the computer-readable storage medium. When the computer program is run by a processor, the computer program executes any one of the above-mentioned lightweight TRANSFORMER-based 5GNR indoor Positioning method.

本发明还提供一种计算机设备,该设备包括存储器和处理器,所述存储器中存储有计算机程序,当所述处理器运行所述存储器存储的计算机程序时,所述处理器执行上述任意一项所述的一种基于轻量级TRANSFORMER的5G NR室内定位方法。The present invention also provides a computer device. The device includes a memory and a processor. A computer program is stored in the memory. When the processor runs the computer program stored in the memory, the processor executes any of the above. The described 5G NR indoor positioning method based on lightweight TRANSFORMER.

本发明的有益效果为:The beneficial effects of the present invention are:

1、本发明提供一种基于轻量级TRANSFORMER的5G NR室内定位方法,在通道独立的矩形图像块操作模块中通过对CSI数据使用一个基于卷积的图像块操作使CSI数据变换成能够适应注意力机制输入,便于后续的注意力的计算过程;在基于ReLU的多通道注意力机制模块中将建模维度集中在向量的信道维度上,使得能够对来自多个基站的子载波之间的交互进行建模,同时提出了一种功能交互的注意力机制,实现了更快、更好的性能。现有室内指纹定位方法的子载波感知范围有限,导致的定位精度低、效率低的问题。1. The present invention provides a 5G NR indoor positioning method based on lightweight TRANSFORMER. In the channel-independent rectangular image block operation module, the CSI data is transformed into an image block that can adapt to attention by using a convolution-based image block operation on the CSI data. force mechanism input to facilitate the subsequent attention calculation process; in the multi-channel attention mechanism module based on ReLU, the modeling dimension is concentrated on the channel dimension of the vector, enabling the interaction between subcarriers from multiple base stations to be analyzed Modeling is carried out and a functionally interactive attention mechanism is proposed to achieve faster and better performance. Existing indoor fingerprint positioning methods have limited subcarrier sensing range, resulting in low positioning accuracy and low efficiency.

2、本发明提供一种基于轻量级TRANSFORMER的5G NR室内定位方法,通过使用基于Relu的注意力机制取代了硬件不友好的Softmax注意力机制,使得本发明即使在资源有限的设备上也能够更加轻松地进行部署,从而解决了现有室内指纹定位方法存在的难以部署的问题。2. The present invention provides a 5G NR indoor positioning method based on lightweight TRANSFORMER. By using the Relu-based attention mechanism to replace the hardware-unfriendly Softmax attention mechanism, the present invention can be used even on devices with limited resources. Deployment is easier, thereby solving the difficult deployment problem of existing indoor fingerprint positioning methods.

本发明适用于计算机中的基于轻量级TRANSFORMER的5G NR室内定位方法。The present invention is suitable for 5G NR indoor positioning method based on lightweight TRANSFORMER in computers.

附图说明Description of the drawings

图1是实施方式一所述的一种基于轻量级TRANSFORMER的5G NR室内定位方法的流程图;Figure 1 is a flow chart of a 5G NR indoor positioning method based on lightweight TRANSFORMER described in the first embodiment;

图2是实施方式二所述的通道独立的矩形图像块操作模块的处理流程图;Figure 2 is a processing flow chart of the channel-independent rectangular image block operation module described in the second embodiment;

图3是实施方式五所述的基于ReLU的多通道注意力机制模块的处理流程图;Figure 3 is a processing flow chart of the ReLU-based multi-channel attention mechanism module described in Embodiment 5;

图4(a)是实施方式十一所述的SNR10数据集下不同方法的结果对比图;Figure 4(a) is a comparison chart of the results of different methods under the SNR10 data set described in Embodiment 11;

图4(b)是实施方式十一所述的SNR20数据集下不同方法的结果对比图;Figure 4(b) is a comparison chart of the results of different methods under the SNR20 data set described in Embodiment 11;

图4(c)是实施方式十一所述的SNR50数据集下不同方法的结果对比图;Figure 4(c) is a comparison chart of the results of different methods under the SNR50 data set described in Embodiment 11;

图5是实施方式一所述的基于轻量级TRANSFORMER的5G NR室内定位方法与现有定位方法的误差大小对比图。Figure 5 is a comparison diagram of the error size between the 5G NR indoor positioning method based on lightweight TRANSFORMER and the existing positioning method described in the first embodiment.

其中,SNR为信噪比。Among them, SNR is the signal-to-noise ratio.

具体实施方式Detailed ways

下面结合附图和实施例对本发明的具体实施方式作进一步详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进,这些都属于本发明的保护范围。The specific implementation modes of the present invention will be further described in detail below with reference to the accompanying drawings and examples. The following examples will help those skilled in the art to further understand the present invention, but do not limit the present invention in any form. It should be noted that, for those of ordinary skill in the art, several changes and improvements can be made without departing from the concept of the present invention, and these all belong to the protection scope of the present invention.

实施方式一.参见图1说明本实施方式,本实施方式提供一种基于轻量级TRANSFORMER的5G NR室内定位方法,所述方法为:Embodiment 1. Refer to Figure 1 to illustrate this implementation. This implementation provides a 5G NR indoor positioning method based on lightweight TRANSFORMER. The method is:

S1、采用通道独立的矩形图像块操作模块对CSI输入数据进行处理,获得输出矩阵;S1. Use the channel-independent rectangular image block operation module to process the CSI input data and obtain the output matrix;

S2、采用Reshape()函数将所述输出矩阵的三维矩阵转换为与注意力机制相容的二维矩阵;S2. Use the Reshape() function to convert the three-dimensional matrix of the output matrix into a two-dimensional matrix that is compatible with the attention mechanism;

S3、将所述与注意力机制相容的二维矩阵输入到基于ReLU的多通道注意力机制模块中,获得最终的输出数据;S3. Input the two-dimensional matrix compatible with the attention mechanism into the multi-channel attention mechanism module based on ReLU to obtain the final output data;

S4、采用位置映射模块对所述最终的输出数据进行位置定位,获得映射位置。S4. Use the position mapping module to position the final output data to obtain the mapping position.

本实施方式在实际应用时,包括通道独立的矩形图像块操作模块、基于ReLU的多通道注意力机制模块和位置映射模块。首先在接收信号的频分复用解调和时间偏移校正之后,用户设备可以获得接收资源网格。接收到的资源网格被定义为rxGrid,并且已知导频被定义为refGrid,所以每个天线可以用k维向量表示为Hraw=(rxGrid)k×1/(refGrid)k×1,其中k表示子载波的数量,Hraw表示信道脉冲响应。In practical application, this implementation mode includes a channel-independent rectangular image block operation module, a ReLU-based multi-channel attention mechanism module and a position mapping module. First, after frequency division multiplexing demodulation and time offset correction of the received signal, the user equipment can obtain the receiving resource grid. The received resource grid is defined as rxGrid, and the known pilot is defined as refGrid, so each antenna can be represented by a k-dimensional vector as H raw = (rxGrid) k×1 / (refGrid) k×1 , where k represents the number of subcarriers, and H raw represents the channel impulse response.

单个天线的子载波可以表示为hi∈R1×k,而具有多输入多输出的5G基站的总体子载波可以表示为H'∈Rn×k,其中n表示天线的数量。在典型的室内定位任务中,会涉及多个基站,所以总体CSI数据可以表示为H∈Rb×n×k,其中b表示基站的数量。The subcarriers of a single antenna can be expressed as h i ∈ R 1 × k , while the overall subcarriers of a 5G base station with multiple input and multiple output can be expressed as H' ∈ R n × k , where n represents the number of antennas. In a typical indoor positioning task, multiple base stations are involved, so the overall CSI data can be expressed as H∈R b×n×k , where b represents the number of base stations.

基于指纹的室内定位总体框架由两个阶段组成,分别是离线和在线,也就是训练和测试。该框架的目标是通过使用训练数据集Ctrain={(csi1,loc1),(csi2,loc2),...,(csin,locn)}使得可以在测试数据Cquery={(csin+1,locn+1),(csin+2,locn+2),...,(csim,locm)}上实现最佳的定位性能,从而学习具有良好泛化性能的映射方法。其中训练数据和测试数据都是由一组成对的数据组成的,在一对数据中,csii表示CSI数据,loci表示位置数据。The overall framework of fingerprint-based indoor positioning consists of two stages, namely offline and online, that is, training and testing. The goal of this framework is to use the training data set C train = {(csi 1 , loc 1 ), (csi 2 , loc 2 ),..., (csi n ,loc n )} so that the test data C query = Achieve the best positioning performance on {(csi n+1 ,loc n+1 ),(csi n+2 ,loc n+2 ),...,(csi m ,loc m )}, thereby learning a good general Performance mapping method. The training data and test data are both composed of a pair of data. In a pair of data, csi i represents CSI data and loc i represents location data.

在离线阶段,利用基于深度学习的映射方法来最小化损失函数,其中预测位置由映射方法的输出表示,并且实际位置表示为地面实况。基于深度学习的映射方法具有少量的参数,并且在测试数据上表现出较高的定位精度。In the offline stage, a deep learning-based mapping method is utilized to minimize the loss function, where the predicted position is represented by the output of the mapping method and the actual position is represented as the ground truth. Deep learning-based mapping methods have a small number of parameters and exhibit high localization accuracy on test data.

应用时,将输入数据划分成不同的待操作数据:对于给定的CSI输入数据H,根据H的不同通道对H进行划分,得到Hi,其中Hi的下标i表示H的第i个通道。When applying, the input data is divided into different data to be operated: for a given CSI input data H, H is divided according to different channels of H to obtain Hi , where the subscript i of Hi represents the i-th of H aisle.

对待操作数据进行通道独立的矩形图像块操作:对完成了预处理的待操作数据和给定基于卷积的图像块操作P进行通道独立的矩形图像块操作,具体公式如下所示。Perform a channel-independent rectangular image block operation on the data to be operated: perform a channel-independent rectangular image block operation on the preprocessed data to be operated on and a given convolution-based image block operation P. The specific formula is as follows.

Hp=Concat(P(H0,:),P(H1,:),...,P(HC,:));H p =Concat(P(H 0,: ),P(H 1,: ),...,P(H C,: ));

其中表示所获得的输出,Hi的下标i表示H的第i个通道,C和C'分别表示输入和输出通道的数量,W和L分别表示输入宽度和长度,Kw和Kl分别表示用于基于分块的卷积的卷积核的宽度和长度,/>和/>分别表示通过将输入宽度和长度除以内核宽度和长度而获得的输出宽度和长度。in represents the obtained output, the subscript i of H i represents the i-th channel of H, C and C' represent the number of input and output channels respectively, W and L represent the input width and length respectively, K w and K l represent respectively The width and length of the convolution kernel used for block-based convolution, /> and/> represent the output width and length obtained by dividing the input width and length by the kernel width and length, respectively.

设置相关参数:将填充元素设置为0,将Kw设置为8,将Kl设置为13,将宽度方向上的步幅设置为等于卷积核的宽度,并且将长度方向上的步幅设置为等于卷积核的长度。Set related parameters: set the padding element to 0, set K w to 8, set K l to 13, set the stride in the width direction to be equal to the width of the convolution kernel, and set the stride in the length direction is equal to the length of the convolution kernel.

对输出矩阵进行重塑操作:对得到的输出Hp使用Reshape(重塑)操作,使得Hp从三维矩阵转换为与注意力机制相容的二维矩阵。Perform a reshape operation on the output matrix: Use the Reshape operation on the obtained output H p to convert H p from a three-dimensional matrix into a two-dimensional matrix that is compatible with the attention mechanism.

基于ReLU的多通道注意力机制操作:对输入X进行维度变换:Multi-channel attention mechanism operation based on ReLU: Dimension transformation of input X:

令X=Wi对X进行维度变换,具体描述公式如下所示。Let X=W i , Dimension transformation is performed on X. The specific description formula is as follows.

例如定义X为一个矩阵:For example, define X as a matrix:

根据上述变换公式对X进行维度变换可以得到:According to the above transformation formula, the dimension transformation of X can be obtained:

通过这种操作,使得输入X能够适应注意力机制。Through this operation, the input X can be adapted to the attention mechanism.

自注意力层的计算:首先计算X的查询生成参数矩阵Wq、键生成参数矩阵Wk,值生成参数矩阵Wv,接着根据X的这三个生成参数矩阵计算score,具体计算公式如下所示。Calculation of the self-attention layer: first calculate the query generation parameter matrix W q , key generation parameter matrix W k , and value generation parameter matrix W v of X. Then calculate the score based on the three generation parameter matrices of X. The specific calculation formula is as follows Show.

score=ReLU(WqX)(ReLU(WkX)·ReLU(WvX));score=ReLU(W q X)(ReLU(W k X) · ReLU(W v X));

为了梯度的稳定,对于计算得到的score进行正则化操作从而得到最终的score,具体正则化公式如下所示。In order to stabilize the gradient, the calculated score is regularized to obtain the final score. The specific regularization formula is as follows.

其中,α是正则化常数,将其设置为1×10-15Among them, α is the regularization constant, which is set to 1×10 -15 .

对于score使用ReLU激活函数使得score为正数或者0,使用ReLU激活函数比正常使用softmax激活函数的速度要更快。Use the ReLU activation function for the score to make the score a positive number or 0. Using the ReLU activation function is faster than using the softmax activation function normally.

接着将得到的结果点乘Wv值,得到加权的每个输入向量的评分V,相加之后得到最终的输出结果矩阵X。Then the obtained result is multiplied by the W v value to obtain the weighted score V of each input vector, and after addition, the final output result matrix X is obtained.

基于多层自注意力层的特征融合:Feature fusion based on multi-layer self-attention layer:

通过搭建多层自注意力层,将上述过程重复若干次,通过归一化层进行归一化操作,并在每次计算注意力后的输出与输入进行叠加,具体流程描述公式如下所示。By building a multi-layer self-attention layer, the above process is repeated several times, the normalization operation is performed through the normalization layer, and the output and input after each attention calculation are superimposed. The specific process description formula is as follows.

Xoutput=Att(LN(Non-Trans(X)))+X;X output =Att(LN(Non-Trans(X)))+X;

位置映射:将从注意力机制模块获得的输出,输入到由全连接层构成的位置映射模块进行位置定位。位置映射模块由一层全连接层构成,具体描述公式如下式所示:Position mapping: The output obtained from the attention mechanism module is input to the position mapping module composed of a fully connected layer for position positioning. The position mapping module consists of a fully connected layer. The specific description formula is as follows:

(X,Y,Z)=Linear(LN(Xoutput));(X,Y,Z)=Linear(LN(X output ));

其中LN表示层范数,Linear表示简单的线性层。Where LN represents the layer norm and Linear represents a simple linear layer.

本实施方式提供一种基于轻量级TRANSFORMER的5GNR室内定位方法,在通道独立的矩形图像块操作模块中通过对CSI数据使用一个基于卷积的图像块操作使CSI数据变换成能够适应注意力机制输入,便于后续的注意力的计算过程;在基于ReLU的多通道注意力机制模块中将建模维度集中在向量的信道维度上,使得能够对来自多个基站的子载波之间的交互进行建模,同时提出了一种功能交互的注意力机制,实现了更快、更好的性能。现有室内指纹定位方法的子载波感知范围有限,导致的定位精度低、效率低和难以部署的问题。This implementation provides a 5GNR indoor positioning method based on lightweight TRANSFORMER. In the channel-independent rectangular image block operation module, the CSI data is transformed into an image block that can adapt to the attention mechanism by using a convolution-based image block operation on the CSI data. input to facilitate the subsequent attention calculation process; in the multi-channel attention mechanism module based on ReLU, the modeling dimension is concentrated on the channel dimension of the vector, enabling the interaction between subcarriers from multiple base stations to be constructed. model, and also proposes a functional interactive attention mechanism to achieve faster and better performance. Existing indoor fingerprint positioning methods have limited subcarrier sensing range, resulting in low positioning accuracy, low efficiency, and difficulty in deployment.

实施方式二.参见图2说明本实施方式,本实施方式是对实施方式一所述的一种基于轻量级TRANSFORMER的5G NR室内定位方法中步骤S1的通道独立的矩形图像块操作模块的处理流程作举例说明,所述处理流程为:Embodiment 2. Refer to Figure 2 to illustrate this embodiment. This embodiment is the processing of the channel-independent rectangular image block operation module in step S1 in the lightweight TRANSFORMER-based 5G NR indoor positioning method described in Embodiment 1. The process is given as an example. The processing flow is:

S11、将所述CSI输入数据按照不同通道进行划分,获得Hi数据;S11. Divide the CSI input data according to different channels to obtain Hi data;

S12、采用基于卷积的图像块对所述Hi数据进行图像块操作,获得输出矩阵。S12. Use convolution-based image blocks to perform image block operations on the Hi data to obtain an output matrix.

本实施方式在实际应用时,如图2所示,对于不同的给定输入H的第i个通道的数据Hi,利用公式Hp=Concat(P(H0,:),P(H1,:),...,P(HC,:))进行图像块操作。In practical application of this embodiment, as shown in Figure 2, for the data Hi of the i-th channel of different given input H, the formula H p =Concat(P(H 0,: ),P(H 1 ,: ),...,P(H C,: )) perform image block operations.

其中表示所获得的输出,Hi的下标i表示H的第i个通道,C和C'分别表示输入和输出通道的数量,W和L分别表示输入宽度和长度,Kw和Kl分别表示用于基于分块的卷积的卷积核的宽度和长度,/>和/>分别表示通过将输入宽度和长度除以内核宽度和长度而获得的输出宽度和长度。in represents the obtained output, the subscript i of H i represents the i-th channel of H, C and C' represent the number of input and output channels respectively, W and L represent the input width and length respectively, K w and K l represent respectively The width and length of the convolution kernel used for block-based convolution, /> and/> represent the output width and length obtained by dividing the input width and length by the kernel width and length, respectively.

将填充元素设置为0,此外将宽度方向上的步幅设置为等于卷积核的宽度,并且将长度方向上的步幅设置为等于卷积核的长度。将Kw设置为8,将Kl设置为13。因为CSI的特殊横纵比需要这样的设计来有效地提取特征。另外较小的值8对应于较小的天线尺寸,而较大的值13对应于较大的子载波尺寸。Set the padding element to 0, in addition to setting the stride in the width direction equal to the width of the convolution kernel, and setting the stride in the length direction equal to the length of the convolution kernel. Set K w to 8 and K l to 13. Because the special aspect ratio of CSI requires such a design to effectively extract features. Also a smaller value of 8 corresponds to a smaller antenna size, while a larger value of 13 corresponds to a larger subcarrier size.

对得到的输出矩阵Hp利用公式进行矩阵的维度转换,得到与注意力机制相容的二维矩阵输出HpUse the formula for the obtained output matrix H p Perform matrix dimension conversion to obtain a two-dimensional matrix output H p that is compatible with the attention mechanism.

将得到的输出交给基于ReLU的多通道注意力机制模块对来自多个基站的子载波之间的交互进行建模。will get the output It is left to the ReLU-based multi-channel attention mechanism module to model the interactions between sub-carriers from multiple base stations.

实施方式三.本实施方式是对实施方式二所述的一种基于轻量级TRANSFORMER的5GNR室内定位方法中步骤S12的基于卷积的图像块的公式作举例说明,所述基于卷积的图像块的公式表示为:Embodiment 3. This embodiment is an example of the formula of the convolution-based image block in step S12 of the lightweight TRANSFORMER-based 5GNR indoor positioning method described in Embodiment 2. The convolution-based image The formula for the block is expressed as:

Hp=Concat(P(H0,:),P(H1,:),...,P(HC,:));H p =Concat(P(H 0,: ),P(H 1,: ),...,P(H C,: ));

其中,为获得的输出,Hi为第i个通道的数据,C为输入通道的数量,C'为输出通道的数量,W为输入宽度,L为输入长度,Kw为用于基于分块的卷积的卷积核的宽度,Kl为用于基于分块的卷积的卷积核的长度,/>为通过将输入宽度除以内核宽度而获得的输出宽度,/>为通过将输入通过将输入内核长度而获得的输出长度。in, is the output obtained, Hi is the data of the i-th channel, C is the number of input channels, C' is the number of output channels, W is the input width, L is the input length, and K w is the volume used for the block-based The width of the convolution kernel of the product, K l is the length of the convolution kernel used for block-based convolution, /> is the output width obtained by dividing the input width by the kernel width, /> is the output length obtained by passing the input through the length of the input kernel.

实施方式四.本实施方式是对实施方式二所述的一种基于轻量级TRANSFORMER的5G NR室内定位方法中步骤S12中基于卷积的图像块的设置步骤作举例说明,所述设置步骤为:Embodiment 4. This embodiment is an example of the setting steps of the convolution-based image blocks in step S12 of the lightweight TRANSFORMER-based 5G NR indoor positioning method described in Embodiment 2. The setting steps are: :

填充元素设置为0,Kw设置为8,Kl设置为13;The padding element is set to 0, K w is set to 8, and K l is set to 13;

将宽度方向上的步幅设置为等于卷积核的宽度,将长度方向上的步幅设置为等于卷积核的长度。Set the stride in the width direction equal to the width of the convolution kernel, and set the stride in the length direction equal to the length of the convolution kernel.

本实施方式在实际应用时,将填充元素设置为0,此外将宽度方向上的步幅设置为等于卷积核的宽度,并且将长度方向上的步幅设置为等于卷积核的长度。将Kw设置为8,将Kl设置为13。因为CSI的特殊横纵比需要这样的设计来有效地提取特征。另外较小的值8对应于较小的天线尺寸,而较大的值13对应于较大的子载波尺寸。In actual application, the padding element is set to 0, the stride in the width direction is set equal to the width of the convolution kernel, and the stride in the length direction is set equal to the length of the convolution kernel. Set K w to 8 and K l to 13. Because the special aspect ratio of CSI requires such a design to effectively extract features. Also a smaller value of 8 corresponds to a smaller antenna size, while a larger value of 13 corresponds to a larger subcarrier size.

实施方式五.参见图3说明本实施方式,本实施方式是对实施方式一所述的一种基于轻量级TRANSFORMER的5G NR室内定位方法中步骤S3的基于ReLU的多通道注意力机制模块的处理流程作举例说明,所述处理流程为:Embodiment 5. Refer to Figure 3 to illustrate this embodiment. This embodiment is a modification of the ReLU-based multi-channel attention mechanism module in step S3 of the lightweight TRANSFORMER-based 5G NR indoor positioning method described in Embodiment 1. The processing flow is given as an example. The processing flow is as follows:

S31、将所述与注意力机制相容的二维矩阵进行格式转换,获得转换后的二维矩阵;S31. Convert the format of the two-dimensional matrix that is compatible with the attention mechanism to obtain the converted two-dimensional matrix;

S32、将所述转换后的二维矩阵进行维度变换,获得变换后的二维矩阵;S32. Perform dimension transformation on the converted two-dimensional matrix to obtain the transformed two-dimensional matrix;

S33、采用基于ReLU注意力机制公式对所述变换后的二维矩阵进行查询处理,获得参数矩阵Wq、键生成参数矩阵Wk和值生成参数矩阵WvS33. Use the formula based on the ReLU attention mechanism to perform query processing on the transformed two-dimensional matrix, and obtain the parameter matrix W q , the key generation parameter matrix W k and the value generation parameter matrix W v ;

S34、采用基于ReLU的注意力机制的得分公式对所述参数矩阵Wq、键生成参数矩阵Wk和值生成参数矩阵Wv进行计算,获得score数据;S34. Use the score formula of the attention mechanism based on ReLU to calculate the parameter matrix W q , the key generation parameter matrix W k and the value generation parameter matrix W v to obtain score data;

S35、将所述score数据进行正规化操作,获得最终的score数据;S35. Normalize the score data to obtain the final score data;

S36、采用ReLU激活函数对所述最终的score数据进行处理,并将处理后的结果点乘值生成参数矩阵Wv并累加,获得最终结果X矩阵;S36. Use the ReLU activation function to process the final score data, and generate the parameter matrix W v from the processed result point multiplication value and accumulate it to obtain the final result X matrix;

S37、将所述最终结果X矩阵输入到注意力机制模块中,依次通过归一化层、注意力层和归一化层处理,获得输出数据XoutputS37. Input the final result X matrix into the attention mechanism module, and process it through the normalization layer, attention layer and normalization layer in sequence to obtain the output data X output ;

S38、将所述输出数据Xoutput输入到多层感知器层中,获得最终的输出数据XoutputS38. Input the output data X output into the multi-layer perceptron layer to obtain the final output data X output .

本实施方式在实际应用时,如图3所示,对于通道独立的矩形图像块操作模块得到的特征信息采用基于ReLU的注意力机制来捕获子载波之间的全局交互,同时可以保持相等甚至更好的时间效率。将执行注意力计算之后得到的输出Xoutput输入到多层感知器中以增加特征的丰富性。然后将得到的输出交给位置映射模块进行三维坐标定位,完成定位任务。When this implementation is actually applied, as shown in Figure 3, the characteristic information obtained by the channel-independent rectangular image block operation module A ReLU-based attention mechanism is adopted to capture the global interactions between subcarriers while maintaining equal or even better time efficiency. The output X output obtained after performing the attention calculation is input into the multi-layer perceptron to increase the richness of the features. The obtained output is then handed over to the position mapping module for three-dimensional coordinate positioning to complete the positioning task.

其中整个基于ReLU注意力机制的公式为:The entire formula based on the ReLU attention mechanism is:

Xoutput=Att(LN(Non-Trans(X)))+X;X output =Att(LN(Non-Trans(X)))+X;

其中Non-Trans表示未改变的维度,LN表示层范数正则化,Att表示基于ReLU的注意力机制。Among them, Non-Trans represents the unchanged dimension, LN represents layer norm regularization, and Att represents the attention mechanism based on ReLU.

其中基于ReLU的注意力机制的得分公式描述如下式所示:The score formula of the attention mechanism based on ReLU is described as follows:

score=ReLU(WqX)(ReLU(WkX)·ReLU(WvX));score=ReLU(W q X)(ReLU(W k X) · ReLU(W v X));

其中Wq,Wk和Wv分别表示查询、键和值的生成参数矩阵。通过正则化获得最终的score,其中α是正则化常数,将其设置为1×10-15。由于基于ReLU的注意力的矩阵乘法运算首先计算键和值,因此注意力计算并不以C'为中心。where W q , W k and W v represent the generating parameter matrices of query, key and value respectively. through regularization Obtain the final score, where α is the regularization constant, set it to 1×10 -15 . Since the matrix multiplication operation of ReLU-based attention first calculates keys and values, the attention calculation is not centered on C'.

特征矩阵在输入Wi之前的形式是经过通道独立的矩形图像块操作得到的输出需要对X进行维度变换,维度变换的矩阵具体描述公式如下式所示:The form of the feature matrix before input Wi is the output obtained by operating on channel-independent rectangular image patches. It is necessary to perform dimension transformation on X. The specific description formula of the dimension transformation matrix is as follows:

其中,xi表示来自相同信道的不同子载波特征,x、y和z表示来自于X的不同信道。为了便于解释,可以省略权重下标,并将其表示为w,w在广义上表示的是权重参数。在左边矩阵乘法的结果中,每一个值的形式是(wx1+wx2+wx3)。而相反,在右边矩阵乘法的结果中,每一个值的形式是(wx1+wy1+wz1),这意味着在来自不同信道的子载波之间存在相互作用,并且在后面的注意力机制的计算中将增强这个特征。左边矩阵乘法是在的格式上计算的。Among them, xi represents different subcarrier characteristics from the same channel, and x, y and z represent different channels from X. For ease of explanation, the weight subscript can be omitted and represented as w, which represents the weight parameter in a broad sense. In the result of matrix multiplication on the left, each value has the form (wx 1 +wx 2 +wx 3 ). On the contrary, in the result of matrix multiplication on the right, each value is of the form (wx 1 +wy 1 +wz 1 ), which means that there is interaction between subcarriers from different channels, and in the following attention This feature will be enhanced in the calculation of the mechanism. The matrix multiplication on the left is in calculated on the format.

实施方式六.本实施方式是对实施方式五所述的一种基于轻量级TRANSFORMER的5G NR室内定位方法中步骤S33中的基于ReLU注意力机制公式作举例说明,所述的基于ReLU注意力机制公式表示为:Embodiment 6. This embodiment is an example of the ReLU attention mechanism formula in step S33 of the lightweight TRANSFORMER-based 5G NR indoor positioning method described in Embodiment 5. The ReLU attention-based The mechanism formula is expressed as:

Xoutput=Att(LN(Non-Trans(X)))+X;X output =Att(LN(Non-Trans(X)))+X;

其中,Non-Trans为未改变的维度,LN为层范数正则化,Att为基于ReLU的注意力机制。Among them, Non-Trans is the unchanged dimension, LN is layer norm regularization, and Att is the attention mechanism based on ReLU.

实施方式七.本实施方式是对实施方式五所述的一种基于轻量级TRANSFORMER的5G NR室内定位方法中步骤S34中的ReLU的注意力机制的得分公式作举例说明,所述ReLU的注意力机制的得分公式表示为:Embodiment 7. This embodiment is an example of the scoring formula of the ReLU attention mechanism in step S34 of the lightweight TRANSFORMER-based 5G NR indoor positioning method described in Embodiment 5. The attention of the ReLU The score formula of the force mechanism is expressed as:

score=ReLU(WqX)(ReLU(WkX)·ReLU(WvX))。score=ReLU(W q X)(ReLU(W k X) · ReLU(W v X)).

实施方式八.本实施方式提供一种基于轻量级TRANSFORMER的5G NR室内定位系统,所述系统为:Embodiment 8. This embodiment provides a 5G NR indoor positioning system based on lightweight TRANSFORMER. The system is:

用于采用通道独立的矩形图像块操作模块对CSI输入数据进行处理,获得输出矩阵的存储装置;A storage device used to process CSI input data using a channel-independent rectangular image block operation module to obtain an output matrix;

用于将所述输出矩阵的三维矩阵转换为与注意力机制相容的二维矩阵的存储装置;A storage device for converting the three-dimensional matrix of the output matrix into a two-dimensional matrix compatible with the attention mechanism;

用于采用Reshape()函数将所述与注意力机制相容的二维矩阵输入到基于ReLU的多通道注意力机制模块中,获得最终的输出数据的存储装置;A storage device used to input the two-dimensional matrix compatible with the attention mechanism into the multi-channel attention mechanism module based on ReLU using the Reshape() function to obtain the final output data;

用于采用位置映射模块对所述最终的输出数据进行位置定位,获得映射位置的存储装置。A storage device for positioning the final output data using a position mapping module to obtain a mapping position.

实施方式九.本实施方式提供一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器运行时执行实施方式一至实施方式七任意一项所述的一种基于轻量级TRANSFORMER的5G NR室内定位方法。Embodiment 9. This embodiment provides a computer-readable storage medium. A computer program is stored on the computer-readable storage medium. When the computer program is run by a processor, it executes one of the steps described in any one of Embodiments 1 to 7. A 5G NR indoor positioning method based on lightweight TRANSFORMER.

实施方式十.本实施方式提供一种计算机设备,所述存储器中存储有计算机程序,当所述处理器运行所述存储器存储的计算机程序时,所述处理器执行实施方式一至实施方式七任意一项所述的一种基于轻量级TRANSFORMER的5G NR室内定位方法。Embodiment 10. This embodiment provides a computer device. A computer program is stored in the memory. When the processor runs the computer program stored in the memory, the processor executes any one of Embodiments 1 to 7. A 5G NR indoor positioning method based on lightweight TRANSFORMER described in the item.

实施方式十一.参见图4和图5说明本实施方式,本实施方式是对实施方式一至实施方式七任意一项所述的一种基于轻量级TRANSFORMER的5G NR室内定位方法作验证说明:Embodiment 11. Refer to Figure 4 and Figure 5 to illustrate this implementation. This implementation is a verification explanation of a lightweight TRANSFORMER-based 5G NR indoor positioning method described in any one of Embodiment 1 to Embodiment 7:

采用北京中国科学院新实验楼的室内空间收集的三个真实的5G场景数据集作为实验数据,整个室内空间的大小为20米×60米×4米,是一个适合工厂和博物馆等应用的大房间。为了获得CSI,在3.5G赫兹下使用集成的感测和通信部署五个5G基站,带宽为100M赫兹,功率为40瓦特。这些基站安装在塑料支架上,在地面以上2.4米的高度,并在模拟过程中引入了0.1米的随机浮动高度,以防止共面性。用户设备充当接收器,并且被放置在离地面1.2米的高度处的标记的升降车上,模拟在1.8米的高度处拿着移动的电话的人。所获得的数据集包括4816个定位样本,其中三个数据集对应于SNR(信噪比)10、SNR20和SNR50处的CSI的不同表示。为了将数据集分为训练集、验证集和测试集,根据不同的信噪比使用近似的6:2:2的比例,分别得到2888、964和964个样本。单个CSI矩阵的大小为5×16×193,表示存在5个基站,每个基站具有16个天线,每个天线具有193个子载波。Three real 5G scene data sets collected in the indoor space of the new experimental building of the Chinese Academy of Sciences in Beijing were used as experimental data. The size of the entire indoor space is 20 meters × 60 meters × 4 meters. It is a large room suitable for applications such as factories and museums. . To obtain CSI, five 5G base stations were deployed using integrated sensing and communications at 3.5GHz with a bandwidth of 100MHz and a power of 40W. The base stations were mounted on plastic brackets at a height of 2.4 meters above the ground, and a random floating height of 0.1 meters was introduced during the simulation to prevent coplanarity. The user equipment acts as a receiver and is placed on a marked lift truck at a height of 1.2 meters above the ground, simulating a person holding a mobile phone at a height of 1.8 meters. The obtained dataset includes 4816 positioning samples, with three datasets corresponding to different representations of CSI at SNR (Signal to Noise Ratio) 10, SNR20 and SNR50. In order to divide the data set into training set, validation set and test set, an approximate ratio of 6:2:2 is used according to different signal-to-noise ratios, resulting in 2888, 964 and 964 samples respectively. The size of a single CSI matrix is 5×16×193, indicating the presence of 5 base stations, each with 16 antennas and each antenna with 193 subcarriers.

对于通道无关矩形图像块,将将Kw设置为8,将Kl设置为13。隐藏层C'的维数为385。多层感知器模块和归一化模块中隐藏层的维数都是31。最终定位器使用输入尺寸为385且输出尺寸为3的线性层。For channel-independent rectangular image patches, K w will be set to 8 and K l will be set to 13. The dimension of hidden layer C' is 385. The dimensions of the hidden layers in the multilayer perceptron module and the normalization module are both 31. The final localizer uses a linear layer with input size 385 and output size 3.

初始学习率为1×10-4,在100个训练周期之后,学习率每25个周期减半,训练轮次epoch为300,批大小batch_size为16。The initial learning rate is 1×10 -4 . After 100 training epochs, the learning rate is halved every 25 epochs, the training round epoch is 300, and the batch size batch_size is 16.

实验过程中采用的两种评价标准分别为均方根误差(Root Mean Square Error,RMSE),The two evaluation criteria used during the experiment are Root Mean Square Error (RMSE),

平均绝对误差(Mean Absolute Error,MAE):Mean Absolute Error (MAE):

其中yi表示预测值,表示真实值。where yi represents the predicted value, represents the true value.

本实施方式的对比方法有:Clnet方法:Complex input lightweight neuralnetwork designed for massive MIMO CSI feedback(设计用于大规模MIMO CSI反馈的复杂输入轻量级神经网络)、KNN方法:Deep learning for massive MIMO CSI feedback(大规模MIMO CSI反馈的深度学习)、MIMOnet方法:MaMIMO CSI-Based Positioning usingCNNs:Peeking inside the Black Box(基于CNN的MaMIMO csi定位:窥视黑匣子内部)、Hiloc方法:Hybrid Indoor Localization via Enhanced 5G NR CSI(基于增强5G NR CSI的混合室内定位)、SVM方法:Toward 5G NR High-Precision Indoor Positioning viaChannel Frequency Response:A New Paradigm and Dataset Generation Method(基于信道频率响应的5G NR高精度室内定位:一种新的范式和数据集生成方法)和MPRI方法:Toward 5G NR High-Precision Indoor Positioning via Channel FrequencyResponse:A New Paradigm and Dataset Generation Method(基于信道频率响应的5G NR高精度室内定位:一种新的范式和数据集生成方法)。Comparison methods of this implementation include: Clnet method: Complex input lightweight neural network designed for massive MIMO CSI feedback (Complex input lightweight neural network designed for massive MIMO CSI feedback), KNN method: Deep learning for massive MIMO CSI feedback (Deep learning of massive MIMO CSI feedback), MIMOnet method: MaMIMO CSI-Based Positioning usingCNNs: Peeking inside the Black Box (CNN-based MaMIMO CSI positioning: peeking inside the black box), Hiloc method: Hybrid Indoor Localization via Enhanced 5G NR CSI (Hybrid indoor positioning based on enhanced 5G NR CSI), SVM method: Toward 5G NR High-Precision Indoor Positioning via Channel Frequency Response: A New Paradigm and Dataset Generation Method (5G NR high-precision indoor positioning based on channel frequency response: A New Paradigm and Dataset Generation Method) and MPRI method: Toward 5G NR High-Precision Indoor Positioning via Channel FrequencyResponse: A New Paradigm and Dataset Generation Method (5G NR High-Precision Indoor Positioning via Channel Frequency Response: A New Paradigm and Dataset Generation Method) Dataset generation method).

将上述方法的误差与本实施方式所述的一种基于轻量级TRANSFORMER的5G NR室内定位方法的误差大小进行对比,对比结果如图5所示,从图中可以看出,本实施方式所述的基于轻量级TRANSFORMER的5G NR室内定位方法相比于CLnet、KNN、CSInet、MIMOnet、Hiloc、SVM、MPRI方法,大幅降低了误差大小,有效提高了预测精度。The error of the above method is compared with the error of a 5G NR indoor positioning method based on lightweight TRANSFORMER described in this embodiment. The comparison results are shown in Figure 5. It can be seen from the figure that the error of this embodiment is Compared with CLnet, KNN, CSInet, MIMOnet, Hiloc, SVM, and MPRI methods, the described 5G NR indoor positioning method based on lightweight TRANSFORMER significantly reduces the error size and effectively improves the prediction accuracy.

同时将上述方法与本实施方式所述的基于轻量级TRANSFORMER的5G NR室内定位方法的累积分布函数分布进行对比,如图4(a)、图4(b)和图4(c)所示,可以看出,本实施方式所述的基于轻量级TRANSFORMER的5G NR室内定位方法相比于CLnet、KNN、CSInet、MIMOnet、Hiloc、SVM、MPRI方法定位精度大幅度提高。At the same time, the cumulative distribution function distribution of the above method is compared with the 5G NR indoor positioning method based on lightweight TRANSFORMER described in this embodiment, as shown in Figure 4(a), Figure 4(b) and Figure 4(c) , it can be seen that the 5G NR indoor positioning method based on lightweight TRANSFORMER described in this embodiment has greatly improved positioning accuracy compared with CLnet, KNN, CSInet, MIMOnet, Hiloc, SVM, and MPRI methods.

此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。In addition, the terms “first” and “second” are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as "first" and "second" may explicitly or implicitly include at least one of these features. In the description of the present invention, "plurality" means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.

在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。In the description of this specification, reference to the terms "one embodiment," "some embodiments," "an example," "specific examples," or "some examples" or the like means that specific features are described in connection with the embodiment or example. , structures, materials or features are included in at least one embodiment or example of the invention. In this specification, the schematic expressions of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine different embodiments or examples and features of different embodiments or examples described in this specification unless they are inconsistent with each other.

以上所述仅为本发明的实施例而已,并不限制于本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围之内。The above are only embodiments of the present invention, and are not limited to the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and principles of the present invention shall be included in the scope of the claims of the present invention.

Claims (10)

1.一种基于轻量级TRANSFORMER的5G NR室内定位方法,其特征在于,所述方法为:1. A 5G NR indoor positioning method based on lightweight TRANSFORMER, characterized in that the method is: S1、采用通道独立的矩形图像块操作模块对CSI输入数据进行处理,获得输出矩阵;S1. Use the channel-independent rectangular image block operation module to process the CSI input data and obtain the output matrix; S2、采用Reshape()函数将所述输出矩阵的三维矩阵转换为与注意力机制相容的二维矩阵;S2. Use the Reshape() function to convert the three-dimensional matrix of the output matrix into a two-dimensional matrix that is compatible with the attention mechanism; S3、将所述与注意力机制相容的二维矩阵输入到基于ReLU的多通道注意力机制模块中,获得最终的输出数据;S3. Input the two-dimensional matrix compatible with the attention mechanism into the multi-channel attention mechanism module based on ReLU to obtain the final output data; S4、采用位置映射模块对所述最终的输出数据进行位置定位,获得映射位置。S4. Use the position mapping module to position the final output data to obtain the mapping position. 2.根据权利要求1所述的一种基于轻量级TRANSFORMER的5G NR室内定位方法,其特征在于,所述步骤S1中的通道独立的矩形图像块操作模块的处理流程为:2. A 5G NR indoor positioning method based on lightweight TRANSFORMER according to claim 1, characterized in that the processing flow of the channel-independent rectangular image block operation module in step S1 is: S11、将所述CSI输入数据按照不同通道进行划分,获得Hi数据;S11. Divide the CSI input data according to different channels to obtain Hi data; S12、采用基于卷积的图像块对所述Hi数据进行图像块操作,获得输出矩阵。S12. Use convolution-based image blocks to perform image block operations on the Hi data to obtain an output matrix. 3.根据权利要求2所述的一种基于轻量级TRANSFORMER的5G NR室内定位方法,其特征在于,所述步骤S12中基于卷积的图像块的公式表示为:3. A 5G NR indoor positioning method based on lightweight TRANSFORMER according to claim 2, characterized in that the formula of the convolution-based image block in step S12 is expressed as: Hp=Concat(P(H0,:),P(H1,:),...,P(HC,:));H p =Concat(P(H 0,: ),P(H 1,: ),...,P(H C,: )); 其中,为获得的输出,Hi为第i个通道的数据,C为输入通道的数量,C'为输出通道的数量,W为输入宽度,L为输入长度,Kw为用于基于分块的卷积的卷积核的宽度,Kl为用于基于分块的卷积的卷积核的长度,/>为通过将输入宽度除以内核宽度而获得的输出宽度,/>为通过将输入通过将输入内核长度而获得的输出长度。in, is the output obtained, Hi is the data of the i-th channel, C is the number of input channels, C' is the number of output channels, W is the input width, L is the input length, and K w is the volume used for the block-based The width of the convolution kernel of the product, K l is the length of the convolution kernel used for block-based convolution, /> is the output width obtained by dividing the input width by the kernel width, /> is the output length obtained by passing the input through the length of the input kernel. 4.根据权利要求2所述的一种基于轻量级TRANSFORMER的5G NR室内定位方法,其特征在于,所述步骤S12中基于卷积的图像块的设置步骤为:4. A 5G NR indoor positioning method based on lightweight TRANSFORMER according to claim 2, characterized in that the setting step of the convolution-based image block in step S12 is: 填充元素设置为0,Kw设置为8,Kl设置为13;The padding element is set to 0, K w is set to 8, and K l is set to 13; 将宽度方向上的步幅设置为等于卷积核的宽度,将长度方向上的步幅设置为等于卷积核的长度。Set the stride in the width direction equal to the width of the convolution kernel, and set the stride in the length direction equal to the length of the convolution kernel. 5.根据权利要求1所述的一种基于轻量级TRANSFORMER的5G NR室内定位方法,其特征在于,所述步骤S3中基于ReLU的多通道注意力机制模块的处理流程为:5. A 5G NR indoor positioning method based on lightweight TRANSFORMER according to claim 1, characterized in that the processing flow of the ReLU-based multi-channel attention mechanism module in step S3 is: S31、将所述与注意力机制相容的二维矩阵进行格式转换,获得转换后的二维矩阵;S31. Convert the format of the two-dimensional matrix that is compatible with the attention mechanism to obtain the converted two-dimensional matrix; S32、将所述转换后的二维矩阵进行维度变换,获得变换后的二维矩阵;S32. Perform dimension transformation on the converted two-dimensional matrix to obtain the transformed two-dimensional matrix; S33、采用基于ReLU注意力机制公式对所述变换后的二维矩阵进行查询处理,获得参数矩阵Wq、键生成参数矩阵Wk和值生成参数矩阵WvS33. Use the formula based on the ReLU attention mechanism to perform query processing on the transformed two-dimensional matrix, and obtain the parameter matrix W q , the key generation parameter matrix W k and the value generation parameter matrix W v ; S34、采用基于ReLU的注意力机制的得分公式对所述参数矩阵Wq、键生成参数矩阵Wk和值生成参数矩阵Wv进行计算,获得score数据;S34. Use the score formula of the attention mechanism based on ReLU to calculate the parameter matrix W q , the key generation parameter matrix W k and the value generation parameter matrix W v to obtain score data; S35、将所述score数据进行正规化操作,获得最终的score数据;S35. Normalize the score data to obtain the final score data; S36、采用ReLU激活函数对所述最终的score数据进行处理,并将处理后的结果点乘值生成参数矩阵Wv并累加,获得最终结果X矩阵;S36. Use the ReLU activation function to process the final score data, and generate the parameter matrix W v from the processed result point multiplication value and accumulate it to obtain the final result X matrix; S37、将所述最终结果X矩阵输入到注意力机制模块中,依次通过归一化层、注意力层和归一化层处理,获得输出数据XoutputS37. Input the final result X matrix into the attention mechanism module, and process it through the normalization layer, attention layer and normalization layer in sequence to obtain the output data X output ; S38、将所述输出数据Xoutput输入到多层感知器层中,获得最终的输出数据XoutputS38. Input the output data X output into the multi-layer perceptron layer to obtain the final output data X output . 6.根据权利要求5所述的一种基于轻量级TRANSFORMER的5G NR室内定位方法,其特征在于,所述步骤S33中的基于ReLU注意力机制公式表示为:6. A 5G NR indoor positioning method based on lightweight TRANSFORMER according to claim 5, characterized in that the ReLU attention mechanism formula in step S33 is expressed as: Xoutput=Att(LN(Non-Trans(X)))+X;X output =Att(LN(Non-Trans(X)))+X; 其中,Non-Trans为未改变的维度,LN为层范数正则化,Att为基于ReLU的注意力机制。Among them, Non-Trans is the unchanged dimension, LN is layer norm regularization, and Att is the attention mechanism based on ReLU. 7.根据权利要求5所述的一种基于轻量级TRANSFORMER的5G NR室内定位方法,其特征在于,所述步骤S34中的ReLU的注意力机制的得分公式表示为:7. A 5G NR indoor positioning method based on lightweight TRANSFORMER according to claim 5, characterized in that the score formula of the attention mechanism of ReLU in step S34 is expressed as: score=ReLU(WqX)(ReLU(WkX)·ReLU(WvX))。score=ReLU(W q X)(ReLU(W k X) · ReLU(W v X)). 8.一种基于轻量级TRANSFORMER的5G NR室内定位系统,其特征在于,所述系统为:8. A 5G NR indoor positioning system based on lightweight TRANSFORMER, characterized in that the system is: 用于采用通道独立的矩形图像块操作模块对CSI输入数据进行处理,获得输出矩阵的存储装置;A storage device used to process CSI input data using a channel-independent rectangular image block operation module to obtain an output matrix; 用于将所述输出矩阵的三维矩阵转换为与注意力机制相容的二维矩阵的存储装置;A storage device for converting the three-dimensional matrix of the output matrix into a two-dimensional matrix compatible with the attention mechanism; 用于采用Reshape()函数将所述与注意力机制相容的二维矩阵输入到基于ReLU的多通道注意力机制模块中,获得最终的输出数据的存储装置;A storage device used to input the two-dimensional matrix compatible with the attention mechanism into the multi-channel attention mechanism module based on ReLU using the Reshape() function to obtain the final output data; 用于采用位置映射模块对所述最终的输出数据进行位置定位,获得映射位置的存储装置。A storage device for positioning the final output data using a position mapping module to obtain a mapping position. 9.一种计算机可读存储介质,其特征在于,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器运行时执行权利要求1-7任意一项所述的一种基于轻量级TRANSFORMER的5G NR室内定位方法。9. A computer-readable storage medium, characterized in that a computer program is stored on the computer-readable storage medium, and when the computer program is run by a processor, it executes the light-based method described in any one of claims 1-7. 5G NR indoor positioning method of magnitude TRANSFORMER. 10.一种计算机设备,其特征在于:该设备包括存储器和处理器,所述存储器中存储有计算机程序,当所述处理器运行所述存储器存储的计算机程序时,所述处理器执行权利要求1-7任意一项所述的一种基于轻量级TRANSFORMER的5G NR室内定位方法。10. A computer device, characterized in that: the device includes a memory and a processor, a computer program is stored in the memory, and when the processor runs the computer program stored in the memory, the processor executes the claim A 5G NR indoor positioning method based on lightweight TRANSFORMER as described in any one of 1-7.
CN202310957628.XA 2023-08-01 2023-08-01 A 5G NR indoor positioning method and system based on lightweight TRANSFORMER Active CN117062002B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310957628.XA CN117062002B (en) 2023-08-01 2023-08-01 A 5G NR indoor positioning method and system based on lightweight TRANSFORMER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310957628.XA CN117062002B (en) 2023-08-01 2023-08-01 A 5G NR indoor positioning method and system based on lightweight TRANSFORMER

Publications (2)

Publication Number Publication Date
CN117062002A true CN117062002A (en) 2023-11-14
CN117062002B CN117062002B (en) 2024-04-30

Family

ID=88660007

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310957628.XA Active CN117062002B (en) 2023-08-01 2023-08-01 A 5G NR indoor positioning method and system based on lightweight TRANSFORMER

Country Status (1)

Country Link
CN (1) CN117062002B (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111479231A (en) * 2020-04-17 2020-07-31 西安交通大学 An indoor fingerprint localization method for millimeter-wave massive MIMO system
WO2022041206A1 (en) * 2020-08-31 2022-03-03 深圳市大疆创新科技有限公司 Image encoding method and apparatus, image decoding method and apparatus, and storage medium
CN115087038A (en) * 2022-06-09 2022-09-20 华东师范大学 Channel state information compression and decompression method for 5G positioning
CN115131214A (en) * 2022-08-31 2022-09-30 南京邮电大学 Indoor aged person image super-resolution reconstruction method and system based on self-attention
CN115567871A (en) * 2022-09-26 2023-01-03 南京大学 WiFi fingerprint indoor floor identification and position estimation method
CN115908547A (en) * 2022-10-27 2023-04-04 东南大学 Wireless positioning method based on deep learning
CN116321414A (en) * 2023-01-19 2023-06-23 北京邮电大学 Wireless positioning method and electronic device
CN116401794A (en) * 2023-06-09 2023-07-07 四川大学 3D Accurate Reconstruction of Blades Based on Attention-Guided Depth Point Cloud Registration

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111479231A (en) * 2020-04-17 2020-07-31 西安交通大学 An indoor fingerprint localization method for millimeter-wave massive MIMO system
WO2022041206A1 (en) * 2020-08-31 2022-03-03 深圳市大疆创新科技有限公司 Image encoding method and apparatus, image decoding method and apparatus, and storage medium
CN115087038A (en) * 2022-06-09 2022-09-20 华东师范大学 Channel state information compression and decompression method for 5G positioning
CN115131214A (en) * 2022-08-31 2022-09-30 南京邮电大学 Indoor aged person image super-resolution reconstruction method and system based on self-attention
CN115567871A (en) * 2022-09-26 2023-01-03 南京大学 WiFi fingerprint indoor floor identification and position estimation method
CN115908547A (en) * 2022-10-27 2023-04-04 东南大学 Wireless positioning method based on deep learning
CN116321414A (en) * 2023-01-19 2023-06-23 北京邮电大学 Wireless positioning method and electronic device
CN116401794A (en) * 2023-06-09 2023-07-07 四川大学 3D Accurate Reconstruction of Blades Based on Attention-Guided Depth Point Cloud Registration

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘广磊: "基于CSI幅度分解的动作识别和位置估计算法研究", 《优秀硕士学位论文》, 15 February 2023 (2023-02-15), pages 15 - 51 *

Also Published As

Publication number Publication date
CN117062002B (en) 2024-04-30

Similar Documents

Publication Publication Date Title
Njima et al. Indoor localization using data augmentation via selective generative adversarial networks
CN109597043B (en) Radar signal recognition method based on quantum particle swarm convolutional neural network
CN110245709A (en) Based on deep learning and from the 3D point cloud data semantic dividing method of attention
Zhang et al. An efficient machine learning approach for indoor localization
CN110234085A (en) Based on the indoor location fingerprint to anti-migration network drawing generating method and system
CN113420593B (en) Small sample SAR automatic target recognition method based on hybrid inference network
Han et al. Fault diagnosis of power systems using visualized similarity images and improved convolution neural networks
CN108519578A (en) A method for constructing indoor positioning fingerprint library based on crowd sensing
CN109117851A (en) A kind of video image matching process based on lattice statistical constraint
CN112329830A (en) Passive positioning track data identification method and system based on convolutional neural network and transfer learning
CN115079116A (en) Radar target identification method based on Transformer and time convolution network
Li et al. LoT: A transformer-based approach based on channel state information for indoor localization
CN114972904B (en) A zero-shot knowledge distillation method and system based on adversarial triplet loss
CN114627369B (en) Environment monitoring system, method and computer device thereof
CN114269014B (en) Large-scale MIMO dynamic environment fingerprint positioning method based on domain adaptive network
CN109871907A (en) Recognition method of radar target high resolution range image based on SAE-HMM model
CN108985385A (en) Based on the quick Weakly supervised object detection method for generating confrontation study
CN117062002B (en) A 5G NR indoor positioning method and system based on lightweight TRANSFORMER
Si et al. Radar signal recognition and localization based on multiscale lightweight attention model
CN116844040A (en) Small sample remote sensing image scene classification method based on double-flow structure
Sun et al. Deep convolutional neural networks enabled fingerprint localization for massive MIMO-OFDM system
CN117062001B (en) 5G NR indoor positioning method and system based on interpretable deep learning
Shen et al. Enhancing Wi-Fi RSS-based indoor positioning under dynamic AP availability: Leveraging virtual feature maps and contrastive learning
Liang et al. SCDFMixer: Spatial–channel dual-frequency mixer based on satellite optical sensors for remote sensing multiobject detection
Lin et al. Attention EdgeConv for 3D point cloud classification

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant