CN117055079B - Total electron content determination method, device, electronic equipment and readable storage medium - Google Patents
Total electron content determination method, device, electronic equipment and readable storage medium Download PDFInfo
- Publication number
- CN117055079B CN117055079B CN202311320360.5A CN202311320360A CN117055079B CN 117055079 B CN117055079 B CN 117055079B CN 202311320360 A CN202311320360 A CN 202311320360A CN 117055079 B CN117055079 B CN 117055079B
- Authority
- CN
- China
- Prior art keywords
- value
- pseudorange
- coefficient
- receiver
- deviation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 66
- 239000005433 ionosphere Substances 0.000 claims abstract description 35
- 239000011159 matrix material Substances 0.000 claims description 90
- 238000009499 grossing Methods 0.000 claims description 67
- 230000006870 function Effects 0.000 claims description 40
- 238000004590 computer program Methods 0.000 claims description 12
- 230000035515 penetration Effects 0.000 claims description 4
- 238000012544 monitoring process Methods 0.000 description 20
- 230000008569 process Effects 0.000 description 10
- 238000004364 calculation method Methods 0.000 description 8
- 238000004891 communication Methods 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000005358 geomagnetic field Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- JJWKPURADFRFRB-UHFFFAOYSA-N carbonyl sulfide Chemical compound O=C=S JJWKPURADFRFRB-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 206010064127 Solar lentigo Diseases 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000005436 troposphere Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/13—Receivers
- G01S19/35—Constructional details or hardware or software details of the signal processing chain
- G01S19/37—Hardware or software details of the signal processing chain
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
Description
技术领域Technical field
本申请属于信息处理技术领域,尤其涉及一种总电子含量确定方法、装置、电子设备及可读存储介质。The present application belongs to the field of information processing technology, and in particular relates to a method, device, electronic equipment and readable storage medium for determining total electron content.
背景技术Background technique
目前,地球电离层作为日地空间环境的重要组成部分,对人类的生产和生活都有着重要的影响。由于宇宙或太阳活动的影响,电离层区域的带电粒子会变得异常活跃,对于导航定位而言,电波信号经过电离层时产生的信号延迟误差将达到数米到数百米,这会严重限制卫星导航定位服务。其中,总电子含量(Total Electron Content,TEC)是测量地球大气中电离层密度的重要指标,该指标可以体现地球的大气电离层的厚度,也可以提供卫星通信的信号通道信息。因此,确定TEC对卫星导航意义重大。At present, the earth's ionosphere, as an important part of the sun-terrestrial space environment, has an important impact on human production and life. Due to the influence of cosmic or solar activities, charged particles in the ionosphere region will become extremely active. For navigation and positioning, the signal delay error generated when the radio signal passes through the ionosphere will reach several meters to hundreds of meters, which will seriously limit Satellite navigation and positioning services. Among them, Total Electron Content (TEC) is an important indicator for measuring the density of the ionosphere in the Earth's atmosphere. This indicator can reflect the thickness of the Earth's atmospheric ionosphere and can also provide signal channel information for satellite communications. Therefore, determining TEC is of great significance to satellite navigation.
为了研究方便,一般可以通过电离层投影函数将GNSS信号传播路径上的TEC转化为穿刺点天顶方向的总电子含量,即VTEC。For the convenience of research, the TEC on the GNSS signal propagation path can generally be converted into the total electron content in the zenith direction of the puncture point through the ionospheric projection function, that is, VTEC.
由于全球导航卫星系统(Global Navigation Satellite System,GNSS)监测站需要建立在坚实稳定的地面上,而大部分的地球表面被海洋覆盖,因此地球大部分海洋区域上空无法进行有效监测,另外,随着人类航天航空技术的发展,未来将有越来越多的人造卫星发射入轨,在低轨卫星上搭载GNSS接收机不仅可以获取LEO精密位置信息,同时还可以获取GNSS电子总含量信息;GNSS TEC数据因其全球覆盖、高精度和高时空分辨率等优点、可作为重要的空间天气研究的产品之一。Since Global Navigation Satellite System (GNSS) monitoring stations need to be built on solid and stable ground, and most of the earth's surface is covered by oceans, effective monitoring cannot be carried out over most of the earth's ocean areas. In addition, as With the development of human aerospace technology, more and more artificial satellites will be launched into orbit in the future. GNSS receivers mounted on low-orbit satellites can not only obtain LEO precise position information, but also obtain GNSS electronic total content information; GNSS TEC The data can be used as one of the important products of space weather research due to its global coverage, high accuracy and high spatial and temporal resolution.
发明内容Contents of the invention
本申请实施例提供一种总电子含量确定方法、装置、设备及可读存储介质,能够解决目前电离层VTEC的监测范围受限且精度不高的问题。Embodiments of the present application provide a method, device, equipment and readable storage medium for determining total electron content, which can solve the current problems of limited monitoring range and low accuracy of ionospheric VTEC.
第一方面,本申请实施例提供一种总电子含量确定方法,该方法包括:In a first aspect, embodiments of the present application provide a method for determining total electron content, which method includes:
获取伪距观测值和载波相位观测值;其中,伪距观测值和载波相位观测值由低轨道地球LEO卫星上搭载的全球导航卫星系统GNSS接收机接收得到;Obtain pseudorange observation values and carrier phase observation values; among which, pseudorange observation values and carrier phase observation values are received by the Global Navigation Satellite System GNSS receiver mounted on the low-orbiting Earth LEO satellite;
根据伪距观测值和载波相位观测值建立目标方程,目标方程中包括目标系数和接收机端伪距码偏差;Establish a target equation based on the pseudorange observation values and carrier phase observation values. The target equation includes the target coefficient and the receiver-side pseudorange code deviation;
求解目标方程中的目标系数的目标系数值和接收机端伪距码偏差的偏差值;Solve the target coefficient value of the target coefficient in the target equation and the deviation value of the pseudorange code deviation at the receiver end;
根据伪距观测值、目标系数值和接收机端伪距码偏差的偏差值,确定电离层的垂直总电子含量VTEC。According to the deviation value of the pseudorange observation value, the target coefficient value and the pseudorange code deviation at the receiver end, the vertical total electron content VTEC of the ionosphere is determined.
第二方面,本申请实施例提供一种总电子含量确定装置,该装置包括:In a second aspect, embodiments of the present application provide a device for determining total electron content, which device includes:
获取模块,用于获取伪距观测值和载波相位观测值;其中,伪距观测值和载波相位观测值由LEO卫星上搭载的GNSS接收机接收得到;The acquisition module is used to obtain the pseudorange observation value and the carrier phase observation value; wherein the pseudorange observation value and the carrier phase observation value are received by the GNSS receiver mounted on the LEO satellite;
建立模块,用于根据伪距观测值和载波相位观测值建立目标方程,目标方程中包括目标系数和接收机端伪距码偏差;The establishment module is used to establish a target equation based on the pseudorange observation value and the carrier phase observation value. The target equation includes the target coefficient and the receiver-end pseudorange code deviation;
求解模块,用于求解目标方程中的目标系数的目标系数值和接收机端伪距码偏差的偏差值;The solving module is used to solve the target coefficient value of the target coefficient in the target equation and the deviation value of the pseudorange code deviation at the receiver end;
确定模块,用于根据伪距观测值、目标系数值和接收机端伪距码偏差的偏差值,确定电离层的VTEC。The determination module is used to determine the VTEC of the ionosphere based on the deviation value of the pseudorange observation value, the target coefficient value and the pseudorange code deviation at the receiver end.
第三方面,本申请实施例提供了一种电子设备,该设备包括:处理器以及存储有计算机程序指令的存储器;处理器执行计算机程序指令时,实现如第一方面或者第一方面的任一可能实现方式中的方法。In a third aspect, embodiments of the present application provide an electronic device. The device includes: a processor and a memory storing computer program instructions; when the processor executes the computer program instructions, it implements the first aspect or any one of the first aspects. Methods in possible implementations.
第四方面,本申请实施例提供了一种可读存储介质,该计算机可读存储介质上存储有计算机程序指令,计算机程序指令被处理器执行时实现如第一方面或者第一方面的任一可能实现方式中的方法。In a fourth aspect, embodiments of the present application provide a readable storage medium. Computer program instructions are stored on the computer-readable storage medium. When the computer program instructions are executed by a processor, the implementation of the first aspect or any one of the first aspects is implemented. Methods in possible implementations.
本申请实施例中,通过获取伪距观测值和载波相位观测值;其中,伪距观测值和载波相位观测值由低轨道地球LEO卫星上搭载的全球导航卫星系统GNSS接收机接收得到;这里,在轨运行的LEO能够全球飞行,相应地,在轨运行的LEO上搭载的GNSS接收机也随之全球移动,因此可实现海洋区域上空的电离层监测,提升监测范围,解决目前电离层VTEC的监测范围受限的问题;根据伪距观测值和载波相位观测值建立目标方程,目标方程中包括目标系数和接收机端伪距码偏差;然后,求解目标方程中的目标系数的目标系数值和接收机端伪距码偏差的偏差值,这里,能够快速准确地确定出目标系数值和接收机端伪距码偏差的偏差值;最后,根据伪距观测值、目标系数值和求解出的高精度的接收机端伪距码偏差的偏差值,确定电离层的垂直总电子含量VTEC,由此,能够实现在LEO端对VTEC的实时高精度计算。In the embodiment of this application, the pseudorange observation value and the carrier phase observation value are obtained; wherein the pseudorange observation value and the carrier phase observation value are received by the Global Navigation Satellite System GNSS receiver mounted on the LEO satellite in low orbit; here, LEOs operating in orbit can fly around the world. Correspondingly, the GNSS receivers mounted on LEOs operating in orbit also move globally. Therefore, ionospheric monitoring over ocean areas can be realized, the monitoring range can be improved, and the current ionospheric VTEC problems can be solved. The problem of limited monitoring range; establish a target equation based on the pseudorange observation value and the carrier phase observation value. The target equation includes the target coefficient and the receiver-side pseudorange code deviation; then, solve the target coefficient value and the target coefficient value in the target equation The deviation value of the pseudorange code deviation at the receiver end. Here, the target coefficient value and the deviation value of the pseudorange code deviation at the receiver end can be quickly and accurately determined; finally, based on the pseudorange observation value, the target coefficient value and the calculated high The accurate deviation value of the pseudorange code deviation at the receiver side determines the vertical total electron content VTEC of the ionosphere. This enables real-time high-precision calculation of VTEC at the LEO side.
附图说明Description of the drawings
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单的介绍,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to explain the technical solutions of the embodiments of the present application more clearly, the drawings required to be used in the embodiments of the present application will be briefly introduced below. For those of ordinary skill in the art, without exerting creative efforts, they can also Additional drawings can be obtained from these drawings.
图1是本申请实施例提供的一种总电子含量确定方法的流程图;Figure 1 is a flow chart of a method for determining total electron content provided by an embodiment of the present application;
图2是本申请实施例提供的一种建立目标方程的流程图;Figure 2 is a flow chart for establishing an objective equation provided by an embodiment of the present application;
图3是本申请实施例提供的一种确定权重值的流程图;Figure 3 is a flow chart for determining weight values provided by an embodiment of the present application;
图4是本申请实施例提供的一种总电子含量确定装置结构示意图;Figure 4 is a schematic structural diagram of a total electron content determination device provided by an embodiment of the present application;
图5是本申请实施例提供的一种电子设备的硬件结构示意图。FIG. 5 is a schematic diagram of the hardware structure of an electronic device provided by an embodiment of the present application.
具体实施方式Detailed ways
下面将详细描述本申请的各个方面的特征和示例性实施例,为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本申请进行进一步详细描述。应理解,此处所描述的具体实施例仅被配置为解释本申请,并不被配置为限定本申请。对于本领域技术人员来说,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请更好的理解。Features and exemplary embodiments of various aspects of the present application will be described in detail below. In order to make the purpose, technical solutions and advantages of the present application clearer, the present application will be described in further detail below with reference to the accompanying drawings and specific embodiments. It should be understood that the specific embodiments described herein are only configured to explain the present application and are not configured to limit the present application. It will be apparent to one skilled in the art that the present application may be practiced without some of these specific details. The following description of embodiments is merely intended to provide a better understanding of the present application by illustrating examples thereof.
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。It should be noted that in this article, relational terms such as first and second are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply that these entities or operations are mutually exclusive. any such actual relationship or sequence exists between them. Furthermore, the terms "comprises," "comprises," or any other variation thereof are intended to cover a non-exclusive inclusion such that a process, method, article, or apparatus that includes a list of elements includes not only those elements, but also those not expressly listed other elements, or elements inherent to the process, method, article or equipment. Without further limitation, an element defined by the statement "including..." does not exclude the presence of additional identical elements in the process, method, article, or device that includes the element.
首先,对于本申请实施例涉及的技术术语进行介绍。First, the technical terms involved in the embodiments of this application are introduced.
GNSS,又称全球卫星导航系统,是能在地球表面或近地空间的任何地点为用户提供全天候的3维坐标和速度以及时间信息的空基无线电导航定位系统。其包括一个或多个卫星星座及其支持特定工作所需的增强系统。GNSS, also known as Global Satellite Navigation System, is a space-based radio navigation and positioning system that can provide users with all-weather 3D coordinates, speed and time information at any location on the earth's surface or near-Earth space. It consists of one or more satellite constellations and their augmentation systems required to support specific operations.
历元,是历法中标记时间的开始。在天文学是一些天文变数作为参考的时刻点,例如天球坐标或天体的椭圆轨道要素,因为这些会受到摄动而随着时间变化。The epoch marks the beginning of time in the calendar. In astronomy , some astronomical variables are used as reference points in time, such as celestial coordinates or elliptical orbit elements of celestial bodies , because these will be perturbed and change with time.
电离层(Ionosphere),是地球大气的一个电离区域。60千米以上的整个地球大气层都处于部分电离或完全电离的状态,电离层是部分电离的大气区域,完全电离的大气区域称磁层。也有人把整个电离的大气称为电离层,这样就把磁层看作电离层的一部分。The ionosphere is an ionized region of the Earth's atmosphere. The entire Earth's atmosphere above 60 kilometers is in a state of partial or complete ionization. The ionosphere is a partially ionized atmospheric region, and the fully ionized atmospheric region is called the magnetosphere. Some people also call the entire ionized atmosphere the ionosphere, so the magnetosphere is regarded as part of the ionosphere.
对流层中的气体分子由于受到太阳等天体的各种辐射,产生强烈的电离,形成大量的自由电子和正离子,并且两者密度相等,带电粒子的存在将影响电磁波的传播,使传播速度发生变化,传播路径产生弯曲,从而使得信号传播时间At与真空中光速C的乘积不等于信号发出点到信号接收点的几何距离P,这种偏差即为所谓的电离层延迟或电离层折射误差。Gas molecules in the troposphere are strongly ionized due to various radiations from celestial bodies such as the sun, forming a large number of free electrons and positive ions, and the density of the two is equal. The presence of charged particles will affect the propagation of electromagnetic waves, causing the propagation speed to change. The propagation path is curved, so that the product of the signal propagation time At and the speed of light C in vacuum is not equal to the geometric distance P from the signal sending point to the signal receiving point. This deviation is the so-called ionospheric delay or ionospheric refraction error.
电离层延迟的大小取决于信号传播路径上的总电子含量和信号的频率,而总电子含量又与时间、测站位置、太阳黑子数、季节、离地面高度等多个因素有关。与其他电磁波一样,当导航卫星信号通过电离层时,导航卫星信号的路径也要发生弯曲,传播速度也会发生变化。The size of the ionospheric delay depends on the total electron content on the signal propagation path and the frequency of the signal, and the total electron content is related to multiple factors such as time, station location, sunspot number, season, and height from the ground. Like other electromagnetic waves, when the navigation satellite signal passes through the ionosphere, the path of the navigation satellite signal also bends and the propagation speed also changes.
带电粒子在物理学中是指带有电荷的微粒。它可以是次原子粒子,也可以是离子。In physics, charged particles refer to particles with an electric charge. It can be a subatomic particle or an ion.
低轨道地球卫星(Low Earth Orbit Satellite,LEO)的运行轨道一般在距离地面400-2000公里之间。Low Earth Orbit Satellite (LEO) orbits generally range from 400 to 2,000 kilometers above the ground.
GNSS的全称是全球导航卫星系统(Global Navigation Satellite System),GNSS是对北斗系统、GPS、GLONASS、Galileo系统等这些单个卫星导航定位系统和增强型系统的统一称谓。The full name of GNSS is Global Navigation Satellite System. GNSS is the unified name for individual satellite navigation and positioning systems and enhanced systems such as Beidou system, GPS, GLONASS, and Galileo system.
全球卫星定位系统(Global Position System),在全球范围内进行定位、导航的系统,称为GPS。Global Positioning System (Global Position System), a system for positioning and navigation on a global scale, is called GPS.
全球卫星导航系统(GLObal Navigation Satellite System,GLONASS,GLONASS),也称格洛纳斯。Global Navigation Satellite System (GLObal Navigation Satellite System, GLONASS, GLONASS), also known as GLONASS.
伽利略卫星导航系统(GALILEO),是由欧盟研制和建立的全球卫星导航定位系统,该计划于1999年2月由欧洲委员会公布,欧洲委员会和欧空局共同负责。Galileo Satellite Navigation System (GALILEO) is a global satellite navigation and positioning system developed and established by the European Union. The plan was announced by the European Commission in February 1999. The European Commission and ESA are jointly responsible.
北斗卫星导航系统(Beidou Navigation Satellite System,BDS)是中国自行研制的全球卫星导航系统,也是继GPS、GLONASS之后的第三个成熟的卫星导航系统。Beidou Navigation Satellite System (BDS) is a global satellite navigation system independently developed by China. It is also the third mature satellite navigation system after GPS and GLONASS.
准天顶卫星系统(Quasi-Zenith Satellite System,QZSS)是以三颗人造卫星透过时间转移完成全球定位系统区域性功能的卫星扩增系统。The Quasi-Zenith Satellite System (QZSS) is a satellite amplification system that uses three artificial satellites to complete the regional functions of the Global Positioning System through time transfer.
广播星历是由GNSS系统的地面控制部分所确定和提供的,是导航卫星发播的无线电信号上载有预报一定时间内卫星轨道根数的电文信息。Broadcast ephemeris is determined and provided by the ground control part of the GNSS system. The radio signals broadcast by navigation satellites carry message information that predicts the number of satellite orbits within a certain period of time.
地磁坐标,是天文学专有名词。磁层坐标系,根据地磁场的特征制定的各种坐标系。磁层内的过程受地磁场的控制,按照地磁场特征确定的坐标系可以比较简捷地描述这种过程。Geomagnetic coordinates are a term specific to astronomy. Magnetosphere coordinate system, various coordinate systems formulated based on the characteristics of the geomagnetic field. The processes in the magnetosphere are controlled by the geomagnetic field, and the coordinate system determined according to the characteristics of the geomagnetic field can describe this process relatively simply.
接收机的硬件延迟(Differential Code Biases,DCB)是利用GNSS数据提取电离层TEC的主要误差源。Receiver hardware delays (Differential Code Biases, DCB) are the main source of errors in extracting ionospheric TEC using GNSS data.
与接收机无关的交换格式(Receiver Independent Exchange Format,RINEX),是一种在GNSS测量应用中普遍采用的标准数据格式。该格式采用文本文件存储数据,数据记录格式与接收机的制造厂商和具体型号无关。The Receiver Independent Exchange Format (RINEX) is a standard data format commonly used in GNSS measurement applications. This format uses text files to store data, and the data recording format is independent of the manufacturer and specific model of the receiver.
本申请实施例提供的总电子含量确定方法至少可以应用于下述应用场景中,下面进行说明。The method for determining the total electron content provided by the embodiments of the present application can be applied to at least the following application scenarios, which will be described below.
地球电离层作为日地空间环境的重要组成部分,对人类生产生活都有着重要的影响。由于宇宙或太阳活动的影响,电离层区域的带电粒子会变得异常活跃,对于导航定位而言,电波信号经过电离层时信号延迟误差将达到数米到数百米,会严重限制卫星导航定位服务。As an important part of the solar-terrestrial space environment, the earth's ionosphere has an important impact on human production and life. Due to the influence of cosmic or solar activities, charged particles in the ionosphere area will become extremely active. For navigation and positioning, the signal delay error when the radio signal passes through the ionosphere will reach several meters to hundreds of meters, which will seriously limit satellite navigation and positioning. Serve.
利用GNSS手段监测电离层常常采用地面监测站进行,由于GNSS监测站需要建立在坚实稳定的地面上,地球表面大部分被海洋覆盖,地面站无法均匀分布,对于地球大部分海洋区域上空无法进行有效监测。The use of GNSS means to monitor the ionosphere is often carried out using ground monitoring stations. Since GNSS monitoring stations need to be established on solid and stable ground, most of the earth's surface is covered by oceans, and ground stations cannot be evenly distributed, making it ineffective over most ocean areas of the earth. monitor.
随着GNSS四大导航系统的完善与航天科技不断发展,未来LEO卫星数量会不断增加,其上搭载GNSS接收机的情况会比较多,在提供导航定位功能的同时,还可以对LEO轨道之上的电离层进行探测。With the improvement of the four major GNSS navigation systems and the continuous development of aerospace technology, the number of LEO satellites will continue to increase in the future, and more of them will be equipped with GNSS receivers. While providing navigation and positioning functions, they can also provide detection of the ionosphere.
通常情况下,GNSS电离层TEC计算用到的双频电离层观测值中包含需要扣除的卫星端硬件码偏差和接收机端硬件码偏差。卫星端码偏差长期稳定性较好,可以按日/周/月为单位视为常数估计,而接收机端码偏差会因为周围环境(比如温度)变化出现日内波动变化,这给电离层延迟估计带来不利影响。Normally, the dual-frequency ionospheric observations used in GNSS ionospheric TEC calculations include satellite-side hardware code deviations and receiver-side hardware code deviations that need to be deducted. The satellite-side code deviation has good long-term stability and can be regarded as a constant estimate on a daily/weekly/monthly basis. However, the receiver-side code deviation will fluctuate within the day due to changes in the surrounding environment (such as temperature), which provides ionospheric delay estimates. bring adverse effects.
基于上述应用场景,下面对本申请实施例提供的总电子含量确定方法进行详细说明。Based on the above application scenario, the method for determining the total electron content provided by the embodiment of the present application will be described in detail below.
图1为本申请实施例提供的一种总电子含量确定方法的流程图。Figure 1 is a flow chart of a method for determining total electron content provided by an embodiment of the present application.
如图1所示,该总电子含量确定方法可以包括步骤110-步骤140,该方法应用于总电子含量确定装置,具体如下所示:As shown in Figure 1, the total electron content determination method may include steps 110 to 140. The method is applied to the total electron content determination device, specifically as follows:
步骤110,获取伪距观测值和载波相位观测值;其中,伪距观测值和载波相位观测值由低轨道地球LEO卫星上搭载的全球导航卫星系统GNSS接收机接收得到;Step 110, obtain the pseudorange observation value and the carrier phase observation value; wherein the pseudorange observation value and the carrier phase observation value are received by the Global Navigation Satellite System GNSS receiver mounted on the low-orbiting Earth LEO satellite;
步骤120,根据伪距观测值和载波相位观测值建立目标方程,目标方程中包括目标系数和接收机端伪距码偏差;Step 120: Establish a target equation based on the pseudorange observation value and the carrier phase observation value. The target equation includes the target coefficient and the receiver-end pseudorange code deviation;
步骤130,求解目标方程中的目标系数的目标系数值和接收机端伪距码偏差的偏差值;Step 130: Solve the target coefficient value of the target coefficient in the target equation and the deviation value of the pseudorange code deviation at the receiver end;
步骤140,根据伪距观测值、目标系数值和接收机端伪距码偏差的偏差值,确定电离层的垂直总电子含量VTEC。Step 140: Determine the vertical total electron content VTEC of the ionosphere based on the pseudorange observation value, the target coefficient value and the deviation value of the pseudorange code deviation at the receiver end.
本申请提供的总电子含量确定方法中,通过获取伪距观测值和载波相位观测值;其中,伪距观测值和载波相位观测值由低轨道地球LEO卫星上搭载的全球导航卫星系统GNSS接收机接收得到;这里,在轨运行的LEO能够全球飞行,相应地,在轨运行的LEO上搭载的GNSS接收机也随之全球移动,因此可实现海洋区域上空的电离层监测,提升监测范围;根据伪距观测值和载波相位观测值建立目标方程,目标方程中包括目标系数和接收机端伪距码偏差;然后,求解目标方程中的目标系数的目标系数值和接收机端伪距码偏差的偏差值,这里,能够快速准确地确定出目标系数值和接收机端伪距码偏差的偏差值;最后,根据伪距观测值、目标系数值和接收机端伪距码偏差的偏差值,确定电离层的垂直总电子含量VTEC,由此,能够实现在LEO端对VTEC的实时高精度计算。In the method for determining the total electron content provided by this application, pseudorange observation values and carrier phase observation values are obtained; among which, the pseudorange observation values and carrier phase observation values are obtained by the Global Navigation Satellite System GNSS receiver mounted on the low-orbiting Earth LEO satellite. Received; here, the LEO operating in orbit can fly around the world. Correspondingly, the GNSS receiver mounted on the LEO operating in orbit also moves globally, so the ionospheric monitoring over the ocean area can be realized and the monitoring range can be improved; according to The pseudorange observation value and the carrier phase observation value are used to establish a target equation, which includes the target coefficient and the receiver-side pseudorange code deviation; then, solve the target coefficient value of the target coefficient in the target equation and the receiver-side pseudorange code deviation. Deviation value, here, the deviation value of the target coefficient value and the pseudorange code deviation at the receiver end can be quickly and accurately determined; finally, based on the deviation value of the pseudorange observation value, the target coefficient value and the pseudorange code deviation at the receiver end, determine The vertical total electron content VTEC of the ionosphere, thus enabling real-time high-precision calculation of VTEC at the LEO end.
下面,对步骤110-步骤140的内容分别进行描述:Below, the contents of steps 110 to 140 are described respectively:
涉及步骤110。Step 110 is involved.
步骤110,获取伪距观测值和载波相位观测值;其中,伪距观测值和载波相位观测值由低轨道地球LEO卫星上搭载的全球导航卫星系统GNSS接收机接收得到;Step 110, obtain the pseudorange observation value and the carrier phase observation value; wherein the pseudorange observation value and the carrier phase observation value are received by the Global Navigation Satellite System GNSS receiver mounted on the low-orbiting Earth LEO satellite;
其中,获取到的伪距观测值精度一般是米级别的;载波相位观测值的精度一般是毫米级别的,因此需要采集伪距观测值和载波相位观测值,同时进行后续的计算。Among them, the accuracy of the obtained pseudorange observation values is generally at the meter level; the accuracy of the carrier phase observation values is generally at the millimeter level, so it is necessary to collect the pseudorange observation values and the carrier phase observation value, and perform subsequent calculations at the same time.
其中,载波相位观测值是指GNSS观测信息,GNSS观测信息具体可以包括:GPS系统双频观测值、GLONASS系统双频观测值、GALILEO系统双频观测值、BDS系统双频观测值和QZSS系统双频观测值,其采样间隔可以是0.1秒、1秒或者5秒等高频采样。Among them, the carrier phase observation value refers to the GNSS observation information. The GNSS observation information can specifically include: GPS system dual-frequency observation value, GLONASS system dual-frequency observation value, GALILEO system dual-frequency observation value, BDS system dual-frequency observation value and QZSS system dual-frequency observation value. Frequency observation values, the sampling interval can be high-frequency sampling such as 0.1 second, 1 second or 5 seconds.
其中,导航系统与伪距观测类型的对应关系如表1所示:Among them, the corresponding relationship between the navigation system and the pseudorange observation type is shown in Table 1:
表1Table 1
在本申请的实施例中,获取由低轨道地球LEO卫星上搭载的GNSS接收机接收得到的伪距观测值和载波相位观测值,这里,在轨运行的LEO能够全球飞行,相应地,在轨运行的LEO上搭载的GNSS接收机也随之全球移动,因此可实现海洋区域上空的电离层监测,提升监测范围,解决目前电离层VTEC的监测范围受限的问题。In the embodiment of the present application, the pseudorange observation value and the carrier phase observation value received by the GNSS receiver mounted on the low-orbiting LEO satellite are obtained. Here, the LEO operating in orbit can fly around the world. Correspondingly, the in-orbit The GNSS receiver mounted on the operating LEO also moves around the world, so it can realize ionospheric monitoring over the ocean area, improve the monitoring range, and solve the current problem of limited monitoring range of ionospheric VTEC.
涉及步骤120。Step 120 is involved.
步骤120,根据伪距观测值和载波相位观测值建立目标方程,目标方程中包括目标系数和接收机端伪距码偏差;Step 120: Establish a target equation based on the pseudorange observation value and the carrier phase observation value. The target equation includes the target coefficient and the receiver-end pseudorange code deviation;
根据伪距观测值和载波相位观测值建立目标方程,如下所示:Establish a target equation based on pseudorange observations and carrier phase observations, as follows:
其中,为权重矩阵、/>为相位平滑伪距矩阵,/>为第一矩阵,其中,第一矩阵中包括待估计的参数,/>为第二矩阵。权重矩阵、相位平滑矩阵,第一矩阵和第二矩阵均由伪距观测值、载波相位观测值确定得到。其中,伪距观测值和载波相位观测值的原始观测量可以表示为:in, is the weight matrix,/> is the phase smoothing pseudorange matrix,/> is the first matrix, where the first matrix includes the parameters to be estimated,/> is the second matrix. The weight matrix, the phase smoothing matrix, the first matrix and the second matrix are all determined by the pseudorange observation value and the carrier phase observation value. Among them, the original observations of pseudorange observations and carrier phase observations can be expressed as:
式中:c为光速;In the formula: c is the speed of light;
s表示导航卫星,r表示LEO卫星。s represents the navigation satellite and r represents the LEO satellite.
,表示伪距观测值; , represents the pseudorange observation value;
,表示载波相位观测值; , represents the carrier phase observation value;
表示频率;/>表示星地距离;/>表示钟差;/>和/>表示对流层投影函数和天顶延迟量;/>和/>表示电离层延迟系数与延迟值;/>和/>分别表示伪距偏差和相位偏差;/>和/>表示频率波长和整周模糊度;/>和/>表示伪距和相位观测噪声。 Indicates frequency;/> Indicates the distance between stars and ground;/> Indicates clock error;/> and/> Represents the tropospheric projection function and zenith delay;/> and/> Represents the ionospheric delay coefficient and delay value;/> and/> Represent pseudorange deviation and phase deviation respectively;/> and/> Represents frequency wavelength and integer ambiguity;/> and/> Represents pseudorange and phase observation noise.
在一种可能的实施例中,步骤120,包括:In a possible embodiment, step 120 includes:
步骤210,根据目标系数和接收机端伪距码偏差建立第一矩阵;Step 210, establish a first matrix based on the target coefficient and the receiver-side pseudorange code deviation;
步骤220,根据载波相位观测值和预先建立的投影函数、建立第二矩阵;Step 220: Create a second matrix based on the carrier phase observation value and the pre-established projection function;
步骤230,根据伪距观测值和载波相位观测值,确定相位平滑伪距矩阵;Step 230: Determine the phase smoothing pseudorange matrix based on the pseudorange observation value and the carrier phase observation value;
步骤240,根据载波相位观测值,建立权重矩阵;Step 240: Establish a weight matrix based on the carrier phase observation value;
步骤250,基于权重矩阵、相位平滑伪距矩阵,第一矩阵和第二矩阵、建立目标方程。下面,依次对步骤210-步骤250进行说明:Step 250: Establish a target equation based on the weight matrix, the phase smoothing pseudorange matrix, the first matrix and the second matrix. Next, steps 210 to 250 are explained in sequence:
步骤210,根据目标系数和接收机端伪距码偏差建立第一矩阵。Step 210: Create a first matrix based on the target coefficient and the receiver-end pseudorange code deviation.
在一种可能的实施例中,目标系数包括第一系数、第二系数和第三系数,步骤210,包括:In a possible embodiment, the target coefficient includes a first coefficient, a second coefficient and a third coefficient. Step 210 includes:
根据第一系数、第二系数、第三系数和接收机端伪距码偏差建立第一矩阵;其中,地磁坐标和VTEC的函数关系中包括第一系数、第二系数和第三系数。A first matrix is established based on the first coefficient, the second coefficient, the third coefficient and the receiver-end pseudorange code deviation; wherein the functional relationship between geomagnetic coordinates and VTEC includes the first coefficient, the second coefficient and the third coefficient.
,/> ,/>
其中,a0、a1和a2,分别为第一系数、第二系数和第三系数;这里,预设某个历元可观测到m个系统共n颗卫星,表示系统,m为正整数,n表示导航卫星的数量,n为正整数。为接收机端伪距码偏差;/>为卫星端伪距码偏差。Among them, a 0 , a 1 and a 2 are the first coefficient, the second coefficient and the third coefficient respectively; here, it is assumed that a certain epoch can observe m systems and a total of n satellites, represents the system, m is a positive integer, n represents the number of navigation satellites, and n is a positive integer. is the pseudorange code deviation at the receiver;/> is the satellite pseudorange code deviation.
这里,第一矩阵中的接收机端伪距码偏差为未知数,也就是需要求解的数值。Here, the receiver-side pseudorange code deviation in the first matrix is an unknown number, which is the value that needs to be solved.
地磁坐标和VTEC的函数关系为:The functional relationship between geomagnetic coordinates and VTEC is:
其中,地磁坐标为(M,L),地磁坐标和VTEC的函数关系中包括第一系数、第二系数和第三系数。Among them, the geomagnetic coordinates are (M, L), and the functional relationship between the geomagnetic coordinates and VTEC includes the first coefficient, the second coefficient and the third coefficient.
步骤220,根据载波相位观测值和预先建立的投影函数、建立第二矩阵。Step 220: Create a second matrix based on the carrier phase observation value and the pre-established projection function.
其中,为频率系数;in, is the frequency coefficient;
在一种可能的实施例中,在步骤220之前,方法还包括:In a possible embodiment, before step 220, the method further includes:
获取地球半径、电离层有效高度、低轨道卫星的轨道高度和天顶角;Obtain the radius of the earth, the effective height of the ionosphere, the orbital height and zenith angle of low-orbit satellites;
根据地球半径、电离层有效高度、低轨道卫星的轨道高度和天顶角,建立投影函数。A projection function is established based on the radius of the earth, the effective height of the ionosphere, the orbital height of the low-orbit satellite, and the zenith angle.
其中,是投影函数,/>是地球半径,/>为电离层有效高度(IonosphereEffective Height,IEH),/>为低轨道卫星的轨道高度,/>是天顶角。in, is the projection function,/> is the radius of the earth,/> is the ionosphere effective height (IEH),/> is the orbital altitude of the low-orbit satellite,/> It's the zenith angle.
步骤230,根据伪距观测值和载波相位观测值,确定相位平滑伪距矩阵。Step 230: Determine the phase smoothing pseudorange matrix based on the pseudorange observation value and the carrier phase observation value.
L= L=
其中,s表示导航卫星,r表示LEO卫星,n表示导航卫星的数量,n为正整数。smth表示相位平滑处理。Among them, s represents the navigation satellite, r represents the LEO satellite, n represents the number of navigation satellites, and n is a positive integer. smth represents phase smoothing processing.
在一种可能的实施例中,步骤230,包括:In a possible embodiment, step 230 includes:
根据伪距观测值和载波相位观测值,计算无几何组合观测量;According to the pseudorange observation value and the carrier phase observation value, the geometrically combined observation quantity is calculated;
根据无几何组合观测量,确定相位平滑伪距矩阵。这里,是利用GNSS信号中两个频率的载波相位观测数据组成无几何距离组合以探测周跳,以第L1和L2为例,L1和L2频点,用于分别标识不同波长的电磁波。Determine the phase smoothing pseudorange matrix based on the geometrically uncombined observations. Here, the carrier phase observation data of two frequencies in the GNSS signal are used to form a geometric distance-free combination to detect cycle slips. Taking L1 and L2 as an example, the L1 and L2 frequency points are used to identify electromagnetic waves of different wavelengths respectively.
基于L1和L2频点信号形成无几何组合观测量(Geometry-Free, GF);Geometry-Free (GF) is formed based on the L1 and L2 frequency signals;
其中,根据伪距观测值和载波相位观测值,计算无几何组合观测量具体可以包括:Among them, based on the pseudorange observation value and the carrier phase observation value, the calculation of the geometrically free combination observation quantity may include:
; ;
; ;
其中,是基于伪距观测值计算得到的绝对TEC;/>为频率系数,该频率系数根据L1的频率和L2的频率确定;in, It is the absolute TEC calculated based on pseudorange observations;/> is the frequency coefficient, which is determined based on the frequency of L1 and the frequency of L2;
是基于载波相位观测值计算得到的绝对TEC。 is the absolute TEC calculated based on carrier phase observations.
式中:In the formula:
其中,为L1的频率,/>为L2的频率;in, is the frequency of L1,/> is the frequency of L2;
对于前k个连续观测的伪距和载波相位GF观测量,可得到:For the pseudorange and carrier phase GF observations of the first k consecutive observations, we can get:
其中,表示模糊度;in, Represents ambiguity;
其中,根据无几何组合观测量,确定相位平滑伪距矩阵,具体可以包括:Among them, the phase smoothing pseudorange matrix is determined based on the geometrically combined observations, which may include:
这里,对伪距观测值和载波相位观测值做平滑处理,处理结果可以认为连续伪距观测值和载波相位观测值。Here, the pseudorange observation values and carrier phase observation values are smoothed, and the processing results can be considered as continuous pseudorange observation values and carrier phase observation values.
上述公式表示,载波相位观测值减去模糊度,得到电离层观测值,电离层观测值等于电离层模型加接收机端伪距码偏差。The above formula indicates that the ionospheric observation value is obtained by subtracting the ambiguity from the carrier phase observation value. The ionospheric observation value is equal to the ionospheric model plus the receiver-end pseudorange code deviation.
步骤240,根据载波相位观测值,建立权重矩阵。这里,根据载波相位观测值,从高度角、信号强度以及相位平滑伪距的平滑长度三个角度对各类观测值进行综合定权,建立权重矩阵。Step 240: Establish a weight matrix based on the carrier phase observation value. Here, based on the carrier phase observation values, various types of observation values are comprehensively weighted from three perspectives: altitude angle, signal strength, and smoothing length of the phase smooth pseudorange, and a weight matrix is established.
在一种可能的实施例中,步骤240,包括:In a possible embodiment, step 240 includes:
从载波观测信息中获取LEO卫星和导航卫星之间的高度角、导航卫星向LEO卫星发送的信号的信号强度和平滑长度;Obtain the altitude angle between the LEO satellite and the navigation satellite, the signal strength and smoothing length of the signal sent by the navigation satellite to the LEO satellite from the carrier observation information;
根据高度角、信号强度和平滑长度,建立权重矩阵。Based on the altitude angle, signal strength and smoothing length, a weight matrix is established.
其中,载波观测信息中包括LEO卫星和导航卫星之间的高度角、导航卫星向LEO卫星发送的信号的信号强度和平滑长度。可以从从载波观测信息中获取高度角、信号强度和平滑长度,根据高度角、信号强度和平滑长度,建立权重矩阵。Among them, the carrier observation information includes the altitude angle between the LEO satellite and the navigation satellite, the signal strength and smoothing length of the signal sent by the navigation satellite to the LEO satellite. The altitude angle, signal strength and smoothing length can be obtained from the carrier observation information, and a weight matrix can be established based on the altitude angle, signal strength and smoothing length.
其中,s表示导航卫星,r表示LEO卫星,n表示导航卫星的数量;Among them, s represents the navigation satellite, r represents the LEO satellite, and n represents the number of navigation satellites;
r1表示高度角权重值;r2表示信号强度权重值;r3表示平滑长度权重值。r1 represents the altitude angle weight value; r2 represents the signal strength weight value; r3 represents the smoothing length weight value.
其中,上述涉及到的根据高度角、信号强度和平滑长度,建立权重矩阵的步骤中,包括:Among them, the above-mentioned steps of establishing a weight matrix based on the altitude angle, signal strength and smoothing length include:
步骤310,根据高度角,确定高度角权重值;Step 310: Determine the altitude angle weight value based on the altitude angle;
步骤320,根据信号强度,确定信号强度权重值;Step 320: Determine the signal strength weight value based on the signal strength;
步骤330,根据平滑长度,计算平滑长度权重值;Step 330: Calculate the smoothing length weight value based on the smoothing length;
其中,权重矩阵包括:高度角权重值、信号强度权重值和平滑长度权重值。Among them, the weight matrix includes: altitude angle weight value, signal strength weight value and smoothing length weight value.
其中,导航卫星发射信号,经过大气和大气中的水汽,经过卫星方板的反射,信号会经过衰减;由于信号发射强度是固定的,经过衰减,到达接收机的接收信号强度会改变,因此,需要考虑信号强度对应的信号强度权重值。Among them, the signal transmitted by the navigation satellite will be attenuated after passing through the atmosphere and water vapor in the atmosphere, and being reflected by the satellite square plate. Since the signal emission intensity is fixed, after attenuation, the received signal intensity reaching the receiver will change. Therefore, The signal strength weight value corresponding to the signal strength needs to be considered.
由于,伪距观测值的测量是直接测量,是粗精度的测量,可以通过载波相位观测值对伪距观测值进行平滑处理。Since the measurement of the pseudorange observation value is a direct measurement and a coarse-precision measurement, the pseudorange observation value can be smoothed by the carrier phase observation value.
相位平滑伪距是通过对GPS接收机接收到的卫星信号的相位进行平滑处理,得到一种类似于伪距的数据。Phase smoothing pseudo-range is to obtain data similar to pseudo-range by smoothing the phase of the satellite signal received by the GPS receiver.
在一种可能的实施例中,步骤310,包括:In a possible embodiment, step 310 includes:
在高度角小于第一阈值的情况下,将高度角权重值确定为第一权重值;或者,When the altitude angle is less than the first threshold, determine the altitude angle weight value as the first weight value; or,
在高度角不小于第一阈值的情况下,根据高度角确定第二权重值;When the altitude angle is not less than the first threshold, determine the second weight value based on the altitude angle;
将高度角权重值确定为第二权重值;Determine the altitude angle weight value as the second weight value;
其中,第一权重值大于第二权重值。Wherein, the first weight value is greater than the second weight value.
基于地面站进行电离层建模或监测应用中,一般会舍弃高度角低于15度以下的观测数据,但是LEO单站可用数据量有限,并考虑低高度角可能带来的误差,对于15度以下的数据进行适当降权处理;In ionospheric modeling or monitoring applications based on ground stations, observation data with altitude angles below 15 degrees are generally discarded. However, the amount of data available at a LEO single station is limited, and considering the possible errors caused by low altitude angles, for 15 degrees The following data will be appropriately downgraded;
其中,ELE为高度角;Among them, ELE is the altitude angle;
在高度角小于第一阈值(比如15度)的情况下,将高度角权重值确定为第一权重值;When the altitude angle is less than the first threshold (for example, 15 degrees), the altitude angle weight value is determined as the first weight value. ;
在高度角不小于第一阈值的情况下,根据高度角确定第二权重值,即第二权重值为。When the altitude angle is not less than the first threshold, the second weight value is determined based on the altitude angle, that is, the second weight value is .
在第一阈值为15度的情况下,由于约等于0.65,/>大于1,因此第一权重值大于第二权重值。In the case where the first threshold is 15 degrees, since Approximately equal to 0.65,/> is greater than 1, so the first weight value is greater than the second weight value.
在一种可能的实施例中,步骤320,包括:In a possible embodiment, step 320 includes:
获取信号的相位跟踪环带宽和载波相位波长;Obtain the phase tracking loop bandwidth and carrier phase wavelength of the signal;
根据信号强度、相位跟踪环带宽和载波相位波长,确定信号强度权重值。The signal strength weight value is determined based on the signal strength, phase tracking loop bandwidth and carrier phase wavelength.
信号强度可直接反映观测值的接收质量,而且可直接从RINEX文件中得到,取值范围1-9,代表信号强度从小到大,基于信号强度权重值的定权的公式为:Signal strength can directly reflect the reception quality of the observed value, and can be obtained directly from the RINEX file. The value range is 1-9, which represents the signal strength from small to large. The weighting formula based on the signal strength weight value is:
其中,,/>为相位跟踪环带宽(HZ),/>为载波相位波长(m)。in, ,/> is the phase tracking loop bandwidth (HZ),/> is the carrier phase wavelength (m).
因此,可以根据信号强度、相位跟踪环带宽和载波相位波长,确定信号强度权重值。Therefore, the signal strength weight value can be determined based on the signal strength, phase tracking loop bandwidth and carrier phase wavelength.
在一种可能的实施例中,步骤330,包括:In a possible embodiment, step 330 includes:
在平滑长度小于第二阈值的情况下,根据第二阈值和平滑长度,确定第三权重值;When the smoothing length is less than the second threshold, determine the third weight value based on the second threshold and the smoothing length;
将平滑长度权重值确定为第三权重值;或者,Determine the smoothing length weight value as the third weight value; or,
在平滑长度不小于第二阈值的情况下,将高度角权重值确定为第四权重值;When the smoothing length is not less than the second threshold, determine the altitude angle weight value as the fourth weight value;
其中,第三权重值小于第四权重值。Wherein, the third weight value is smaller than the fourth weight value.
与地面站观测GNSS卫星不同,高动态的LEO接收机观测到GNSS卫星的时长较短,考虑到多路径误差通过长时间弧段平均后才能消除掉,在实时解算过程中,因某个弧段前面一部分观测数据受到多路径误差影响较大,需要进行降权处理;Different from the ground station observing GNSS satellites, the highly dynamic LEO receiver observes the GNSS satellites for a short time. Considering that the multipath error can only be eliminated after averaging over a long arc segment, during the real-time solution process, due to a certain arc The observation data in the front part of the segment are greatly affected by multipath errors and need to be weighted down;
其中,LEN为平滑长度;Among them, LEN is the smoothing length;
在平滑长度小于第二阈值的情况下,根据第二阈值和平滑长度,确定第三权重值,即可以将第二阈值与平滑长度之商,作为第三权重值,然后将平滑长度权重值确定为第三权重值;或者,When the smoothing length is less than the second threshold, the third weight value is determined based on the second threshold and the smoothing length. That is, the quotient of the second threshold and the smoothing length can be used as the third weight value, and then the smoothing length weight value is determined. is the third weight value; or,
在平滑长度不小于第二阈值的情况下,将高度角权重值确定为第四权重值,其中,第四权重值可以为1。In the case where the smoothing length is not less than the second threshold, the altitude angle weight value is determined as a fourth weight value, where the fourth weight value may be 1.
其中,在平滑长度小于第二阈值的情况下,第二阈值与平滑长度之商大于1,因此,第四权重值大于第三权重值。Wherein, when the smoothing length is less than the second threshold, the quotient of the second threshold and the smoothing length is greater than 1. Therefore, the fourth weight value is greater than the third weight value.
步骤250,基于权重矩阵、相位平滑伪距矩阵,第一矩阵和第二矩阵、建立目标方程。Step 250: Establish a target equation based on the weight matrix, the phase smoothing pseudorange matrix, the first matrix and the second matrix.
由此,可以基于上述分别构建的权重矩阵、相位平滑伪距矩阵,第一矩阵和第二矩阵建立目标方程。Therefore, the target equation can be established based on the weight matrix, the phase smoothing pseudorange matrix, the first matrix and the second matrix respectively constructed above.
涉及步骤130。Step 130 is involved.
步骤130,求解目标方程中的目标系数的目标系数值和接收机端伪距码偏差的偏差值;Step 130: Solve the target coefficient value of the target coefficient in the target equation and the deviation value of the pseudorange code deviation at the receiver end;
这里,可以以序贯最小二乘法进行单站电离层TEC建模与伪距码偏差估计,解算出接收机端伪距码偏差值,进而计算出当前历元各个站星连线的VTEC值。Here, the sequential least squares method can be used to model the ionospheric TEC of a single station and estimate the pseudorange code deviation, and then calculate the pseudorange code deviation value at the receiver end, and then calculate the VTEC value of each station-satellite connection in the current epoch.
在一种可能的实施例中,目标系数包括第一系数、第二系数和第三系数,步骤130,包括:In a possible embodiment, the target coefficient includes a first coefficient, a second coefficient and a third coefficient. Step 130 includes:
基于权重矩阵、相位平滑伪距矩阵,第一矩阵和第二矩阵,求解第一系数的第一系数值、第二系数的第二系数值、第三系数的第三系数值和接收机端伪距码偏差的偏差值。Based on the weight matrix, the phase smoothing pseudorange matrix, the first matrix and the second matrix, solve the first coefficient value of the first coefficient, the second coefficient value of the second coefficient, the third coefficient value of the third coefficient and the pseudo range of the receiver end. Deviation value from code deviation.
其中分别对应上述三种定权方式,即高度角权重值、信号强度权重值和平滑长度权重值。in Correspond to the above three weighting methods, namely, altitude angle weight value, signal strength weight value and smoothing length weight value.
其中,目标方程中的未知量包括:目标系数的目标系数值和接收机端伪距码偏差的偏差值。Among them, the unknown quantities in the target equation include: the target coefficient value of the target coefficient and the deviation value of the pseudorange code deviation at the receiver end.
在本申请的实施例中,求解基于伪距观测值和载波相位观测值建立的目标方程中的目标系数的目标系数值和接收机端伪距码偏差的偏差值,这里,能够快速准确地确定出目标系数值和接收机端伪距码偏差的偏差值,以便后续根据伪距观测值、目标系数值和求解出的高精度的接收机端伪距码偏差的偏差值,确定电离层的垂直总电子含量VTEC,以实现在LEO端对VTEC的实时高精度计算。In the embodiment of the present application, the target coefficient value of the target coefficient in the target equation established based on the pseudorange observation value and the carrier phase observation value and the deviation value of the pseudorange code deviation at the receiver end are solved. Here, it is possible to quickly and accurately determine The deviation value of the target coefficient value and the receiver-side pseudorange code deviation is obtained, so that the vertical position of the ionosphere can be determined later based on the pseudorange observation value, the target coefficient value and the calculated high-precision deviation value of the receiver-side pseudorange code deviation. Total electron content VTEC to achieve real-time high-precision calculation of VTEC at the LEO end.
涉及步骤140。Step 140 is involved.
步骤140,根据伪距观测值、目标系数值和接收机端伪距码偏差的偏差值,确定电离层的垂直总电子含量VTEC。Step 140: Determine the vertical total electron content VTEC of the ionosphere based on the pseudorange observation value, the target coefficient value and the deviation value of the pseudorange code deviation at the receiver end.
单站电离层建模可以选取多项式函数模型、三角级函数模型以及低阶的球谐函数模型,这里以多项式函数模型为例进行展示:For single-station ionospheric modeling, you can choose polynomial function models, trigonometric function models, and low-order spherical harmonic function models. Here we take the polynomial function model as an example:
在一种可能的实施例中,步骤140,包括:In a possible embodiment, step 140 includes:
根据伪距观测值、第一系数值、第二系数值、第三系数值和接收机端伪距码偏差,确定VTEC。The VTEC is determined based on the pseudorange observation value, the first coefficient value, the second coefficient value, the third coefficient value and the receiver end pseudorange code deviation.
其中,上述涉及的多项式函数模型为: Among them, the polynomial function model involved above is:
其中,地磁坐标为(M,L),和/>,分别为基于上述目标方程求解出来的第一系数值、第二系数值和第三系数值。Among them, the geomagnetic coordinates are (M, L), and/> , respectively, are the first coefficient value, the second coefficient value and the third coefficient value solved based on the above target equation.
在一种可能的实施例中,步骤140,包括:In a possible embodiment, step 140 includes:
根据伪距观测值和获取到的广播星历信息确定地磁坐标、卫星高度角和方位角信息;Determine geomagnetic coordinates, satellite altitude angle and azimuth angle information based on pseudorange observations and acquired broadcast ephemeris information;
根据地磁坐标、卫星高度角、方位角信息和目标系数值和接收机端伪距码偏差的偏差值,确定VTEC。The VTEC is determined based on the geomagnetic coordinates, satellite altitude angle, azimuth angle information, target coefficient value and the deviation value of the pseudorange code deviation at the receiver end.
广播星历信息是指导航卫星播发的未来一段时间内卫星轨道根数的电文信息。Broadcast ephemeris information is the message information broadcast by navigation satellites about the number of satellite orbits in the future.
在一种可能的实施例中,上述涉及到的根据伪距观测值和获取到的广播星历信息确定地磁坐标、卫星高度角和方位角信息的步骤中,包括:In a possible embodiment, the above-mentioned steps of determining geomagnetic coordinates, satellite altitude angle, and azimuth angle information based on pseudorange observations and acquired broadcast ephemeris information include:
根据伪距观测值和广播星历信息进行实时单点定位,计算得到接收机的位置信息;Perform real-time single point positioning based on pseudorange observations and broadcast ephemeris information, and calculate the position information of the receiver;
根据接收机的位置信息,计算电离层穿刺点的地磁坐标、卫星高度角和方位角信息。Based on the position information of the receiver, the geomagnetic coordinates, satellite altitude angle and azimuth angle information of the ionospheric penetration point are calculated.
利用GNSS伪距观测值和广播星历信息对接收机进行实时单点定位,获取接收机三维坐标,进而计算得到电离层穿刺点处的地磁坐标。GNSS pseudorange observations and broadcast ephemeris information are used to perform real-time single point positioning of the receiver, obtain the three-dimensional coordinates of the receiver, and then calculate the geomagnetic coordinates of the ionosphere penetration point.
在一种可能的实施例中,获取接收机的历史温度值,和历史温度值对应的接收机端伪距码偏差的历史偏差值;In a possible embodiment, obtain the historical temperature value of the receiver, and the historical deviation value of the receiver-end pseudorange code deviation corresponding to the historical temperature value;
根据历史温度值和历史偏差值,建立接收机端伪距码偏差和接收机的温度信息之间的多项式函数,多项式函数中包括多个参数;Based on the historical temperature value and historical deviation value, a polynomial function between the pseudorange code deviation at the receiver end and the temperature information of the receiver is established. The polynomial function includes multiple parameters;
根据多项式函数和获取到的接收机的温度值,估计接收机端伪距码偏差的偏差值。According to the polynomial function and the obtained temperature value of the receiver, the deviation value of the pseudorange code deviation at the receiver end is estimated.
GNSS接收机温度信息是指星载接收机的实时温度情况,其采样间隔与GNSS观测值一致。GNSS receiver temperature information refers to the real-time temperature situation of the satellite receiver, and its sampling interval is consistent with the GNSS observation value.
同时顾及到TEC模型参数与接收机端伪距码偏差是每个历元均估计,为了防止矩阵计算秩亏,增加虚拟观测方程进行约束;At the same time, taking into account that the TEC model parameters and the receiver-side pseudorange code deviation are estimated at each epoch, in order to prevent matrix calculation rank deficiency, a virtual observation equation is added for constraints;
历史温度值可以为每一秒采集一个温度,也可以给一个标定值;根据伪距观测值,构建电离层模型,可以估计出来接收机端伪距码偏差的偏差值。The historical temperature value can be a temperature collected every second, or a calibration value can be given; based on the pseudorange observation value, an ionospheric model is constructed, and the deviation value of the pseudorange code deviation at the receiver can be estimated.
对于接收机端码偏差约束,将采集的接收机温度信息和之前历元估计的DCB值构建相应函数模型,预报当前历元的DCB值;由于伪距码偏差会随着温度的日内变化而变化,这里以多项式函数建立接收机端伪距码偏差与接收机内部温度的关系:For the receiver end code deviation constraint, the collected receiver temperature information and the DCB value estimated at the previous epoch are constructed into a corresponding function model to predict the DCB value of the current epoch; since the pseudorange code deviation will change with the daily change of temperature , here the relationship between the pseudorange code deviation at the receiver end and the internal temperature of the receiver is established using a polynomial function:
其中,a为模型参数,t为温度值,F(t)为接收机端伪距码偏差。Among them, a is the model parameter, t is the temperature value, and F(t) is the pseudorange code deviation at the receiver end.
在一种可能的实施例中,在上述涉及到的根据历史温度值和历史偏差值,建立接收机端伪距码偏差和接收机的温度信息之间的多项式函数的步骤之后,还可以包括:In a possible embodiment, after the above-mentioned steps of establishing a polynomial function between the receiver-end pseudorange code deviation and the temperature information of the receiver based on the historical temperature value and the historical deviation value, it may also include:
调节多项式函数中的参数,以使接收机端伪距码偏差在预设范围内。对于卫星端码偏差参数约束,通过每日法方程累加解算出一组卫星端码偏差值,作为下一日TEC解算的紧约束条件;同时对各系统卫星端码偏差采用零均值约束进行基准统一。Adjust the parameters in the polynomial function so that the pseudorange code deviation at the receiver is within the preset range. For the satellite code deviation parameter constraints, a set of satellite code deviation values are calculated through the accumulation of daily normal equations, which are used as tight constraints for the next day's TEC solution; at the same time, the zero-mean constraint is used to benchmark the satellite code deviations of each system. Unite.
由于空间环境比较稳定,GNSS卫星因此内部延迟稳定;Since the space environment is relatively stable, the internal delay of GNSS satellites is stable;
LEO处于高速飞行的状态,接收机端伪距码偏差变化的比较频繁;LEO is flying at high speed, and the pseudorange code deviation at the receiver changes frequently;
每一个多项式函数中的参数分别对应一个矩阵,为了接收机端伪距码偏差在预设范围内,可以调节多项式函数。即可以调节多项式函数中的参数,以使接收机端伪距码偏差在预设范围内的估值不超过预设范围。Each parameter in the polynomial function corresponds to a matrix. In order to ensure that the pseudorange code deviation at the receiver is within a preset range, the polynomial function can be adjusted. That is, the parameters in the polynomial function can be adjusted so that the estimated pseudorange code deviation at the receiver end within the preset range does not exceed the preset range.
由此,本申请的实施例,可以通过在星上进行实时TEC解算,对该卫星轨道上层的电离层延迟变化进行实时监测,对于研究电离层各层分界高度、太阳活动监测,电离层异常和电离层层析等带来有益的帮助。Therefore, the embodiments of the present application can perform real-time TEC calculation on the satellite to conduct real-time monitoring of the ionospheric delay changes in the upper layer of the satellite orbit, which is useful for studying the boundary height of each layer of the ionosphere, monitoring solar activity, and ionospheric anomalies. and ionization chromatography, etc. bring useful help.
综上,在本申请实施例中,通过获取伪距观测值和载波相位观测值;其中,伪距观测值和载波相位观测值由低轨道地球LEO卫星上搭载的全球导航卫星系统GNSS接收机接收得到;这里,在轨运行的LEO能够全球飞行,相应地,在轨运行的LEO上搭载的GNSS接收机也随之全球移动,因此可实现海洋区域上空的电离层监测,提升监测范围;根据伪距观测值和载波相位观测值建立目标方程,目标方程中包括目标系数和接收机端伪距码偏差;然后,求解目标方程中的目标系数的目标系数值和接收机端伪距码偏差的偏差值,这里,能够快速准确地确定出目标系数值和接收机端伪距码偏差的偏差值;最后,根据伪距观测值、目标系数值和接收机端伪距码偏差的偏差值,确定电离层的垂直总电子含量VTEC,由此,能够实现在LEO端对VTEC的实时高精度计算。To sum up, in the embodiment of this application, the pseudorange observation value and the carrier phase observation value are obtained; wherein the pseudorange observation value and the carrier phase observation value are received by the Global Navigation Satellite System GNSS receiver mounted on the low-orbiting Earth LEO satellite. Obtained; here, the LEO operating in orbit can fly around the world. Correspondingly, the GNSS receiver mounted on the LEO operating in orbit also moves globally, so the ionospheric monitoring over the ocean area can be realized and the monitoring range can be improved; according to the pseudo Establish a target equation from the observed value and carrier phase observation value. The target equation includes the target coefficient and the receiver-side pseudorange code deviation; then, solve the target coefficient value of the target coefficient in the target equation and the deviation of the receiver-side pseudorange code deviation. value, here, the deviation value of the target coefficient value and the receiver-side pseudorange code deviation can be quickly and accurately determined; finally, based on the deviation value of the pseudorange observation value, the target coefficient value, and the receiver-side pseudorange code deviation, the ionization The vertical total electron content VTEC of the layer can be calculated in real time at the LEO end with high precision.
基于上述图1所示的总电子含量确定方法,本申请实施例还提供一种数据处理的装置,如图4所示,该装置400可以包括:Based on the total electron content determination method shown in Figure 1 above, embodiments of the present application also provide a data processing device. As shown in Figure 4, the device 400 may include:
获取模块410,用于获取伪距观测值和载波相位观测值;其中,伪距观测值和载波相位观测值由LEO卫星上搭载的GNSS接收机接收得到;The acquisition module 410 is used to obtain the pseudorange observation value and the carrier phase observation value; wherein the pseudorange observation value and the carrier phase observation value are received by the GNSS receiver mounted on the LEO satellite;
建立模块420,用于根据伪距观测值和载波相位观测值建立目标方程,目标方程中包括目标系数和接收机端伪距码偏差;The establishment module 420 is used to establish a target equation based on the pseudorange observation value and the carrier phase observation value. The target equation includes the target coefficient and the receiver end pseudorange code deviation;
求解模块430,用于求解目标方程中的目标系数的目标系数值和接收机端伪距码偏差的偏差值;The solving module 430 is used to solve the target coefficient value of the target coefficient in the target equation and the deviation value of the pseudorange code deviation at the receiver end;
确定模块440,用于根据伪距观测值、目标系数值和接收机端伪距码偏差的偏差值,确定电离层的VTEC。The determination module 440 is used to determine the VTEC of the ionosphere based on the pseudorange observation value, the target coefficient value and the deviation value of the pseudorange code deviation at the receiver end.
在一种可能的实施例中,确定模块440,具体用于:In a possible embodiment, the determining module 440 is specifically used to:
根据所述伪距观测值和获取到的广播星历信息确定地磁坐标、卫星高度角和方位角信息;Determine geomagnetic coordinates, satellite altitude angle and azimuth angle information based on the pseudorange observation values and the obtained broadcast ephemeris information;
根据所述地磁坐标、卫星高度角、方位角信息和所述目标系数值和所述接收机端伪距码偏差的偏差值,确定所述VTEC。The VTEC is determined based on the geomagnetic coordinates, satellite altitude angle, azimuth angle information and the deviation value of the target coefficient value and the pseudo-range code deviation at the receiver end.
在一种可能的实施例中,确定模块440,具体用于:In a possible embodiment, the determining module 440 is specifically used to:
根据所述伪距观测值和所述广播星历信息进行实时单点定位,计算得到所述接收机的位置信息;Perform real-time single point positioning based on the pseudorange observation value and the broadcast ephemeris information, and calculate the position information of the receiver;
根据所述接收机的位置信息,计算电离层穿刺点的所述地磁坐标、卫星高度角和方位角信息。According to the position information of the receiver, the geomagnetic coordinates, satellite altitude angle and azimuth angle information of the ionospheric penetration point are calculated.
在一种可能的实施例中,建立模块420,具体用于:In a possible embodiment, the establishment module 420 is specifically used to:
根据所述目标系数和所述接收机端伪距码偏差建立第一矩阵;Establish a first matrix according to the target coefficient and the receiver-side pseudorange code deviation;
根据所述载波相位观测值和预先建立的投影函数、建立第二矩阵;Establish a second matrix according to the carrier phase observation value and the pre-established projection function;
根据所述伪距观测值和所述载波相位观测值,确定相位平滑伪距矩阵;Determine a phase smoothing pseudorange matrix according to the pseudorange observation value and the carrier phase observation value;
根据所述载波相位观测值,建立权重矩阵;Establish a weight matrix according to the carrier phase observation value;
基于所述权重矩阵、所述相位平滑伪距矩阵,所述第一矩阵和所述第二矩阵、建立所述目标方程。The target equation is established based on the weight matrix, the phase smoothing pseudorange matrix, the first matrix and the second matrix.
在一种可能的实施例中,建立模块420,具体用于:In a possible embodiment, the establishment module 420 is specifically used to:
相位观测值和预先建立的投影函数、建立第二矩阵之前,所述方法还包括:Before establishing the phase observation value and the pre-established projection function and establishing the second matrix, the method further includes:
获取地球半径、电离层有效高度、低轨道卫星的轨道高度和天顶角;Obtain the radius of the earth, the effective height of the ionosphere, the orbital height and zenith angle of low-orbit satellites;
根据所述地球半径、所述电离层有效高度、所述低轨道卫星的轨道高度和所述天顶角,建立所述投影函数。The projection function is established based on the earth radius, the ionospheric effective height, the orbital altitude of the low-orbit satellite, and the zenith angle.
在一种可能的实施例中,建立模块420,具体用于:In a possible embodiment, the establishment module 420 is specifically used to:
根据所述伪距观测值和载波相位观测值,计算无几何组合观测量;According to the pseudorange observation value and the carrier phase observation value, calculate the observation quantity without geometric combination;
根据所述无几何组合观测量,确定所述相位平滑伪距矩阵。The phase smoothing pseudorange matrix is determined based on the geometrically combined observations.
在一种可能的实施例中,建立模块420,具体用于:In a possible embodiment, the establishment module 420 is specifically used to:
根据所述第一系数、所述第二系数、所述第三系数和所述接收机端伪距码偏差建立所述第一矩阵;其中,地磁坐标和所述VTEC的函数关系中包括所述第一系数、所述第二系数和所述第三系数。The first matrix is established according to the first coefficient, the second coefficient, the third coefficient and the receiver-side pseudorange code deviation; wherein the functional relationship between geomagnetic coordinates and the VTEC includes the a first coefficient, said second coefficient and said third coefficient.
在一种可能的实施例中,建立模块420,具体用于:In a possible embodiment, the establishment module 420 is specifically used to:
从所述载波观测信息中获取所述LEO卫星和导航卫星之间的高度角、所述导航卫星向所述LEO卫星发送的信号的信号强度和平滑长度;Obtain the altitude angle between the LEO satellite and the navigation satellite, the signal strength and smoothing length of the signal sent by the navigation satellite to the LEO satellite from the carrier observation information;
根据所述高度角、所述信号强度和所述平滑长度,建立所述权重矩阵。The weight matrix is established based on the altitude angle, the signal strength and the smoothing length.
在一种可能的实施例中,建立模块420,具体用于:In a possible embodiment, the establishment module 420 is specifically used to:
根据所述高度角,确定高度角权重值;According to the altitude angle, determine the altitude angle weight value;
根据所述信号强度,确定信号强度权重值;According to the signal strength, determine the signal strength weight value;
根据所述平滑长度,计算平滑长度权重值;Calculate the smoothing length weight value according to the smoothing length;
其中,所述权重矩阵包括:所述高度角权重值、所述信号强度权重值和所述平滑长度权重值。Wherein, the weight matrix includes: the altitude angle weight value, the signal strength weight value and the smoothing length weight value.
在一种可能的实施例中,建立模块420,具体用于:In a possible embodiment, the establishment module 420 is specifically used to:
在所述高度角小于第一阈值的情况下,将所述高度角权重值确定为第一权重值;或者,When the altitude angle is less than the first threshold, determine the altitude angle weight value as the first weight value; or,
在所述高度角不小于所述第一阈值的情况下,根据所述高度角确定第二权重值;If the altitude angle is not less than the first threshold, determine a second weight value based on the altitude angle;
将所述高度角权重值确定为所述第二权重值;Determine the altitude angle weight value as the second weight value;
其中,所述第一权重值大于所述第二权重值。Wherein, the first weight value is greater than the second weight value.
在一种可能的实施例中,建立模块420,具体用于:In a possible embodiment, the establishment module 420 is specifically used to:
获取所述信号的相位跟踪环带宽和载波相位波长;Obtain the phase tracking loop bandwidth and carrier phase wavelength of the signal;
根据所述信号强度、所述相位跟踪环带宽和所述载波相位波长,确定所述信号强度权重值。The signal strength weight value is determined based on the signal strength, the phase tracking loop bandwidth and the carrier phase wavelength.
在一种可能的实施例中,建立模块420,具体用于:In a possible embodiment, the establishment module 420 is specifically used to:
在所述平滑长度小于第二阈值的情况下,根据所述第二阈值和所述平滑长度,确定第三权重值;If the smoothing length is less than the second threshold, determine a third weight value based on the second threshold and the smoothing length;
将所述平滑长度权重值确定为所述第三权重值;或者,Determine the smooth length weight value as the third weight value; or,
在所述平滑长度不小于所述第二阈值的情况下,将所述高度角权重值确定为第四权重值;If the smoothing length is not less than the second threshold, determine the altitude angle weight value as a fourth weight value;
其中,所述第三权重值小于所述第四权重值。Wherein, the third weight value is smaller than the fourth weight value.
在一种可能的实施例中,求解模块430,具体用于:In a possible embodiment, the solution module 430 is specifically used to:
基于所述权重矩阵、所述相位平滑伪距矩阵,所述第一矩阵和所述第二矩阵,求解所述第一系数的第一系数值、所述第二系数的第二系数值、所述第三系数的第三系数值和所述接收机端伪距码偏差的偏差值。Based on the weight matrix, the phase smoothing pseudorange matrix, the first matrix and the second matrix, solve the first coefficient value of the first coefficient, the second coefficient value of the second coefficient, and the The third coefficient value of the third coefficient and the deviation value of the pseudorange code deviation at the receiver end.
在一种可能的实施例中,确定模块440,具体用于:In a possible embodiment, the determining module 440 is specifically used to:
根据所述伪距观测值、所述第一系数值、所述第二系数值、所述第三系数值和所述接收机端伪距码偏差,确定所述VTEC。The VTEC is determined based on the pseudorange observation value, the first coefficient value, the second coefficient value, the third coefficient value and the receiver end pseudorange code deviation.
在一种可能的实施例中,该装置400可以包括:In a possible embodiment, the device 400 may include:
估计模块,具体用于:Estimation module, specifically used for:
获取所述接收机的历史温度值,和所述历史温度值对应的所述接收机端伪距码偏差的历史偏差值;Obtain the historical temperature value of the receiver and the historical deviation value of the receiver-side pseudorange code deviation corresponding to the historical temperature value;
根据所述历史温度值和所述历史偏差值,建立所述接收机端伪距码偏差和所述接收机的温度信息之间的多项式函数,所述多项式函数中包括多个参数;According to the historical temperature value and the historical deviation value, establish a polynomial function between the receiver-end pseudorange code deviation and the temperature information of the receiver, where the polynomial function includes multiple parameters;
根据所述多项式函数和获取到的所述接收机的温度值,估计所述所述接收机端伪距码偏差的偏差值。According to the polynomial function and the obtained temperature value of the receiver, the deviation value of the pseudorange code deviation at the receiver end is estimated.
在一种可能的实施例中,该装置400可以包括:In a possible embodiment, the device 400 may include:
调节模块,用于调节所述多项式函数中的参数,以使所述接收机端伪距码偏差在预设范围内。An adjustment module, configured to adjust parameters in the polynomial function so that the receiver-side pseudorange code deviation is within a preset range.
综上,在本申请实施例中,通过获取伪距观测值和载波相位观测值;其中,伪距观测值和载波相位观测值由低轨道地球LEO卫星上搭载的全球导航卫星系统GNSS接收机接收得到;这里,在轨运行的LEO能够全球飞行,相应地,在轨运行的LEO上搭载的GNSS接收机也随之全球移动,因此可实现海洋区域上空的电离层监测,提升监测范围;根据伪距观测值和载波相位观测值建立目标方程,目标方程中包括目标系数和接收机端伪距码偏差;然后,求解目标方程中的目标系数的目标系数值和接收机端伪距码偏差的偏差值,这里,能够快速准确地确定出目标系数值和接收机端伪距码偏差的偏差值;最后,根据伪距观测值、目标系数值和接收机端伪距码偏差的偏差值,确定电离层的垂直总电子含量VTEC,由此,能够实现在LEO端对VTEC的实时高精度计算。To sum up, in the embodiment of this application, the pseudorange observation value and the carrier phase observation value are obtained; wherein the pseudorange observation value and the carrier phase observation value are received by the Global Navigation Satellite System GNSS receiver mounted on the low-orbiting Earth LEO satellite. Obtained; here, the LEO operating in orbit can fly around the world. Correspondingly, the GNSS receiver mounted on the LEO operating in orbit also moves globally, so the ionospheric monitoring over the ocean area can be realized and the monitoring range can be improved; according to the pseudo Establish a target equation from the observed value and carrier phase observation value. The target equation includes the target coefficient and the receiver-side pseudorange code deviation; then, solve the target coefficient value of the target coefficient in the target equation and the deviation of the receiver-side pseudorange code deviation. value, here, the deviation value of the target coefficient value and the receiver-side pseudorange code deviation can be quickly and accurately determined; finally, based on the deviation value of the pseudorange observation value, the target coefficient value, and the receiver-side pseudorange code deviation, the ionization The vertical total electron content VTEC of the layer can be calculated in real time at the LEO end with high precision.
图5示出了本申请实施例提供的一种电子设备的硬件结构示意图。FIG. 5 shows a schematic diagram of the hardware structure of an electronic device provided by an embodiment of the present application.
在电子设备可以包括处理器501以及存储有计算机程序指令的存储器502。The electronic device may include a processor 501 and a memory 502 storing computer program instructions.
具体地,上述处理器501可以包括中央处理器(CPU),或者特定集成电路(Application Specific Integrated Circuit,ASIC),或者可以被配置成实施本申请实施例的一个或多个集成电路。Specifically, the above-mentioned processor 501 may include a central processing unit (CPU), or an Application Specific Integrated Circuit (ASIC), or may be configured to implement one or more integrated circuits according to the embodiments of the present application.
存储器502可以包括用于数据或指令的大容量存储器。举例来说而非限制,存储器502可包括硬盘驱动器(Hard Disk Drive,HDD)、软盘驱动器、闪存、光盘、磁光盘、磁带或通用串行总线(Universal Serial Bus,USB)驱动器或者两个或更多个以上这些的组合。在合适的情况下,存储器502可包括可移除或不可移除(或固定)的介质。在合适的情况下,存储器502可在综合网关容灾设备的内部或外部。在特定实施例中,存储器502是非易失性固态存储器。在特定实施例中,存储器502包括只读存储器(ROM)。在合适的情况下,该ROM可以是掩模编程的ROM、可编程ROM(PROM)、可擦除PROM(EPROM)、电可擦除PROM(EEPROM)、电可改写ROM(EAROM)或闪存或者两个或更多个以上这些的组合。Memory 502 may include bulk storage for data or instructions. By way of example and not limitation, the memory 502 may include a hard disk drive (HDD), a floppy disk drive, flash memory, an optical disk, a magneto-optical disk, a magnetic tape, or a Universal Serial Bus (USB) drive or two or more A combination of many of the above. Memory 502 may include removable or non-removable (or fixed) media, where appropriate. Where appropriate, the memory 502 may be internal or external to the integrated gateway disaster recovery device. In certain embodiments, memory 502 is non-volatile solid-state memory. In certain embodiments, memory 502 includes read-only memory (ROM). Where appropriate, the ROM may be a mask-programmed ROM, programmable ROM (PROM), erasable PROM (EPROM), electrically erasable PROM (EEPROM), electrically rewritable ROM (EAROM) or flash memory or A combination of two or more of these.
处理器501通过读取并执行存储器502中存储的计算机程序指令,以实现图所示实施例中的任意一种总电子含量确定方法。The processor 501 reads and executes the computer program instructions stored in the memory 502 to implement any method for determining the total electron content in the embodiment shown in the figure.
在一个示例中,电子设备还可包括通信接口503和总线510。其中,如图5所示,处理器501、存储器502、通信接口503通过总线510连接并完成相互间的通信。In one example, the electronic device may also include communication interface 503 and bus 510 . Among them, as shown in Figure 5, the processor 501, the memory 502, and the communication interface 503 are connected through the bus 510 and complete communication with each other.
通信接口503,主要用于实现本申请实施例中各模块、装置、单元和/或设备之间的通信。The communication interface 503 is mainly used to implement communication between modules, devices, units and/or equipment in the embodiments of this application.
总线510包括硬件、软件或两者,将电子设备的部件彼此耦接在一起。举例来说而非限制,总线可包括加速图形端口(AGP)或其他图形总线、增强工业标准架构(EISA)总线、前端总线(FSB)、超传输(HT)互连、工业标准架构(ISA)总线、无限带宽互连、低引脚数(LPC)总线、存储器总线、微信道架构(MCA)总线、外围组件互连(PCI)总线、PCI-Express(PCI-X)总线、串行高级技术附件(SATA)总线、视频电子标准协会局部(VLB)总线或其他合适的总线或者两个或更多个以上这些的组合。在合适的情况下,总线510可包括一个或多个总线。尽管本申请实施例描述和示出了特定的总线,但本申请考虑任何合适的总线或互连。Bus 510 includes hardware, software, or both, coupling the components of the electronic device to each other. By way of example, and not limitation, buses may include Accelerated Graphics Port (AGP) or other graphics buses, Enhanced Industry Standard Architecture (EISA) bus, Front Side Bus (FSB), HyperTransport (HT) interconnect, Industry Standard Architecture (ISA) Buses, Infinite Bandwidth Interconnect, Low Pin Count (LPC) Bus, Memory Bus, Micro Channel Architecture (MCA) Bus, Peripheral Component Interconnect (PCI) Bus, PCI-Express (PCI-X) Bus, Serial Advanced Technology Attachment (SATA) bus, Video Electronics Standards Association Local (VLB) bus or other suitable bus or a combination of two or more of these. Where appropriate, bus 510 may include one or more buses. Although the embodiments of this application describe and illustrate a specific bus, this application contemplates any suitable bus or interconnection.
该电子设备可以执行本申请实施例中的总电子含量确定方法,从而实现结合图1至图3描述的总电子含量确定方法。The electronic device can execute the total electron content determination method in the embodiment of the present application, thereby realizing the total electron content determination method described in conjunction with FIGS. 1 to 3 .
另外,结合上述实施例中的总电子含量确定方法,本申请实施例可提供一种计算机可读存储介质来实现。该计算机可读存储介质上存储有计算机程序指令;该计算机程序指令被处理器执行时实现图1至图3中的总电子含量确定方法。In addition, combined with the method for determining the total electron content in the above embodiments, embodiments of the present application may provide a computer-readable storage medium for implementation. Computer program instructions are stored on the computer-readable storage medium; when the computer program instructions are executed by the processor, the total electron content determination method in Figures 1 to 3 is implemented.
需要明确的是,本申请并不局限于上文所描述并在图中示出的特定配置和处理。为了简明起见,这里省略了对已知方法的详细描述。在上述实施例中,描述和示出了若干具体的步骤作为示例。但是,本申请的方法过程并不限于所描述和示出的具体步骤,本领域的技术人员可以在领会本申请的精神后,作出各种改变、修改和添加,或者改变步骤之间的顺序。To be clear, this application is not limited to the specific configurations and processes described above and illustrated in the figures. For the sake of brevity, detailed descriptions of known methods are omitted here. In the above embodiments, several specific steps are described and shown as examples. However, the method process of the present application is not limited to the specific steps described and shown. Those skilled in the art can make various changes, modifications and additions, or change the order between steps after understanding the spirit of the present application.
以上所述的结构框图中所示的功能块可以实现为硬件、软件、固件或者它们的组合。当以硬件方式实现时,其可以例如是电子电路、专用集成电路(ASIC)、适当的固件、插件、功能卡等等。当以软件方式实现时,本申请的元素是被用于执行所需任务的程序或者代码段。程序或者代码段可以存储在机器可读介质中,或者通过载波中携带的数据信号在传输介质或者通信链路上传送。“机器可读介质”可以包括能够存储或传输信息的任何介质。机器可读介质的例子包括电子电路、半导体存储器设备、ROM、闪存、可擦除ROM(EROM)、软盘、CD-ROM、光盘、硬盘、光纤介质、射频(RF)链路,等等。代码段可以经由诸如因特网、内联网等的计算机网络被下载。The functional blocks shown in the above structural block diagram can be implemented as hardware, software, firmware or a combination thereof. When implemented in hardware, it may be, for example, an electronic circuit, an application specific integrated circuit (ASIC), appropriate firmware, a plug-in, a function card, or the like. When implemented in software, elements of the application are programs or code segments that are used to perform the required tasks. The program or code segments may be stored in a machine-readable medium or transmitted over a transmission medium or communications link via a data signal carried in a carrier wave. "Machine-readable medium" may include any medium capable of storing or transmitting information. Examples of machine-readable media include electronic circuits, semiconductor memory devices, ROM, flash memory, erasable ROM (EROM), floppy disks, CD-ROMs, optical disks, hard disks, fiber optic media, radio frequency (RF) links, and so on. Code segments may be downloaded via computer networks such as the Internet, intranets, and the like.
还需要说明的是,本申请中提及的示例性实施例,基于一系列的步骤或者装置描述一些方法或系统。但是,本申请不局限于上述步骤的顺序,也就是说,可以按照实施例中提及的顺序执行步骤,也可以不同于实施例中的顺序,或者若干步骤同时执行。It should also be noted that the exemplary embodiments mentioned in this application describe some methods or systems based on a series of steps or devices. However, the present application is not limited to the order of the above steps. That is to say, the steps may be performed in the order mentioned in the embodiment, or may be different from the order in the embodiment, or several steps may be performed simultaneously.
以上所述,仅为本申请的具体实施方式,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、模块和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。应理解,本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。The above are only specific implementation modes of the present application. Those skilled in the art can clearly understand that for the convenience and simplicity of description, the specific working processes of the above-described systems, modules and units can be referred to the foregoing method embodiments. The corresponding process will not be described again here. It should be understood that the protection scope of the present application is not limited thereto. Any person familiar with the technical field can easily think of various equivalent modifications or substitutions within the technical scope disclosed in the present application, and these modifications or substitutions should be covered. within the protection scope of this application.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311320360.5A CN117055079B (en) | 2023-10-12 | 2023-10-12 | Total electron content determination method, device, electronic equipment and readable storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311320360.5A CN117055079B (en) | 2023-10-12 | 2023-10-12 | Total electron content determination method, device, electronic equipment and readable storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117055079A CN117055079A (en) | 2023-11-14 |
CN117055079B true CN117055079B (en) | 2023-12-22 |
Family
ID=88663100
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311320360.5A Active CN117055079B (en) | 2023-10-12 | 2023-10-12 | Total electron content determination method, device, electronic equipment and readable storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117055079B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118465795B (en) * | 2024-04-19 | 2024-12-27 | 中国科学院国家空间科学中心 | Antenna hardware delay test method and device, electronic equipment and storage medium |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003043128A (en) * | 2001-08-02 | 2003-02-13 | Communication Research Laboratory | Method and apparatus for measuring positioning satellite receiver bias |
CN103197340A (en) * | 2013-04-01 | 2013-07-10 | 东南大学 | Gridding real-time monitoring method for total electron content of ionized layer |
CN106093967A (en) * | 2016-08-22 | 2016-11-09 | 中国科学院上海天文台 | The ionosphere delay method for solving that a kind of pseudorange phase place is comprehensive |
CN110275186A (en) * | 2019-07-11 | 2019-09-24 | 武汉大学 | LEO satellite enhanced GNSS ionospheric normalization and fusion modeling method |
CN111045034A (en) * | 2019-12-13 | 2020-04-21 | 北京航空航天大学 | GNSS multi-system real-time precise time transfer method and system based on broadcast ephemeris |
CN111796309A (en) * | 2020-06-24 | 2020-10-20 | 中国科学院精密测量科学与技术创新研究院 | Method for synchronously determining content of atmospheric water vapor and total electrons by single-frequency data of navigation satellite |
CN112528213A (en) * | 2020-11-27 | 2021-03-19 | 北京航空航天大学 | Global ionosphere total electron content multilayer analysis method based on low earth orbit satellite |
CN116243350A (en) * | 2022-12-29 | 2023-06-09 | 深圳供电局有限公司 | Product data processing method, device and computer equipment for ionospheric products |
CN116359956A (en) * | 2021-12-28 | 2023-06-30 | 千寻位置网络有限公司 | Ionospheric Differential Total Electron Content Estimation Method and Device |
-
2023
- 2023-10-12 CN CN202311320360.5A patent/CN117055079B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003043128A (en) * | 2001-08-02 | 2003-02-13 | Communication Research Laboratory | Method and apparatus for measuring positioning satellite receiver bias |
CN103197340A (en) * | 2013-04-01 | 2013-07-10 | 东南大学 | Gridding real-time monitoring method for total electron content of ionized layer |
CN106093967A (en) * | 2016-08-22 | 2016-11-09 | 中国科学院上海天文台 | The ionosphere delay method for solving that a kind of pseudorange phase place is comprehensive |
CN110275186A (en) * | 2019-07-11 | 2019-09-24 | 武汉大学 | LEO satellite enhanced GNSS ionospheric normalization and fusion modeling method |
CN111045034A (en) * | 2019-12-13 | 2020-04-21 | 北京航空航天大学 | GNSS multi-system real-time precise time transfer method and system based on broadcast ephemeris |
CN111796309A (en) * | 2020-06-24 | 2020-10-20 | 中国科学院精密测量科学与技术创新研究院 | Method for synchronously determining content of atmospheric water vapor and total electrons by single-frequency data of navigation satellite |
CN112528213A (en) * | 2020-11-27 | 2021-03-19 | 北京航空航天大学 | Global ionosphere total electron content multilayer analysis method based on low earth orbit satellite |
CN116359956A (en) * | 2021-12-28 | 2023-06-30 | 千寻位置网络有限公司 | Ionospheric Differential Total Electron Content Estimation Method and Device |
CN116243350A (en) * | 2022-12-29 | 2023-06-09 | 深圳供电局有限公司 | Product data processing method, device and computer equipment for ionospheric products |
Also Published As
Publication number | Publication date |
---|---|
CN117055079A (en) | 2023-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2673658B1 (en) | Method and system for determining clock corrections | |
US10281587B2 (en) | Navigation satellite system positioning involving the generation of correction information | |
CN107390233B (en) | Low-earth-orbit satellite navigation enhanced ionosphere delay correction parameter method | |
US10078140B2 (en) | Navigation satellite system positioning involving the generation of advanced correction information | |
US7917156B2 (en) | Position determination for a wireless terminal in a hybrid position determination system | |
US8085196B2 (en) | Removing biases in dual frequency GNSS receivers using SBAS | |
RU2565386C2 (en) | Method, apparatus and system for determining position of object, having global navigation satellite system receiver, by processing non-differential data, similar to carrier phase measurements, and external data similar to ionospheric data | |
CN108196272A (en) | A kind of satellite navigation positioning device and method based on real-time accurate One-Point Location | |
CN105044747B (en) | Time synchronization device and method based on multi-satellite common view and filtering | |
WO2015145719A1 (en) | Positioning device | |
CN114325770A (en) | Calibration method of low-orbit satellite downlink navigation signal transmission delay | |
KR20200060382A (en) | Method and apparatus for providing correction data for satellite navigation | |
CN117055079B (en) | Total electron content determination method, device, electronic equipment and readable storage medium | |
CN103543454A (en) | Satellite orbit determination system inserted in mobile communication network | |
Bahadur | Real-time single-frequency precise positioning with Galileo satellites | |
Montenbruck et al. | GNSS orbit determination and time synchronization | |
Chang et al. | Augmentation message design for LEO-enhanced precise positioning: In-orbit performance assessment | |
Caojun et al. | BeiDou-GPS integrated dual-system with multi-satellites for positioning and navigating farm vehicles | |
Rachman Harfian | Analysis of GNSS signal measurement accuracy | |
Sesta | Orbit determination and time synchronization for a lunar radio navigation system | |
CN120214844A (en) | Observation value weighting method for navigation satellite precision data processing | |
Li | Real-time ambiguity-fixed precise point positioning using global and regional reference networks | |
CN119544028A (en) | A high-precision time synchronization system, method and application thereof | |
Shi et al. | Revisit the performance of Doppler positioning with LEO satellites | |
Bian et al. | GNSS Global PPP System Technology: Bottleneck and Development Direction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |