CN117036983B - 一种基于物理增强深度学习的台风中心定位方法 - Google Patents

一种基于物理增强深度学习的台风中心定位方法 Download PDF

Info

Publication number
CN117036983B
CN117036983B CN202311289479.0A CN202311289479A CN117036983B CN 117036983 B CN117036983 B CN 117036983B CN 202311289479 A CN202311289479 A CN 202311289479A CN 117036983 B CN117036983 B CN 117036983B
Authority
CN
China
Prior art keywords
dimensional matrix
typhoon
center
positioning
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311289479.0A
Other languages
English (en)
Other versions
CN117036983A (zh
Inventor
徐青
王晗
殷晓斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ocean University of China
Original Assignee
Ocean University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ocean University of China filed Critical Ocean University of China
Priority to CN202311289479.0A priority Critical patent/CN117036983B/zh
Publication of CN117036983A publication Critical patent/CN117036983A/zh
Application granted granted Critical
Publication of CN117036983B publication Critical patent/CN117036983B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/13Satellite images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0464Convolutional networks [CNN, ConvNet]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Abstract

本发明公开了一种基于物理增强深度学习的台风中心定位方法,涉及遥感技术技术领域。本发明包括以下步骤:获取预定位时刻和历史成像时刻台风中心的地理坐标信息和卫星云图;读取卫星云图中的地理坐标信息以及预设的若干个波段的亮温数据;分别构建预定位时刻和历史成像时刻基于波段亮温数据的三维矩阵;记录对应时刻的中心最大持续风速、中心最低气压和中心位置信息,并生成二维矩阵作为物理辅助信息;以及构建基于MAE损失函数的物理增强CNN模型,并进行台风中心位置相对于卫星云图中心的坐标值的预测。本发明能有效解决现有通过深度学习方法进行台风中心定位中存在的低等级台风定位精度不佳,以及纯图像驱动模型可解释差的问题。

Description

一种基于物理增强深度学习的台风中心定位方法
技术领域
本发明涉及遥感技术技术领域,具体涉及一种基于物理增强深度学习的台风中心定位方法。
背景技术
台风是在热带海洋上生成的强烈天气过程,台风期间在强风和低压的作用下,台风往往会引发山洪爆发、城市内涝、山体滑坡、泥石流等,对人类生命和财产造成巨大的损害;因此,对台风进行准确的中心定位可以为之后预测台风轨迹提供准确的数据支持,也可以更好的初始化数值模型,从而更准确的预测台风,减少由台风带来的沿岸城市的经济损失。
目前利用卫星图像进行台风中心定位的研究概括起来主要有两类:台风眼区提取和台风螺旋曲线的提取。其中,台风眼区提取是假设卫星图像的台风眼区类似于椭圆形,通过对卫星图像进行一系列的图像预处理以提取椭圆形眼区,圆形中心即为台风中心;台风螺旋曲线提取是指,台风通常被视为由一个主螺旋云带和几个次螺旋云带组成的漩涡系统,提取台风的螺旋曲线,并将通过数学方法提取的螺旋曲线拟合,寻找螺旋中心,即台风中心。
上述研究多聚焦于台风结构相对于完整的成熟期时刻,对于在台风整个生命周期中占大量比重的台风生成期和消散期的效果往往不好。因此,近年来有研究将深度学习引入到台风中心定位研究中来,以卷积神经网络(CNN)为例,该算法避免了传统方法中大量繁琐的图像预处理阶段,具有快速,客观的优势。
对于上述结合卷积神经网络进行台风中心定位三维研究,发明人认为存在以下待解决的关键问题:
1)在现阶段使用卷积神经网络进行台风中心定位的研究之中,模型中的输入普遍为预定位时刻台风云图,通过使模型学习台风云图中的结构信息来推断台风中心地位置;但对于台风结构不是很完整的低等级台风(TD,TS等级,最大持续风速<32.4m/s)来说,仅仅通过当前时刻的云图信息并不能得到很好的结果,如何提升低等级台风的定位精度仍是一个很大的挑战;
2)现阶段使用深度学习来进行台风中心定位研究时,普遍只考虑的台风云图信息来进行纯图像数值驱动模型,缺少可解释性的同时导致定位精度不佳;如何通过向模型中添加物理信息增强模型的可解释性以及添加物理信息后模型的性能是否会提升仍是未知。
因此,如何解决上述技术问题,设计一种基于物理增强深度学习的台风中心定位方法,用于解决通过深度学习方法进行台风中心定位中存在的低等级台风定位精度不佳的问题,以及有效解决纯图像驱动模型可解释差的问题。
公开于该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。
发明内容
针对上述技术问题,本发明实施例提供了一种基于物理增强深度学习的台风中心定位方法,以解决上述背景技术中提出的问题。
本发明提供了以下技术方案:
一种基于物理增强深度学习的台风中心定位方法,包括以下步骤:
获取预定位时刻和历史成像时刻台风中心的地理坐标信息,以及预定位时刻的卫星云图;
读取卫星云图中的地理坐标信息以及预设的若干个波段的亮温数据;
确定预定位时刻和历史成像时刻的台风中心位置在卫星云图中的坐标点,以该坐标点为中心,分别构建预定位时刻和历史成像时刻基于波段亮温数据的三维矩阵;
确定历史成像时刻台风的中心最大持续风速,中心最低气压,以及中心位置在卫星云图中的坐标点,生成对应历史成像时刻时间序列的二维矩阵作为物理辅助信息;
构建基于MAE损失函数的物理增强CNN模型;其中,基于MAE损失函数的物理增强CNN模型在python(一种计算机编程语言)软件中进行加载;
将预定位时刻的三维矩阵,历史成像时刻的三维矩阵和物理辅助信息输入至基于MAE损失函数的物理增强CNN模型中,预测台风中心位置相对于卫星云图中心的坐标值。
优选的,其中,预定位时刻为t=0H,历史成像时刻为t=-3H,t=-6H,t=-9H,t=-12H,t=-15H,t=-18H。
优选的,将基于波段亮温数据的三维矩阵中心纵向横向随机移动一定距离,记录移动距离生成二维矩阵作为真值。
优选的,所述将基于波段亮温数据的三维矩阵中心纵向横向随机移动一定距离,记录移动距离生成二维矩阵作为真值,包括:将2n+1×2n+1的二维矩阵的中心,沿纵向和横向随机移动一定的距离,剪裁矩阵大小;生成2m+1×2m+1的二维矩阵,同时记录移动的距离,作为2m+1×2m+1的二维矩阵的真值;其中,m<n。
优选的,所述以该坐标点为中心,分别构建预定位时刻和历史成像时刻基于波段亮温数据的三维矩阵,包括:以坐标点为中心,向上下左右各延伸n个网格点,从若干个波段中截取波段数量个2n+1×2n+1的二维矩阵,并按照波段序号由高到低顺序重新组合为三维矩阵。
优选的,所述确定历史成像时刻台风的中心最大持续风速,中心最低气压,以及中心位置在卫星云图中的坐标点,生成对应历史成像时刻时间序列的二维矩阵作为物理辅助信息,包括:
确定历史成像时刻的台风的中心位置信息,并分别计算与预定位时刻的台风中心位置的相对位置,生成包括中心位置信息的二维矩阵;
确定历史成像时刻的台风中心最低气压数据,生成包括中心最低气压数据的二维矩阵;
确定历史成像时刻台风的中心最大持续风速,生成包括中心最大持续风速数据的二维矩阵。
优选的,所述构建基于MAE损失函数的物理增强CNN模型,包括:
收集预定位时刻卫星的台风卫星云图和历史成像时刻卫星的台风卫星云图,生成包含预定位时刻和历史成像时刻的台风时间序列;
将台风时间序列以及对应的物理辅助信息按比例随机划分为训练集,验证集和测试集;
使用MAE损失函数计算CNN模型内部梯度函数;
采用训练集数据对模型进行训练;其中验证集数据用来在模型训练过程中防止过拟合;测试集数据用来进行模型数据的最终判断。
本发明实施例提供的一种基于物理增强深度学习的台风中心定位方法,具有以下有益效果:本发明能有效解决现有通过深度学习方法进行台风中心定位中存在的低等级台风定位精度不佳,以及纯图像驱动模型可解释差的问题。
附图说明
图1为本发明基于物理增强深度学习的台风中心定位方法的流程图;
图2为本发明中基于MAE损失函数的物理增强CNN模型的框架图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下,所获得的所有其它实施例,都属于本发明保护的范围。
针对上述背景技术提到的问题,本发明实施例提供了一种基于物理增强深度学习的台风中心定位方法,以解决上述技术问题,其技术方案如下:
下面结合附图1-2,以及具体实施方式对本发明作进一步的说明。
本实施例以葵花8号卫星为例,对本发明基于深度学习的台风中心定位方法进行说明,首先在用户终端安装python编程软件,并需要配备temsorflow-2.2.0,keras-2.3.1依赖包(tensorflow和keras是用于深度学习的开源软件库;tensorflow提供了一个灵活的平台,可以用于构建、训练和部署各种复杂的神经网络模型,它支持多种编程语言;keras是一个高级的神经网络API,可以在tensorflow的基础上提供更简洁和友好的接口,让用户可以快速地搭建和运行常见的神经网络模型;其中,temsorflow-2.2.0,keras-2.3.1分别发布于2020年5月7日与2019年10月9日)。
步骤1.确定预定位时刻(t=0)台风,和前18H间隔3H的(t=-3,t=-6,t=-9,t=-12,t=-15,t=-18)台风中心的经纬度,以及对应中心最低气压,中心最大持续风速。并按照时间顺序(t=-3,t=-6,t=-9,t=-12,t=-15,t=-18)生成包含中心最低气压,最大持续风速等气候持续性因子的两个二维矩阵,大小为n×6。同时下载要对应时刻葵花8号卫星的云图(空间分辨率5km);
步骤2.读取葵花8号卫星云图文件中的经度数据、纬度数据、第13、14、15波段亮温数据(band13、band14、band15);首先在葵花8号卫星的16个波段中选取大气窗口附近的3个波段组合输入(13,14,15),设计多组对照试验,通过对比不同实验模型的性能(见表1)。
表1为步骤2中对照试验模型对测试组数据的性能对比表
步骤3.找到预定位时刻(t=0)台风中心位置在卫星云图中的坐标点,以及预定位时刻前18H间隔3H(t=-3,t=-6,t=-9,t=-12,t=-15,t=-18)6个台风中心位置在卫星云图中的坐标点。计算各历史成像时刻台风中心相对于预定位时刻台风中心的相对坐标,并按照时间顺序(t=-3,t=-6,t=-9,t=-12,t=-15,t=-18)生成包含历史成像时刻位置信息的二维矩阵,大小为n×6。结合步骤1中包含历史成像时刻的气象持续性因子组合成历史成像时刻的物理辅助信息。共包括3个矩阵,大小均为n×6。并设置多组对比试验,通过对比不同实验模型的性能(见表2)。
表2为步骤3中对照试验模型对测试组数据的性能对比表
步骤4.找到台风中心位置在卫星云图中的坐标点(a,b),以该坐标点为中心,向上下左右各延伸125个网格点,从波段13、14、15中裁取预定位时刻的251×251的二维矩阵,以及预定位时刻前18H间隔3H的6个251×251的二维矩阵。并按照时间顺序(t=0,t=-3,t=-6,t=-9,t=-12,t=-15,t=-18)将7个二维矩阵组合成三个(按照通道顺序排列)三维矩阵,大小为7×251×251;
步骤5.将波段13、14、15中的三个7×251×251规格的原始台风云图的图像中心纵向和横向随机移动一定距离,并减小图像像素,进一步提取151×151像素的子图像,对应生成三个(按照通道顺序排列)7×151×151大小的三维矩阵。同时记录移动的距离,作为子图像台风中心的真值。
本实施例收集了葵花8号2015-2021年来自196场台风中风速小于32.4m/s的低等级台风(TD,TS)共6684景卫星云图,随机选取其中60%作为训练组,20%作为验证组,20%作为测试组。使用python编程软件和tensorflow、keras程序包构建物理增强CNN模型,模型框架见图2。
步骤6.将步骤1中的包含气候持续性信息的矩阵,步骤3中包含历史成像时刻中心信息的矩阵,步骤5中3个包含台风时间序列的矩阵输入到物理增强CNN中,模型的输出为台风中心位置相对于图像中心的坐标。采用平均距离MD作为模型性能的评价指标,MD的计算公式为:
其中ei为模型输出与步骤5中真值的距离,MD越小,说明模型性能越优。
下表为ARCHER-2(ARCHER-2是自动定位中心台风眼检索算法-ARCHER的改进版本,由Wimmer等在2016年提出,是一种将对数螺旋拟合到螺旋雨带以确定台风眼的算法,该算法依赖于地球静止卫星和极轨卫星数据。)与本实施案例台风中心定位对比结果表,其中ARCHER-2与本实施案例采用同一数据集进行测试。
本发明基于物理增强的CNN网络进行台风中心定位方法通过对不同预定位时刻多个卫星红外通道图像的组合,找到了最适合台风中心定位的通道输入组合。通过引入台风历史时间序列和历史成像时刻的物理辅助信息解决了低等级台风定位误差较大以及可解释性差的问题。并通过不同物理辅助信息组合输入确定了最适合台风中心定位的物理辅助信息输入组合。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (4)

1.一种基于物理增强深度学习的台风中心定位方法,其特征在于,包括以下步骤:
获取预定位时刻和历史成像时刻台风中心的地理坐标信息,以及预定位时刻的卫星云图;
读取卫星云图中的地理坐标信息以及预设的若干个波段的亮温数据;
确定预定位时刻和历史成像时刻的台风中心位置在卫星云图中的坐标点,以该坐标点为中心,分别构建预定位时刻和历史成像时刻基于波段亮温数据的三维矩阵;
确定历史成像时刻台风的中心最大持续风速,中心最低气压,以及中心位置在卫星云图中的坐标点,生成对应历史成像时刻时间序列的二维矩阵作为物理辅助信息;
构建基于MAE损失函数的物理增强CNN模型;
将预定位时刻的三维矩阵,历史成像时刻的三维矩阵和物理辅助信息输入至基于MAE损失函数的物理增强CNN模型中,预测台风中心位置相对于卫星云图中心的坐标值;
所述构建基于MAE损失函数的物理增强CNN模型,包括:
收集预定位时刻卫星的台风卫星云图和历史成像时刻卫星的台风卫星云图,生成包含预定位时刻和历史成像时刻的台风时间序列;
将台风时间序列以及对应的物理辅助信息按比例随机划分为训练集,验证集和测试集;
使用MAE损失函数计算CNN模型内部梯度函数;
采用训练集数据对模型进行训练;其中验证集数据用来在模型训练过程中防止过拟合;测试集数据用来进行模型数据的最终判断;
所述以该坐标点为中心,分别构建预定位时刻和历史成像时刻基于波段亮温数据的三维矩阵,包括:以坐标点为中心,向上下左右各延伸n个网格点,从若干个波段中截取波段数量个2n+1×2n+1的二维矩阵,并按照波段序号由高到低顺序重新组合为三维矩阵;
所述确定历史成像时刻台风的中心最大持续风速,中心最低气压,以及中心位置在卫星云图中的坐标点,生成对应历史成像时刻时间序列的二维矩阵作为物理辅助信息,包括:
确定历史成像时刻的台风的中心位置信息,并分别计算与预定位时刻的台风中心位置的相对位置,生成包括中心位置信息的二维矩阵;
确定历史成像时刻的台风中心最低气压数据,生成包括中心最低气压数据的二维矩阵;
确定历史成像时刻台风的中心最大持续风速,生成包括中心最大持续风速数据的二维矩阵。
2.根据权利要求1所述的基于物理增强深度学习的台风中心定位方法,其特征在于,其中,预定位时刻为t=0H,历史成像时刻为t=-3H,t=-6H,t=-9H,t=-12H,t=-15H,t=-18H。
3.根据权利要求1所述的基于物理增强深度学习的台风中心定位方法,其特征在于,将基于波段亮温数据的三维矩阵中心纵向横向随机移动一定距离,记录移动距离生成二维矩阵作为真值。
4.根据权利要求3所述的基于物理增强深度学习的台风中心定位方法,其特征在于,所述将基于波段亮温数据的三维矩阵中心纵向横向随机移动一定距离,记录移动距离生成二维矩阵作为真值,包括:将2n+1×2n+1的二维矩阵的中心,沿纵向和横向随机移动一定的距离,剪裁矩阵大小;生成2m+1×2m+1的二维矩阵,同时记录移动的距离,作为2m+1×2m+1的二维矩阵的真值;其中,m<n。
CN202311289479.0A 2023-10-08 2023-10-08 一种基于物理增强深度学习的台风中心定位方法 Active CN117036983B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311289479.0A CN117036983B (zh) 2023-10-08 2023-10-08 一种基于物理增强深度学习的台风中心定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311289479.0A CN117036983B (zh) 2023-10-08 2023-10-08 一种基于物理增强深度学习的台风中心定位方法

Publications (2)

Publication Number Publication Date
CN117036983A CN117036983A (zh) 2023-11-10
CN117036983B true CN117036983B (zh) 2024-01-30

Family

ID=88630343

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311289479.0A Active CN117036983B (zh) 2023-10-08 2023-10-08 一种基于物理增强深度学习的台风中心定位方法

Country Status (1)

Country Link
CN (1) CN117036983B (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103365958A (zh) * 2013-05-31 2013-10-23 南京信大高科技发展有限公司 台风预报平台及台风路径检索方法
CN103679734A (zh) * 2013-12-25 2014-03-26 浙江师范大学 基于svm和pde的有眼台风二维表面风场反演方法
CN104992434A (zh) * 2015-06-23 2015-10-21 国家卫星气象中心 根据历史卫星图像在当前卫星图像上进行台风定位的方法
CN108196314A (zh) * 2017-12-22 2018-06-22 南京大学 一种西北太平洋环状台风自动识别系统
CN109325960A (zh) * 2018-11-20 2019-02-12 南京信息工程大学 一种红外云图气旋分析方法及分析系统
CN110488392A (zh) * 2019-08-13 2019-11-22 中国科学院海洋研究所 一种基于海平面气压数据的气旋中心识别和半径估算方法
CN111507517A (zh) * 2020-04-13 2020-08-07 中国海洋大学 预估台风发生概率、发生次数概率和延续性概率的方法
CN112069955A (zh) * 2020-08-26 2020-12-11 河海大学 基于深度学习的台风强度遥感反演方法
CN112149349A (zh) * 2020-09-21 2020-12-29 河海大学 一种基于深层神经网络的台风路径预报方法
CN112785034A (zh) * 2020-12-22 2021-05-11 河海大学 基于融合神经网络的台风路径预报方法、系统、介质及终端
CN116579468A (zh) * 2023-04-26 2023-08-11 广州大学 基于云系记忆的台风生成预测方法、装置、设备及介质
CN116699731A (zh) * 2023-08-09 2023-09-05 中国海洋大学三亚海洋研究院 一种热带气旋路径短期预报方法、系统及存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102239386B1 (ko) * 2020-09-09 2021-04-12 대한민국 광학 흐름 기법으로 레이더 이미지 자료로부터 산출된 벡터를 활용한 태풍 중심 자동 선정 방법, 이를 수행하기 위한 기록 매체 및 장치

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103365958A (zh) * 2013-05-31 2013-10-23 南京信大高科技发展有限公司 台风预报平台及台风路径检索方法
CN103679734A (zh) * 2013-12-25 2014-03-26 浙江师范大学 基于svm和pde的有眼台风二维表面风场反演方法
CN104992434A (zh) * 2015-06-23 2015-10-21 国家卫星气象中心 根据历史卫星图像在当前卫星图像上进行台风定位的方法
CN108196314A (zh) * 2017-12-22 2018-06-22 南京大学 一种西北太平洋环状台风自动识别系统
CN109325960A (zh) * 2018-11-20 2019-02-12 南京信息工程大学 一种红外云图气旋分析方法及分析系统
CN110488392A (zh) * 2019-08-13 2019-11-22 中国科学院海洋研究所 一种基于海平面气压数据的气旋中心识别和半径估算方法
CN111507517A (zh) * 2020-04-13 2020-08-07 中国海洋大学 预估台风发生概率、发生次数概率和延续性概率的方法
CN112069955A (zh) * 2020-08-26 2020-12-11 河海大学 基于深度学习的台风强度遥感反演方法
CN112149349A (zh) * 2020-09-21 2020-12-29 河海大学 一种基于深层神经网络的台风路径预报方法
CN112785034A (zh) * 2020-12-22 2021-05-11 河海大学 基于融合神经网络的台风路径预报方法、系统、介质及终端
CN116579468A (zh) * 2023-04-26 2023-08-11 广州大学 基于云系记忆的台风生成预测方法、装置、设备及介质
CN116699731A (zh) * 2023-08-09 2023-09-05 中国海洋大学三亚海洋研究院 一种热带气旋路径短期预报方法、系统及存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Tropical Cyclone Intensity Estimation From Geostationary Satellite Imagery Using Deep Convolutional Neural Networks;Chong Wang 等;《IEEE Transactions on Geoscience and Remote Sensing》;第1-16页 *
台风中心区域亮温空间扰动特征研究及台风定位应用;谢涛 等;《自然灾害学报》;第161-177页 *

Also Published As

Publication number Publication date
CN117036983A (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
CN112434672B (zh) 一种基于改进YOLOv3的海上人体目标检测方法
CN112766087A (zh) 一种基于知识蒸馏的光学遥感图像舰船检测方法
CN111127493A (zh) 基于注意力多尺度特征融合的遥感图像语义分割方法
CN110197182A (zh) 基于上下文信息和注意力机制的遥感影像语义分割方法
EP3690714A1 (en) Method for acquiring sample images for inspecting label among auto-labeled images to be used for learning of neural network and sample image acquiring device using the same
CN111079739B (zh) 一种多尺度注意力特征检测方法
CN112862774B (zh) 一种遥感影像建筑物精确分割方法
CN110555841B (zh) 基于自注意图像融合和dec的sar图像变化检测方法
CN110853057B (zh) 基于全局和多尺度全卷积网络的航拍图像分割方法
CN112084923B (zh) 一种遥感图像语义分割方法、存储介质及计算设备
CN110879960B (zh) 生成卷积神经网络学习用图像数据集的方法及计算装置
CN112785034B (zh) 基于融合神经网络的台风路径预报方法、系统、介质及终端
CN116206185A (zh) 一种基于改进YOLOv7的轻量级小目标检测方法
CN114724019A (zh) 一种基于小波变换和可分离卷积语义分割的遥感图像海冰智能监测方法
CN114022408A (zh) 基于多尺度卷积神经网络的遥感图像云检测方法
CN115047455A (zh) 一种轻量化的sar图像舰船目标检测方法
CN112766381B (zh) 有限样本下属性引导的sar图像生成方法
CN112818777B (zh) 一种基于密集连接与特征增强的遥感图像目标检测方法
CN113628180A (zh) 一种基于语义分割网络的遥感建筑物检测方法及系统
CN117036983B (zh) 一种基于物理增强深度学习的台风中心定位方法
CN116778318A (zh) 一种卷积神经网络遥感影像道路提取模型及方法
CN113421222B (zh) 一种轻量化煤矸目标检测方法
CN114414090B (zh) 基于遥感影像和多层感知的地表温度预测方法及系统
CN113343924B (zh) 一种基于循环谱特征和生成对抗网络的调制信号识别方法
CN116091946A (zh) 一种基于YOLOv5的无人机航拍图像目标检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant