CN117030770A - 一种用于超声冲击作用深度的测试方法及基于该方法建立的超声冲击作用深度预测模型 - Google Patents

一种用于超声冲击作用深度的测试方法及基于该方法建立的超声冲击作用深度预测模型 Download PDF

Info

Publication number
CN117030770A
CN117030770A CN202311004967.2A CN202311004967A CN117030770A CN 117030770 A CN117030770 A CN 117030770A CN 202311004967 A CN202311004967 A CN 202311004967A CN 117030770 A CN117030770 A CN 117030770A
Authority
CN
China
Prior art keywords
ultrasonic impact
depth
ultrasonic
prediction model
impact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311004967.2A
Other languages
English (en)
Inventor
李瑞峰
袁玉恒
毕晓琳
王成思
谷家扬
焦晨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University of Science and Technology
Original Assignee
Jiangsu University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Science and Technology filed Critical Jiangsu University of Science and Technology
Priority to CN202311004967.2A priority Critical patent/CN117030770A/zh
Publication of CN117030770A publication Critical patent/CN117030770A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • B22F10/85Data acquisition or data processing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20058Measuring diffraction of electrons, e.g. low energy electron diffraction [LEED] method or reflection high energy electron diffraction [RHEED] method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/203Measuring back scattering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

本发明提供了一种用于测量超声冲击作用深度的测试方法及基于该方法建立的超声冲击作用深度预测模型。该方法通过对超声冲击试样进行电子背散射衍射(EBSD)观察和分析,获取整个横截面内晶粒取向分布,并通过晶界分布图中的大角度晶界和小角度晶界来评估超声冲击的深度,测量结果更加准确。基于上述方法构建包含超声波振幅、冲击时间、工件材质、表面增材制造工艺和参数的超声波冲击深度预测模型,能够为超声冲击辅助激光定向能量沉积工艺提供准确指导,从而实现增材制造金属零部件中组织与内应力的精确控制和改善,有效提升增材件的力学性能,并解决残余应力对零部件的负面影响。

Description

一种用于超声冲击作用深度的测试方法及基于该方法建立的 超声冲击作用深度预测模型
技术领域
本发明属于金属材料熔覆和增材制造领域,具体涉及一种用于超声冲击作用深度的测试方法。
背景技术
近年来快速发展的具有数字化制造特征的增材制造技术,其作为智能制造底层智能化的重要组成部分,正逐步成为世界各国抢占未来产业制高点的焦点技术。增材制造技术不同于传统机加工中的材料去除法,而是在计算机的控制下,通过将构件三维数字模型离散化处理成点、线或面,然后逐层累积材料,堆积出模型的三维实体,使成形过程具有高度柔性,无需工具和模具即可实现复杂结构机械零件或模型的整体制造。定向能量沉积作为三维打印金属合金最常见的技术之一,该技术是利用快速原型制造的基本原理,以金属粉末为原材料,采用高能量密度的激光束作为能量源,按照预定的加工路径,将同步送给的金属粉末进行逐层熔化、快速凝固和逐层沉积,从而实现金属零件的直接制造。由于成形过程由高能量密度激光束形成较小熔池,使送入熔池中的粉未完全熔化,冷却过程经历较高的温度梯度、极快的冷却速度以及大的凝固前沿生长速度,因此沉积组织多为发达的柱状枝晶、非平衡显微组织以及存在较大的残余应力。外延生长的柱状枝晶使沉积件力学性能各向异性。其次,局部快速凝固会在成形件中产生高的残余应力,会较大的影响材料的抗疲劳强度和塑韧性。因此,消除材料的残余应力和提高材料的力学性能至关重要,超声冲击作为定向能量沉积成形试件的一种处理工艺,能够有效消除零件中的残余应力。超声冲击处理技术可以通过在构件表面施加高频机械冲击或振动,使其表面发生塑性变形以达到消除残余应力的目的,具有高效率、体积小、使用灵活方便等特点,在构件加工过程中或完成后消除残余应力方面具有独特的优势。为了制定合理的超声冲击辅助增材制造成形工艺,需要对超声冲击作用深度进行测量。目前,获得超声冲击深度的方法有金相观察法和显微硬度等方法,但这些方法都不足以精确测量出超声冲击影响的深度。由此可见,需要提供一种更加有效的测量方法,用来实现更加方便、快捷的工程应用具有重要的意义。
发明内容
基于现有技术,本发明旨在提供一种用于测量超声冲击作用深度的方法,以提高超声冲击深度测量的精确度;同时基于该方法建立的超声冲击作用深度预测模型,为超声波冲击工艺的制定提供依据,简化工艺确定流程和时间。
用于测量超声冲击作用深度的方法,其特征在于,包括以下步骤:
(1)将表面经过超声冲击处理的工件采用线切割的方式进行切割,对切割后裸露出来的截面经过打磨、电解抛光后,利用扫描电子显微镜(SEM)结合电子背散射衍射(EBSD)探头,对电解抛光后的试样进行EBSD观察和分析,获得整个横截面内晶粒取向分布;
(2)在晶界分布图中包含的大角度晶界和小角度晶界中,检测并测量超声冲击作用后产生的高密度小角度晶界的分布范围,以确定超声冲击作用的塑性变形区深度。
进一步地,所述工件在进行超声冲击处理前,经过激光定向能量沉积、电弧熔丝沉积或电子束沉积进行表面增材制造工艺。
进一步地,步骤(2)中晶界夹角为2~15°的为小角晶界,大于15°的为大角度晶界。
基于所述测量超声冲击作用深度的方法构建的超声冲击作用深度预测模型,其特征在于,所述测量模型通过以下步骤构建而成,
S1.采用不同振幅的超声波对分别多个同种工件进行超声波冲击;
S2.采用权利要求1或2所述的方法确定各个振幅的超声冲击的工件的塑性变形区深度;
S3.利用S2获得的塑性变形区的深度及对应的超声波振幅,构建预测模型,建立针对S1中所述种类工件的超声波振幅与塑性变形区的深度的对应关系;
S4.更换另一种工件,重复步骤S1-S3;获得多种工件的预测模型。
进一步地,所述S3中的超声波振幅与塑性变形区的深度的对应关系为正交表格、拟合曲线或拟合函数。
进一步地,S1中所述工件在包括不同材质的合金工件,和/或经过不同增材制造工艺、参数的增材制造;所述S3中形成的预测模型中包含工件种类和/或增材制造工艺、参数。
进一步地,S1中的超声波冲击工艺包括同一振幅条件下、不同的超声冲击时间,所述S3中形成的预测模型中包含冲击时间的参数。
本发明所述的测量超声冲击作用深度的方法,通过对超声冲击工件表面至内部的横截面区域进行EBSD方法检测,获得工件内晶粒取向分布,在晶界分布图中包括大角晶界和小角晶界分布,通过对高密度小角度晶界的测量,从而获得超声冲击作用下塑性变形区的深度。通过超声波冲击对材料处理后的晶体结构的影响,来直接确定冲击深度,测试结果更加准确。
基于上述测量方法构建的预测模型,可以用来预测超声波振幅对工件的冲击深度。在增材的过程中由于受热的不均匀,会在打印部件的内部产生较大的残余应力,通过超声冲击处理可有效的控制零部件的残余应力,减少残余应力影响。结合增材和熔覆成形参数后,所述预测模型即可精确评估不同激光定向能量沉积和超声冲击参数对作用深度的影响,从而指导超声冲击辅助激光定向能量沉积工艺的优化,实现增材制造金属零部件中组织与内应力的精确控制与改善,以提升增材件的力学性能并解决残余应力的不利影响;有效的指导超声冲击辅助激光定向能量沉积的成形工艺制定。
综上所述,本发明具有以下优势:
1.采用EBSD方法测量超声冲击作用影响深度,不需要测量材料的弹性模量、泊松比、屈服强度等物理参数。
2.相比较于金相观察法和显微硬度测试法,采用EBSD方法能够更加精确的测量超声冲击作用影响的深度。
3.此方法得到的作用层深度可用来指导增材过程中逐层累积厚度以及线能量密度等参数的设定以获得较好的成形效果。
附图说明
图1超声冲击处理原理图。
图2中(a)、(b)分别为经超声冲击前后的试样宏观图。
图3不同振幅下的局部取向差。
图中,1.基板,2.工件,3.超声波冲击头。
具体实施方式
下面结合附图与具体实施方式对本发明作进一步详细描述。
本发明所述的用于超声冲击作用深度的测试方法,主要步骤如下:
(1)采用超声冲击设备对试样表面进行处理,设定超声冲击工艺参数,包括频率和振幅。采用线切割的方法,将超声冲击试样进行切割,对试样表面至内部的横截面区域用砂纸进行粗磨。对粗磨后的试样进行先进的电解抛光,以获得高质量的试样表面,为后续观察和分析提供准确数据。
(2)利用扫描电子显微镜(SEM)结合电子背散射衍射(EBSD)探头,对电解抛光后的试样进行EBSD观察和分析,获得整个横截面内晶粒取向分布。在晶界分布图中包含的大角度晶界和小角度晶界中,检测并测量超声冲击作用后产生的高密度小角度晶界的分布范围,以确定超声冲击作用的塑性变形区深度。此处的小角晶界为2~15°,大角度晶界为大于15°的晶界。所述高密度是指与未进行超声冲击时的试样的晶界相比,高于小角度晶界的平均密度。
具体实施例为采用本发明所述的用于测量超声冲击作用深度的方法,来测量超声冲击辅助激光定向能量沉积制造CrCoNi中熵合金的超声冲击作用深度。具体步骤如下:
步骤1:选择粒径为33~133μm的CrCoNi中熵合金粉末,并将其放置于100℃的烘干炉中烘干1小时。选用Q235钢作为基板,并确保其表面清洁。
步骤2:以激光功率1800W,扫描速度8mm/s,送粉速度40g/min,保护气15L/min,搭接率50%的工艺参数,并采用型号为TRUDisk-3000的定向能量沉积设备,制备尺寸为80mm×40mm×5mm的CrCoNi中熵合金试样。
步骤3:使用型号为UIT-300的超声冲击设备对试样表面施加超声冲击。设定频率为17KHz,并选择不同振幅:0μm、10μm、15μm、20μm和25μm进行实验。超声冲击采用往复式冲击路径,连续冲击试样表面2分钟。超声冲击后,试样的宏观形貌可参考图2。
步骤4:采用线切割的方法,将经超声冲击试样切割成5mm×5mm×5mm,用冷镶液和粉进行镶嵌,将镶嵌试样表面用×400、×800、×1000、×1500、×2000的砂纸进行粗磨。
步骤5:采用10%的高锰酸钾电解液,电压为35V,电流为1A,电解时间为80s,对CrCoNi中熵合金进行电解抛光。
步骤6:通过使用扫描电子显微镜(SEM)结合电子背散射衍射(EBSD)探头对超声冲击不同振幅(0μm、10μm、15μm、20μm和25μm)的CrCoNi中熵合金试样进行测试。图3显示了不同振幅下的局部取向差。图3(a)为未施加超声冲击局部取向差图,试样内部其局部取向差值分布比较均匀,并且值较小。图3(b~e)为振幅为10μm、15μm、20μm和25μm超声冲击下的局部取向差值,根据测量结果,振幅为10μm、15μm、20μm和25μm超声冲击下的作用平均深度约为150μm、240μm、510μm和516μm。随着振幅的增大,超声冲击的作用深度也增加。
步骤7:表4为超声冲击处理过后的CrCoNi中熵合金的显微硬度与未处理过的CrCoNi涂层的显微硬度对比。未施加超声冲击CrCoNi中熵合金的显微硬度大约在220.9HV0.2,超声冲击的冲击振幅在达到10μm、15μm、20μm以及25μm的时候,与之对应的CrCoNi中熵合金的顶部区域的显微硬度为289HV0.2、323.3HV0.2、346.1HV0.2以及389.7HV0.2。相较于未经处理的CrCoNi中熵合金显微硬度相比,分别提升了30.8%、46.4%、56.7%以及76.4%,这表明了超声冲击使得CrCoNi涂层的显微硬度有了非常显著的提升。试样表层的硬度与超声冲击的振幅大小有着重要影响。
表4不同振幅下试样表层的显微硬度
在上述测试方法的技术上,基于上述超声波振幅大小与冲击深度的对应关系,构建经上述激光定向能量沉积后的工件的超声波冲击作用深度预测模型,即可预测该增材成形参数下的不同振幅超声波冲击作用的作用深度,还能够实现金属制件内部应力的预测和控制。
由于超声冲击的时间、增材制造的工艺均会对超声波冲击的深度具有影响,采用上述实施例的操作步骤即可获得包含超声波冲击时间、增材制造工艺和/或参数、工件材质的预测模型,以提供更为全面的预测评估指导。
上述对实施例的描述是为了便于该技术领域的技术人员能理解和使用发明。本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (7)

1.用于测量超声冲击作用深度的方法,其特征在于,包括以下步骤:
(1)将表面经过超声冲击处理后的工件采用线切割的方式进行切割,对切割后裸露出来的截面经过打磨、电解抛光后,利用扫描电子显微镜(SEM)结合电子背散射衍射(EBSD)探头,对电解抛光后的试样进行EBSD观察和分析,获得整个横截面内晶粒取向分布;
(2)在晶界分布图中包含的大角度晶界和小角度晶界中,检测并测量超声冲击作用后产生的高密度小角度晶界的分布范围,以确定超声冲击作用的塑性变形区深度。
2.根据权利要求1所述的用于测量超声冲击作用深度的方法,其特征在于,所述工件在进行超声冲击处理前,经过激光定向能量沉积、电弧熔丝沉积或电子束沉积进行表面增材制造工艺。
3.根据权利要求1所述的用于测量超声冲击作用深度的方法,其特征在于,步骤(2)中晶界夹角为2~15°的为小角晶界,大于15°的为大角度晶界。
4.基于权利要求1或2所述测量超声冲击作用深度的方法构建的超声冲击作用深度预测模型,其特征在于,所述测量模型通过以下步骤构建而成,
S1.采用不同振幅的超声波对分别多个同种工件进行超声波冲击;
S2.采用权利要求1或2所述的方法确定各个振幅的超声冲击的工件的塑性变形区深度;
S3.利用S2获得的塑性变形区的深度及对应的超声波振幅,构建预测模型,建立针对S1中所述种类工件的超声波振幅与塑性变形区的深度的对应关系;
S4.更换另一种工件,重复步骤S1-S3;获得多种工件的预测模型。
5.根据权利要求4所述的超声冲击作用深度预测模型,其特征在于,所述S3中的超声波振幅与塑性变形区的深度的对应关系为正交表格、拟合曲线或拟合函数。
6.根据权利要求4所述的超声冲击作用深度预测模型,其特征在于,S1中所述工件在包括不同材质的合金工件,和/或经过不同增材制造工艺、参数的增材制造;所述S3中形成的预测模型中包含工件种类和/或增材制造工艺、参数。
7.根据权利要求4所述的超声冲击作用深度预测模型,其特征在于,S1中的超声波冲击工艺包括同一振幅条件下、不同的超声冲击时间,所述S3中形成的预测模型中包含冲击时间的参数。
CN202311004967.2A 2023-08-10 2023-08-10 一种用于超声冲击作用深度的测试方法及基于该方法建立的超声冲击作用深度预测模型 Pending CN117030770A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311004967.2A CN117030770A (zh) 2023-08-10 2023-08-10 一种用于超声冲击作用深度的测试方法及基于该方法建立的超声冲击作用深度预测模型

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311004967.2A CN117030770A (zh) 2023-08-10 2023-08-10 一种用于超声冲击作用深度的测试方法及基于该方法建立的超声冲击作用深度预测模型

Publications (1)

Publication Number Publication Date
CN117030770A true CN117030770A (zh) 2023-11-10

Family

ID=88625744

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311004967.2A Pending CN117030770A (zh) 2023-08-10 2023-08-10 一种用于超声冲击作用深度的测试方法及基于该方法建立的超声冲击作用深度预测模型

Country Status (1)

Country Link
CN (1) CN117030770A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117531239A (zh) * 2024-01-10 2024-02-09 蓝炬生物技术(杭州)有限公司 一种生物活性物质提取控制方法与系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117531239A (zh) * 2024-01-10 2024-02-09 蓝炬生物技术(杭州)有限公司 一种生物活性物质提取控制方法与系统

Similar Documents

Publication Publication Date Title
Tan et al. Surface finishing on IN625 additively manufactured surfaces by combined ultrasonic cavitation and abrasion
Ehsan Asgar et al. Parameter study and optimization of WEDM process: A Review
Ahmed et al. Electron beam melting of titanium alloy and surface finish improvement through rotary ultrasonic machining
CN117030770A (zh) 一种用于超声冲击作用深度的测试方法及基于该方法建立的超声冲击作用深度预测模型
Zhang et al. Study on thermal deformation behavior and microstructural characteristics of wire electrical discharge machining thin-walled components
CN107267979A (zh) 一种盾构机刀头的强化方法以及高强度盾构机刀头
Malik et al. Investigation on the laser-assisted jet electrochemical machining process for improvement in machining performance
CN113943908A (zh) 一种高频振动滚压强化激光熔覆层的装置及其使用方法
Liang et al. Quality evaluation of multi-path laser cladding coatings based on integrated fuzzy comprehensive evaluation and improved analytical hierarchy process method
Toh The use of ultrasonic cavitation peening to improve micro-burr-free surfaces
Mishra et al. Experimental investigations into electric discharge grinding and ultrasonic vibration-assisted electric discharge grinding of Inconel 601
Wang et al. A comparative study on the surface integrity of single-step and multi-step sequential machining in electric discharge machining
Herrera et al. Abrasive wear resistance of Ti-6AL-4V obtained by the conventional manufacturing process and by electron beam melting (EBM)
Wang et al. A solution for estimating high-temperature strength based on additive manufacturing characteristics
Linsen et al. Optimization of process parameters of laser cladding 304L alloy powder based on orthogonal experiment
Chen et al. Effects of laser shock peening on the properties and microstructure evolution of laser-polished surface of Cr12 steel
Bhattacharya et al. Wire electric discharge machining of P91 steel: Microstructure and thermal modeling studies
Deng et al. Micro-beam plasma polishing of ground alloy steel surfaces
Gu et al. Microstructure, mechanical properties, and residual stress distribution of AISI 316L stainless steel part fabricated by laser metal deposition
Guu et al. Electrical discharge machining
Parikh et al. Investigation of porosity and microstructure-induced property variations in additive manufactured stainless steel 316L
EP4191224A1 (en) Method and system for determining the structure of a conductive material
CN113218875A (zh) 一种金属增材制造件残余应力的激光超声测量方法
Bariman et al. Laser Melting of High Thermal Conductivity Steel (HTCS) Surface
Sousa et al. Thermal and microstructural analysis of intersections manufactured by wire arc additive manufacturing (WAAM)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination