CN117015396A - Compositions and methods for treating cancer with chimeric TIM receptors in combination with poly (ADP-ribose) polymerase inhibitors - Google Patents

Compositions and methods for treating cancer with chimeric TIM receptors in combination with poly (ADP-ribose) polymerase inhibitors Download PDF

Info

Publication number
CN117015396A
CN117015396A CN202180070365.XA CN202180070365A CN117015396A CN 117015396 A CN117015396 A CN 117015396A CN 202180070365 A CN202180070365 A CN 202180070365A CN 117015396 A CN117015396 A CN 117015396A
Authority
CN
China
Prior art keywords
domain
seq
amino acid
acid sequence
signaling domain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180070365.XA
Other languages
Chinese (zh)
Inventor
D·M·科瑞
N·基普尼斯
G·奥多诺霍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cero Therapeutics Holdings Inc
Original Assignee
Cero Therapeutics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cero Therapeutics Inc filed Critical Cero Therapeutics Inc
Priority claimed from PCT/US2021/046041 external-priority patent/WO2022036285A1/en
Publication of CN117015396A publication Critical patent/CN117015396A/en
Pending legal-status Critical Current

Links

Abstract

The present disclosure relates to combination therapeutic compositions and methods comprising a chimeric Tim receptor, a host cell modified to comprise a chimeric Tim receptor molecule, and a PARP inhibitor.

Description

Compositions and methods for treating cancer with chimeric TIM receptors in combination with poly (ADP-ribose) polymerase inhibitors
Statement regarding sequence listing
The sequence listing associated with the present application is provided in text form to replace paper copies and is hereby incorporated by reference into this specification. The text file containing the sequence listing is named 200265_415wo_st25.Txt. The text file is 425KB, created at 2021, 8, 13 and submitted electronically via the EFS-Web.
Background
Upon exposure to antigen, the primary antigen-specific cd8+ T cells undergo activation, which promotes their clonal expansion, differentiation, and development into functional effector T cells that can kill cells expressing the cognate antigen (e.g., tumor cells). After antigen clearance, most effector T cells undergo apoptosis, and a subset of surviving effector T cells differentiate into memory T cells, which can provide long-term protection against antigen re-exposure. However, prolonged antigen exposure may lead to T cell depletion, enabling tumor cell survival. T cell depletion refers to a dysfunctional state obtained by T cells undergoing sustained TCR stimulation, characterized by upregulation of immune checkpoint molecules (e.g., PD-1, CTLA-4, tim-3) expression, impaired effector function, dysproliferation, and metabolic defects. Engineered T cells expressing Chimeric Antigen Receptors (CARs) may also develop depletion.
Drawings
Figures 1A-1B show that Kuramochi model of ovarian cancer is moderately sensitive to PARP inhibition. FIG. 1A shows the results of Kuramochi cells expressing mCherry-NLS plasmid incubated with the PARP inhibitor nilaparib. FIG. 1B shows the results of incubation of Kuramochi cells expressing mCherry-NLS plasmid with the PARP inhibitors nilaparib, olaparib, tazopanib, velipatib and Lu Kapa.
Figures 2A-2C show binding of Kuramochi cells stimulated with nilaparib to Tim4, indicating an increase in the level of surface PS in response to PARP inhibition. FIG. 2A shows staining of Nilapatinib treated Kuramochi cells by Tim4-Fc chimera and anti-mouse IgG2A antibody conjugated to Alexa 488. Fig. 2B shows staining of IgG controls. FIG. 2C shows an increase in the number of Kuramochi cells in response to 1.56-12.5. Mu.M Nilapatinib.
FIG. 3 shows that Nilapatinib has a negligible effect on the health, cell size, or expansion of CD4/CD 8T cells.
FIG. 4 shows the results of Kuramochi cells incubated with chimeric Tim receptor construct 13A, control T cells and nilaparib.
Figure 5 shows that the combination of chimeric Tim4 receptor (CTX 140) and nilaparib treatment reduced Kuramochi cell numbers in vitro. Kuramochi cells were previously incubated with 1.56 μm nilaparib. CTX156 (tgfr) is a transduction control.
Figure 6 shows that the combination of chimeric Tim4 receptor (CTX 137) and nilaparib treatment reduced Kuramochi cell numbers in vitro. Kuramochi cells were previously incubated with 25 μm nilaparib and a maintenance dose of 0.52 μm nilaparib was administered. CTX156 (tgfr) is a transduction control.
FIG. 7 shows that the combination of chimeric Tim4 receptor (CTX 137) and Nilapatinib treatment with different doses (6.25. Mu.M, 12.5. Mu.M or 25. Mu.M pretreatment+0.52. Mu.M maintenance dose) and different effector to target cell ratios reduced the number of Kuramochi cells in vitro. CTX156 (tgfr) is a transduction control.
Fig. 8A-8B: pCTX133, a chimeric Tim4 receptor containing TLR-2, enhances the efficacy of nilaparib in ovarian cancer models. Fig. 8A: flow cytometry measurement of surface PtdSer. Kuramochi cells were treated with 1.56 or 25 μm nilaparib or with an equivalent volume of DMSO (control). After 48 hours, the samples were trypsinized and stained with Tim4-Fc followed by fluorescent-labeled secondary antibodies to Tim 4-Fc. Fig. 8B: kuramochi cells pretreated with 1.56 μm nilaparib for about 20 hours were co-cultured with pCTX133 from donor 32 and uninduced CD 4T cells at a 2:1 ratio of T cells to Kuramochi and a final nilaparib concentration of 1.56 μm. Samples treated with nilaparib+pctx 133 showed significantly fewer tumor cells in culture after about 3 days when compared to samples treated with nilaparib alone or with nilaparib+uninduced T cells. All data were collected via IncuCyte.
FIGS. 9A-9B, in vitro antitumor Activity of CER pCTX247 (SEQ ID NO: 257) in two ovarian cancer models. Fig. 9A: A2780-mCh-NLS cells pretreated with 25. Mu.M nilaparib for about 20 hours were co-cultured with CER 247 and MOCK 236CD4/8T cells from donor 21 at a 2:1 ratio of T cells to A2780 and final nilaparib concentration of 6.25. Mu.M. Samples treated with nilaparib+cer 247 showed significantly fewer tumor cells after about 5 days of culture when compared to samples treated with nilaparib alone, CER 247 alone, or nilaparib+mock 236. Fig. 9B: kumamachi-mCh-NLS cells pretreated with 25. Mu.M nilaparib for about 20 hours were co-cultured with CER 247 and MOCK 236CD4/8T cells from donor 21 at a 2:1 ratio of T cells to A2780 and final nilaparib concentration of 1.56. Mu.M. Samples treated with nilaparib+cer 247 showed significantly fewer tumor cells after about 5 days of culture when compared to samples treated with nilaparib alone, CER 247 alone, or nilaparib+mock 236. All data were collected via IncuCyte.
Fig. 10: in vitro anti-tumor Activity of CER pCTX797 (SEQ ID NO: 258) in A2780 ovarian cancer model. A2780-mCh-NLS cells pretreated with 0.52. Mu.M nilaparib for about 20 hours were co-cultured with CER 797 and MOCK 236CD4/8T cells from donor 32 at a 2:1 ratio of T cells to A2780 and final nilaparib concentration of 0.52. Mu.M. Samples treated with nilaparib+cer 247 showed significantly fewer tumor cells after about 5 days of culture when compared to samples treated with nilaparib alone, CER 247 alone, or nilaparib+mock 236. All data were collected via IncuCyte.
Fig. 11A-11B: in both models of ovarian cancer, phosphatidylserine is presented on the cell surface in response to nilaparib. Fig. 11A: A2780-mCh-NLS cells treated with 1.56 and 25. Mu.M nilaparib showed significantly higher proportion of PS+ cells and Tim4-Fc MFI increase compared to samples treated with equal volumes of DMSO. Nilapatinib also begins to have an antitumor effect at a concentration of at least 1.56 μm of Nilapatinib. Fig. 11B: kuramochi-mCh-NLS cells treated with 25. Mu.M Nilapatinib showed significantly higher proportion of PS+ cells and Tim4-Fc MFI increase compared to samples treated with an equal volume of DMSO. Nilapatinib also begins to have an antitumor effect at a concentration of at least 25 μm Nilapatinib. All samples were analyzed via flow cytometry.
Fig. 12: CER shows a synergistic effect with additional PARP inhibitors (in addition to nilaparib, lu Kapa ni and olaparib). A2780-mCh-NLS cells pretreated with 0.52. Mu.M nilaparib, lu Kapa Ni or Olaparib for about 20 hours were co-cultured with CER247 and MOCK 236CD4/8T cells from donor 32 at a 2:1 ratio of T cells to A2780 and final nilaparib concentration of 0.52. Mu.M. Samples treated with nilaparib+cer 247, lu Kapa rib+cer 247 or olaparib+cer 247 showed significantly fewer tumor cells after about 5 days of culture when compared to samples treated with nilaparib, lu Kapa rib or olaparib alone, CER247 or nilaparib+mock 236. All data were collected via IncuCyte.
Detailed Description
In one aspect, the present disclosure provides methods of treating cancer using chimeric T cell immunoglobulin mucin (Tim) receptors (also known as chimeric phagocytic receptors (CER)) in combination with poly (ADP-ribose) polymerase (PARP) inhibitors. In another aspect, the present disclosure provides a pharmaceutical composition or combination comprising a chimeric Tim receptor and a PARP inhibitor. The chimeric Tim receptors useful in the compositions and methods of the present disclosure confer phagocytic, cytotoxic, and/or antigen presenting activity on host cells (e.g., T cells) modified with the chimeric Tim receptor, wherein the cytotoxic activity is induced upon binding of the chimeric Tim receptor to its target antigen phosphatidylserine. DNA damaging agents such as PARP inhibitors may act synergistically with chimeric Tim receptors by promoting cellular damage and the externalization of phosphatidylserine, which induces effector functions of the chimeric Tim receptor such as phagocytosis, cytotoxicity, co-stimulatory activity, antigen presentation, or combinations thereof.
Chimeric Tim receptors described herein include single chain chimeric proteins comprising: (a) An extracellular domain comprising a binding domain, the binding domain comprising: (i) a Tim1 IgV domain or a Tim4 IgV domain; and (ii) a Tim1 mucin domain or a Tim4 mucin domain; (b) An intracellular signaling domain, wherein the intracellular signaling domain comprises a primary intracellular signaling domain and optionally a secondary intracellular signaling domain; and (c) a transmembrane domain located between and connecting the extracellular domain and the intracellular signaling domain.
In certain embodiments, the extracellular domain of a chimeric Tim receptor described herein optionally comprises an extracellular spacer domain located between and linking the binding domain and the transmembrane domain.
In certain embodiments, the chimeric Tim receptor is also capable of costimulating T cells via a signaling pathway that is different from the "classical" T cell costimulatory pathway (e.g., CD 28). For example, in addition to binding phosphatidylserine, tim4 is also a ligand for Tim1, tim1 being expressed on the surface of activated T cells. Tim1 is also capable of binding to phosphatidylserine. Tim 4-induced Tim1 signaling has been found to co-stimulate T cell proliferation and survival (Hartt Meyers et al 2005, nature immunology (Nat. Immunol.)), 6:455. Thus, in certain embodiments, the cytotoxic chimeric Tim receptor can reduce or inhibit T cell depletion, or restore depleted T cells, by providing a costimulatory signal via at least one signaling pathway. In certain embodiments, the cytotoxic chimeric Tim receptor provides a costimulatory signal via at least two different signaling pathways (e.g., via a costimulatory signaling domain selected from the cytotoxic chimeric Tim receptor and Tim 1).
In certain embodiments, the chimeric Tim receptors of the present disclosure also confer phagocytic activity on a host cell when expressed in the host cell. For example, in certain such embodiments, binding of a chimeric Tim receptor expressed in a host cell to a phosphatidylserine target can induce a cytolytic and phagocytic response by the host cell. In particular embodiments of the modified host cells described herein, the host cells do not naturally exhibit a phagocytic phenotype prior to modification with the chimeric Tim receptor.
In embodiments, administration of host cells modified with the chimeric Tim receptors of the present disclosure can be used in methods of eliminating target cells with surface exposed phosphatidylserine, e.g., for treating cancer. In normal healthy cells, phosphatidylserine is located in the inner leaflet of the plasma membrane. However, certain cellular events (such as injury, apoptosis, necrosis, and stress) activate a "promiscuous enzyme" which rapidly exposes phosphatidylserine to the cell surface where it binds to receptors such as Tim4 or Tim 1. Endogenous tumor-specific effector T cells can induce exposure of phosphatidylserine on the outer membrane of targeted tumor cells during cell lysis. In addition, certain cancer therapies (e.g., chemotherapy, radiation therapy, CAR-T cells, etc.) can induce phosphatidylserine exposure to targeted tumor cells or cells in the tumor microenvironment by inducing apoptosis, cellular stress, cellular injury, etc. Engineered host cells expressing the disclosed chimeric Tim receptors can clear damaged, stressed, apoptotic or necrotic tumor cells bearing surface-exposed phosphatidylserine by inducing apoptosis in tumor cells bearing surface-exposed phosphatidylserine. In certain embodiments, host cells expressing the chimeric Tim receptors disclosed herein clear damaged, stressed, apoptotic, or necrotic tumor cells with surface-exposed phosphatidylserine by inducing apoptosis and by phagocytosis. In another aspect, host cells modified with the chimeric Tim receptors of the present disclosure can be used to enhance the effect of PARP inhibitors that induce cellular stress, injury, necrosis, or apoptosis. For example, the administration of PARP inhibitors may increase the level of surface phosphatidylserine, resulting in synergistic combinations. Cells expressing a chimeric Tim receptor as described herein can bind to a phosphatidylserine moiety on the outer leaflet of a damaged or dead cell that is exposed by the administration of a PARP inhibitor and induce cytolysis or both cytolysis and phagocytosis of the targeted cell.
The combination of engineered host cells comprising a chimeric Tim receptor and a PARP inhibitor according to the present description may be administered to a subject alone or in further combination with one or more additional therapeutic agents including, for example, CAR-T cells, TCRs, antibodies, radiation therapy, chemotherapy, small molecules, oncolytic viruses, electric pulse therapy, and the like.
Before setting forth the present disclosure in more detail, it may be helpful to understand the present disclosure to provide definitions of certain terms to be used herein.
In this description, unless otherwise indicated, any concentration range, percentage range, ratio range, or integer range should be understood to include any integer value within the range and to include fractions thereof (e.g., tenths and hundredths of integers) as appropriate. Furthermore, any numerical range recited herein in connection with any physical feature, such as a polymer subunit, size, or thickness, should be understood to include any integer within the range, unless otherwise indicated. As used herein, unless otherwise indicated, the term "about" means ± 20% of the indicated range, value, or structure. It should be understood that the terms "a" and "an" as used herein refer to "one or more" of the recited components. The use of alternatives (e.g., "or") should be understood to mean one, two, or any combination thereof. As used herein, the terms "comprising," "having," and "including" are used synonymously, and these terms and variants thereof are intended to be construed as non-limiting.
Unless the context clearly indicates otherwiseThe term is understood by those skilled in the art of antibodies in the sense given in the art. The term "antibody" is used in the broadest sense and encompasses polyclonal antibodies and monoclonal antibodies. An "antibody" may refer to an intact antibody that includes at least two heavy (H) and two light (L) chains linked to each other by disulfide bonds, as well as an antigen-binding portion (or antigen-binding domain) of the intact antibody that has or retains the ability to bind to a target molecule. Antibodies can be naturally occurring, recombinantly produced, genetically engineered, or modified forms of immunoglobulins, e.g., intracellular antibodies, peptibodies, nanobodies, single domain antibodies, SMIPs, multispecific antibodies (e.g., bispecific antibodies, bifunctional antibodies, trifunctional antibodies, tetrafunctional antibodies, tandem bis-scFV, tandem tri-scFV, ADAPTIR). The monoclonal antibody or antigen binding portion thereof may be non-human, chimeric, humanized or human, preferably humanized or human. Antibodies are described, for example, in Harlow et al: the structure and function of immunoglobulins is reviewed in the laboratory Manual (Antibodies: A Laboratory Manual), chapter 14, (Cold spring harbor laboratory (Cold Spring Harbor Laboratory), cold spring harbor (Cold Spring Harbor), 1988). The "antigen binding portion" or "antigen binding domain" of an intact antibody is intended to encompass such "antibody fragments": which represents a portion of an intact antibody and refers to the epitope variable region or complementarity determining region of the intact antibody. Examples of antibody fragments include, but are not limited to, fab ', F (ab') 2 And Fv fragment, fab '-SH, F (ab') 2 Bifunctional antibodies, linear antibodies, scFv antibodies, VH and multispecific antibodies formed from antibody fragments. "Fab" (antigen binding fragment) is a portion of an antibody that binds to an antigen and comprises the variable region of the heavy chain linked to the light chain via an interchain disulfide bond and CH1. Antibodies can be of any class or subclass, including IgG and subclasses thereof (IgG 1 、IgG 2 、IgG 3 、IgG 4 ) IgM, igE, igA and IgD.
The term "variable region" or "variable domain" refers to the domain of an antibody heavy or light chain that is involved in binding an antibody to an antigen. The variable domains of the heavy and light chains of natural antibodies (VH and VL, respectively) generally have similar structures, with each domain comprising four conserved Framework Regions (FR) and three CDRs. (see, e.g., kit et al, kuby Immunology, 6 th edition, w.h. frieman company (w.h. freeman and co.) (page 91 (2007)). A single VH or VL domain may be sufficient to confer antigen binding specificity. In addition, antibodies that bind a particular antigen can be isolated from antibodies that bind that antigen using VH or VL domains to screen libraries of complementary VL or VH domains, respectively. See, e.g., portolano et al, J.Immunol.), 150:880-887 (1993); clarkson et al, nature, 352:624-628 (1991).
The terms "complementarity determining region" and "CDR," synonymous with "hypervariable region" or "HVR," are known in the art to refer to non-contiguous amino acid sequences within the variable region of an antibody that confer antigen specificity and/or binding affinity. In general, there are three CDRs (HCDR 1, HCDR2, HCDR 3) in each heavy chain variable region, and three CDRs (LCDR 1, LCDR2, LCDR 3) in each light chain variable region.
As used herein, the terms "binding domain," "binding region," and "binding moiety" refer to a molecule (such as a peptide, oligopeptide, polypeptide, or protein) that has the ability to specifically and non-covalently bind, associate (unite), recognize, or combine a target molecule (e.g., phosphatidylserine). The binding domain comprises any naturally occurring, synthetic, semisynthetic or recombinantly produced binding partner for a biomolecule or other target of interest. In some embodiments, the binding domain is an antigen binding domain, such as an antibody or a functional binding domain or antigen binding portion thereof. Exemplary binding domains include single chain antibody variable regions (e.g., domain antibodies, sFv, scFv, fab), receptor ectodomains (e.g., tim 4), ligands (e.g., cytokines, chemokines), or synthetic polypeptides selected for their ability to specifically bind to a biological molecule.
"T cell receptor" (TCR) refers to a cell that is present on the surface of a T cell (also known as a T lymphocyte) and is generally responsible for recognitionMolecules of antigens bound to Major Histocompatibility Complex (MHC) molecules. In most T cells, TCRs are typically composed of heterodimers of disulfide-linked highly variable alpha and beta chains (also referred to as tcra and tcrp, respectively). In a small fraction of T cells, TCRs consist of heterodimers of gamma and delta chains (also referred to as tcrgamma and tcrdelta, respectively). Each chain of TCR is a member of the immunoglobulin superfamily and has an N-terminal immunoglobulin variable domain, an immunoglobulin constant domain, a transmembrane region and a short cytoplasmic tail at the C-terminus (see Janeway et al, immunobiology: immune system in health and disease (Immunobiology: the Immune System in Health and Disease), 3 rd edition, contemporary biological publications (Current Biology Publications), page 4: 33, 1997). The TCRs of the present disclosure may be from a variety of animal species, including humans, mice, rats, cats, dogs, goats, horses, or other mammals. TCRs may be cell-bound (i.e., have a transmembrane region or domain) or soluble in form. TCRs comprise recombinantly produced, genetically engineered, fused or modified forms of TCRs, including, for example, sctcrs, soluble TCRs, TCR fusion constructs (trucs TM The method comprises the steps of carrying out a first treatment on the surface of the See, U.S. patent publication No. 2017/0166622).
The terms vy and vδ of the "variable region" or "variable domain" or γδ TCR of the TCR α chain (vα) and β chain (vβ) are involved in the binding of the TCR to the antigen. V of native TCR α And V β Typically have a similar structure, where each variable domain includes four conserved FR and three CDRs. V (V) α The domains are encoded by two separate DNA segments: a variable gene segment (V gene) and a junction gene segment (J gene); v (V) β The domains are encoded by three separate DNA segments: variable gene segments (V genes), diverse gene segments (D genes), and junction gene segments (J genes). Single V α Or V β The domain may be sufficient to confer antigen binding specificity. "major histocompatibility complex molecule" (MHC molecule) refers to a glycoprotein that delivers peptide antigens to the cell surface. MHC class I molecules are heterodimers composed of a membrane spanning the alpha chain (containing three alpha domains) and non-covalently associated beta 2 microglobulin. MHC class II molecules are defined by twoTransmembrane glycoproteins α and β, both of which are transmembrane. Each chain has two domains. MHC class I molecules deliver cytosolic derived peptides to the cell surface where the peptides: MHC complex is surrounded by CD8 + T cell recognition. MHC class II molecules deliver peptides derived from the vesicle system to the cell surface where they are recognized by cd4+ T cells. MHC molecules may be from a variety of animal species, including humans, mice, rats or other mammals.
"chimeric antigen receptor" (CAR) refers to a chimeric protein comprising two or more distinct domains and can act as a receptor when expressed on the surface of a cell. CARs generally consist of an extracellular domain (comprising a binding domain that binds a target antigen), an optional extracellular spacer domain, a transmembrane domain, and an intracellular signaling domain (e.g., a T cell activation motif containing an immune receptor tyrosine activation motif (ITAM), and optionally an intracellular co-stimulatory domain). In certain embodiments, the intracellular signaling domain of the CAR has a T cell activation domain (e.g., cd3ζ) and an intracellular co-stimulatory domain (e.g., CD 28) that contains ITAM. In certain embodiments, the CAR is synthesized as a single polypeptide chain, or encoded by a nucleic acid molecule as a single-chain polypeptide.
Various assays are known for identifying binding domains of the present disclosure that specifically bind to a particular target, and determining affinity of the binding domains, such as western blotting, ELISA, and Analysis (see, e.g., scatchard et al, new York academy of sciences annual book (Ann. N.Y. Acad. Sci.) 51:660, 1949, and U.S. Pat. Nos. 5,283,173, 5,468,614 or equivalent). As used herein, "specifically bind" refers to binding domains or fusion proteins thereof to 10 or greater 5 M -1 Affinity or K of (2) a (i.e., the equilibrium association constant of a particular binding interaction, where the units are 1/M) associates or associates with a target molecule, but does not significantly associate or associate with any other molecule or component in the sample.
The terms "antigen" and "Ag" refer to molecules capable of inducing an immune response. The immune response induced may be involved in antibody production, activation of specific immunocompetent cells, or both. Macromolecules (including proteins, glycoproteins and glycolipids) can be used as antigens. The antigen may be derived from recombinant DNA or genomic DNA. As contemplated herein, an antigen need not be encoded (i) by only the full length nucleotide sequence of the gene or (ii) by the "gene" at all. The antigen may be produced or synthesized, or the antigen may be from a biological sample. Such biological samples may include, but are not limited to, tissue samples, tumor samples, cells, or biological fluids.
The term "epitope" or "antigenic epitope" encompasses any molecule, structure, amino acid sequence, or protein determinant within an antigen that is specifically bound by a cognate immune binding molecule, such as an antibody or fragment thereof (e.g., scFv), T Cell Receptor (TCR), chimeric Tim receptor, or other binding molecule, domain, or protein. Epitope determinants generally contain chemically active surface groupings of molecules such as amino acids or sugar side chains and may have specific three dimensional structural characteristics as well as specific charge characteristics. The epitope may be a linear epitope or a conformational epitope.
As used herein, the term "PARP" (poly (ADP-ribose) polymerase) refers to a family of proteins, wherein each protein has two ribose moieties and two phosphate esters per unit polymer. PARP1 and PARP2 are enzymes involved in DNA repair pathways.
As used herein, the term "Tim4" (T cell immunoglobulin and mucin domain containing protein 4), also referred to as "TimD4", refers to phosphatidylserine receptors that are typically expressed on antigen presenting cells such as macrophages and dendritic cells. Tim4 mediates phagocytosis by apoptotic, necrotic, injured or stressed cells that present phosphatidylserine (PtdSer) on the outer (external) leaflet of the cell membrane. Tim4 is also capable of binding to Tim1 expressed on the surface of T cells and inducing proliferation and survival. In certain embodiments, tim4 refers to human Tim4. An exemplary human Tim4 protein includes the amino acid sequence of SEQ ID NO. 1.
As used herein, the term "Tim4 binding domain" refers to the N-terminal immunoglobulin folding domain of Tim4, which has a metal ion-dependent pocket that selectively binds PtdSer. An exemplary human Tim4 binding domain comprises the amino acid sequence of SEQ ID NO. 2, and an exemplary mouse Tim4 binding domain comprises the amino acid sequence of SEQ ID NO. 24.
The Tim4 binding domain comprises a variable immunoglobulin (IgV) -like domain (referred to herein as an "IgV domain") and a mucin-like domain (referred to herein as an "mucin domain"). An exemplary human Tim4 IgV domain comprises the amino acid sequence of SEQ ID NO. 34, and an exemplary human Tim4 mucin domain comprises the amino acid sequence of SEQ ID NO. 35. In certain embodiments, the Tim4 binding domain does not comprise a signal peptide. An exemplary human Tim4 signal peptide has the amino acid sequence of SEQ ID NO. 11. An exemplary mouse Tim4 signal peptide has the amino acid sequence of SEQ ID NO. 25.
As used herein, the term "Tim1" (protein 1 containing T cell immunoglobulin and mucin domains) refers to a phosphatidylserine receptor expressed on the surface of T cells. As described above, tim1 is also capable of binding to Tim4 expressed on the surface of antigen presenting cells. In certain embodiments, tim1 refers to human Tim1. An exemplary human Tim1 protein includes the amino acid sequence of SEQ ID NO. 36.
As used herein, the term "Tim1 binding domain" refers to the N-terminal immunoglobulin folding domain of Tim1 that selectively binds PtdSer. An exemplary human Tim1 binding domain includes the amino acid sequence of SEQ ID NO. 37.
The Tim1 binding domain comprises an IgV domain and a mucin domain. An exemplary human Tim1 IgV domain comprises the amino acid sequence of SEQ ID NO:38, and an exemplary human Tim1 mucin domain comprises the amino acid sequence of SEQ ID NO: 39. In certain embodiments, the Tim1 binding domain does not comprise a signal peptide. An exemplary human Tim1 Signal peptide has the amino acid sequence of SEQ ID NO. 40.
As used herein, an "effector domain" is an intracellular portion of a fusion protein or receptor that, upon receipt of an appropriate signal, can directly or indirectly promote a biological or physiological response in a cell expressing the effector domain. In certain embodiments, the effector domain is part of a protein or protein complex that receives a signal when bound, or it binds directly to a target molecule that triggers a signal from the effector domain. When the effector domain contains one or more signaling domains or motifs, such as an immune receptor tyrosine activation motif (ITAM), it may directly promote a cellular response. In other embodiments, the effector domain will indirectly promote a cellular response by associating with one or more other proteins that directly promote the cellular response.
As used herein, a "costimulatory signaling domain" refers to an intracellular signaling domain of a costimulatory molecule, or a functional portion thereof, that, when activated together with a primary or classical (e.g., ITAM-driven) activation signal (e.g., provided by a cd3ζ intracellular signaling domain), promotes or enhances a T cell response, such as T cell activation, cytokine production, proliferation, differentiation, survival, effector function, or a combination thereof. Co-stimulatory signaling domains include, for example, CD27, CD28, CD40L, GITR, NKG2C, CARD1, CD2, CD7, CD27, CD30, CD40, CD54 (ICAM), CD83, CD134 (OX-40), CD137 (4-1 BB), CD150 (SLAMF 1), CD152 (CTLA 4), CD223 (LAG 3), CD226, CD270 (HVEM), CD273 (PD-L2), CD274 (PD-L1), CD278 (ICOS), DAP10, LAT, LFA-1, LIGHT, NKG2C, SLP76, TRIM, or any combination thereof.
As used herein, an "immunoreceptor tyrosine-activating motif (ITAM) activation domain" refers to an intracellular signaling domain or functional portion thereof that is naturally or endogenously present on an immune cell receptor or cell surface marker and contains at least one immunoreceptor tyrosine-activating motif (ITAM). ITAM means YXXL/I-X 6-8 Conserved motifs of YXXL/I. In certain embodiments, the ITAM signaling domain contains one, two, three, four, or more ITAMs. The ITAM signaling domain may initiate T cell activation signaling following antigen binding or ligand binding. ITAM signaling domains comprise, for example, CD3 gamma, CD3 delta, CD3 epsilon, CD3 zeta, CD79a and CD66 d.
"connecting amino acid" or "connecting amino acid residues" refers to the polypeptide of two adjacent motifs, region or domain between one or more (e.g., about 2-20) amino acid residues. The linking amino acids may be from the construct design of the chimeric protein (e.g., amino acid residues generated using restriction enzyme sites during construction of the nucleic acid molecule encoding the chimeric protein).
"nucleic acid molecules" and "polynucleotides" may be in the form of RNA or DNA, including cDNA, genomic DNA, and synthetic DNA. The nucleic acid molecule may consist of naturally occurring nucleotides (e.g., deoxyribonucleotides and ribonucleotides), analogs of naturally occurring nucleotides (e.g., the alpha-enantiomeric form of a naturally-occurring nucleotide), or a combination of both. The modified nucleotide may have a modification or substitution of a sugar moiety or a pyrimidine or purine base moiety. Nucleic acid monomers may be linked by phosphodiester bonds or analogues of such bonds. Analogs of phosphodiester linkages include phosphorothioates, phosphorodithioates, phosphoroselenites, phosphorodiselenates, phosphoroanilide, phosphorophosphoramidates, and the like. The nucleic acid molecule may be double-stranded or single-stranded, and if single-stranded, may be the coding strand or the non-coding strand (antisense strand). The coding molecules may have the same coding sequence as known in the art, or may have a different coding sequence which may encode the same polypeptide due to redundancy or degeneracy of the genetic code, or by splicing.
"coding" refers to the inherent properties of specific polynucleotide sequences (e.g., DNA, cDNA, and mRNA sequences) to serve as templates for the synthesis of other polymers and macromolecules having defined nucleotide sequences (i.e., rRNA, tRNA, and mRNA) or defined amino acid sequences and the biological properties that result therefrom during bioprocessing. Thus, if transcription and translation of mRNA corresponding to a polynucleotide produces a protein in a cell or other biological system, the polynucleotide encodes the protein. Both coding and non-coding strands may be referred to as encoding proteins or other products of polynucleotides. Unless otherwise indicated, a "nucleotide sequence encoding an amino acid sequence" encompasses all nucleotide sequences that are degenerate versions of each other and that encode the same amino acid sequence.
As used herein, the terms "peptide," "polypeptide," and "protein" are used interchangeably and refer to a compound consisting of amino acid residues covalently linked by peptide bonds. The protein or peptide must contain at least two amino acids and there is no limit to the maximum number of amino acids that can make up the protein sequence or peptide sequence. A polypeptide comprises any peptide or protein consisting of two or more amino acids linked to each other by peptide bonds. As used herein, the term refers to both short chains, also commonly referred to in the art as, for example, peptides, oligopeptides, and oligomers, and long chains, commonly referred to in the art as proteins, of many types. "Polypeptides" include, for example, biologically active fragments, substantially homologous polypeptides, oligopeptides, homodimers, heterodimers, variants of polypeptides, modified polypeptides, derivatives, analogs, fusion proteins, and the like. The polypeptide comprises a natural peptide, a recombinant peptide, a synthetic peptide, or a combination thereof.
As used herein, the term "mature polypeptide" or "mature protein" refers to a protein or polypeptide secreted or localized in the cell membrane or within certain cellular organelles (e.g., endoplasmic reticulum, golgi, or endosomes), and does not comprise an N-terminal signal peptide.
"Signal peptide", also known as "signal sequence", "leader peptide", "localization signal" or "localization sequence", is a short peptide (typically 15-30 amino acids in length) that is present at the N-terminus of a newly synthesized protein and is transported to the secretory pathway. The signal peptide typically comprises a short, hydrophilic, positively charged amino acid at the N-terminus, a central hydrophobic domain of 5-15 residues and a C-terminal region with a cleavage site for the signal peptidase. In eukaryotes, the signal peptide facilitates the transport of the newly synthesized protein to the endoplasmic reticulum where it is cleaved by the signal peptidase to produce the mature protein, which then enters its appropriate destination.
The term "chimeric" refers to any nucleic acid molecule or protein that is non-endogenous and includes sequences that bind or join together (typically do not bind or join together in nature). For example, a chimeric nucleic acid molecule may include regulatory sequences and coding sequences from different sources, or regulatory sequences and coding sequences from the same source but arranged in a manner different from that found in nature.
As used herein, the term "endogenous" or "native" refers to a gene, protein, compound, molecule, or activity that is normally present in a host or host cell, including naturally occurring variants of the gene, protein, compound, molecule, or activity.
As used herein, "homologous" or "homolog" refers to a molecule or activity from a host cell that is related to a second gene or activity, e.g., from the same host cell, a different organism, a different strain, a different species. For example, a heterologous molecule or a heterologous gene encoding the molecule may be homologous to the native host cell molecule or the gene encoding the molecule, respectively, and may optionally have an altered structure, sequence, expression level, or any combination thereof.
As used herein, a "heterologous" nucleic acid molecule, construct or sequence refers to a nucleic acid molecule or portion of a nucleic acid molecule that is not native to the host cell, but may be homologous to a nucleic acid molecule or portion of a nucleic acid molecule from the host cell. The source of the heterologous nucleic acid molecule, construct or sequence may be from a different genus or species. In some embodiments, the heterologous nucleic acid molecule is not naturally occurring. In certain embodiments, the heterologous nucleic acid molecule is added (i.e., non-endogenous or native) to the host cell or host genome by, for example, conjugation, transformation, transfection, transduction, electroporation, etc., wherein the added molecule may be integrated into the host cell genome or present as extrachromosomal genetic material (e.g., as a plasmid or other form of self-replicating vector), and may be present in multiple copies. Furthermore, "heterologous" refers to a non-native enzyme, protein, or other activity encoded by a non-endogenous nucleic acid molecule introduced into a host cell, even if the host cell encodes a homologous protein or activity.
As used herein, the term "engineered", "recombinant", "modified" or "non-natural" refers to an organism, microorganism, cell, nucleic acid molecule or vector that has been modified by the introduction of a heterologous nucleic acid molecule, or to a cell or microorganism that has been genetically engineered by the introduction of a heterologous nucleic acid molecule, or to a cell or microorganism that has been altered such that expression of an endogenous nucleic acid molecule or gene is controlled, deregulated or constitutive, wherein such alterations or modifications may be introduced by genetic engineering. A human-produced genetic alteration may comprise, for example, the introduction of a modification of a nucleic acid molecule encoding one or more proteins, chimeric receptors or enzymes (which may comprise an expression control element, such as a promoter), or the addition, deletion, substitution of other nucleic acid molecules, or other functional disruption or addition of genetic material of a cell. Exemplary modifications include those in the coding region of a heterologous or homologous polypeptide from a reference or parent molecule, or a functional fragment thereof. Other exemplary modifications include, for example, modifications in non-coding regulatory regions, wherein the modifications alter expression of the gene or operon.
As used herein, the term "transgene" refers to a gene or polynucleotide encoding a protein of interest (e.g., chimeric Tim receptor), whose expression in a host cell is desired, and which has been transferred into the cell by genetic engineering techniques. The transgene may encode a protein of therapeutic interest, as a reporter, tag, marker, suicide protein, or the like. The transgene may be from a natural source, a modified or recombinant molecule of a natural gene, or a synthetic molecule. In certain embodiments, the transgene is a component of a vector.
The term "overexpression" or "overexpression" of an antigen refers to an abnormally high level of antigen expression in a cell. The overexpression of an antigen or antigen is often associated with a disease state, such as in hematological malignancies and cells that form solid tumors within a particular tissue or organ of a subject. Solid tumors or hematological malignancies characterized by overexpression of tumor antigens can be determined by standard assays known in the art.
The "percent identity" between two or more nucleic acid or amino acid sequences is a function of the number of identical positions shared by the sequences (i.e.,% identity =number of identical positions/total number of positions×100), taking into account the number of gaps and the length of each gap that needs to be introduced to optimize alignment of the two or more sequences. Comparison of sequences and determination of percent identity between two or more sequences may be accomplished using mathematical algorithms, such as BLAST and Gapped BLAST programs using default parameters (e.g., altschul et al, J. Mol. Biol.), 215:403, 1990; see also BLASTN of www.ncbi.nlm.nih.gov/BLAST).
"conservative substitutions" are considered in the art to be amino acid substitutions of one amino acid for another having similar properties. Exemplary conservative substitutions are well known in the art (see, e.g., WO 97/09433, page 10, published 3/13 1997; lehninger, biochemistry, second edition; walsh Publishers, inc.) New York (1975), pages 71-77; lewis, genes IV, oxford university Press (Oxford University Press), new York and Cell Press (Cell Press), cambridge, massachusetts (1990), page 8).
As used herein, the term "promoter" is defined as a DNA sequence recognized by a cellular or introduced synthetic mechanism that is required to initiate specific transcription of a polynucleotide sequence.
As used herein, the term "promoter/regulatory sequence" means a nucleic acid sequence required for expression of a gene product operably linked to a promoter/regulatory sequence. In some cases, the sequence may be a core promoter sequence, and in other cases, the sequence may also comprise enhancer sequences and other regulatory elements required for expression of the gene product. For example, the promoter/regulatory sequence may be one that expresses the gene product in a tissue specific manner.
A "constitutive" promoter is a nucleotide sequence which, when operably linked to a polynucleotide encoding or specifying a gene product, results in the production of the gene product under most or all physiological conditions of a cell.
An "inducible" promoter is a nucleotide sequence which, when operably linked to a polynucleotide encoding or specifying a gene product, results in the production of the gene product in a cell substantially only when an inducer corresponding to the promoter is present in the cell.
A "tissue-specific" promoter is a nucleotide sequence that, when operably linked to a polynucleotide encoded by or specified by a gene, results in the production of a gene product in a cell, essentially only if the cell is a cell of the tissue type corresponding to the promoter.
As used herein, the phrase "under transcriptional control" or "operably linked" means that the promoter is in the correct position and orientation relative to the polynucleotide to control transcription by RNA polymerase and initiation of expression of the polynucleotide.
A "vector" is a nucleic acid molecule capable of transporting another nucleic acid. The vector may be, for example, a plasmid, cosmid, virus or phage. The term should also be construed to include non-plasmid and non-viral compounds that facilitate transfer of nucleic acids into cells. An "expression vector" refers to a vector that, when present in an appropriate environment, is capable of directing the expression of a protein encoded by one or more genes carried by the vector.
In certain embodiments, the vector is a viral vector. Examples of viral vectors include, but are not limited to, adenovirus vectors, adeno-associated virus vectors, retrovirus vectors, gamma retrovirus vectors, and lentiviral vectors. A "retrovirus" is a virus having an RNA genome. "Gamma retrovirus" refers to a genus of the family retrovirus. Examples of gamma retroviruses include mouse stem cell virus, murine leukemia virus, feline sarcoma virus, and avian reticuloendotheliosis virus. "lentivirus" refers to a genus of retrovirus capable of infecting dividing cells and non-dividing cells. Examples of lentiviruses include, but are not limited to, HIV (human immunodeficiency virus, including HIV type 1 and HIV type 2, equine infectious anemia virus (FIV), bovine Immunodeficiency Virus (BIV), and Simian Immunodeficiency Virus (SIV).
In other embodiments, the vector is a non-viral vector. Examples of non-viral vectors include lipid-based DNA vectors, modified mRNA (modRNA), self-amplified mRNA, closed-end linear duplex (CELiD) DNA, and transposon mediated gene transfer (PiggyBac). In the case of non-viral delivery systems, the delivery vehicle may be a liposome. The lipid formulation may be used to introduce nucleic acids into host cells in vitro, ex vivo, or in vivo. The nucleic acid may be encapsulated within the liposome, interspersed within the lipid bilayer of the liposome, attached to the liposome via a linker molecule associated with the liposome and the nucleic acid, contained within or complexed with the micelle, or otherwise associated with the lipid.
As used herein, the term "phagocytosis" refers to receptor-mediated processes in which endogenous or exogenous cells or particles having a diameter greater than 100nm are internalized by the phagocytes or host cells of the present disclosure. Phagocytosis typically consists of multiple steps: (1) Binding the target cell or particle via direct or indirect (via bridging molecules) binding of the phagocytic receptor to a pro-phagocytic or antigenic marker on the target cell or particle; and (2) internalization or phagocytosis of the entire target cell or particle or a portion thereof. In certain embodiments, internalization may occur via cytoskeletal rearrangement of the phagocyte or host cell to form phagosome, i.e., a membrane-bound compartment containing the internalized target. Phagocytosis may further comprise maturation of phagosome, wherein phagosome becomes more and more acidic and fuses with lysosomes (to form phagolysosomes), whereby the target being phagocytosed is degraded (e.g., "phagocytosis"). Alternatively, phagosome-lysosomal fusion may not be observed during phagocytosis. In yet other embodiments, the phagosome may reflux or drain its contents into the extracellular environment before complete degradation. In some embodiments, phagocytosis refers to phagocytosis. In some embodiments, phagocytes include the binding of target cells or particles by phagocytes of host cells of the present disclosure, but do not include internalization. In some embodiments, phagocytosis comprises the binding of a target cell or particle by a phagocyte of a host cell of the present disclosure and internalization of a portion of the target cell or particle.
As used herein, the term "phagocytosis" refers to the process of phagocytosis of cells or large particles (> 0.5 μm) in which binding of target cells or particles, phagocytosis of target cells or particles, and degradation of internalized target cells or particles occurs. In certain embodiments, phagocytosis comprises the formation of phagosome that encompasses internalized target cells or particles, and the phagosome fuses with lysosomes to form phagosome, wherein the contents of the phagosome are degraded. In certain embodiments, during phagocytosis, a chimeric Tim receptor expressed on a host cell of the present disclosure forms a phagocytic synapse upon binding to phosphatidylserine expressed by a target cell or particle; producing an actin-rich phagocytic cup at the phagocytic synapse; phagocytic arms extend around target cells or particles through cytoskeletal rearrangement; and eventually, the target cell or particle is pulled into the phagocytic cell or host cell by the force generated by the motor protein. As used herein, "phagocytosis" encompasses the process of "cytoburial", which specifically refers to phagocytosis of apoptotic or necrotic cells in a non-inflammatory manner.
The term "immune system cell" or "immune cell" refers to any cell of the immune system derived from hematopoietic stem cells in the bone marrow. Hematopoietic stem cells produce two major lineages, myeloid progenitor cells (producing myeloid cells, such as monocytes, macrophages, dendritic cells, megakaryocytes, and granulocytes) and lymphoid progenitor cells (producing lymphoid cells, such as T cells, B cells, and Natural Killer (NK) cells). Exemplary immune system cells include cd4+ T cells, cd8+ T cells, CD4-CD 8-double negative T cells, γδ T cells, regulatory T cells, natural killer cells, and dendritic cells. Macrophages and dendritic cells may also be referred to as "antigen presenting cells" or "APCs," which are specialized cells that can activate T cells when the Major Histocompatibility Complex (MHC) receptor on the surface of APCs complexed with a peptide interacts with a TCR on the surface of the T cells.
The term "T cell" refers to a cell of the T cell lineage. By "cells of the T cell lineage" is meant cells that exhibit at least one phenotypic characteristic of a T cell or precursor or progenitor cell thereof, which distinguishes the cell from other lymphoid cells and cells of the erythroid or myeloid lineage. Such phenotypic characteristics may include one or more proteins specific for T cells (e.g., CD3 + 、CD4 + 、CD8 + ) Or a physiological, morphological, functional or immunological characteristic specific for T cells. For example, cells of the T cell lineage can be progenitor or precursor cells committed to the T cell lineage; CD25 + Immature and unactivated T cells; cells that have undergone CD4 or CD8 lineage targeting; CD4 + CD8 + Double positive thymus progenitor cells; single positive CD4 + Or CD8 + The method comprises the steps of carrying out a first treatment on the surface of the Tcrαβ or tcrγδ; or mature and functional or activated T cells. The term "T cell" encompasses naive T cells (cd45ra+, ccr7+, cd62l+, cd27+, CD45 RO-), central memory T cells (CD 45 RO) + 、CD62L + 、CD8 + ) Effector memory T cells (cd45ra+, CD45RO-, CCR7-, CD62L-, CD 27-), mucosa-associated invariant T (MAIT) cells, tregs, natural killer T cells and tissue resident T cells.
The term "B cell" refers to a cell of the B cell lineage. By "cells of the B cell lineage" is meant cells that exhibit at least one phenotypic characteristic of B cells or precursors or progenitors thereof, which distinguish the cells from other lymphoid cells and cells of the erythroid or myeloid lineage. Such phenotypic characteristics may include one or more proteins specific for B cells (e.g., CD19 + 、CD72+、CD24+、CD20 + ) Or a physiological, morphological, functional or immunological characteristic specific for B cells. For example, the cells of the B cell lineage can be progenitor cells or precursor cells committed to the B cell lineage (e.g., pre-progenitor-B cells, and pre-B cells); immature and unactivated B cells or mature and functional or activated B cells. Thus, "B cells" encompass naivePrimary B cells, plasma cells, regulatory B cells, border zone B cells, follicular B cells, lymphoplasmacytoid cells, plasmablasts, and memory B cells (e.g., CD 27) + 、IgD - )。
The term "cytotoxic activity", also referred to as "cytolytic activity", with respect to cells (e.g., T cells or NK cells) expressing on their surface an immune receptor (e.g., TCR) or chimeric Tim receptor according to the present disclosure, means that upon antigen-specific signaling (e.g., via TCR, chimeric Tim receptor), the cells induce the target cells to undergo apoptosis. In some embodiments, the cytotoxic cells may induce apoptosis in the target cells via release of cytotoxins, such as perforins, granzymes, and granulysins, from the particles. Perforin is inserted into the target cell membrane and forms pores that allow water and salts to quickly enter the target cell. Granzymes are serine proteases that induce apoptosis in target cells. Granulysin is also capable of forming pores in the target cell membrane and is a pro-inflammatory molecule. In some embodiments, cytotoxic cells can induce apoptosis in target cells via the interaction of Fas ligand with Fas molecules expressed on the target cells, which are up-regulated on T cells following antigen specific signaling. Fas is an apoptotic signaling receptor molecule on the surface of many different cells.
The term "depletion" in reference to an immune cell refers to a state of immune cell dysfunction, which is defined as a state of poor effector function (e.g., reduced cytokine production, reduced cytotoxic activity), reduced proliferative capacity, increased expression of an immunocheckpoint molecule, and transcription that is different from a functional effector or memory cell. In certain embodiments, the depleted immune cells become unresponsive to the presence of their target antigens. Immune cell depletion may be due to chronic exposure to the target antigen (e.g., possibly due to chronic infection) or when it enters an immunosuppressive environment (e.g., tumor microenvironment). In certain embodiments, immune cell depletion refers to T cell depletion, NK cell depletion, or both. In certain embodiments, the depleted T cells exhibit: (a) Increased expression of PD-1, TIGIT, LAG3, TIM3, or any combination thereof; (b) Reduced production of IFN-gamma, IL-2, TNF-alpha, or any combination thereof; or both (a) and (b). In certain embodiments, the depleted NK cells exhibit: (a) Increased expression of PD-1, NKG2A, TIM3, or any combination thereof; (b) reduced production of IFN- γ, TNF- α, or both; or both (a) and (b).
A "disease" is a state of health of a subject, wherein the subject is unable to maintain homeostasis, and wherein the subject's health continues to deteriorate if the disease is not improved. Conversely, a "disorder" or "undesired condition" of a subject is a state of health in which the subject is able to maintain homeostasis, but in which the subject's state of health is not as good as in the absence of the disorder or undesired condition. The disorder or condition does not necessarily result in a further decrease in the health of the subject if not treated.
As used herein, the term "cancer" is defined as a disease characterized by rapid and uncontrolled growth of abnormal cells. Abnormal cells may form solid tumors or constitute hematological malignancies. Cancer cells can spread locally or through the blood stream and lymphatic system to other parts of the body. Examples of various cancers include, but are not limited to, breast cancer, prostate cancer, ovarian cancer, cervical cancer, skin cancer, pancreatic cancer, colorectal cancer, renal cancer, liver cancer, brain cancer, lymphoma, leukemia, lung cancer, and the like.
The terms "subject," "patient," and "individual" are used interchangeably herein and are intended to encompass a living organism (e.g., a mammal) in which an immune response may be elicited. Examples of subjects include humans, primates, cattle, horses, sheep, dogs, cats, mice, rats, rabbits, guinea pigs, and transgenic species thereof.
"adoptive cell immunotherapy" or "adoptive immunotherapy" refers to the administration of naturally occurring or genetically engineered disease antigen-specific immune cells (e.g., T cells). Adoptive cellular immunotherapy may be autologous (immune cells from the recipient), allogeneic (immune cells from a donor of the same species) or syngeneic (immune cells from a donor genetically identical to the recipient).
By "autologous" is meant any material (e.g., organ, tissue, graft of cells) from the same subject that is subsequently reintroduced into the subject.
"allograft" refers to grafts from different subjects of the same species.
A "therapeutically effective amount" or "effective amount" of a chimeric protein or a cell expressing a chimeric protein of the present disclosure (e.g., a chimeric Tim receptor or a cell expressing a chimeric Tim receptor) refers to an amount of a protein or cell sufficient to result in an improvement in one or more symptoms of the disease, disorder, or undesired condition being treated. When referring to a single active ingredient administered alone or a cell expressing a single active ingredient, a therapeutically effective dose refers to the effect of the ingredient administered alone or the cell expressing the ingredient. When referring to a combination, a therapeutically effective dose refers to the combined amount of the active ingredients or combined co-active ingredients and the cells expressing the active ingredients that produce a therapeutic effect, whether administered sequentially or simultaneously.
"treatment" or "amelioration" refers to the medical management of a disease, disorder, or undesired condition in a subject. Typically, the appropriate dose or treatment regimen comprising host cells expressing the chimeric proteins of the present disclosure is administered in an amount sufficient to elicit a therapeutic or prophylactic benefit. Therapeutic or prophylactic/preventative benefits include improved clinical outcome; alleviating or alleviating symptoms associated with a disease, disorder, or undesired condition; reducing the occurrence of symptoms; improving the quality of life; prolonging disease-free status; reducing the extent of a disease, disorder, or undesired condition; stabilizing the disease state; delay disease progression; relief; survival; prolonging the life cycle; or any combination thereof.
The term "anti-tumor effect" refers to a biological effect that may be manifested as a reduction in tumor volume, a reduction in the number of tumor cells, a reduction in the number of metastases, an increase in life expectancy, or an improvement in various physiological symptoms associated with a cancer condition. "anti-tumor effects" may also be manifested by prevention of hematological malignancies or neoplasia.
An "autoimmune disease" refers to a condition caused by an autoimmune response. Autoimmune diseases are the result of an excessive response to self-antigens. The autoimmune response may involve autoreactive B cells, autoreactive T cells, or both that produce the autoantibody. As used herein, an "autoantibody" is an antibody produced by a subject that binds to an autoantigen also produced by the subject.
Additional definitions are provided throughout this disclosure.
As described above, the methods of the present disclosure can be used to treat cancer in a subject. The therapeutic agents of the present disclosure (i.e., chimeric Tim receptor and PARP inhibitor), when administered together or sequentially, treat cancer in a subject (e.g., either (i) prevent the progression of cancer, (ii) cause regression of cancer, or (iii) alleviate symptoms caused by cancer).
In embodiments, the methods of treatment disclosed herein comprise administering to a subject an effective amount of a chimeric Tim receptor and a PARP inhibitor, thereby treating their cancer.
Chimeric Tim receptors
The present disclosure provides a chimeric Tim receptor comprising a single-chain chimeric protein comprising: an extracellular domain comprising a Tim binding domain; an intracellular signaling domain comprising a first costimulatory signaling domain; and a transmembrane domain located between and connecting the extracellular domain and the intracellular signaling domain. In certain embodiments, the extracellular domain of a chimeric Tim receptor described herein optionally comprises an extracellular spacer domain located between and linking the binding domain and the transmembrane domain.
When expressed in a host cell, the chimeric Tim receptors of the present disclosure can confer a modified host cell phosphatidylserine specific cytotoxic phenotype (e.g., a host cell becomes cytotoxic to stressed, damaged, injured, apoptotic, or necrotic cells expressing phosphatidylserine on its surface). In certain embodiments, the chimeric Tim receptor induces apoptosis in the targeted cells via release of granzyme, perforin, granulysin, or any combination thereof. In further embodiments, cells expressing a chimeric Tim receptor according to the present description exhibit a phagocytic phenotype specific for phosphatidylserine presenting cells.
The intracellular signaling domain may comprise one or more effector domains capable of transmitting a functional signal to a cell in response to binding of the extracellular domain of the chimeric Tim receptor to phosphatidylserine. Signaling through the intracellular signaling domain is triggered by the binding of the extracellular domain to phosphatidylserine. The signal transduced by the intracellular signaling domain promotes effector function of the cells containing the chimeric Tim receptor. Examples of effector functions include cytotoxic activity, secretion of cytokines, proliferation, anti-apoptotic signaling, persistence, amplification, phagocytosis of target cells or particles expressing phosphatidylserine on their surface, antigen presentation, or any combination thereof.
In certain embodiments, the intracellular signaling domain comprises a first intracellular signaling domain. In further embodiments, the intracellular signaling domain comprises a first intracellular signaling domain and a second intracellular signaling domain. In some embodiments, the intracellular signaling domain comprises a first intracellular signaling domain, a second intracellular signaling domain, and a third intracellular signaling domain. Chimeric Tim receptors according to the present disclosure can be used in a variety of therapeutic methods, where scavenging apoptotic, necrotic, injured or stressed cells is beneficial, while providing co-stimulation that enhances cellular immune responses, reduces immune cell depletion, or both.
The components of the fusion proteins of the present disclosure are described in further detail herein.
Extracellular domain
The Tim4 binding domain of the chimeric Tim4 receptor suitable for use in the present disclosure can be any polypeptide or peptide derived from a Tim4 molecule that specifically binds phosphatidylserine. In certain embodiments, the Tim4 binding domain is derived from human Tim4. An exemplary human Tim4 molecule is provided in Uniprot reference number Q96H15 (SEQ ID NO: 1). Exemplary human Tim4 binding domains include or consist of the amino acid sequence of SEQ ID NO. 2 or amino acids 25-314 of SEQ ID NO. 2. Exemplary mouse Tim4 binding domains include or consist of the amino acid sequence of SEQ ID NO:24 or amino acids 23-279 of SEQ ID NO: 24. In certain embodiments, the Tim4 binding domain comprises or consists of an amino acid sequence having at least about 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or 100% identity to amino acids 25-314 of SEQ ID NO. 2 or amino acids 23-279 of SEQ ID NO. 24 or SEQ ID NO. 24. In certain embodiments, the Tim4 binding domain comprises an amino acid sequence having at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 amino acid modifications (e.g., deletions, additions, substitutions) to the amino acid sequence of SEQ ID NO. 2 or amino acids 25-314 of SEQ ID NO. 2 or amino acids 23-279 of SEQ ID NO. 24 or SEQ ID NO. 24.
In certain embodiments, the extracellular domain optionally comprises an extracellular non-signaling spacer or a linker domain. Such spacer or linker domains, if included, can position the binding domain at a location remote from the surface of the host cell to further achieve proper cell/cell contact, binding and activation. When included in a chimeric receptor as described herein, the extracellular spacer domain is typically located between the extracellular binding domain and the transmembrane domain of the chimeric Tim4 receptor. The length of the extracellular spacer can be varied to optimize target molecule binding based on the selected target molecule, the selected binding epitope, the binding domain size, and affinity (see, e.g., guest et al, journal of immunotherapy (j. Immunother.), 28:203-11, 2005; pct publication No. WO 2014/031687). In certain embodiments, the extracellular spacer domain is an immunoglobulin hinge region (e.g., igG1, igG2, igG3, igG4, igA, igD). The immunoglobulin hinge region may be a wild-type immunoglobulin hinge region or an altered wild-type immunoglobulin hinge region. Altered IgG is described in PCT publication No. WO 2014/031687 4 A hinge region, which is incorporated herein by reference in its entirety. In particular embodiments, the extracellular spacer domain comprises a modified IgG 4 A hinge region having the amino acid sequence of ESKYGPPCPPCP (SEQ ID NO: 3). Other examples of hinge regions that may be used for the chimeric Tim4 receptors described herein include hinge regions from extracellular regions of type 1 membrane proteins (e.g., CD8a, CD4, CD28, and CD 7), which may be wild-type or variants thereof. In some embodiments, the extracellular spacer domain comprises a CD28 hinge region having the amino acid sequence of SEQ ID NO. 32. In further embodiments, the extracellular spacer domain comprises all or part of an immunoglobulin Fc domain selected from a CH1 domain, a CH2 domain, a CH3 domain, or a combination thereof (see, e.g., PCT publication WO2014/031687, which is incorporated herein by reference in its entirety). In still further embodiments, the extracellular spacer domain may include a stem region of a type II C-lectin (an extracellular domain located between the C-lectin domain and the transmembrane domain). Type II C-lectins comprise CD23, CD69, CD72, CD94, NKG2A and NKG2D.
In certain embodiments, the extracellular domain comprises a polynucleotide sequence from any mammalian species, including humans, primates, cows, horses, goats, sheep, dogs, cats, mice, rats, rabbits, guinea pigs, transgenic species thereof, or any combination thereof. In certain embodiments, the extracellular domain is murine, human, or chimeric.
The intracellular signaling domain of the chimeric Tim4 receptor as described herein is an intracellular effector domain and is capable of transmitting a functional signal to a cell in response to binding of the extracellular domain of the chimeric Tim4 receptor to phosphatidylserine. The signal transduced by the intracellular signaling domain promotes effector function of cells containing the chimeric Tim4 receptor. Examples of effector functions include cytotoxic activity, cytokine secretion, proliferation, anti-apoptotic signaling, persistence, amplification, phagocytosis of target cells or particles expressing phosphatidylserine on their surface, or any combination thereof.
In certain embodiments, the intracellular signaling domain comprises a costimulatory signaling domain. The costimulatory signaling domain may be any portion of a costimulatory signaling molecule that retains sufficient signaling activity. In some embodiments, full length or full length intracellular components of the costimulatory signaling molecule are used. In some embodiments, a truncated portion of a costimulatory signaling molecule, or an intracellular component of a costimulatory signaling molecule, is used, provided that the truncated portion retains sufficient signaling activity. In further embodiments, the costimulatory signaling domain is a variant of the entire or truncated portion of the costimulatory signaling molecule, provided that the variant retains sufficient signaling activity (i.e., is a functional variant).
In certain embodiments, the costimulatory signaling domain comprises the CD27, CD28, CD40L, GITR, NKG2C, CARD1, CD2, CD7, CD27, CD30, CD40, CD54 (ICAM), CD83, CD134 (OX-40), CD137 (4-1 BB), CD150 (SLAMF 1), CD152 (CTLA 4), CD223 (LAG 3), CD226, CD270 (HVEM), PD-1, CD273 (PD-L2), CD274 (PD-L1), B7-H3 (CD 276), ICOS (CD 278), DAP10, LAT, LFA-1 (CD 11a/CD 18), LIGHT, NKG2C, SLP76, TRIM, or ZAP70 signaling domain. In particular embodiments, the costimulatory signaling domain comprises an OX40, CD2, CD27, CD28, ICAM-1, LFA-1 (CD 11a/CD 18), ICOS (CD 278), or 4-1BB (CD 137) signaling domain. Exemplary CD28 costimulatory signaling domains include or consist of the amino acid sequence of SEQ ID NO:118 or 119. An exemplary OX40 co-stimulatory signaling domain includes or consists of the amino acid sequence of SEQ ID NO. 120. An exemplary CD2 costimulatory signaling domain comprises or consists of the amino acid sequence of SEQ ID NO. 121. An exemplary 4-1BB costimulatory signaling domain comprises or consists of the amino acid sequence of SEQ ID NO: 122. An exemplary CD27 co-stimulatory signaling domain includes or consists of the amino acid sequence of SEQ ID NO. 123. An exemplary ICAM-1 costimulatory signaling domain comprises or consists of the amino acid sequence of SEQ ID NO. 124. An exemplary LFA-1 co-stimulatory signaling domain includes or consists of the amino acid sequence of SEQ ID NO. 125. An exemplary ICOS co-stimulatory signaling domain includes or consists of the amino acid sequence of SEQ ID NO. 126. An exemplary CD30 costimulatory signaling domain comprises or consists of the amino acid sequence of SEQ ID NO: 127. An exemplary CD40 costimulatory signaling domain comprises or consists of the amino acid sequence of SEQ ID NO. 128. An exemplary PD-1 costimulatory signaling domain comprises or consists of the amino acid sequence of SEQ ID NO: 129. An exemplary CD7 costimulatory signaling domain comprises or consists of the amino acid sequence of SEQ ID NO: 130. An exemplary LIGHT costimulatory signaling domain comprises or consists of the amino acid sequence of SEQ ID No. 131. An exemplary NKG 2C-costimulatory-signaling domain comprises or consists of the amino acid sequence of SEQ ID NO: 132. An exemplary B7-H3 costimulatory signaling domain comprises or consists of the amino acid sequence of SEQ ID NO: 133. In certain embodiments, the costimulatory signaling domain comprises or consists of an amino acid sequence that has at least about 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or 100% identity to any of SEQ ID NOs 118-133. In certain embodiments, the costimulatory signaling domain comprises an amino acid sequence having at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 amino acid modifications (e.g., deletions, additions, substitutions) to the amino acid sequence of any of SEQ ID NOs 118-133. In certain embodiments, intracellular signaling comprises a second costimulatory signaling domain. In a preferred embodiment, the first and second co-stimulatory signaling domains are different.
In certain embodiments, the intracellular signaling domain further comprises an activation domain comprising ITAM. The ITAM-containing activation domain can reproduce TCR signaling independently of the endogenous TCR complex. In certain embodiments, signaling via an activation domain containing ITAM results in the mediation of T cell responses, including but not limited to proliferation, activation, differentiation, and the like. The activation domain comprising ITAM may be any portion of an activation domain molecule comprising ITAM that retains sufficient signaling activity. In some embodiments, full length or full length intracellular components of an ITAM-containing activation domain molecule are used. In some embodiments, a truncated portion of an ITAM-containing activation domain molecule or an intracellular component of an ITAM-containing activation domain molecule is used, provided that the truncated portion retains sufficient signaling activity. In further embodiments, the activation domain comprising ITAM is a variant comprising a complete or truncated portion of the activation domain molecule of ITAM, provided that the variant retains sufficient signaling activity (i.e., is a functional variant).
Examples of ITAM-containing activation domains that can be used for the chimeric Tim4 receptors of the present disclosure include those derived from cd3ζ, cd3γ, cd3δ, cd3ε, CD5, CD22, CD79a, CD278 (ICOS), and CD66 d. In a particular embodiment, the ITAM-containing activation domain is a CD3 zeta signaling domain. Exemplary CD3 zeta signaling domains include or consist of the amino acid sequence of SEQ ID NO 134 or 135. An exemplary CD3 gamma signaling domain comprises or consists of the amino acid sequence of SEQ ID NO. 136. An exemplary CD3δ signaling domain comprises or consists of the amino acid sequence of SEQ ID NO: 137. An exemplary CD3 epsilon signaling domain comprises or consists of the amino acid sequence of SEQ ID NO. 138. Exemplary CD5 signaling domains include or consist of the amino acid sequence of SEQ ID NO 139. Exemplary CD22 signaling domains include or consist of the amino acid sequence of SEQ ID NO. 140. An exemplary CD79a signaling domain comprises or consists of the amino acid sequence of SEQ ID NO. 141. An exemplary CD66d signaling domain comprises or consists of the amino acid sequence of SEQ ID NO: 143. In certain embodiments, an activation domain comprising ITAM comprises or consists of an amino acid sequence having at least about 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or 100% identity to any one of SEQ ID NOs 134-141 and 143. In certain embodiments, an activation domain comprising ITAM comprises an amino acid sequence having at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 amino acid modifications (e.g., deletions, additions, substitutions) to the amino acid sequence of any of SEQ ID NOs 134-141 and 143.
In another embodiment, the intracellular signaling domain comprises a CD28 costimulatory signaling domain and a CD3 zeta signaling domain. In another embodiment, the intracellular signaling domain comprises a 4-1BB costimulatory signaling domain and a CD3 zeta signaling domain. In yet other embodiments, the intracellular signaling domain comprises a CD27 costimulatory signaling domain and a CD3 zeta signaling domain. In another embodiment, the intracellular signaling domain comprises an ICOS costimulatory signaling domain and a CD3 zeta signaling domain. In another embodiment, the intracellular signaling domain comprises an LFA-1 costimulatory signaling domain and a CD3 zeta signaling domain. In another embodiment, the intracellular signaling domain comprises an OX40 costimulatory signaling domain and a CD3 zeta signaling domain. In yet other embodiments, the intracellular signaling domain comprises a CD2 costimulatory signaling domain and a CD3 zeta signaling domain. In yet another embodiment, the intracellular signaling domain comprises an ICAM-1 costimulatory signaling domain and a CD3 zeta signaling domain.
The intracellular signaling domain may be from mammalian species, including humans, primates, cattle, horses, goats, sheep, dogs, cats, mice, rats, rabbits, guinea pigs, and transgenic species thereof.
The transmembrane domain of the chimeric Tim4 receptor connects and is located between the extracellular domain and the intracellular signaling domain. The transmembrane domain is a hydrophobic alpha helix that passes through the host cell membrane. The transmembrane domain may be fused directly to the binding domain or extracellular spacer domain, if present. In certain embodiments, the transmembrane domain is derived from an intact membrane protein (e.g., receptor, cluster of Differentiation (CD) molecule, enzyme, transporter, cell adhesion molecule, etc.). In one embodiment, the transmembrane domain is selected from the same molecules as the molecules from which the extracellular domain is derived. In another embodiment, the transmembrane domain is selected from the same molecule as the molecule from which the intracellular signaling domain is derived. For example, a chimeric Tim4 receptor can include a Tim4 binding domain and a Tim4 transmembrane domain. In another example, the chimeric Tim4 receptor can include a CD28 transmembrane domain and a CD28 costimulatory signaling domain. In certain embodiments, the transmembrane domain and the extracellular domain are from different molecules; the transmembrane domain and the intracellular signaling domain are from different molecules; or the transmembrane domain, extracellular domain and intracellular signaling domain are all from different molecules. Examples of transmembrane domains that may be used for the chimeric Tim4 receptor of the present disclosure include transmembrane domains from Tim4, tim1, cd3ζ, cd3γ, cd3δ, cd3ε, CD28, CD45, CD4, CD5, CD8, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD134, CD137, CD154, CD27, CD28, 4-1BB, OX40, CD30, CD40, PD-1, ICOS, LFA-1, CD2, CD7, LIGHT, NKG2C, and B7-H3. Exemplary Tim4 transmembrane domains include or consist of the amino acid sequence of SEQ ID NO 144 or 23. An exemplary Tim1 transmembrane domain comprises or consists of the amino acid sequence of SEQ ID NO. 8. Exemplary CD28 transmembrane domains include or consist of the amino acid sequence of SEQ ID NO. 145. An exemplary 4-1BB transmembrane domain comprises or consists of the amino acid sequence of SEQ ID NO. 146. Exemplary OX40 transmembrane domains include or consist of the amino acid sequence of SEQ ID NO: 147. Exemplary CD27 transmembrane domains include or consist of the amino acid sequence of SEQ ID NO. 148. Exemplary ICOS transmembrane domains include or consist of the amino acid sequence of SEQ ID NO: 149. Exemplary CD2 transmembrane domains include or consist of the amino acid sequence of SEQ ID NO. 150. Exemplary LFA-1 transmembrane domains include or consist of the amino acid sequence of SEQ ID NO. 151. An exemplary CD30 transmembrane domain comprises or consists of the amino acid sequence of SEQ ID NO. 152. Exemplary CD40 transmembrane domains include or consist of the amino acid sequence of SEQ ID NO. 153. An exemplary PD-1 transmembrane domain comprises or consists of the amino acid sequence of SEQ ID NO. 154. Exemplary CD7 transmembrane domains include or consist of the amino acid sequence of SEQ ID NO: 155. Exemplary LIGHT transmembrane domains include or consist of the amino acid sequence of SEQ ID No. 156. Exemplary NKG 2C-transmembrane domains comprise or consist of the amino acid sequence of SEQ ID NO. 157. Exemplary B7-H3 transmembrane domains include or consist of the amino acid sequence of SEQ ID NO. 158. In certain embodiments, the transmembrane domain comprises or consists of an amino acid sequence having at least about 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or 100% identity to any one of SEQ ID NOs 8, 23 and 144-158. In certain embodiments, the transmembrane domain comprises an amino acid sequence having at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 amino acid modifications (e.g., deletions, additions, substitutions) to the amino acid sequence of any of SEQ ID NOs 8, 23, and 144-158.
The transmembrane domain may be from any mammalian species, including human, primate, bovine, equine, caprine, ovine, canine, feline, murine, rat, rabbit, guinea pig, porcine, and transgenic species thereof.
Exemplary components, configurations, and chimeric Tim4 receptor sequences of the present disclosure are provided in table 1.
Table 1.
/>
/>
/>
/>
Additional embodiments of the chimeric Tim4 receptors described herein include single-chain chimeric proteins comprising: an extracellular domain comprising a Tim4 binding domain; an intracellular signaling domain comprising a first costimulatory signaling domain and an ITAM-containing activation domain, wherein the ITAM-containing activation domain comprises a DAP12 signaling domain; and a transmembrane domain located between and connecting the extracellular domain and the intracellular signaling domain.
The Tim4 binding domain of the chimeric Tim4 receptor suitable for use in the present disclosure can be any polypeptide or peptide derived from a Tim4 molecule that specifically binds phosphatidylserine. In certain embodiments, the Tim4 binding domain is derived from human Tim4. An exemplary human Tim4 molecule is provided in Uniprot reference number Q96H15 (SEQ ID NO: 1). Exemplary human Tim4 binding domains include or consist of the amino acid sequence of SEQ ID NO. 2 or amino acids 25-314 of SEQ ID NO. 2. Exemplary mouse Tim4 binding domains include or consist of the amino acid sequence of SEQ ID NO:24 or amino acids 23-279 of SEQ ID NO: 24. In certain embodiments, the Tim4 binding domain comprises or consists of an amino acid sequence having at least about 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or 100% identity to amino acids 25-314 of SEQ ID NO. 2 or amino acids 23-279 of SEQ ID NO. 24 or SEQ ID NO. 24. In certain embodiments, the Tim4 binding domain comprises an amino acid sequence having at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 amino acid modifications (e.g., deletions, additions, substitutions) to the amino acid sequence of SEQ ID NO. 2 or amino acids 25-314 of SEQ ID NO. 2 or amino acids 23-279 of SEQ ID NO. 24 or SEQ ID NO. 24.
In certain embodiments, the extracellular domain optionally comprises an extracellular non-signaling spacer or a linker domain. Such spacer or linker domains, if included, can position the binding domain at a location remote from the surface of the host cell to further achieve proper cell/cell contact, binding and activation. When included in a chimeric receptor as described herein, the extracellular spacer domain is typically located between the extracellular binding domain and the transmembrane domain of the chimeric Tim4 receptor. The length of the extracellular spacer can be varied to optimize based on the selected target molecule, the selected binding epitope, the binding domain size, and affinityTarget molecule binding (see, e.g., guest et al, journal of immunotherapy, 28:203-11, 2005; PCT publication No. WO 2014/031687). In certain embodiments, the extracellular spacer domain is an immunoglobulin hinge region (e.g., igG1, igG2, igG3, igG4, igA, igD). The immunoglobulin hinge region may be a wild-type immunoglobulin hinge region or an altered wild-type immunoglobulin hinge region. Altered IgG is described in PCT publication No. WO 2014/031687 4 A hinge region, which is incorporated herein by reference in its entirety. In particular embodiments, the extracellular spacer domain comprises a modified IgG 4 A hinge region having the amino acid sequence of ESKYGPPCPPCP (SEQ ID NO: 3). Other examples of hinge regions that may be used for the chimeric Tim4 receptors described herein include hinge regions from extracellular regions of type 1 membrane proteins (e.g., CD8a, CD4, CD28, and CD 7), which may be wild-type or variants thereof. In some embodiments, the extracellular spacer domain comprises a CD28 hinge region having the amino acid sequence of SEQ ID NO. 32. In further embodiments, the extracellular spacer domain comprises all or part of an immunoglobulin Fc domain selected from a CH1 domain, a CH2 domain, a CH3 domain, or a combination thereof (see, e.g., PCT publication WO2014/031687, which is incorporated herein by reference in its entirety). In still further embodiments, the extracellular spacer domain may include a stem region of a type II C-lectin (an extracellular domain located between the C-lectin domain and the transmembrane domain). Type II C-lectins comprise CD23, CD69, CD72, CD94, NKG2A and NKG2D.
In certain embodiments, the extracellular domain comprises a polynucleotide sequence from any mammalian species, including humans, primates, cows, horses, goats, sheep, dogs, cats, mice, rats, rabbits, guinea pigs, transgenic species thereof, or any combination thereof. In certain embodiments, the extracellular domain is murine, human, or chimeric.
In certain embodiments, the intracellular signaling domain comprises a costimulatory signaling domain and an ITAM-containing activation domain, wherein the ITAM-containing activation domain comprises a DAP12 signaling domain. The costimulatory signaling domain may be any portion of a costimulatory signaling molecule that retains sufficient signaling activity. In some embodiments, full length or full length intracellular components of the costimulatory signaling molecule are used. In some embodiments, a truncated portion of a costimulatory signaling molecule, or an intracellular component of a costimulatory signaling molecule, is used, provided that the truncated portion retains sufficient signaling activity. In further embodiments, the costimulatory signaling domain is a variant of the entire or truncated portion of the costimulatory signaling molecule, provided that the variant retains sufficient signaling activity (i.e., is a functional variant).
In certain embodiments, the costimulatory signaling domain comprises the CD27, CD28, CD40L, GITR, NKG2C, CARD1, CD2, CD7, CD27, CD30, CD40, CD54 (ICAM), CD83, CD134 (OX-40), CD137 (4-1 BB), CD150 (SLAMF 1), CD152 (CTLA 4), CD223 (LAG 3), CD226, CD270 (HVEM), PD-1, CD273 (PD-L2), CD274 (PD-L1), B7-H3 (CD 276), ICOS (CD 278), DAP10, LAT, LFA-1 (CD 11a/CD 18), LIGHT, NKG2C, SLP76, or TRIM signaling domain. In particular embodiments, the costimulatory signaling domain comprises an OX40, CD2, CD27, CD28, ICAM-1, LFA-1 (CD 11a/CD 18), ICOS (CD 278), or 4-1BB (CD 137) signaling domain. Exemplary CD28 costimulatory signaling domains include or consist of the amino acid sequence of SEQ ID NO. 164 or 165. An exemplary OX40 co-stimulatory signaling domain includes or consists of the amino acid sequence of SEQ ID NO. 166. An exemplary CD2 costimulatory signaling domain comprises or consists of the amino acid sequence of SEQ ID NO: 167. An exemplary 4-1BB costimulatory signaling domain comprises or consists of the amino acid sequence of SEQ ID NO: 168. An exemplary CD27 co-stimulatory signaling domain includes or consists of the amino acid sequence of SEQ ID NO. 169. An exemplary ICAM-1 costimulatory signaling domain comprises or consists of the amino acid sequence of SEQ ID NO: 170. An exemplary LFA-1 co-stimulatory signaling domain includes or consists of the amino acid sequence of SEQ ID NO: 171. An exemplary ICOS co-stimulatory signaling domain includes or consists of the amino acid sequence of SEQ ID NO. 172. An exemplary CD30 costimulatory signaling domain comprises or consists of the amino acid sequence of SEQ ID NO. 173. An exemplary CD40 costimulatory signaling domain comprises or consists of the amino acid sequence of SEQ ID NO: 174. An exemplary PD-1 costimulatory signaling domain comprises or consists of the amino acid sequence of SEQ ID NO: 175. An exemplary CD7 costimulatory signaling domain comprises or consists of the amino acid sequence of SEQ ID NO. 176. Exemplary LIGHT co-stimulatory signaling domains include or consist of the amino acid sequence of SEQ ID NO. 177. An exemplary NKG 2C-costimulatory-signaling domain comprises or consists of the amino acid sequence of SEQ ID NO: 178. An exemplary B7-H3 costimulatory signaling domain comprises or consists of the amino acid sequence of SEQ ID NO: 179. In certain embodiments, the costimulatory signaling domain comprises or consists of an amino acid sequence having at least about 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or 100% identity to any of SEQ ID NOs 164-179. In certain embodiments, the costimulatory signaling domain comprises an amino acid sequence having at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 amino acid modifications (e.g., deletions, additions, substitutions) to the amino acid sequence of any of SEQ ID NOs 164-179. In certain embodiments, intracellular signaling comprises a second costimulatory signaling domain. In a preferred embodiment, the first and second co-stimulatory signaling domains are different.
The DAP12 signaling domain may reproduce TCR signaling independently of the endogenous TCR complex. In certain embodiments, signaling via the DAP12 signaling domain results in the mediation of T cell responses, including but not limited to proliferation, activation, differentiation, and the like. The DAP12 signaling domain may be any moiety in the DAP12 molecule that retains sufficient signaling activity. In some embodiments, the full length or full length intracellular component of the DAP12 molecule is used. In some embodiments, DAP12 or a truncated portion of an intracellular component of DAP12 is used, provided that the truncated portion retains sufficient signaling activity. In further embodiments, the DAP12 signaling domain is a variant of the intact or truncated portion of DAP12, provided that the variant retains sufficient signaling activity (i.e., is a functional variant).
Exemplary human DAP12 molecules are provided in Uniprot reference O43914. An exemplary DAP12 signaling domain comprises or consists of the amino acid sequence of SEQ ID NO. 180. In certain embodiments, the DAP12 signaling domain comprises or consists of an amino acid sequence having at least about 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or 100% identity to SEQ ID NO. 180. In certain embodiments, the DAP12 signaling domain comprises an amino acid sequence having at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 amino acid modifications (e.g., deletions, additions, substitutions) to the amino acid sequence of SEQ ID NO. 180.
In another embodiment, the intracellular signaling domain comprises a CD28 costimulatory signaling domain and a DAP12 signaling domain. In another embodiment, the intracellular signaling domain comprises a 4-1BB costimulatory signaling domain and a DAP12 signaling domain. In yet other embodiments, the intracellular signaling domain comprises a CD27 co-stimulatory signaling domain and a DAP12 signaling domain. In another embodiment, the intracellular signaling domain comprises an ICOS costimulatory signaling domain and a DAP12 signaling domain. In another embodiment, the intracellular signaling domain comprises an LFA-1 co-stimulatory signaling domain and a DAP12 signaling domain. In another embodiment, the intracellular signaling domain comprises an OX40 co-stimulatory signaling domain and a DAP12 signaling domain. In yet other embodiments, the intracellular signaling domain comprises a CD2 co-stimulatory signaling domain and a DAP12 signaling domain. In yet another embodiment, the intracellular signaling domain comprises an ICAM-1 costimulatory signaling domain and a DAP12 signaling domain.
The intracellular signaling domain may be from mammalian species, including humans, primates, cattle, horses, goats, sheep, dogs, cats, mice, rats, rabbits, guinea pigs, and transgenic species thereof.
In certain embodiments, the transmembrane domain is derived from an intact membrane protein (e.g., receptor, cluster of Differentiation (CD) molecule, enzyme, transporter, cell adhesion molecule, etc.). In one embodiment, the transmembrane domain is selected from the same molecules as the molecules from which the extracellular domain is derived. In another embodiment, the transmembrane domain is selected from the same molecule as the molecule from which the intracellular signaling domain is derived. For example, a chimeric Tim4 receptor can include a Tim4 binding domain and a Tim4 transmembrane domain. In another example, the chimeric Tim4 receptor can include a CD28 transmembrane domain and a CD28 costimulatory signaling domain. In certain embodiments, the transmembrane domain and the extracellular domain are from different molecules; the transmembrane domain and the intracellular signaling domain are from different molecules; or the transmembrane domain, extracellular domain and intracellular signaling domain are all from different molecules. Examples of transmembrane domains that may be used for the chimeric Tim4 receptor of the present disclosure include transmembrane domains from Tim4, CD3 ζ, CD3 γ, CD3 δ, CD3 epsilon, CD28, CD45, CD4, CD5, CD8, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD134, CD137, CD154, CD27, CD28, 4-1BB, OX40, CD30, CD40, PD-1, ICOS, LFA-1, CD2, CD7, LIGHT, NKG2C, and B7-H3. An exemplary Tim4 transmembrane domain comprises or consists of the amino acid sequence of SEQ ID NO 144 or 23. Exemplary CD28 transmembrane domains include or consist of the amino acid sequence of SEQ ID NO: 181. An exemplary 4-1BB transmembrane domain comprises or consists of the amino acid sequence of SEQ ID NO. 182. An exemplary OX40 transmembrane domain includes or consists of the amino acid sequence of SEQ ID NO. 183. An exemplary CD27 transmembrane domain comprises or consists of the amino acid sequence of SEQ ID NO. 184. Exemplary ICOS transmembrane domains include or consist of the amino acid sequence of SEQ ID NO: 185. Exemplary CD2 transmembrane domains include or consist of the amino acid sequence of SEQ ID NO. 186. Exemplary LFA-1 transmembrane domains include or consist of the amino acid sequence of SEQ ID NO. 187. Exemplary CD30 transmembrane domains include or consist of the amino acid sequence of SEQ ID NO. 188. An exemplary CD40 transmembrane domain comprises or consists of the amino acid sequence of SEQ ID NO. 189. An exemplary PD-1 transmembrane domain comprises or consists of the amino acid sequence of SEQ ID NO. 190. Exemplary CD7 transmembrane domains include or consist of the amino acid sequence of SEQ ID NO. 191. Exemplary LIGHT transmembrane domains include or consist of the amino acid sequence of SEQ ID No. 192. An exemplary NKG 2C-transmembrane domain comprises or consists of the amino acid sequence of SEQ ID NO. 193. Exemplary B7-H3 transmembrane domains include or consist of the amino acid sequence of SEQ ID NO: 194. In certain embodiments, the transmembrane domain comprises or consists of an amino acid sequence having at least about 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or 100% identity to any one of SEQ ID NOs 23, 144 and 181-194. In certain embodiments, the transmembrane domain comprises an amino acid sequence having at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 amino acid modifications (e.g., deletions, additions, substitutions) to the amino acid sequence of any of SEQ ID NOs 23, 144, and 181-194.
The transmembrane domain may be from any mammalian species, including human, primate, bovine, equine, caprine, ovine, canine, feline, murine, rat, rabbit, guinea pig, porcine, and transgenic species thereof.
In certain embodiments, the chimeric Tim4 receptor comprises a polynucleotide sequence from any mammalian species including humans, primates, cows, horses, goats, sheep, dogs, cats, mice, rats, rabbits, guinea pigs, transgenic species thereof, or any combination thereof. In certain embodiments, the chimeric Tim4 receptor is murine, chimeric, human, or humanized.
It is to be understood that direct fusion of one domain of the chimeric Tim4 receptor described herein to another domain does not preclude the presence of an intermediate linking amino acid. The linking amino acids may be natural or unnatural (e.g., from the construct design of the chimeric protein). For example, the linking amino acids may be from restriction enzyme sites used to link one domain to another domain or to clone a polynucleotide encoding a chimeric Tim4 receptor into a vector.
Exemplary components, configurations, and chimeric Tim4 receptor sequences of the present disclosure are provided in table 2.
Table 2.
/>
/>
/>
In embodiments, the chimeric Tim receptor comprises a single chain chimeric protein comprising: (a) An extracellular domain comprising a binding domain, the binding domain comprising: (i) A Tim1 IgV domain or a Tim4 IgV domain, and (ii) a Tim1 mucin domain or a Tim4 mucin domain; (b) An intracellular signaling domain, wherein the intracellular signaling domain comprises a primary intracellular signaling domain and optionally a secondary intracellular signaling domain; and (c) a transmembrane domain located between and connecting the extracellular domain and the intracellular signaling domain.
In particular embodiments, the binding domain comprises: (i) a Tim1 IgV domain and a Tim1 mucin domain; (ii) a Tim4 IgV domain and a Tim4 mucin domain; (iii) a Tim1 IgV domain and a Tim4 mucin domain; or (iv) a Tim4 IgV domain and a Tim1 mucin domain. In certain embodiments, the extracellular domain of a chimeric Tim receptor described herein optionally comprises an extracellular spacer domain located between and linking the binding domain and the transmembrane domain.
When expressed in a host cell, the chimeric Tim receptors of the present disclosure can confer a modified host cell phosphatidylserine specific cytotoxic phenotype (e.g., a host cell becomes cytotoxic to stressed, damaged, injured, apoptotic, or necrotic cells expressing phosphatidylserine on its surface). In certain embodiments, the chimeric Tim receptor induces apoptosis in the targeted cells via release of granzyme, perforin, granulysin, or any combination thereof. In further embodiments, cells expressing a chimeric Tim receptor according to the present description exhibit a phagocytic phenotype specific for phosphatidylserine presenting cells.
The intracellular signaling domain may comprise one or more effector (also referred to as "costimulatory signaling") domains that costimulatory the modified host cell. Signaling through the intracellular signaling domain is triggered by the binding of the extracellular domain to phosphatidylserine. In certain embodiments, the intracellular signaling domain comprises a first intracellular signaling domain. In further embodiments, the intracellular signaling domain comprises a first intracellular signaling domain and a second intracellular signaling domain. In some embodiments, the intracellular signaling domain comprises a first intracellular signaling domain, a second intracellular signaling domain, and a third intracellular signaling domain. Chimeric Tim receptors according to the present disclosure can be used in a variety of therapeutic methods, where scavenging apoptotic, necrotic, injured or stressed cells is beneficial, while providing co-stimulation that enhances cellular immune responses, reduces immune cell depletion, or both.
As described herein, the chimeric Tim receptor includes an extracellular domain that includes a Tim binding domain. The Tim binding domain confers phosphatidylserine (PtdSer) specificity, a negatively charged head group of phospholipids and is a component of the cell membrane. In healthy cells, phosphatidylserine is preferentially found in the inner leaflet of the cell membrane. However, when cells are stressed, damaged or undergo apoptosis or necrosis, phosphatidylserine is exposed on the outer leaflet of the cell membrane. Thus, phosphatidylserine can be used as a marker to distinguish stressed cells, damaged cells, apoptotic cells, necrotic cells, pyroapoptotic cells, or distending cells. Binding of phosphatidylserine via the Tim binding domain can block interactions between phosphatidylserine and another molecule, and for example, interfere with, reduce, or eliminate certain functions of phosphatidylserine (e.g., signal transduction). In some embodiments, the binding of phosphatidylserine may induce certain biological pathways or recognize phosphatidylserine molecules or cells expressing phosphatidylserine for elimination.
The Tim binding domain of the chimeric Tim receptor suitable for use in the present disclosure can be any polypeptide or peptide derived from a Tim1 and/or Tim4 molecule that specifically binds phosphatidylserine. In embodiments, the Tim binding domain comprises an IgV domain from Tim1 or Tim4 and a mucin domain from Tim1 or Tim 4. For example, a Tim binding domain can include a Tim1IgV domain and a Tim1 mucin domain. In another example, the Tim binding domain can include a Tim1IgV domain and a Tim4 mucin domain. In another example, the Tim binding domain can include a Tim4 IgV domain and a Tim1 mucin domain. In another example, a Tim binding domain can include a Tim4 IgV domain and a Tim4 mucin domain.
Phosphatidylserine binding is typically regulated by IgV domains. The core phosphatidylserine binding domain is the four amino acid sequence in the IgV domain (e.g., amino acids 95-98 of SEQ ID NO:34 or amino acids 92-95 of SEQ ID NO: 38). The Tim4 binding domain binds minimally to cells of low phosphatidylserine density. The Tim1 binding domain binds more strongly to lower phosphatidylserine densities, resulting in lower response thresholds. A summary of the binding of Tim1 and Tim4 to phosphatidylserine is provided in table 3. The binding affinity of the binding domain to phosphatidylserine can be modulated by combining a Tim1IgV domain and a Tim4 mucin domain, or a Tim4 IgV domain and a Tim1 mucin domain. Furthermore, this combination of Tim binding domains also provides a combination of sensitivity of Tim4 to phosphatidylserine and stability in protein expression of Tim 1.
Table 3.
Low PtdSer Moderate PtdSer High PtdSer Cooperativity of
Tim-1 Moderate bonding Strong binding Strong binding
Tim-4 Minimum binding Moderate bonding Strong binding Is that
Furthermore, the RGD domain in the IgV domain (e.g., amino acids 68-70 of SEQ ID NO: 34) may regulate integrin binding as a phagocytic co-receptor.
In certain embodiments, the Tim binding domain is derived from human Tim1 and/or Tim4. An exemplary human Tim1 molecule (SEQ ID NO: 36) is provided in Uniprot reference Q96D 42. Exemplary human Tim1 binding domains include or consist of the amino acid sequence of SEQ ID NO. 37 or SEQ ID NO. 43. In certain embodiments, a Tim1 binding domain comprises or consists of an amino acid sequence having at least about 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or 100% identity to SEQ ID NO. 37 or SEQ ID NO. 43. In certain embodiments, a Tim1 binding domain comprises an amino acid sequence having at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 amino acid modifications (e.g., deletions, additions, substitutions) to the amino acid sequence of SEQ ID NO. 37 or SEQ ID NO. 43.
An exemplary human Tim4 molecule is provided in Uniprot reference number Q96H15 (SEQ ID NO: 1). Exemplary human Tim4 binding domains include or consist of the amino acid sequence of SEQ ID NO. 2 or SEQ ID NO. 42. Exemplary mouse Tim4 binding domains include or consist of the amino acid sequence of SEQ ID NO:24 or amino acids 23-279 of SEQ ID NO: 24. In certain embodiments, a Tim4 binding domain comprises or consists of an amino acid sequence that is at least about 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or 100% identical to SEQ ID NO. 2 or SEQ ID NO. 42 or SEQ ID NO. 24 or amino acids 23-279 of SEQ ID NO. 24. In certain embodiments, the Tim4 binding domain comprises an amino acid sequence having at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 amino acid modifications (e.g., deletions, additions, substitutions) to the amino acid sequence of SEQ ID NO. 2 or SEQ ID NO. 42 or SEQ ID NO. 24 or amino acids 23-279 of SEQ ID NO. 24.
In embodiments, the Tim binding domain comprises an IgV domain from Tim 1. An exemplary human Tim1 IgV domain is provided in SEQ ID NO. 38. In some embodiments, the Tim1 IgV domain is a modified Tim1 IgV domain that includes the R66G substitution in SEQ ID NO: 38. R66G substitution (e.g., amino acids 68-70 of SEQ ID NO: 34) confers an RGD domain in the Tim1 IgV domain that may regulate integrin binding as a phagocytic co-receptor. In particular embodiments, the modified Tim1 IgV domain comprises or consists of the amino acid sequence of SEQ ID NO. 41. In some embodiments, such modified Tim1 domains can increase phagocytic activity while maintaining Tim1 sensitivity. In certain embodiments, a Tim1 IgV domain comprises or consists of an amino acid sequence that is at least about 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or 100% identical to SEQ ID NO:38, SEQ ID NO:38 with R66G substitution, or SEQ ID NO: 41. In certain embodiments, tim1 IgV comprises an amino acid sequence having at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 amino acid modifications (e.g., deletions, additions, substitutions) to the amino acid sequence of SEQ ID NO:38, SEQ ID NO:38 with R66G substitution, or SEQ ID NO: 41.
In other embodiments, the Tim binding domain comprises an IgV domain from Tim 4. An exemplary human Tim4 IgV domain is provided in SEQ ID NO. 34. In certain embodiments, the Tim4 IgV domain comprises or consists of an amino acid sequence that is at least about 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or 100% identical to SEQ ID NO 34. In certain embodiments, the Tim4 IgV domain comprises an amino acid sequence having at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 amino acid modifications (e.g., deletions, additions, substitutions) to the amino acid sequence of SEQ ID NO. 34.
In embodiments, the Tim binding domain comprises a mucin domain from Tim 1. An exemplary human Tim1 mucin domain is provided in SEQ ID NO: 39. In certain embodiments, the Tim1 mucin domain comprises or consists of an amino acid sequence having at least about 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or 100% identity to SEQ ID NO 39. In certain embodiments, a Tim1 mucin domain comprises an amino acid sequence having at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 amino acid modifications (e.g., deletions, additions, substitutions) to the amino acid sequence of SEQ ID NO. 39.
In other embodiments, the Tim binding domain comprises a mucin domain from Tim 4. An exemplary human Tim4 mucin domain is provided in SEQ ID NO. 35. In certain embodiments, the Tim4 mucin domain comprises or consists of an amino acid sequence having at least about 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or 100% identity to SEQ ID NO. 35. In certain embodiments, the Tim4 mucin domain comprises an amino acid sequence having at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 amino acid modifications (e.g., deletions, additions, substitutions) to the amino acid sequence of SEQ ID No. 35.
In some embodiments, the Tim binding domain comprises a Tim1 IgV domain and a Tim1 mucin domain. In a particular embodiment, the Tim1 IgV domain comprises the amino acid sequence set forth in SEQ ID NO:38 and the Tim1 mucin domain comprises the amino acid sequence set forth in SEQ ID NO: 39. In another specific embodiment, the Tim1 IgV domain comprises the amino acid sequence shown in SEQ ID NO:38 with the R66G substitution and the Tim1 mucin domain comprises the amino acid sequence shown in SEQ ID NO: 39. In further specific embodiments, the Tim1 IgV domain comprises the amino acid sequence set forth in SEQ ID NO. 41 and the Tim1 mucin domain comprises the amino acid sequence set forth in SEQ ID NO. 39. In some embodiments, the Tim1 IgV domain and the Tim1 mucin domain together comprise or consist of the amino acid sequence set forth in SEQ ID NO. 37 or SEQ ID NO. 43.
In some embodiments, the Tim binding domain comprises a Tim4 IgV domain and a Tim4 mucin domain. In a particular embodiment, the Tim4 IgV domain comprises the amino acid sequence set forth in SEQ ID NO:34 and the Tim4 mucin domain comprises the amino acid sequence set forth in SEQ ID NO: 35. In some embodiments, the Tim4 IgV domain and the Tim4 mucin domain together comprise or consist of the amino acid sequence set forth in SEQ ID NO. 2 or SEQ ID NO. 42.
In some embodiments, the Tim binding domain comprises a Tim1 IgV domain and a Tim4 mucin domain. In a particular embodiment, the Tim1 IgV domain comprises the amino acid sequence set forth in SEQ ID NO:38 and the Tim4 mucin domain comprises the amino acid sequence set forth in SEQ ID NO: 35. In a particular embodiment, the Tim1 IgV domain comprises the amino acid sequence shown in SEQ ID NO:38 with the R66G substitution and the Tim4 mucin domain comprises the amino acid sequence shown in SEQ ID NO: 35. In further specific embodiments, the Tim1 IgV domain comprises the amino acid sequence set forth in SEQ ID NO. 41 and the Tim4 mucin domain comprises the amino acid sequence set forth in SEQ ID NO. 35. In some embodiments, the Tim1 IgV domain further includes the Tim1 signal sequence of SEQ ID NO. 40.
In still further embodiments, the Tim binding domain comprises a Tim4 IgV domain and a Tim1 mucin domain. In a particular embodiment, the Tim4 IgV domain comprises the amino acid sequence set forth in SEQ ID NO:34 and the Tim1 mucin domain comprises the amino acid sequence set forth in SEQ ID NO: 39. In some embodiments, the Tim4 IgV domain further includes the Tim4 signal sequence of SEQ ID NO. 11.
In certain embodiments, the extracellular domain optionally comprises an extracellular non-signaling spacer or a linker domain. Such spacer or linker domains, if included, can position the binding domain at a location remote from the surface of the host cell to further achieve proper cell/cell contact, binding and activation. When included in a chimeric receptor as described herein, the extracellular spacer domain is typically located between the extracellular binding domain and the transmembrane domain of the chimeric Tim receptor. The length of the extracellular spacer can be varied to optimize target molecule binding based on the selected target molecule, the selected binding epitope, the binding domain size, and affinity (see, e.g., guest et al, journal of immunotherapy, 28:203-11, 2005; pct publication No. WO 2014/031687). In certain embodiments, the extracellular spacer domain is an immunoglobulin hinge region (e.g., igG1, igG2, igG3, igG4, igA, igD). The immunoglobulin hinge region may be a wild-type immunoglobulin hinge region or an altered wild-type immunoglobulin hinge region. Described in PCT publication number WO 2014/031687 The altered IgG 4 A hinge region, which is incorporated herein by reference in its entirety. In particular embodiments, the extracellular spacer domain comprises a modified IgG 4 A hinge region having the amino acid sequence of ESKYGPPCPPCP (SEQ ID NO: 3). Other examples of hinge regions that may be used for the chimeric Tim receptors described herein include hinge regions from extracellular regions of type 1 membrane proteins (e.g., CD8a, CD4, CD28, and CD 7), which may be wild-type or variants thereof. In a particular embodiment, the extracellular spacer domain comprises a CD28 hinge region having the amino acid sequence of SEQ ID NO. 32. In further embodiments, the extracellular spacer domain comprises all or part of an immunoglobulin Fc domain selected from a CH1 domain, a CH2 domain, a CH3 domain, or a combination thereof (see, e.g., PCT publication WO2014/031687, which is incorporated herein by reference in its entirety). In further embodiments, the extracellular spacer domain may include a stem region of a type II C-lectin (an extracellular domain located between the C-lectin domain and the transmembrane domain). Type II C-lectins comprise CD23, CD69, CD72, CD94, NKG2A and NKG2D.
In certain embodiments, the extracellular domain comprises an amino acid sequence from any mammalian species, including human, primate, cow, horse, goat, sheep, dog, cat, mouse, rat, rabbit, guinea pig, transgenic species thereof, or any combination thereof. In certain embodiments, the extracellular domain is murine, human, or chimeric.
The intracellular signaling domain of the chimeric Tim receptor as described herein is an intracellular effector domain and is capable of transmitting a functional signal to a cell in response to binding of the extracellular domain of the chimeric Tim receptor to phosphatidylserine. The signal transduced by the intracellular signaling domain promotes effector function of the cells containing the chimeric Tim receptor. Examples of effector functions include cytotoxic activity, secretion of cytokines, proliferation, anti-apoptotic signaling, persistence, amplification, phagocytosis of target cells or particles expressing phosphatidylserine on their surface, antigen capture, antigen processing, antigen presentation, or any combination thereof.
The intracellular signaling domain comprises a primary intracellular signaling domain. In some embodiments, the intracellular signaling domain comprises a primary intracellular signaling domain and a secondary intracellular signaling domain. In some embodiments, the intracellular signaling domain comprises a primary intracellular signaling domain, a secondary intracellular signaling domain, and a tertiary intracellular signaling domain. The primary intracellular signaling domain, the secondary intracellular signaling domain, and/or the tertiary intracellular signaling domain may independently be any portion of a signaling molecule that retains sufficient signaling activity. In some embodiments, a full-length signaling molecule or a full-length intracellular component of a signaling molecule is used. In some embodiments, a truncated portion of the signaling molecule or an intracellular component of the signaling molecule is used, provided that the truncated portion retains sufficient signaling activity. In some embodiments, the signaling domain is a variant of a complete or truncated portion of a signaling molecule, provided that the variant retains sufficient signaling activity (i.e., is a functional variant).
In some embodiments, the primary intracellular signaling domain comprises a Tim1 signaling domain, a Tim4 signaling domain, a TRAF2 signaling domain, a TRAF6 signaling domain, a CD28 signaling domain, a DAP12 signaling domain, a CD3 zeta signaling domain, a 4-1BB signaling domain, a TLR2 signaling domain, or a TLR8 signaling domain.
In embodiments, the secondary intracellular signaling domain comprises a Tim1 signaling domain, a Tim4 signaling domain, a TRAF2 signaling domain, a TRAF6 signaling domain, a CD28 signaling domain, a DAP12 signaling domain, a CD3 zeta signaling domain, a 4-1BB signaling domain, a TLR2 signaling domain, or a TLR8 signaling domain.
In some embodiments, the tertiary intracellular signaling domain comprises a Tim1 signaling domain, a Tim4 signaling domain, a TRAF2 signaling domain, a TRAF6 signaling domain, a CD28 signaling domain, a DAP12 signaling domain, a CD3 zeta signaling domain, a 4-1BB signaling domain, a TLR2 signaling domain, or a TLR8 signaling domain.
In some embodiments, the primary intracellular signaling domain comprises a signaling domain comprising an immune receptor tyrosine activation motif (ITAM); the secondary intracellular signaling domain comprises a costimulatory signaling domain, a Tim1 signaling domain, or a Tim4 signaling domain; and the tertiary intracellular signaling domain comprises a TLR signaling domain. The signaling domain containing ITAM typically contains at least one (one, two, three, four or more) ITAM, which refers to YXXL/I-X 6-8 Conserved motifs of YXXL/I. The signaling domain containing ITAM can initiate T cell activation signaling following antigen binding or ligand binding. The ITAM signaling domain comprises intracellular signaling domains such as cd3γ, cd3δ, cd3ε, cd3ζ, CD5, CD22, CD79a, CD278 (ICOS), DAP12, fcrγ, and CD66 d. The costimulatory signaling domain, when activated with a primary or classical (e.g., ITAM-driven) activation signal, promotes or enhances a T cell response, such as T cell activation, cytokine production, proliferation, differentiation, survival, effector function, or a combination thereof. Co-stimulatory signaling domains for chimeric Tim receptors include, for example, CD27, CD28, CD40L, GITR, NKG C, CARD1, CD2, CD7, CD27, CD30, CD40, CD54 (ICAM), CD83, CD134 (OX-40), CD137 (4-1 BB), CD150 (SLAMF 1), CD152 (CTLA 4), CD223 (LAG 3), CD226, CD270 (HVEM), CD273 (PD-L2), CD274 (PD-L1), CD278 (ICOS), DAP10, LAT, LFA-1, LIGHT, NKG2C, SLP76, TRIM, ZAP70, or any combination thereof. In some embodiments, the costimulatory signaling domain comprises an OX40, CD2, CD27, CD28, ICAM-1, LFA-1 (CD 11a/CD 18), ICOS (CD 278), or 4-1BB (CD 137) signaling domain. The TLR signaling domain may be a TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8 or TLR9 signaling domain. In some embodiments, the TLR signaling domain is a TLR2 signaling domain or a TLR8 signaling domain.
As used herein, the designations of primary intracellular signaling domain, secondary intracellular signaling domain, and tertiary intracellular signaling domain include, but are not limited to, an arrangement of primary intracellular signaling domain at the N-terminus, intermediate secondary intracellular signaling domain, and tertiary intracellular signaling domain at the C-terminus of the intracellular portion of the chimeric Tim receptor. Thus, the naming of the primary intracellular signaling domain does not limit the use of the selected intracellular signaling domain at the N-terminus of the intracellular portion of the chimeric Tim receptor. The naming of the secondary intracellular signaling domains does not limit the use of the selected intracellular signaling domain in the middle of the intracellular portion of the chimeric Tim receptor (or at the C-terminus for those chimeric Tim receptors having only two intracellular signaling domains). The naming of tertiary intracellular signaling domains does not limit the use of selected intracellular signaling domains at the C-terminus of the intracellular portion of the chimeric Tim receptor. Thus, different arrangements of primary, secondary and/or tertiary intracellular signaling domains in the intracellular portion of the chimeric Tim receptor are contemplated.
An exemplary Tim1 signaling domain comprises or consists of the amino acid sequence of SEQ ID NO. 44. Exemplary Tim4 signaling domains include or consist of the amino acid sequences of SEQ ID NO. 45, SEQ ID NO. 224, or SEQ ID NO. 225. Exemplary TRAF2 signaling domains include or consist of the amino acid sequence of SEQ ID NO. 48. Exemplary TRAF6 signaling domains include or consist of the amino acid sequence of SEQ ID NO. 46. Exemplary CD28 signaling domains include or consist of the amino acid sequence of SEQ ID NO. 4 or 26. An exemplary DAP12 signaling domain comprises or consists of the amino acid sequence of SEQ ID NO. 9. Exemplary CD3 zeta signaling domains include or consist of the amino acid sequence of SEQ ID NO 27 or 5. An exemplary 4-1BB signaling domain comprises or consists of the amino acid sequence of SEQ ID NO. 122. Exemplary TLR2 signaling domains include or consist of the amino acid sequence of SEQ ID NO: 222. An exemplary TLR8 signaling domain comprises or consists of the amino acid sequence of SEQ ID No. 47.
In a particular embodiment, the Tim1 signaling domain comprises the amino acid sequence set forth in SEQ ID NO. 44. In another specific embodiment, the Tim4 signaling domain comprises the amino acid sequence set forth in SEQ ID NO. 45, SEQ ID NO. 224, or SEQ ID NO. 225. In another specific embodiment, the TRAF2 signaling domain comprises the amino acid sequence shown in SEQ ID NO. 48. In another specific embodiment, the TRAF6 signaling domain comprises the amino acid sequence shown in SEQ ID NO. 46. In another specific embodiment, the CD28 signaling domain comprises the amino acid sequence set forth in SEQ ID NO. 4. In another specific embodiment, the CD28 signaling domain comprises the amino acid sequence set forth in SEQ ID NO. 26. In another particular embodiment, the DAP12 signaling domain comprises the amino acid sequence shown in SEQ ID NO. 9. In another specific embodiment, the CD3 zeta signaling domain comprises the amino acid sequence shown in SEQ ID NO. 27. In another specific embodiment, the CD3 zeta signaling domain comprises the amino acid sequence shown in SEQ ID NO. 5. In another specific embodiment, the 4-1BB signaling domain comprises the amino acid sequence of SEQ ID NO. 122. In another specific embodiment, the TLR2 signaling domain comprises the amino acid sequence of SEQ ID NO: 222. In another specific embodiment, either the TLR8 signaling domain comprises the amino acid sequence set forth in SEQ ID NO. 47.
In embodiments, the primary signaling domain, secondary signaling domain, and/or tertiary signaling domain (if present) comprises or consists of an amino acid sequence having at least about 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or 100% identity to any of SEQ ID NOs 4, 5, 9, 26, 27, or 44-48. In certain embodiments, the primary signaling domain, the secondary signaling domain, and/or the tertiary signaling domain comprises an amino acid sequence having at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 amino acid modifications (e.g., deletions, additions, substitutions) to the amino acid sequence of any of SEQ ID NOs 4, 5, 9, 26, 27, 44-48, 122, and 222. In embodiments, the primary signaling domain, the secondary signaling domain, and/or the tertiary signaling domain are the same. In some embodiments, two or three of the primary intracellular signaling domain, the secondary intracellular signaling domain, and the tertiary intracellular signaling domain are different.
In certain embodiments, the intracellular signaling domain comprises a Tim1 intracellular signaling domain. In some embodiments, the intracellular signaling domain comprises a Tim4 intracellular signaling domain. In some embodiments, the intracellular signaling domain comprises a cd3ζ intracellular signaling domain. In some embodiments, the intracellular signaling domain comprises a CD28 intracellular signaling domain. In some embodiments, the intracellular signaling domain comprises a TRAF6 intracellular signaling domain. In some embodiments, the intracellular signaling domain comprises a TRAF2 intracellular signaling domain. In some embodiments, the intracellular signaling domain comprises a TLR2 intracellular signaling domain. In some embodiments, the intracellular signaling domain comprises a TLR8 intracellular signaling domain.
In certain embodiments, the intracellular signaling domain comprises a Tim1 primary intracellular signaling domain and a CD3 zeta secondary intracellular signaling domain. In other embodiments, the intracellular signaling domain comprises a Tim4 primary intracellular signaling domain and a CD3 zeta secondary intracellular signaling domain. In other embodiments, the intracellular signaling domain comprises a TLR8 primary intracellular signaling domain and a CD3 zeta secondary intracellular signaling domain. In other embodiments, the intracellular signaling domain comprises a TLR2 primary intracellular signaling domain and a CD3 zeta secondary intracellular signaling domain. In other embodiments, the intracellular signaling domain comprises a CD28 primary intracellular signaling domain and a DAP12 secondary intracellular signaling domain. In some embodiments, the intracellular signaling domain comprises a CD28 primary intracellular signaling domain and a CD3 zeta secondary intracellular signaling domain. In some embodiments, the intracellular signaling domain comprises a CD28 primary intracellular signaling domain, a TLR2 secondary intracellular signaling domain, and a cd3ζ tertiary intracellular signaling domain. In some embodiments, the intracellular signaling domain comprises a CD28 primary intracellular signaling domain, a CD3 zeta secondary intracellular signaling domain, and a TLR2 tertiary intracellular signaling domain. In some embodiments, the intracellular signaling domain comprises a CD28 primary intracellular signaling domain, a TLR8 secondary intracellular signaling domain, and a cd3ζ tertiary intracellular signaling domain. In some embodiments, the intracellular signaling domain comprises a CD28 primary intracellular signaling domain, a CD3 zeta secondary intracellular signaling domain, and a TLR8 tertiary intracellular signaling domain. In some embodiments, the intracellular signaling domain comprises a TLR2 primary intracellular signaling domain and a CD3 zeta secondary intracellular signaling domain. In some embodiments, the intracellular signaling domain comprises a cd3ζ primary intracellular signaling domain and a TLR2 secondary intracellular signaling domain. In some embodiments, the intracellular signaling domain comprises a TLR8 primary intracellular signaling domain and a CD3 zeta secondary intracellular signaling domain. In some embodiments, the intracellular signaling domain comprises a cd3ζ primary intracellular signaling domain and a TLR8 secondary intracellular signaling domain. In some embodiments, the intracellular signaling domain comprises a TRAF6 primary intracellular signaling domain and a CD3 zeta secondary intracellular signaling domain. In some embodiments, the intracellular signaling domain comprises a cd3ζ primary intracellular signaling domain and a TRAF6 secondary intracellular signaling domain. In some embodiments, the intracellular signaling domain comprises a CD28 primary intracellular signaling domain and a CD3 zeta secondary intracellular signaling domain. In some embodiments, the intracellular signaling domain comprises a CD28 primary intracellular signaling domain, a TLR2 secondary intracellular signaling domain, and a cd3ζ tertiary intracellular signaling domain. In some embodiments, the intracellular signaling domain comprises a CD28 primary intracellular signaling domain, a CD3 zeta secondary intracellular signaling domain, and a TLR2 tertiary intracellular signaling domain. In some embodiments, the intracellular signaling domain comprises a CD28 primary intracellular signaling domain, a TLR8 secondary intracellular signaling domain, and a cd3ζ tertiary intracellular signaling domain. In some embodiments, the intracellular signaling domain comprises a CD28 primary intracellular signaling domain, a CD3 zeta secondary intracellular signaling domain, and a TLR8 tertiary intracellular signaling domain. In some embodiments, the intracellular signaling domain comprises a cd3ζ primary intracellular signaling domain and a TLR2 secondary intracellular signaling domain. In some embodiments, the intracellular signaling domain comprises a TLR2 primary intracellular signaling domain and a CD3 zeta secondary intracellular signaling domain. In some embodiments, the intracellular signaling domain comprises a cd3ζ primary intracellular signaling domain and a TLR8 secondary intracellular signaling domain. In some embodiments, the intracellular signaling domain comprises a TLR8 primary intracellular signaling domain and a CD3 zeta secondary intracellular signaling domain. In some embodiments, the intracellular signaling domain comprises a cd3ζ primary intracellular signaling domain and a TRAF6 secondary intracellular signaling domain. In some embodiments, the intracellular signaling domain comprises a TRAF6 primary intracellular signaling domain and a CD3 zeta secondary intracellular signaling domain. In some embodiments, the intracellular signaling domain comprises a Tim4 primary intracellular signaling domain, a TLR2 secondary intracellular signaling domain, and a cd3ζ tertiary intracellular signaling domain. In some embodiments, the intracellular signaling domain comprises a Tim4 primary intracellular signaling domain, a CD3 zeta secondary intracellular signaling domain, and a TLR2 tertiary intracellular signaling domain. In some embodiments, the intracellular signaling domain comprises a Tim4 primary intracellular signaling domain, a TLR8 secondary intracellular signaling domain, and a cd3ζ tertiary intracellular signaling domain. In some embodiments, the intracellular signaling domain comprises a Tim4 primary intracellular signaling domain, a CD3 zeta secondary intracellular signaling domain, and a TLR8 tertiary intracellular signaling domain.
In a particular embodiment, the intracellular signaling domain comprises a Tim1 primary intracellular signaling domain comprising the amino acid sequence of SEQ ID NO. 44 and a CD3 zeta secondary intracellular signaling domain comprising the amino acid sequence of SEQ ID NO. 27 or 5. In another specific embodiment, the intracellular signaling domain comprises a Tim4 primary intracellular signaling domain comprising the amino acid sequence of SEQ ID NO. 45, SEQ ID NO. 224 or SEQ ID NO. 225, and a CD3 ζ secondary intracellular signaling domain comprising the amino acid sequence of SEQ ID NO. 27 or 5. In further specific embodiments, the intracellular signaling domain comprises a TLR8 primary intracellular signaling domain comprising the amino acid sequence of SEQ ID No. 47 and a cd3ζ secondary intracellular signaling domain comprising the amino acid sequence of SEQ ID No. 27 or 5. In another particular embodiment, the intracellular signaling domain comprises a CD28 primary intracellular signaling domain comprising the amino acid sequence of SEQ ID NO. 4 or 26 and a DAP12 secondary intracellular signaling domain comprising the amino acid sequence of SEQ ID NO. 9. In some embodiments, the intracellular signaling domain comprises a combination of a primary intracellular signaling domain, a secondary intracellular signaling domain, and optionally a tertiary intracellular signaling domain sequence as shown in table 10.
The intracellular signaling domain may be from mammalian species, including humans, primates, cattle, horses, goats, sheep, dogs, cats, mice, rats, rabbits, guinea pigs, and transgenic species thereof.
The transmembrane domain of the chimeric Tim receptor connects and is located between the extracellular domain and the intracellular signaling domain. The transmembrane domain is a hydrophobic alpha helix that passes through the host cell membrane. The transmembrane domain may be fused directly to the binding domain or extracellular spacer domain, if present. In certain embodiments, the transmembrane domain is derived from an intact membrane protein (e.g., receptor, cluster of Differentiation (CD) molecule, enzyme, transporter, cell adhesion molecule, etc.). In one embodiment, the transmembrane domain is selected from the same molecules as the molecules from which the extracellular domain is derived. In another embodiment, the transmembrane domain is selected from the same molecule as the molecule from which the intracellular signaling domain is derived. For example, a chimeric Tim receptor can include a Tim4 binding domain and a Tim4 transmembrane domain. In another example, the chimeric Tim receptor can include a CD28 transmembrane domain and a CD28 costimulatory signaling domain. In certain embodiments, the transmembrane domain and the extracellular domain are from different molecules; the transmembrane domain and the intracellular signaling domain are from different molecules; or the transmembrane domain, extracellular domain and intracellular signaling domain are all from different molecules. Examples of transmembrane domains that can be used for the chimeric Tim receptors of the present disclosure include transmembrane domains from Tim1, tim4 and CD 28. An exemplary Tim1 transmembrane domain comprises or consists of the amino acid sequence of SEQ ID NO. 8. Exemplary Tim4 transmembrane domains include or consist of the amino acid sequence of SEQ ID NO. 6 or 23. Exemplary CD28 transmembrane domains include or consist of the amino acid sequence of SEQ ID NO. 7. In certain embodiments, the transmembrane domain comprises or consists of an amino acid sequence having at least about 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or 100% identity to any one of SEQ ID NOs 6-8 or 23. In certain embodiments, the transmembrane domain comprises an amino acid sequence having at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 amino acid modifications (e.g., deletions, additions, substitutions) to the amino acid sequence of any of SEQ ID NOs 6-8 or 23.
The transmembrane domain may be from any mammalian species, including human, primate, bovine, equine, caprine, ovine, canine, feline, murine, rat, rabbit, guinea pig, porcine, and transgenic species thereof.
In certain embodiments, the chimeric Tim receptor comprises a polynucleotide sequence from any mammalian species including humans, primates, cows, horses, goats, sheep, dogs, cats, mice, rats, rabbits, guinea pigs, transgenic species thereof, or any combination thereof. In certain embodiments, the chimeric Tim receptor is murine, chimeric, human, or humanized.
It is to be understood that direct fusion of one domain of the chimeric Tim receptor described herein to another domain does not preclude the presence of an intermediate linking amino acid. The linking amino acids may be natural or unnatural (e.g., from the construct design of the chimeric protein). For example, the linking amino acids may be from restriction enzyme sites used to link one domain to another domain or to clone a polynucleotide encoding a chimeric Tim receptor into a vector.
Exemplary chimeric Tim receptors
The components of the chimeric Tim receptors as disclosed herein can be selected and arranged in various combinations to provide the desired specificity and effector phenotype to the host cell.
Exemplary chimeric Tim receptors of the present disclosure are described in table 4.
Table 4.
Additional exemplary chimeric Tim receptors are described in table 5.
Table 5.
In some embodiments, the chimeric Tim receptors of the disclosure include the constructs of table 4. In some embodiments, the chimeric Tim receptors of the disclosure include the constructs of table 5.
In some embodiments, the chimeric Tim receptor of construct 1 or construct 1' includes amino acids 21-456 of SEQ ID NO. 49. In some embodiments, the chimeric Tim receptor of construct 1 or construct 1' comprises the amino acid sequence of SEQ ID NO. 49.
In some embodiments, construct 2 or the chimeric Tim receptor of construct 2' comprises amino acids 21-471 of SEQ ID NO. 50. In some embodiments, construct 2 or the chimeric Tim receptor of construct 2' comprises the amino acid sequence of SEQ ID No. 50.
In some embodiments, construct 3 or the chimeric Tim receptor of construct 3' includes amino acids 21-363 of SEQ ID NO. 51. In some embodiments, construct 3 or the chimeric Tim receptor of construct 3' includes the amino acid sequence of SEQ ID NO. 51.
In some embodiments, construct 4 or the chimeric Tim receptor of construct 4' includes amino acids 21-590 of SEQ ID NO. 52. In some embodiments, construct 4 or the chimeric Tim receptor of construct 4' includes the amino acid sequence of SEQ ID NO. 52.
In some embodiments, construct 5 or the chimeric Tim receptor of construct 5' includes amino acids 21-596 of SEQ ID NO. 53. In some embodiments, construct 5 or the chimeric Tim receptor of construct 5' comprises the amino acid sequence of SEQ ID No. 53.
In some embodiments, construct 6 or the chimeric Tim receptor of construct 6' includes amino acids 21-619 of SEQ ID NO. 54. In some embodiments, construct 6 or the chimeric Tim receptor of construct 6' includes the amino acid sequence of SEQ ID NO. 54.
In some embodiments, construct 7 or the chimeric Tim receptor of construct 7' includes amino acids 21-625 of SEQ ID NO. 55. In some embodiments, construct 7 or the chimeric Tim receptor of construct 7' comprises the amino acid sequence of SEQ ID No. 55.
In some embodiments, construct 8 or the chimeric Tim receptor of construct 8' includes amino acids 21-621 of SEQ ID NO. 56. In some embodiments, construct 8 or the chimeric Tim receptor of construct 8' includes the amino acid sequence of SEQ ID NO: 56.
In some embodiments, construct 9 or the chimeric Tim receptor of construct 9' includes amino acids 21-415 of SEQ ID NO: 57. In some embodiments, construct 9 or the chimeric Tim receptor of construct 9' includes the amino acid sequence of SEQ ID NO: 57.
In some embodiments, the chimeric Tim receptor of construct 10 or construct 10' includes amino acids 21-409 of SEQ ID NO. 58. In some embodiments, construct 10 or the chimeric Tim receptor of construct 10' includes the amino acid sequence of SEQ ID NO. 58.
Additional exemplary chimeric Tim receptors of the present disclosure are described in table 6.
Table 6.
Additional exemplary chimeric Tim receptors are described in table 7.
Table 7.
In some embodiments, the chimeric Tim receptors of the disclosure include the constructs of table 6. In some embodiments, the chimeric Tim receptors of the disclosure include the constructs of table 7.
In some embodiments, the chimeric Tim receptor of construct 11 or construct 11' includes amino acids 25-490 of SEQ ID NO. 59. In some embodiments, construct 11 or the chimeric Tim receptor of construct 11' includes the amino acid sequence of SEQ ID NO: 59.
In some embodiments, construct 12 or the chimeric Tim receptor of construct 12' includes amino acids 25-495 of SEQ ID NO. 60. In some embodiments, construct 12 or the chimeric Tim receptor of construct 12' comprises the amino acid sequence of SEQ ID No. 60.
In some embodiments, construct 13 or the chimeric Tim receptor of construct 13' includes amino acids 25-382 of SEQ ID NO. 61. In some embodiments, construct 13 or the chimeric Tim receptor of construct 13' includes the amino acid sequence of SEQ ID NO. 61.
In some embodiments, the chimeric Tim receptor of construct 13A (TIM 4 binding domain-CD 28 TM-CD28costim-CD3 zeta (amino acids 1-24 signal peptide)) comprises amino acids 25-383 of SEQ ID NO: 71. In some embodiments, the chimeric Tim receptor of construct 13A includes the amino acid sequence of SEQ ID NO: 71.
In some embodiments, the chimeric Tim receptor of construct 14 or construct 14' includes amino acids 25-609 of SEQ ID NO. 62. In some embodiments, construct 14 or the chimeric Tim receptor of construct 14' includes the amino acid sequence of SEQ ID NO. 62.
In some embodiments, construct 15 or the chimeric Tim receptor of construct 15' includes amino acids 25-615 of SEQ ID NO. 63. In some embodiments, construct 15 or the chimeric Tim receptor of construct 15' includes the amino acid sequence of SEQ ID NO. 63.
In some embodiments, the chimeric Tim receptor of construct 16 or construct 16' includes amino acids 25-638 of SEQ ID NO. 64. In some embodiments, construct 16 or the chimeric Tim receptor of construct 16' comprises the amino acid sequence of SEQ ID No. 64.
In some embodiments, construct 17 or the chimeric Tim receptor of construct 17' includes amino acids 25-644 of SEQ ID NO. 65. In some embodiments, construct 17 or the chimeric Tim receptor of construct 17' comprises the amino acid sequence of SEQ ID No. 65.
In some embodiments, the chimeric Tim receptor of construct 18 or construct 18' includes amino acids 25-640 of SEQ ID NO. 66. In some embodiments, construct 18 or the chimeric Tim receptor of construct 18' includes the amino acid sequence of SEQ ID NO. 66.
Additional exemplary chimeric Tim receptors of the present disclosure are described in table 8.
Table 8.
Additional exemplary chimeric Tim receptors are described in table 9.
Table 9.
In some embodiments, the chimeric Tim receptors of the disclosure include the constructs of table 8. In some embodiments, the chimeric Tim receptors of the disclosure include the constructs of table 9.
In some embodiments, construct 19 or the chimeric Tim receptor of construct 19' includes amino acids 25-628 of SEQ ID NO. 67. In some embodiments, construct 19 or the chimeric Tim receptor of construct 19' comprises the amino acid sequence of SEQ ID No. 67.
In some embodiments, the chimeric Tim receptor of construct 20 or construct 20' comprises amino acids 25-416 of SEQ ID NO. 68. In some embodiments, construct 20 or the chimeric Tim receptor of construct 20' comprises the amino acid sequence of SEQ ID No. 68.
In some embodiments, the chimeric Tim receptor of construct 21 or construct 21' includes amino acids 25-422 of SEQ ID NO. 69. In some embodiments, the chimeric Tim receptor of construct 21 or construct 21' comprises the amino acid sequence of SEQ ID NO: 69.
Additional exemplary chimeric Tim receptors are described in table 10. In some embodiments, the chimeric Tim receptors of the disclosure include the constructs of table 10. In some embodiments, the chimeric Tim receptor of the present disclosure does not comprise a chimeric Tim receptor having the amino acid sequence of SEQ ID NOs 227, 238, 249, 72, or 73. In some embodiments, the chimeric Tim receptor of the present disclosure does not comprise a chimeric Tim receptor having a combination of components as described for constructs SEQ ID NOs 227, 238, 249, 72, or 73.
In some embodiments, the chimeric Tim4 receptor comprises the amino acid sequence of SEQ ID NO:127 or the amino acid sequence of SEQ ID NO:127 lacking the signal sequence (amino acids 1-24). In some embodiments, the chimeric Tim4 receptor comprises the amino acid sequence of SEQ ID NO:128 or the amino acid sequence of SEQ ID NO:128 lacking the signal sequence (amino acids 1-24). In some embodiments, the chimeric Tim4 receptor comprises the amino acid sequence of SEQ ID NO:129 or the amino acid sequence of SEQ ID NO:129 lacking the signal sequence (amino acids 1-24). In some embodiments, the chimeric Tim4 receptor comprises the amino acid sequence of SEQ ID NO:130 or the amino acid sequence of SEQ ID NO:130 lacking the signal sequence (amino acids 1-24). In some embodiments, the chimeric Tim4 receptor comprises the amino acid sequence of SEQ ID NO. 131 or the amino acid sequence of SEQ ID NO. 131 lacking the signal sequence (amino acids 1-24). In some embodiments, the chimeric Tim4 receptor comprises the amino acid sequence of SEQ ID NO. 132 or the amino acid sequence of SEQ ID NO. 132 lacking the signal sequence (amino acids 1-24). In some embodiments, the chimeric Tim4 receptor comprises the amino acid sequence of SEQ ID NO:133 or the amino acid sequence of SEQ ID NO:133 lacking the signal sequence (amino acids 1-24). In some embodiments, the chimeric Tim4 receptor comprises the amino acid sequence of SEQ ID NO:134 or the amino acid sequence of SEQ ID NO:134 lacking the signal sequence (amino acids 1-24). In some embodiments, the chimeric Tim4 receptor comprises the amino acid sequence of SEQ ID NO:135 or the amino acid sequence of SEQ ID NO:135 lacking the signal sequence (amino acids 1-24). In some embodiments, the chimeric Tim4 receptor comprises the amino acid sequence of SEQ ID NO:136 or the amino acid sequence of SEQ ID NO:136 lacking the signal sequence (amino acids 1-24). In some embodiments, the chimeric Tim4 receptor comprises the amino acid sequence of SEQ ID NO:137 or the amino acid sequence of SEQ ID NO:137 lacking the signal sequence (amino acids 1-24). In some embodiments, the chimeric Tim4 receptor comprises the amino acid sequence of SEQ ID NO:138 or the amino acid sequence of SEQ ID NO:138 lacking the signal sequence (amino acids 1-24). In some embodiments, the chimeric Tim4 receptor comprises the amino acid sequence of SEQ ID NO. 139 or the amino acid sequence of SEQ ID NO. 139 lacking the signal sequence (amino acids 1-24). In some embodiments, the chimeric Tim4 receptor comprises the amino acid sequence of SEQ ID NO:140 or the amino acid sequence of SEQ ID NO:140 lacking the signal sequence (amino acids 1-24). In some embodiments, the chimeric Tim4 receptor comprises the amino acid sequence of SEQ ID NO. 141 or the amino acid sequence of SEQ ID NO. 141 lacking the signal sequence (amino acids 1-24). In some embodiments, the chimeric Tim4 receptor comprises the amino acid sequence of SEQ ID NO:142 or the amino acid sequence of SEQ ID NO:142 lacking the signal sequence (amino acids 1-24). In some embodiments, the chimeric Tim4 receptor comprises the amino acid sequence of SEQ ID NO:143 or the amino acid sequence of SEQ ID NO:143 lacking the signal sequence (amino acids 1-24). In some embodiments, the chimeric Tim4 receptor comprises the amino acid sequence of SEQ ID NO:144 or the amino acid sequence of SEQ ID NO:144 lacking the signal sequence (amino acids 1-24). In some embodiments, the chimeric Tim4 receptor comprises the amino acid sequence of SEQ ID NO:145 or the amino acid sequence of SEQ ID NO:145 lacking the signal sequence (amino acids 1-24). In some embodiments, the chimeric Tim4 receptor comprises the amino acid sequence of SEQ ID NO:146 or the amino acid sequence of SEQ ID NO:146 lacking the signal sequence (amino acids 1-24). In some embodiments, the chimeric Tim4 receptor comprises the amino acid sequence of SEQ ID NO:147 or the amino acid sequence of SEQ ID NO:147 lacking the signal sequence (amino acids 1-24). In some embodiments, the chimeric Tim4 receptor comprises the amino acid sequence of SEQ ID NO:148 or the amino acid sequence of SEQ ID NO:148 lacking the signal sequence (amino acids 1-24). In some embodiments, the chimeric Tim4 receptor comprises the amino acid sequence of SEQ ID NO:149 or the amino acid sequence of SEQ ID NO:149 lacking the signal sequence (amino acids 1-24). In some embodiments, the chimeric Tim4 receptor comprises the amino acid sequence of SEQ ID NO:150 or the amino acid sequence of SEQ ID NO:150 lacking the signal sequence (amino acids 1-24). In some embodiments, the chimeric Tim4 receptor comprises the amino acid sequence of SEQ ID NO:151 or the amino acid sequence of SEQ ID NO:151 lacking the signal sequence (amino acids 1-24). In some embodiments, the chimeric Tim4 receptor comprises the amino acid sequence of SEQ ID NO. 152 or the amino acid sequence of SEQ ID NO. 152 lacking the signal sequence (amino acids 1-24). In some embodiments, the chimeric Tim4 receptor comprises the amino acid sequence of SEQ ID NO. 153 or the amino acid sequence of SEQ ID NO. 153 lacking the signal sequence (amino acids 1-24). In some embodiments, the chimeric Tim4 receptor comprises the amino acid sequence of SEQ ID NO:154 or the amino acid sequence of SEQ ID NO:154 lacking the signal sequence (amino acids 1-24). In some embodiments, the chimeric Tim4 receptor comprises the amino acid sequence of SEQ ID NO:155 or the amino acid sequence of SEQ ID NO:155 lacking the signal sequence (amino acids 1-24).
Table 10
/>
Polynucleotides, vectors and host cells
In certain aspects, the disclosure provides nucleic acid molecules encoding any one or more of the chimeric Tim receptors described herein. Nucleic acid may refer to single-or double-stranded DNA, cDNA or RNA, and may comprise the positive and negative strands of nucleic acid complementary to each other, including antisense DNA, cDNA and RNA. The nucleic acid may be DNA or RNA in naturally occurring or synthetic form. Nucleic acid sequences encoding the desired chimeric Tim receptor can be obtained or generated by recombinant methods known in the art using standard techniques, such as by screening libraries from cells expressing the desired sequence or portions thereof, by deriving the sequence from vectors known to contain the sequence, or by isolating the sequence or portions thereof directly from cells or tissues containing the sequence, as described, for example, in Sambrook et al (1989 and 2001; molecular cloning: laboratory Manual (Molecular Cloning: A Laboratory Manual), cold spring harbor laboratory Press (Cold Spring Harbor Laboratory Press), new York) and Ausubel et al (molecular biology recent protocol (Current Protocols in Molecular Biology), 2003). Alternatively, the sequence of interest may be synthetically produced, rather than cloned.
Polynucleotides encoding the chimeric Tim receptor compositions provided herein can be from any animal, such as human, primate, cow, horse, sheep, dog, cat, mouse, rat, rabbit, guinea pig, or a combination thereof. In certain embodiments, the polynucleotide encoding the chimeric Tim receptor is from the same animal species as the host cell into which the polynucleotide is inserted.
Polynucleotides encoding the chimeric Tim receptors of the disclosure may be operably linked to expression control sequences. Expression control sequences may comprise appropriate transcription initiation sequences, termination sequences, promoter sequences, and enhancer sequences; efficient RNA processing signals, such as splicing and polyadenylation signals; a sequence that stabilizes cytoplasmic mRNA; sequences that increase translation efficiency (i.e., kozak consensus sequences); a sequence that enhances protein stability; and sequences that may enhance protein secretion.
In certain embodiments, the polynucleotide encoding the chimeric Tim receptor includes a sequence encoding a signal peptide (also referred to as a leader peptide or signal sequence) at the 5' end for targeting the precursor protein to the secretory pathway. During cellular processing and localization of the chimeric Tim receptor on the host cell membrane, the signal peptide is optionally cleaved from the N-terminus of the extracellular domain. The polypeptide from which the signal peptide sequence is cleaved or removed may also be referred to as a mature polypeptide. Examples of signal peptides that can be used for the chimeric Tim receptor of the present disclosure include signal peptides derived from endogenous secreted proteins, including, for example, GM-CSF (amino acid sequence of SEQ ID NO: 10), tim1 (amino acid sequence of SEQ ID NO: 40), or Tim4 (amino acid sequence of SEQ ID NO:11 or 25). In certain embodiments, the polynucleotide sequence encodes a mature chimeric Tim receptor polypeptide, or the polypeptide sequence comprises a mature chimeric Tim receptor polypeptide. It will be appreciated by those skilled in the art that for the sequences disclosed herein comprising a signal peptide sequence, the signal peptide sequence may be replaced with another signal peptide capable of transporting the encoded protein to the extracellular membrane.
In certain embodiments, the chimeric Tim receptor encoding the polynucleotides of the present disclosure is codon optimized for efficient expression in a target host cell comprising the polynucleotide (see, e.g., scholten et al, clinical immunology (clin. Immunol.)), 119:135-145 (2006)). As used herein. "codon-optimized" polynucleotides include heterologous polynucleotides whose codons are modified with silent mutations corresponding to the abundance of tRNA in the host cell of interest.
According to any of the embodiments disclosed herein, a single polynucleotide molecule may encode one, two or more chimeric Tim receptors. Polynucleotides encoding more than one transgene may include sequences (e.g., IRES, viral 2A peptide) disposed between each gene for polycistronic expression.
Polynucleotides encoding at least two transgenes (e.g., chimeric Tim receptor and CAR) provided in the present disclosure can be used to make up a tandem expression cassette. Tandem expression cassette refers to a component of a vector nucleic acid comprising at least two transgenes under the control of, or operably linked to, the same set of regulatory sequences used to tandem or co-express the at least two transgenes. Regulatory sequences that can be used in the tandem expression cassettes of the present disclosure include suitable transcription initiation sequences, termination sequences, promoter sequences, and enhancer sequences; efficient RNA processing signals, such as splicing and polyadenylation signals; a sequence that stabilizes cytoplasmic mRNA; sequences that increase translation efficiency (i.e., kozak consensus sequences); a sequence that enhances protein stability; a sequence that enhances protein secretion, or any combination thereof.
In one aspect, the present disclosure provides a tandem expression cassette comprising a polynucleotide encoding a chimeric Tim receptor of the present disclosure and a polynucleotide encoding a cellular immunotherapeutic agent (e.g., CAR, TCR, etc.).
In certain embodiments, tandem expression cassettes can be constructed to optimize spatial and temporal control. For example, a tandem expression cassette may contain promoter elements to optimize spatial and temporal control. In some embodiments, the tandem expression cassette comprises a tissue-specific promoter or enhancer that is capable of specifically inducing the tandem expression cassette to an organ, cell type (e.g., immune cell), or pathological microenvironment, such as a tumor or infected tissue. An "enhancer" is an additional promoter element that can act synergistically or independently to activate transcription. In certain embodiments, the tandem expression cassette comprises a constitutive promoter. An exemplary constitutive promoter for the tandem expression cassette of the present disclosure is the EF-1. Alpha. Promoter. In certain embodiments, the tandem expression cassette comprises an inducible promoter. In certain embodiments, the tandem expression cassette comprises a tissue specific promoter.
The at least two transgenes contained in the tandem expression cassette may be in any order. For example, a tandem expression cassette comprising a polynucleotide encoding a chimeric Tim receptor and a polynucleotide encoding a CAR may be arranged from 5 'to 3' as: chimeric Tim receptor-CAR or CAR-chimeric Tim receptor.
In certain embodiments, a receptor comprising two or more polypeptide chains that associate to form a multimer or complex may be encoded by two or more polynucleotide molecules in a tandem expression construct. Exemplary multimeric receptors contemplated for expression in the tandem expression constructs of the present disclosure comprise a multiplex CAR, TCR, TCR-CAR and a TRuC TM A construct. Thus, exemplary tandem expression cassette embodiments encoding a chimeric Tim receptor and a TCR may include polynucleotides encoding the chimeric Tim receptor, polynucleotides encoding a TCR alpha chain polypeptide, and polynucleotides encoding a TCR beta chain polypeptide.
In certain embodiments, the tandem expression cassettes of the present disclosure may include an Internal Ribosome Entry Site (IRES) or a peptide cleavage site, such as a furin cleavage site or a viral 2A peptide, disposed between each polynucleotide contained within the tandem expression cassette, to allow co-expression of multiple proteins from a single mRNA. For example, an IRES, furin cleavage site, or viral 2A peptide can be disposed within the tandem expression cassette between a polynucleotide encoding a chimeric Tim receptor and a polynucleotide encoding a CAR. In another example, an IRES, furin cleavage site, or viral 2A peptide may be disposed between a polynucleotide encoding a chimeric Tim receptor, a polynucleotide encoding a TCR alpha chain polypeptide, and a polynucleotide encoding a TCR beta chain polypeptide. In certain embodiments, the viral 2A peptide is porcine teschovirus-1 (P2A), thosea asigna virus (T2A), equine rhinitis a virus (E2A), foot-and-mouth disease virus (F2A), or a variant thereof. Exemplary T2A peptides include the amino acid sequence of any one of SEQ ID NOs 12, 28, 29 or 30. Exemplary P2A peptides include the amino acid sequence of SEQ ID NO. 13 or 31. Exemplary E2A peptide sequences include the amino acid sequence of SEQ ID NO. 14. Exemplary F2A peptide sequences include the amino acid sequence of SEQ ID NO. 15.
Certain embodiments of the tandem expression cassettes of the present disclosure include polynucleotides encoding CARs/or TCRs that are specific for a target antigen (e.g., a tumor antigen) and polynucleotides encoding chimeric Tim receptors of the present disclosure. When target cells expressing a target antigen are bound by the CAR and/or TCR, cells modified to express such tandem expression cassettes induce apoptosis of the target cells. Apoptosis induces exposure of a pro-phagocytic marker (such as phosphatidylserine) on target cells, which can then target damaged or apoptotic cells for phagocytosis by the chimeric Tim receptor.
Polynucleotides encoding the desired chimeric Tim receptor can be inserted into suitable vectors, such as viral vectors, non-viral plasmid vectors, and non-viral vectors, e.g., lipid-based DNA vectors, modified mRNA (modRNA), self-amplified mRNA, CELiD, and transposon-mediated gene transfer (PiggyBac), for introduction into host cells of interest (e.g., immune cells). Polynucleotides encoding the chimeric Tim receptors of the present disclosure can be cloned into any suitable vector, such as an expression vector, a replication vector, a probe-generating vector, or a sequencing vector. In certain embodiments, the polynucleotide encoding the extracellular domain, the polynucleotide encoding the transmembrane domain, and the polynucleotide encoding the intracellular signaling domain are ligated together into a single polynucleotide, and then inserted into a vector. In other embodiments, the polynucleotide encoding the extracellular domain, the polynucleotide encoding the transmembrane domain, and the polynucleotide encoding the intracellular signaling domain, respectively, may be inserted into a vector such that the expressed amino acid sequence results in a functional chimeric Tim receptor. Vectors encoding chimeric Tim receptors are referred to herein as "chimeric Tim receptor vectors".
In certain embodiments, the vector comprises a polynucleotide encoding a chimeric Tim receptor. In certain embodiments, the vector comprises a polynucleotide encoding two or more chimeric Tim receptors. In certain embodiments, a single polynucleotide encoding two or more chimeric Tim receptors is cloned into a cloning site and expressed from a single promoter, wherein each chimeric Tim receptor sequence is separated from each other by an Internal Ribosome Entry Site (IRES), a furin cleavage site, or a viral 2A peptide, to allow co-expression of multiple genes from a single open reading frame (e.g., a polycistronic vector). In certain embodiments, the viral 2A peptide is porcine teschovirus-1 (P2A), thosea asigna virus (T2A), equine rhinitis a virus (E2A), foot-and-mouth disease virus (F2A), or a variant thereof. Exemplary T2A peptides include the amino acid sequences of SEQ ID NO. 12, 28, 29 or 30. Exemplary P2A peptides include the amino acid sequence of SEQ ID NO. 13 or 31. Exemplary E2A peptide sequences include the amino acid sequence of SEQ ID NO. 14. Exemplary F2A peptide sequences include the amino acid sequence of SEQ ID NO. 15.
In certain embodiments, the vector comprises two or more polynucleotides, each polynucleotide encoding a chimeric Tim receptor. Two or more polynucleotides encoding chimeric Tim receptors may be cloned sequentially into a vector at different cloning sites, wherein each chimeric Tim receptor is expressed under the control of a different promoter. In certain embodiments, vectors are used that allow for long-term integration and propagation of transgenes to daughter cells. Examples include viral vectors, such as adenovirus, adeno-associated virus, vaccinia virus, herpes virus, cytomegalovirus, poxvirus, or retroviral vectors, such as lentiviral vectors. Lentiviral derived vectors can be used to achieve long term gene transfer and have additional advantages over vectors, including the ability to transduce non-proliferating cells (e.g., hepatocytes) and low immunogenicity.
The vector encoding the core virus is referred to herein as a "viral vector". There are a number of viral vectors available for use in the compositions of the present disclosure, including those identified for use in human gene therapy applications (see Pfeifer and Verme, annual reviews of genomics and human genetics (an. Rev. Genomics hum. Genet.)) 2:177, 2001. Suitable viral vectors include RNA virus-based vectors, such as retroviral derived vectors, e.g., a maroney Murine Leukemia Virus (MLV) derived vector, and more complex retroviral derived vectors, e.g., lentiviral derived vectors. HIV-1 derived vectors belong to this class. Other examples include lentiviral vectors from HIV-2, FIV, equine infectious anemia virus, SIV, and Maedi-Visna virus (sheep lentivirus). Methods for transducing mammalian host cells with viral particles containing chimeric receptor transgenes using retroviral and lentiviral vectors and packaging cells are known in the art and have been previously described, for example, in U.S. patent 8,119,772; walchli et al, public science library, complex (PLoS One) 6:327930, 2011; zhao et al, J.Immunol.) (174:4415, 2005; engels et al, human gene therapy (hum. Gene Ther.) 14:1155, 2003; frecha et al, molecular therapy (mol. Ther.) 18:1748, 2010; verhoeyen et al, methods of molecular biology (Methods mol. Biol.) 506:97, 2009. Retroviral and lentiviral vector constructs and expression systems are also commercially available.
In certain embodiments, the viral vector is used to introduce a non-endogenous polynucleotide encoding a chimeric Tim receptor into a host cell. The viral vector may be a retroviral vector or a lentiviral vector. Viral vectors may also comprise nucleic acid sequences encoding markers for transduction. Transduction markers for viral vectors are known in the art and comprise selectable markers that may confer drug resistance, or detectable markers, such as fluorescent markers or cell surface proteins that may be detected by methods such as flow cytometry. In particular embodiments, the viral vector further comprises a gene marker for transduction comprising a fluorescent protein (e.g., green, yellow), an extracellular domain of human CD2, or truncated human EGFR (EGFR t or tEGFR; see Wang et al, blood (Blood) 118:1255, 2011). Exemplary tEGFR includes the amino acid sequence of SEQ ID NO. 16. When the viral vector genome comprises multiple genes to be expressed in a host cell as independent proteins from a single transcript, the viral vector may also comprise additional sequences between the two (or more) genes that allow for polycistronic expression. Examples of such sequences for viral vectors include an Internal Ribosome Entry Site (IRES), a furin cleavage site, a viral 2A peptide (e.g., T2A, P2A, E2A, F a), or any combination thereof.
Other viral vectors may also be used for polynucleotide delivery, including DNA viral vectors, including, for example, adenovirus-based vectors and adeno-associated virus (AAV) -based vectors; vectors derived from Herpes Simplex Virus (HSV) include amplicon vectors, replication defective HSV and attenuated HSV (Krisky et al, gene therapy 5:1517, 1998).
Other viral vectors recently developed for gene therapy use may also be used with the compositions and methods of the present disclosure. Such vectors include vectors derived from baculovirus and alpha-virus. (Jolly, D J.1999, emerging viral vectors (Emerging Viral Vectors), pages 209-40, friedmann T. Edit, development of human Gene therapy (The Development of Human Gene Therapy), new York: cold spring harbor laboratory (New York: cold Spring Harbor Lab)), or plasmid vectors (e.g., sleep bearing or other transposon vectors).
In certain embodiments, chimeric Tim receptor vectors can be constructed to optimize spatial and temporal control. For example, chimeric Tim receptor vectors can contain promoter elements to optimize spatial and temporal control. In some embodiments, the chimeric Tim receptor vector comprises a tissue-specific promoter or enhancer capable of specifically inducing the chimeric Tim receptor to an organ, cell type (e.g., immune cell), or pathological microenvironment, such as a tumor or infected tissue. An "enhancer" is an additional promoter element that can act synergistically or independently to activate transcription. In certain embodiments, the chimeric Tim receptor vector comprises a constitutive promoter. In certain embodiments, the chimeric Tim receptor vector comprises an inducible promoter. In certain embodiments, the chimeric Tim receptor vector comprises a tissue-specific promoter.
In certain embodiments, the chimeric Tim receptor vector can comprise a gene encoding a homing receptor, such as CCR4 or CXCR4, to enhance homing and anti-tumor activity in vivo.
Where time control is required, the chimeric Tim receptor vector may contain elements that allow for inducible elimination of the transduced cells. For example, such a vector may comprise an inducible suicide gene. Suicide genes may be apoptotic genes or genes that confer sensitivity to agents (e.g., drugs). Exemplary suicide genes include chemically inducible cysteine protease 9 (iCASP 9) (U.S. patent publication No. 2013/007434), chemically inducible Fas, or herpes simplex virus thymidine kinase (HSV-TK), which confers sensitivity to ganciclovir. In further embodiments, the chimeric Tim receptor vector can be designed to express a known cell surface antigen that is capable of clearing transduced cells upon infusion of the relevant antibody. Examples of cell surface antigens and their related antibodies that can be used to remove transduced cells include CD20 and rituximab, RQR8 (combined CD34 and CD20 epitopes, allowing for CD34 selection and anti-CD 20 deletion) and rituximab, as well as EGFR and cetuximab.
Inducible vector systems, such as the tetracycline (Tet) -On vector system (Heinz et al, human Gene therapy, 2011, 22:166-76) that activates transgene expression with doxycycline, may also be used for inducible chimeric Tim receptor expression. Inducible chimeric Tim receptor expression can also be achieved via retention using RUSH (retention using a selective hook) systems based on streptavidin anchored to the endoplasmic reticulum membrane by hooks and streptavidin binding proteins incorporated into the chimeric Tim receptor structure, wherein the addition of biotin to the system results in release of the chimeric Tim receptor from the endoplasmic reticulum (Agaugue et al 2015, molecular therapy 23 (supplement 1): S88).
In certain embodiments, a cell (e.g., an immune cell) obtained from a subject can be engineered into a non-natural or recombinant cell (e.g., a non-natural or recombinant immune cell) by introducing a polynucleotide encoding a chimeric Tim receptor as described herein, whereby the cell expresses a cell surface-localized chimeric Tim receptor. In certain embodiments, the host cell is an immune cell, such as a myeloid progenitor cell or lymphoid progenitor cell. Exemplary immune cells that can be modified to include a polynucleotide encoding a chimeric Tim receptor or a vector including a polynucleotide encoding a chimeric Tim receptor include T cells, natural killer cells, B cells, lymphoid precursor cells, antigen presenting cells, dendritic cells, langerhans cells, bone marrow precursor cells, mature bone marrow cells, monocytes or macrophages.
In certain embodiments, the B cells are genetically modified to express one or more chimeric Tim receptors. B cells have certain properties that may be advantageous as host cells, including: trafficking to the site of inflammation, internalization and presentation of antigen, co-stimulation of T cells, high proliferation and self-renewal (life-long duration). In certain embodiments, the B cells modified with the chimeric Tim receptor are capable of digesting phagocytic target cells or phagocytic target particles into smaller peptides and presenting them to T cells via MHC molecules. Antigen presentation by B cells modified with chimeric Tim receptors may aid in antigen diffusion of immune responses against non-targeted antigens. B cells include progenitor or precursor cells committed to the B cell lineage (e.g., pre-progenitor-B cells, and pre-B cells); immature and unactivated B cells; or mature and functional or activated B cells. In certain embodiments, the B cell may be a primary B cell, a plasma cell, a regulatory B cell, a border region B cell, a follicular B cell, a lymphoplasmacytoid cell, a plasmablast cell, a memory B cell, or any combination thereof. Memory B cells can be distinguished from primary B cells based on the lack of expression of CD27 on the primary B cells. In certain embodiments, the B cells may be primary cells or cell lines derived from humans, mice, rats, or other mammals. B cell lines are well known in the art. If obtained from a mammal, the B cells may be obtained from a variety of sources, including blood, bone marrow, spleen, lymph nodes or other tissues or fluids. The B cell composition may be enriched or purified.
In certain embodiments, the T cells are genetically modified to express one or more chimeric Tim receptors. Exemplary T cells comprise CD4 + Helper cells, CD8 + Effector cells (cytotoxicity), primordial cells (CD45RA+, CCR7+, CD62L+, CD27+, CD45 RO-), central memory cells (CD 45 RO-) + 、CD62L + 、CD8 + ) Effector memory cells (CD45RA+, CD45RO-, CCR7-, CD62L-, CD 27-), T memory stem cells, regulatory cells, mucosa-associated invariant cells (MAIT), γδ (gd), tissue resident T cells, natural killer T cells, or any combination thereof. In certain embodiments, the T cell may be a primary cell or cell line derived from a human, mouse, rat, or other mammal. If obtained from a mammal, T cells may be obtained from a variety of sources, including blood, bone marrow, lymph nodes, thymus, or other tissues or fluids. T cell compositions can be enriched or purified. T cell lines are well known in the art, some of which are described in Sandberg et al, leukemia (Leukemia), 21:230, 2000. In certain embodiments, the T cell lacks endogenous expression of the TCR a gene, the TCR a 0 gene, or both. Such T cells may naturally lack endogenous expression of TCR a and β chains, or may have been modified to block expression (e.g., T cells from transgenic mice that do not express TCR a and β chains or cells that have been manipulated to inhibit expression of TCR a and β chains) or to knock out TCR a chains, TCR β chains, or both genes.
In certain embodiments, the host cell expressing the chimeric Tim proteins of the disclosure on the cell surface is not a T cell or a cell of the T cell lineage, but a progenitor cell, stem cell, or a cell modified to express cell surface anti-CD 3.
In certain embodiments, the gene editing methods are used to modify the host cell genome to include a polynucleotide encoding a chimeric Tim receptor of the disclosure. Gene editing or genome editing is a genetically engineered method in which DNA is inserted, replaced, or removed from the genome of a host cell using a genetically engineered endonuclease. Nucleases produce a specific double strand break at a targeted site in the genome. The endogenous DNA repair pathway of the host cell then repairs the induced break, for example, by non-homologous end joining (NHEJ) and homologous recombination. Exemplary endonucleases that can be used for gene editing include Zinc Finger Nucleases (ZFNs), transcription activator-like effector (TALE) nucleases, clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas nuclease systems (e.g., CRISPR-Cas 9), homing endonucleases, or combinations thereof. Methods of disrupting or knocking out genes or gene expression in immune cells including B cells and T cells using gene editing endonucleases are known in the art and are described, for example, in PCT publication No. WO 2015/066262; WO2013/074916; WO 2014/059173; cheong et al, nat. Communication (Nat. Comm.) 2016 7:10934; chu et al, proc. Natl. Acad. Sci. USA, 2016 113:12514-12519; the methods from each of these documents are incorporated herein by reference in their entirety.
In certain embodiments, expression of an endogenous gene of the host cell is inhibited, knocked down, or knocked out. Examples of endogenous genes that can be suppressed, knocked down or knocked out in B cells include IGH, igκ, igλ, or any combination thereof. Examples of endogenous genes that can be suppressed, knocked down, or knocked out in T cells include TCR genes (TRA or TRB), HLA genes (HLA class I genes or HLAII class I genes), immune checkpoint molecules (PD-L1, PD-L2, CD80, CD86, B7-H3, B7-H4, HVEM, adenosine, GAL9, VISTA, CEACAM-1, CEACAM-3, CEACAM-5, PVRL2, PD-1, CTLA-4, BTLA, KIR, LAG3, TIM3, A2aR, CD244/2B4, CD160, TIGIT, LAIR-1, or PVRIG/CD 112R), or any combination thereof. Expression of the endogenous gene may be inhibited, knocked down or knocked out at the gene level, transcription level, translation level, or a combination thereof. Methods of inhibiting, knocking down, or knocking out an endogenous gene can be accomplished, for example, by an RNA interfering agent (e.g., siRNA, shRNA, miRNA, etc.) or an engineered endonuclease (e.g., CRISPR/Cas nuclease system, zinc Finger Nuclease (ZFN), transcription activator-like effector nuclease (TALEN), homing endonuclease), or any combination thereof. In certain embodiments, an endogenous B cell gene (e.g., IGH, igκ, or igλ) is knocked out, such as via an engineered endonuclease, by inserting a polynucleotide encoding a chimeric Tim receptor of the disclosure into a locus of the endogenous B cell gene. In certain embodiments, an endogenous T cell gene (e.g., a TCR gene, an HLA gene, or an immune checkpoint molecule gene) is knocked out, such as via an engineered endonuclease, by inserting a polynucleotide encoding a chimeric Tim receptor of the present disclosure into a locus of the endogenous T cell gene.
In certain embodiments, the host cell may be genetically modified to express a type of chimeric Tim receptor. In other embodiments, the host cell may express at least two or more different chimeric Tim receptors.
The present disclosure also provides a composition comprising a population of host cells modified with a chimeric Tim receptor. In certain embodiments, the population of host cells modified by the chimeric Tim receptor can be a population of B cells, a population of T cells, a population of natural killer cells, a population of lymphoid precursor cells, a population of antigen presenting cells, a population of dendritic cells, a population of langerhans cells, a population of bone marrow precursor cells, a population of mature bone marrow cells, or any combination thereof. Furthermore, a population of host cells of a particular cell type modified by a chimeric Tim receptor may be composed of one or more subtypes. For example, the population of B cells may consist of primary B cells modified with a chimeric Tim receptor, plasma cells, regulatory B cells, border zone B cells, follicular B cells, lymphoplasmacytoid cells, plasmablasts, memory B cells, or any combination thereof. In another example, the population of T cells can be composed of CD4 modified by a chimeric Tim receptor + Helper T cells, cd8+ effector (cytotoxic) T cells, naive (cd45ra+, ccr7+, cd62l+, cd27+, CD45 RO-) T cells, central memory (CD 45 RO) + 、CD62L + 、CD8 + ) T cells, effector memory (CD45RA+, CD45RO-, CCR7-, CD62L-, CD 27-) T cells, T memory stem cells,Regulatory T cells, mucosa-associated invariant T cells (MAIT), γδ (gd) cells, tissue resident T cells, natural killer T cells, or any combination thereof.
In certain embodiments, the population of host cells consists of cells each expressing the same chimeric Tim receptor. In other embodiments, the population of host cells consists of a mixture of two or more subpopulations of host cells, wherein each subpopulation expresses a different chimeric Tim receptor or a set of chimeric Tim receptors.
In certain embodiments, when preparing a host cell (e.g., a B cell or a T cell) modified with a chimeric Tim receptor, one or more growth factor cytokines that promote proliferation of the host cell (e.g., B cell or T cell) can be added to the cell culture. Cytokines may be human or non-human. Exemplary growth factor cytokines that may be used to promote T cell proliferation include IL-2, IL-15, and the like. Exemplary growth factor cytokines that may be used to promote B cell proliferation include CD40L, IL-2, IL-4, IL-15, IL-21, BAFF, and the like.
Prior to genetic modification of a host cell with a chimeric Tim receptor vector, a source of the host cell (e.g., T cell, B cell, natural killer cell, etc.) is obtained from a subject (e.g., whole blood, peripheral blood mononuclear cells, bone marrow, lymph node tissue, umbilical cord blood, thymus tissue, tissue from an infection site, ascites, pleural effusion, spleen tissue), and the host cell is isolated from the subject using methods known in the art. Specific host cell subsets can be collected according to known techniques and enriched or depleted by known techniques, such as affinity binding to antibodies, flow cytometry, and/or immunomagnetic selection. Following the enrichment and/or depletion step and introduction of the chimeric Tim receptor, in vitro expansion of the desired modified host cells can be performed according to known techniques or variants thereof that will be apparent to those skilled in the art.
The chimeric Tim receptors of the present disclosure confer host cell cytotoxic activity that expresses a chimeric Tim receptor specific for phosphatidylserine. Thus, host cells expressing chimeric Tim receptors are able to induce apoptosis of target cells upon binding to phosphatidylserine exposed on the surface of the target cells. In certain embodiments, host cells expressing the chimeric Tim receptor induce apoptosis of the target cell via: releasing granzyme, perforin, granulysin, or any combination thereof; fas ligand-Fas interaction; or both. In further embodiments, the chimeric Tim receptor further confers phosphatidylserine-specific phagocytic activity to a host cell expressing the chimeric Tim receptor. In still further embodiments, the host cell does not naturally exhibit a phagocytic phenotype prior to modification with the chimeric Tim receptor.
The chimeric Tim receptors of the present disclosure are also capable of costimulating T cells via at least one signaling pathway. In certain embodiments, the chimeric Tim receptor provides a costimulatory signal to the T cell via at least two different signaling pathways (e.g., via a costimulatory signaling domain selected in the chimeric Tim receptor). For example, a chimeric Tim receptor comprising a CD28 costimulatory signaling domain may be capable of providing a costimulatory signal via CD28 and Tim 1. In certain embodiments, host immune cells expressing the chimeric Tim receptor exhibit a reduction or inhibition of immune cell depletion. In certain embodiments, the host immune cell is a T cell or NK cell. In certain embodiments, the depleted T cells exhibit: (a) Increased expression of PD-1, TIGIT, LAG3, TIM3, or any combination thereof; (b) Reduced production of IFN-gamma, IL-2, TNF-alpha, or any combination thereof; or both (a) and (b). In certain embodiments, the depleted NK cells exhibit: (a) Increased expression of PD-1, NKG2A, TIM3, or any combination thereof; (b) reduced production of IFN- γ, TNF- α, or both; or both (a) and (b).
In certain embodiments, host cells expressing the chimeric Tim receptor exhibit an enhanced effector response (e.g., tumor-specific). In certain embodiments, the effector response is enhanced T cell proliferation, cytokine production (e.g., IFN- γ, IL-2, TNF- α), cytotoxic activity, persistence, or any combination thereof.
In certain embodiments, host cells expressing the chimeric Tim receptor exhibit a reduced immunosuppressive response to phosphatidylserine. Phosphatidylserine is one of the major apoptotic cell ligands that signals phagocytes of "eat me". Clearance of apoptotic cells by phagocytes generally reduces or prevents inflammatory responses via secretion of anti-inflammatory cytokines IL-10 and TGF-beta and reduction of secretion of inflammatory cytokines TNF-alpha, IL-1β and IL-12. Thus, phosphatidylserine may act as an immunosuppressive signal during the clearance of apoptotic cells. In certain embodiments, host cells modified with a chimeric Tim receptor exhibit increased antigen-specific cytokine production (e.g., IFN- γ, IL-2, TNF- α) upon binding to phosphatidylserine, thereby reducing an immunosuppressive response to phosphatidylserine.
Expression of chimeric Tim receptors on host cells can be functionally characterized according to any of a number of art accepted methods for determining host cell (e.g., T cell) activity, including determining T cell binding, activation or induction and also including determining antigen-specific T cell responses. Examples include determining T cell proliferation, T cell cytokine release, antigen-specific T cell stimulation, CTL activity (e.g., by detecting a target cell from a preload 51 Cr or europium release), changes in T cell phenotype marker expression, and other measurements of T cell function. Methods for performing these and similar assays can be found, for example, in Lefkovits (handbook of immunological methods: technical comprehensive (Immunology Methods Manual: the Comprehensive Sourcebook of Techniques), 1998). See also current immunological protocols (Current Protocols in Immunology); weir, manual for laboratory immunology (Handbook of Experimental Immunology), blacker science publication (Blackwell Scientific), boston, mass (1986); mishell and Shikii (editions), "selected methods in cellular immunology (Selected Methods in Cellular Immunology), frieman Press (Freeman Publishing), san Francisco, california (1979); green and Reed, science 281:1309 (1998) and references cited therein. Cytokine levels can be determined according to methods known in the art, including, for example, ELISA, ELISPOT, intracellular cytokine staining, flow cytometry, and any combination thereof (e.g., fineA combination of intracellular cytokine staining and flow cytometry). Immune cell proliferation and clonal expansion resulting from antigen-specific priming or stimulation of an immune response can be determined by isolating lymphocytes, such as circulating lymphocytes in a sample of peripheral blood cells or cells from lymph nodes, stimulating cells with antigen, and measuring cytokine production, cell proliferation, and/or cell viability, such as by incorporating tritiated thymidine or a non-radioactive assay, such as an MTT assay, and the like.
In certain embodiments, the host cell modified with the chimeric Tim receptor has a phagocytic index of about 20 to about 1,500 for the target cell. The "phagocytic index" is a measure of the phagocytic activity of a transduced host cell, as determined by counting the number of target cells or particles taken up by each chimeric Tim receptor-modified host cell during a period of time in which a suspension of target cells or particles and chimeric Tim receptor-modified host cells is incubated in a medium. The phagocytic index may be calculated by multiplying [ total number of target cells phagocytosed/total number of chimeric Tim receptor modified cells counted (e.g., phagocytic frequency) ]x [ average area per chimeric Tim receptor + target cells or particle staining of host cells x 100 (e.g., hybridization capture) ] or by [ total number of particles phagocytosed/total number of chimeric Tim receptor modified host cells counted ] × [ number of chimeric Tim receptor modified host cells containing particles phagocytosed/total number of chimeric Tim receptor cells counted ] x100. In certain embodiments, the chimeric Tim receptor-modified cells have a molecular weight of about 30 to about 1,500; about 40 to about 1,500; about 50 to about 1,500; about 75 to about 1,500; about 100 to about 1,500; about 200 to about 1,500; about 300 to about 1,500; about 400 to about 1,500; about 500 to about 1,500; about 20 to about 1,400; about 30 to about 1,400; about 40 to about 1,400; about 50 to about 1,400; about 100 to about 1,400; about 200 to about 1,400; about 300 to about 1,400; about 400 to about 1,400; about 500 to about 1,400; about 20 to about 1,300; about 30 to about 1,300; about 40 to about 1,300; about 50 to about 1,300; about 100 to about 1,300; about 200 to about 1,300; about 300 to about 1,300; about 400 to about 1,300; about 500 to about 1,300; about 20 to about 1,200; about 30 to about 1,200; about 40 to about 1,200; about 50 to about 1,200; about 100 to about 1,200; about 200 to about 1,200; about 300 to about 1,200; about 400 to about 1,200; about 500 to about 1,200; about 20 to about 1,100; about 30 to about 1,100; about 40 to about 1,100; about 50 to about 1,100; about 100 to about 1,100; about 200 to about 1,100; about 300 to about 1,100; about 400 to about 1,100; or about 500 to about 1,100; about 20 to about 1,000; about 30 to about 1,000; about 40 to about 1,000; about 50 to about 1,000; about 100 to about 1,000; about 200 to about 1,000; about 300 to about 1,000; about 400 to about 1,000; or about 500 to about 1,000; about 20 to about 750; about 30 to about 750; about 40 to about 750; about 50 to about 750; about 100 to about 750; about 200 to about 750; about 300 to about 750; about 400 to about 750; or about 500 to about 750; about 20 to about 500; about 30 to about 500; about 40 to about 500; about 50 to about 500; about 100 to about 500; about 200 to about 500; or a phagocytic index of about 300 to about 500. In further embodiments, the incubation time is from about 2 hours to about 4 hours, about 2 hours, about 3 hours, or about 4 hours. In still further embodiments, the cells modified with the chimeric Tim receptor exhibit a phagocytic index that is statistically significantly higher than cells transduced with a truncated EGFR control. Phagocytosis index can be calculated using methods known in the art, and as further described in the examples and PCT application No. PCT/US2017/053553 (incorporated herein by reference in its entirety), including quantification by flow cytometry or fluorescence microscopy.
The host cell may be from an animal, such as a human, primate, cow, horse, sheep, dog, cat, mouse, rat, rabbit, guinea pig, or a combination thereof. In a preferred embodiment, the animal is a human. The host cell may be obtained from a healthy subject or a subject suffering from a disease associated with the expression or overexpression of an antigen.
PARP inhibitors
Any suitable PARP inhibitor may be used in the compositions and methods of the present disclosure. Exemplary PARP inhibitors include talazapanib, nilaparib, lu Kapa, olaparib (AZ 2281, KU 59434), veliparib (ABT 888), CEP 9722, E7016, AG014699, MK4827, BMN-673 and pamiparib (BGB-290).
In particular embodiments, the PARP inhibitor comprises nilaparib. In particular embodiments, the PARP inhibitor comprises talazapanib. In a particular embodiment, the PARP inhibitor comprises Lu Kapa ni. In particular embodiments, the PARP inhibitor comprises olaparib. In particular embodiments, the PARP inhibitor comprises veliparib. In particular embodiments, the PARP inhibitor comprises CEP 9722. In particular embodiments, the PARP inhibitor comprises E7016. In particular embodiments, the PARP inhibitor comprises AG014699. In particular embodiments, the PARP inhibitor comprises MK4827. In a specific embodiment, the PARP inhibitor comprises BMN-673. In particular embodiments, the PARP inhibitor comprises pamipril.
Therapeutic method
The chimeric Tim receptor, polynucleotide encoding the chimeric Tim receptor, chimeric Tim receptor vector, or host cell expressing the chimeric Tim receptor, in combination with a PARP inhibitor according to any of the embodiments provided herein, can be used in a method of treating a subject having a disease, disorder, or undesired condition. Embodiments of these methods comprise administering to a subject (i) a therapeutically effective amount of a pharmaceutical composition comprising one or more chimeric Tim receptors, a polynucleotide encoding one or more chimeric Tim receptors, a vector comprising a polynucleotide encoding one or more chimeric Tim receptors, or a population of host cells genetically modified to express one or more chimeric Tim receptors according to the present description; and (ii) a therapeutically effective amount of a pharmaceutical composition comprising a PARP inhibitor.
The chimeric Tim receptor compositions as described herein can be administered prior to PARP inhibitor therapy (e.g., 1 day to 30 days or more prior to PARP inhibitor therapy), concurrently with PARP inhibitor therapy (on the same day) or after PARP inhibitor therapy (e.g., 1 day to 30 days or more after PARP inhibitor therapy). In certain embodiments, the chimeric Tim receptor-modified cells are administered after administration of one or more additional therapies. In further embodiments, the cells modified with the chimeric Tim receptor are administered 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 days after administration of the PARP inhibitor. In still further embodiments, the chimeric Tim receptor-modified cells are administered within 4 weeks, within 3 weeks, within 2 weeks, or within 1 week after administration of the PARP inhibitor therapy. Where PARP inhibitor therapy involves multiple doses, the chimeric Tim receptor-modified cells can be administered after an initial dose of one or more additional therapies, after a final dose of one or more additional therapies, or between multiple doses of one or more additional therapies.
Diseases that can be treated with cells expressing a chimeric Tim receptor as described in the present disclosure include cancer. Adoptive immunity and gene therapy are promising treatments for various types of cancer (Morgan et al, science 314:126, 2006; schmitt et al, human gene therapy 20:1240, 2009; june, journal of clinical research (J.Clin. Invest.) 117:1466, 2007) and infectious diseases (Kitchen et al, public science library. Complex. 4:38208, 2009; rossi et al, natural biotechnology 25:1444, 2007; zhang et al, PLoS Pathos.) > 6:e1001018, 2010; luo et al, journal of molecular medicine (J.mol. Med.)) 89:903, 2011).
A variety of cancers (including solid tumors and leukemia) are suitable for use in the compositions and methods disclosed herein. Exemplary cancers that can be treated using the receptors, modified host cells, and compositions described herein include adenocarcinomas of the breast, prostate, and colon; all forms of lung bronchogenic carcinoma; myeloid leukemia; melanoma; liver cancer; neuroblastoma; papillomas; amine precursor uptake and decarboxylation of the cell tumor; a vaginosis tumor; gill tumor; malignant carcinoid syndrome; carcinoid heart disease; and cancers (e.g., walker cancer, basal cell carcinoma, basal squamous cell carcinoma, brown-Pearce cancer, ductal carcinoma, ehrlich tumor, krebs2 cancer, merkel cell carcinoma, mucinous cancer, non-small cell lung cancer, oat cell carcinoma, papillary carcinoma, hard carcinoma, bronchiolar carcinoma, phosphocellular carcinoma, and transitional cell carcinoma). Other cancer types that can be treated using the receptors, modified host cells, and compositions described herein include histiocyte disorders; malignant tissue cytopathy; leukemia; hodgkin's disease; immunoproliferative small bowel disease; non-hodgkin's lymphoma; plasmacytoma; multiple myeloma; chronic Myelogenous Leukemia (CML); acute Myelogenous Leukemia (AML); plasmacytoma; reticuloendothelial tissue proliferation; melanoma; chondroblastoma; cartilage tumor; chondrosarcoma; fibroids; fibrosarcoma; giant cell tumor; histiocytoma; a fatty tumor; liposarcoma; mesothelioma; myxoma; myxosarcoma; osteoma; osteosarcoma; chordoma; craniopharyngeal pipe tumor; a vegetative cell tumor; hamartoma; a stromal tumor; mesonephroma; myosarcoma; enameloblastoma; cementoma; dental tumor; teratoma; thymoma; nourishing cell tumor. Furthermore, the following types of cancers are also contemplated as suitable for treatment using the receptors, modified host cells, and compositions described herein: adenoma; gall bladder tumor; cholesteatoma; cylindrical tumors; cystic adenocarcinoma; cystic adenoma; granulosa cell tumors; ampholytic embryonal cytoma; liver cancer; sweat gland tumor; islet cell tumor; leydig cell tumor; papillomas; support cell tumor; follicular membrane cytoma; smooth myoma; leiomyosarcoma; myoblasts; myomas; myosarcoma; rhabdomyomas; rhabdomyosarcoma; ventricular tube membranoma; gangliocytoma; glioma; medulloblastoma; meningioma; a schwannoma; neuroblastoma; neuroepithelial tumors; neurofibromatosis; neuroma; paraganglioma; non-chromaphilic paragangliomas. The types of cancers that can be treated also include angiokeratomas; vascular lymphoid hyperplasia is accompanied by eosinophilia; sclerosing hemangioma; hemangiomatosis; glomeroclavicular tumor; vascular endothelial tumors; hemangioma; vascular endothelial cell tumor; hemangiosarcoma; lymphangioma; lymphangiomyomas; lymphangiosarcoma; pineal tumor; carcinoma sarcoma; chondrosarcoma; she Zhuangnang sarcoma; fibrosarcoma; hemangiosarcoma; leiomyosarcoma; leukemia sarcoma; liposarcoma; lymphangiosarcoma; myosarcoma; myxosarcoma; ovarian cancer; rhabdomyosarcoma; sarcoma; neoplasms; neurofibromatosis; cervical dysplasia; and peritoneal cancer.
In some embodiments, the compositions and methods of the present disclosure may be used to treat solid tumors. In some embodiments, the solid tumor cancer is breast cancer, ovarian cancer, colorectal cancer, fallopian tube cancer, peritoneal cancer, or prostate cancer. In some embodiments, the breast cancer is a triple negative breast cancer. In some embodiments, the ovarian cancer is advanced ovarian cancer. In some embodiments, the prostate cancer is advanced prostate cancer. In some embodiments, the solid tumor cancer is melanoma. In some embodiments, the solid tumor cancer is lung cancer. In some embodiments, the lung cancer is non-small cell lung cancer.
In further embodiments, the cancer is a breast cancer (BRCA) mutated cancer. In particular embodiments, the cancer is BRCA1 mutated cancer, BRCA2 mutated cancer, or both.
The chimeric Tim receptors of the disclosure can be administered to a subject in a cell-bound form (e.g., gene therapy of a target cell population). Thus, for example, the chimeric Tim receptors of the present disclosure can be administered to a subject expressed on the surface of T cells, natural killer T cells, B cells, lymphoid precursor cells, antigen presenting cells, dendritic cells, langerhans cells, bone marrow precursor cells, mature bone marrow cells (including subpopulations thereof), or any combination thereof. In certain embodiments, the method of treating a subject comprises administering an effective amount of a chimeric Tim receptor-modified cell (i.e., a recombinant cell expressing one or more chimeric Tim receptors). The cells modified with the chimeric Tim receptor can be allogeneic, syngeneic, allogeneic or autologous to the subject.
The chimeric Tim receptor modified cells and PARP inhibitors can be administered in a manner appropriate for the disease or condition to be treated (or prevented), as determined by one of skill in the medical arts. The appropriate dosage, appropriate duration and frequency of administration of the composition will be determined by factors such as the condition, body type, body weight, body surface area, age, sex, type and severity of the disease of the patient, the particular therapy to be administered, the particular form of the active ingredient, the time and method of administration, and other drugs being administered simultaneously. The present disclosure provides pharmaceutical compositions comprising cells modified with a chimeric Tim receptor and a pharmaceutically acceptable carrier, diluent or excipient. Suitable excipients include water, saline, dextrose, glycerol, and the like, as well as combinations thereof. Other suitable infusion media may be any isotonic media formulation, including saline, normosol R (Abbott), plasma-Lyte A (Baxter), 5% dextrose in water, or lactated ringer's solution.
A therapeutically effective amount of the cells in the pharmaceutical composition is at least one cell (e.g., a T cell modified by a chimeric Tim receptor) or more typically greater than 10 2 Individual cells, e.g. up to 10 6 Up to 10 7 Up to 10 8 Individual cells, up to 10 9 Individual cells, up to 10 10 Individual cells or up to 10 11 Individual cells or more. In some embodiments, at about 10 6 To about 10 10 Individual cells/m 2 Is preferably about 10 7 To about 10 9 Individual cells/m 2 Is administered to the cell. The number of cells will depend on the end use for which the composition is intended and the type of cells contained therein. For example, a composition comprising cells modified to contain a chimeric Tim receptor will comprise a population of cells comprising about 5% to about 95% or more of such cells. In certain embodiments, compositions comprising cells modified with a chimeric Tim receptor include cell populations comprising at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or more of such cells. For the uses provided herein, the volume of the cells is typically 1 liter or less, 500ml or less, 250ml or less, or 100ml or less. Thus, the desired cell density is typically greater than 10 4 Individual cells/ml and typically greater than 10 7 Individual cells/ml, typically greater than 10 8 Individual cells/ml or greater. The cells may be administered as a single infusion or as multiple infusions over a period of time. Repeated infusions of cells modified with chimeric Tim receptors can be spaced days, weeks, months or even years apart if there is a recurrence of the disease or disease activity. The clinically relevant number of immune cells can be distributed to accumulate at or above 10 6 、10 7 、10 8 、10 9 、10 10 Or 10 11 Multiple infusions of individual cells. For administration including as hereinPreferred doses of host cells of the recombinant expression vector are about 10 7 Individual cells/m 2 About 5X 10 7 Individual cells/m 2 About 10 8 Individual cells/m 2 About 5X 10 8 Individual cells/m 2 About 10 9 Individual cells/m 2 About 5X 10 9 Individual cells/m 2 About 10 10 Individual cells/m 2 About 5X 10 10 Individual cells/m 2 Or about 10 11 Individual cells/m 2
Chimeric Tim receptors and PARP inhibitors as described herein can be administered intravenously, intraperitoneally, intranasally, intratumorally into bone marrow, lymph nodes, and/or cerebrospinal fluid.
In one aspect, the methods of the present disclosure comprise conferring or enhancing phosphatidylserine-specific cytotoxic activity on a cell, comprising introducing into a host cell a nucleic acid molecule encoding at least one chimeric Tim receptor or a chimeric Tim receptor vector according to any of the embodiments described herein; and expressing at least one chimeric Tim receptor in the host cell, wherein the at least one chimeric Tim receptor enhances phosphatidylserine specific cytotoxic activity of the host cell compared to the host cell prior to modification to express the chimeric Tim receptor. In certain embodiments, the cytotoxic activity of the host cell is increased by at least about 10%, 15%, 20%, 25%, 30%, 35%, 40%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 110%, 120%, 130%, 140%, 150%, 160%, 170%, 180%, 190%, 200% or more compared to the host cell prior to modification with the nucleic acid molecule encoding the chimeric Tim receptor or the chimeric Tim receptor vector. In some embodiments, the host cell is an immune cell. In some embodiments, the host cell is a T cell or NK cell. The method for measuring the cytotoxic activity of host cells, particularly immune cells such as T cells and NK cells, comprises 51 Cr), beta-gal or firefly luciferase release assay, flow cytometry methods that mediate target cell death and effector cell activity (see, e.g., vaccine specialist reviews (Expert Rev. Vaccines), 2010, 9:601-616).
In certain embodiments, the methods of the present disclosure comprise conferring or enhancing phosphatidylserine-specific cytotoxic activity on a cell, which further comprises conferring or enhancing phosphatidylserine-specific phagocytic activity on a host cell expressing at least one chimeric Tim receptor. In certain such embodiments, the host cell does not naturally exhibit a phagocytic phenotype prior to modification with the chimeric Tim receptor. For example, in certain such embodiments, phagocytic activity of the host cell is increased by at least about 10%, 15%, 20%, 25%, 30%, 35%, 40%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 110%, 120%, 130%, 140%, 150%, 160%, 170%, 180%, 190%, 200% or more as compared to the host cell prior to modification to express the chimeric Tim receptor vector. In certain embodiments, the host cell does not naturally have phagocytic activity. In some embodiments, the host cell is an immune cell. In some embodiments, the host cell is a T cell or NK cell. Methods of measuring phagocytic activity of a host cell include methods as described in PCT/US2017/053553 (incorporated herein by reference in its entirety).
In another aspect, a chimeric Tim receptor, a polynucleotide encoding a chimeric Tim receptor, a chimeric Tim receptor vector, or a host cell expressing a chimeric Tim receptor according to any of the embodiments provided herein can be used in a method of enhancing effector function of a host cell. In certain embodiments, the enhanced effector function comprises enhanced cytotoxic activity, enhanced antigen-specific cytokine production (e.g., IFN- γ, IL-2, TNF- α, or any combination thereof), enhanced anti-apoptotic signaling, enhanced persistence, enhanced amplification, enhanced proliferation, or any combination thereof. In certain embodiments, the effector function of the host cell is enhanced by at least about 10%, 15%, 20%, 25%, 30%, 35%, 40%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 110%, 120%, 130%, 140%, 150%, 160%, 170%, 180%, 190%, 200% or more as compared to a host cell not modified with a nucleic acid molecule encoding the chimeric Tim receptor or a chimeric Tim receptor vector. In some embodiments, the host cell is an immune cell. In certain embodiments, the host cell is a T cell or NK cell.
In another aspect, host cells modified with the chimeric Tim receptors of the present disclosure can be used in methods of inhibiting or reducing immune cell depletion. In some embodiments, the immune cell is a T cell or NK cell. In certain embodiments, the reduced depletion in T cells comprises: (a) Reduced expression of PD-1, TIGIT, LAG3, TIM3, or any combination thereof in T cells; (b) Increased production of IFN-gamma, IL-2, TNF-alpha, or any combination thereof in T cells; or both (a) and (b). In certain embodiments, the reduced depletion in NK cells comprises: (a) Reduced expression of PD-1, NKG2A, TIM3, or any combination thereof, in NK cells; (b) Increased production of IFN-gamma, TNF-alpha, or both in NK cells; or both (a) and (b). In certain embodiments, expression of the immune checkpoint molecule is reduced by at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% in a host immune cell expressing the chimeric Tim receptor as compared to a host immune cell not modified with a nucleic acid molecule encoding the chimeric Tim receptor or a chimeric Tim receptor vector. In certain embodiments, the expression of the cytokine is increased by at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 110%, 120%, 130%, 140%, 150%, 160%, 170%, 180%, 190%, 200% or more in a host immune cell expressing the chimeric Tim receptor as compared to a host immune cell not modified with a nucleic acid molecule encoding the chimeric Tim receptor or a chimeric Tim receptor vector.
In another aspect, a chimeric Tim receptor, a polynucleotide encoding a chimeric Tim receptor, a chimeric Tim receptor vector, or a host cell expressing a chimeric Tim receptor according to any of the embodiments provided herein can be used in a method of reducing an immunosuppressive response to phosphatidylserine in a host cell. In certain embodiments, the immunosuppressive response includes secretion of anti-inflammatory cytokines (e.g., IL-10, TGF-beta, or both), reduction of secretion of inflammatory cytokines (e.g., TNF-alpha, IL-1 beta, and IL-12), or both. In certain embodiments, the immunosuppressive response of a host cell to phosphatidylserine is reduced by at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100% as compared to a host cell not modified with a nucleic acid molecule encoding a chimeric Tim receptor or a chimeric Tim receptor vector. In some embodiments, the host cell is an immune cell. In certain embodiments, the host cell is a T cell or NK cell.
In yet other aspects, a chimeric Tim receptor, a polynucleotide encoding a chimeric Tim receptor, a chimeric Tim receptor vector, or a host cell expressing a chimeric Tim receptor according to any of the embodiments provided herein can be used in a method of eliminating a target cell with surface-exposed phosphatidylserine, e.g., for eliminating a cancer cell with surface-presented phosphatidylserine. In certain embodiments, the target cell is a damaged, stressed, apoptotic, necrotic cell (e.g., a tumor cell) with surface exposed phosphatidylserine. In certain embodiments, host cells expressing the chimeric Tim receptor clear damaged, stressed, apoptotic, or necrotic target cells with surface exposed phosphatidylserine via induction of apoptosis or induction of both apoptosis and phagocytosis. Host cells expressing the chimeric Tim receptor can be administered to a subject alone or in combination with other therapeutic agents including, for example, CAR-T cells, TCRs, antibodies, radiation therapies, chemotherapy, small molecules, oncolytic viruses, electric pulse therapies, and the like.
In another aspect, a chimeric Tim receptor, a polynucleotide encoding a chimeric Tim receptor, a chimeric Tim receptor vector, or a host cell expressing a chimeric Tim receptor according to any of the embodiments provided herein can be used in a method of enhancing the effect of a therapeutic agent that induces stress, injury, necrosis, or apoptosis in a cell. Certain therapies, such as chemotherapy, radiation therapy, UV light therapy, electrical pulse therapy, adoptive cell immunotherapy (e.g., CAR-T cells, TCRs) and oncolytic virus therapy, can induce cell damage or death of tumor cells, diseased cells and cells in their surroundings. Cells expressing the chimeric Tim receptor can be administered in combination with cell injury/cytotoxicity therapy to bind to phosphatidylserine moieties exposed on the outer leaflet of the targeted cells and to clear stressed, injured, diseased, apoptotic, necrotic cells.
The chimeric Tim receptor and PARP inhibitor can be administered to a subject in combination with one or more additional therapeutic agents. Examples of therapeutic agents that may be administered in combination with a chimeric Tim composition according to the present description include radiation therapies, adoptive cellular immunotherapeutic agents (e.g., recombinant TCRs, affinity-enhanced TCR, CAR, TCR-CARs, scTCR fusion proteins, dendritic cell vaccines), antibody therapies, immune checkpoint molecule inhibitor therapies, UV light therapies, electrical pulse therapies, high intensity focused ultrasound therapies, oncolytic virus therapies, or drug therapies, such as chemotherapeutic agents, therapeutic peptides, hormones, aptamers, antibiotics, antiviral agents, antifungal agents, anti-inflammatory agents, small molecule therapies, or any combination thereof. In certain embodiments, host cells modified with chimeric Tim receptors can clear stressed, damaged, apoptotic, necrotic, infected, dead cells exhibiting surface phosphatidylserine induced by one or more additional therapeutic agents.
In certain embodiments, the vector comprises a polynucleotide encoding a chimeric Tim receptor and a polynucleotide encoding a cellular immunotherapeutic (e.g., chimeric antigen receptor, recombinant TCR, etc.). In certain embodiments, a single polynucleotide encoding a chimeric Tim receptor and a cellular immunotherapeutic (e.g., CAR) is cloned into a cloning site and expressed from a single promoter, wherein the chimeric Tim receptor sequence and the cellular immunotherapeutic (e.g., CAR) sequence are separated from each other by an Internal Ribosome Entry Site (IRES), a furin cleavage site, or a viral 2A peptide, to allow co-expression of multiple genes from a single open reading frame (e.g., a polycistronic vector). In certain embodiments, the viral 2A peptide is porcine teschovirus-1 (P2A), thosea asigna virus (T2A), equine rhinitis a virus (E2A), foot-and-mouth disease virus (F2A), or a variant thereof. Exemplary T2A peptides include the amino acid sequences of SEQ ID NO. 12, 28, 29 or 30. Exemplary P2A peptides include the amino acid sequence of SEQ ID NO. 13 or 31. Exemplary E2A peptide sequences include the amino acid sequence of SEQ ID NO. 14. Exemplary F2A peptide sequences include the amino acid sequence of SEQ ID NO. 15.
In certain embodiments, a polynucleotide encoding a chimeric Tim receptor and a polynucleotide encoding a cellular immunotherapeutic (e.g., CAR) binding protein are ligated together into a single polynucleotide, and then inserted into a vector. In other embodiments, the polynucleotide encoding the CER and the polynucleotide encoding the CAR or TCR binding protein, respectively, may be inserted into the vector at the same or different cloning site such that the expressed amino acid sequence produces a functional CER and CAR/or TCR. Vectors encoding tandem expression cassettes are referred to herein as "tandem expression vectors".
In certain embodiments, the vector comprises a polynucleotide encoding a chimeric Tim receptor and a polynucleotide encoding a cellular immunotherapeutic agent (e.g., CAR). Polynucleotides encoding the chimeric Tim receptor and the cellular immunotherapeutic (e.g., CAR) may be sequentially cloned into vectors at different cloning sites, with the chimeric Tim receptor and the cellular immunotherapeutic (e.g., CAR) expressed under the control of different promoters.
In certain embodiments, host cells modified with chimeric Tim receptors may also be modified to co-express one or more small gtpases. Rho GTPase, a small (about 21k Da) subfamily of signaling G proteins and Ras superfamily, regulates actin cytoskeletal organization in various cell types and promotes pseudopodia extension and phagosome closure during phagocytosis (see, e.g., castellano et al, 2000, journal of cytosciences (j. Cell sci.) 113:2955-2961). Phagocytosis requires the recruitment of F-actin under tethered cells or particles, and F-actin rearrangement to allow membrane extension, leading to cell or particle internalization. RhoGTPase comprises RhoA, rac1, rac2, rhoG and CDC42. Other small gtpases, such as Rap1, are involved in regulating complement-mediated phagocytosis. Co-expression of small GTPases with chimeric Tim receptors may promote internalization and/or phagosome formation of target cells or particles by host cells. In some embodiments, the recombinant nucleic acid molecule encoding the GTPase is encoded on a different vector than the vector containing the chimeric Tim receptor. In other embodiments, the recombinant nucleic acid molecule encoding the GTPase is encoded on the same vector as the chimeric Tim receptor. The GTPase and chimeric Tim receptor can be expressed on the same vector under the control of different promoters (e.g., at different multiple cloning sites). Alternatively, the chimeric Tim receptor and GTPase may be expressed in a polycistronic vector under the control of one promoter. The polynucleotide sequence encoding the chimeric Tim receptor and the polynucleotide sequence encoding the small GTPase may be isolated from each other by IRES or viral 2A peptide in a polycistronic vector. Exemplary 2A peptides include T2A (SEQ ID NO: 12), P2A (SEQ ID NO: 13), E2A (SEQ ID NO: 14), F2A (SEQ ID NO: 15). Examples of gtpases that may be co-expressed with the chimeric Tim receptor include Rac1, rac2, rab5 (also known as Rab5 a), rab7, rap1, rhoA, rhoG, CDC42, or any combination thereof. In particular embodiments, the GTPase comprises or is a sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, at least 99.5%, or 100% identical to the Rac1 amino acid sequence of SEQ ID NO:17, the Rab5 amino acid sequence of SEQ ID NO:18, the Rab7 amino acid sequence of SEQ ID NO:19, the Rap1 amino acid sequence of SEQ ID NO:20, the RhoA amino acid sequence of SEQ ID NO:21, the CDC42 amino acid sequence of SEQ ID NO:22, or any combination thereof.
In certain embodiments, host cells modified with chimeric Tim receptors can also be modified to co-express cellular immunotherapeutic agents (e.g., CARs, TCRs, etc.). In some embodiments, the cellular immunotherapeutic agent comprises a Chimeric Antigen Receptor (CAR). CARs are recombinant receptors, which generally include: an extracellular domain comprising a binding domain that binds to a target antigen; an intracellular signaling domain (e.g., including an intracellular signaling domain comprising ITAM and optionally an intracellular co-stimulatory domain), and a transmembrane domain located between and connecting the extracellular domain and the intracellular signaling domain.
Binding domains suitable for use in the CARs of the present disclosure comprise any antigen binding polypeptide. The binding domain may comprise an antibody or an anti-antibody thereofThe pro-binding fragments comprise, for example, full-length heavy chains, fab fragments, fab ', F (ab') 2 sFv, VH domain, VL domain, dAb, VHH, CDR and scFv. In certain embodiments, the CAR binding domain is murine, chimeric, human, or humanized.
In certain embodiments, the binding domain of the CAR targets a cancer or tumor antigen. Exemplary antigens that a CAR may target include CD138, CD38, CD33, CD123, CD72, CD79a, CD79B, mesothelin, PSMA, BCMA, ROR1, MUC-16, L1CAM, CD22, CD19, CD20, CD23, CD24, CD37, CD30, CA125, CD56, c-Met, EGFR, GD-3, HPV E6, HPV E7, MUC-1, HER2, folate receptor alpha, CD97, CD171, CD179a, CD44v6, WT1, VEGF-alpha, VEGFR1, IL-13 Ralpha 2, IL-11 Ralpha, PSA, fcRH5, NKG2D ligand, NY-ESO-1, TAG-72, CEA, hepcidin A2, hepcidin B2, lewis A antigen, MAGE-A1, RAGE-1, folate receptor beta, EGFRviii, VEGFR-2, SSX-4, LGT 3, acetyl sugar-2, acetyl sugar G2, and GD-2.
In certain embodiments, the extracellular domain of a CAR provided in the present disclosure optionally includes an extracellular non-signaling spacer or linker domain. Where included, such a spacer or linker domain may position the binding domain at a location remote from the surface of the host cell to further allow for proper cell-to-cell contact, binding and activation. The extracellular spacer domain is typically located between the extracellular binding domain and the transmembrane domain of the CAR. The length of the extracellular spacer can be varied to optimize target molecule binding based on the selected target molecule, the selected binding epitope, the binding domain size, and affinity (see, e.g., guest et al, journal of immunotherapy, 28:203-11, 2005; pct publication No. WO 2014/031687). In certain embodiments, the extracellular spacer domain is an immunoglobulin hinge region (e.g., igG1, igG2, igG3, igG4, igA, igD). The immunoglobulin hinge region may be a wild-type immunoglobulin hinge region or an altered wild-type immunoglobulin hinge region. Altered IgG is described in PCT publication No. WO 2014/031687 4 A hinge region incorporated in its entirety by referenceHerein, a method for manufacturing a semiconductor device is provided. In a particular embodiment, the extracellular spacer domain comprises a modified IgG having the amino acid sequence of SEQ ID NO. 3 4 A hinge region.
Other examples of hinge regions that can be used in the CARs described herein include hinge regions from extracellular regions of type 1 membrane proteins, such as CD8a, CD4, CD28, and CD7, which can be wild-type or variants thereof. In a particular embodiment, the extracellular spacer domain comprises a CD8a hinge region having the amino acid sequence of SEQ ID NO. 70. In another specific embodiment, the extracellular spacer domain comprises a CD28 hinge region having the amino acid sequence of SEQ ID NO. 32. In further embodiments, the extracellular spacer domain comprises all or part of an immunoglobulin Fc domain selected from a CH1 domain, a CH2 domain, a CH3 domain, or a combination thereof (see, e.g., PCT publication WO2014/031687, which is incorporated herein by reference in its entirety). In still further embodiments, the extracellular spacer domain may include a stem region of a type II C-lectin (an extracellular domain located between the C-lectin domain and the transmembrane domain). Type II C-lectins comprise CD23, CD69, CD72, CD94, NKG2A and NKG2D.
The CARs of the disclosure include a transmembrane domain connecting and between an extracellular domain and an intracellular signaling domain. The transmembrane domain ranges from about 15 amino acids to about 30 amino acids in length. The transmembrane domain is a hydrophobic alpha helix that passes through the host cell membrane and anchors the CAR in the host cell membrane. The transmembrane domain may be fused directly to the binding domain or extracellular spacer domain, if present. In certain embodiments, the transmembrane domain is derived from an intact membrane protein (e.g., receptor, cluster of Differentiation (CD) molecule, enzyme, transporter, cell adhesion molecule, etc.). The transmembrane domain may be selected from the same molecule as the extracellular domain or intracellular signaling domain (e.g., the CAR comprises a CD28 costimulatory signaling domain and a CD28 transmembrane domain). In certain embodiments, the transmembrane domain and extracellular domain are each selected from different molecules. In other embodiments, the transmembrane domain and intracellular signaling domain are each selected from different molecules. In yet other embodiments, the transmembrane domain, extracellular domain and intracellular signaling domain are each selected from different molecules.
Exemplary transmembrane domains for the CARs of the present disclosure include the CD28, CD2, CD4, CD8a, CD5, CD3 epsilon, CD3 delta, CD3 zeta, CD9, CD16, CD22, CD25, CD27, CD33, CD37, CD40, CD45, CD64, CD79A, CD, B, CD, CD86, CD95 (Fas), CD134 (OX 40), CD137 (4-1 BB), CD150 (SLAMF 1), CD152 (CTLA 4), CD154 (CD 40L), CD200R, CD223 (LAG 3), CD270 (HVEM), CD272 (BTLA), CD273 (PD-L2), CD274 (PD-L1), CD278 (ICOS), CD279 (PD-1), CD300, CD357 (GITR), A2aR, DAP10, fcrα, fcrβ, fcrγ, fyn, GAL9, KIR, lck, LAT, LRP, NKG2D, NOTCH1, NOTCH2, ch3, ch4, tcrp 2, PTCH2, ptk, ltrp α, and the transmembrane domain Zap domain. Exemplary CD28 transmembrane domains include the amino acid sequence of SEQ ID NO. 7. In a particular embodiment, the transmembrane domain comprises a CD8a transmembrane domain having the amino acid sequence of SEQ ID NO. 33.
The intracellular signaling domain of the CAR is an intracellular effector domain and is capable of transmitting a functional signal to a cell in response to binding of the extracellular domain of the CAR to a target molecule (e.g., a cancer antigen) and activating at least one of a normal effector function or response of an immune cell (e.g., a T cell engineered to express the CAR). In some embodiments, the CAR induces a function of the T cell, such as cytolytic activity or T helper cell activity, such as secretion of cytokines or other factors. An intracellular signaling domain may be any portion of an intracellular signaling molecule that retains sufficient signaling activity. In some embodiments, the intracellular signaling domain is obtained from an antigen receptor component (e.g., TCR) or a co-stimulatory molecule. In some embodiments, the full-length intracellular signaling domain of an antigen receptor or co-stimulatory molecule is used. In some embodiments, a truncated portion of the intracellular signaling domain of an antigen receptor or co-stimulatory molecule is used, provided that the truncated portion retains sufficient signaling activity. In further embodiments, the intracellular signaling domain is a variant of the full length or truncated portion of the intracellular signaling domain of the antigen receptor co-stimulatory molecule, provided that the variant retains sufficient signaling activity (i.e., is a functional variant).
In certain embodiments, the intracellular signaling domain of the CAR comprises a signaling domain comprising an immune receptor tyrosine activation motif (ITAM). The signaling domain containing ITAM typically contains at least one (one, two, three, four or more) ITAM, which refers to YXXL/I-X 6-8 Conserved motifs of YXXL/I. The signaling domain containing ITAM can initiate T cell activation signaling following antigen binding or ligand binding. The ITAM signaling domain comprises intracellular signaling domains such as cd3γ, cd3δ, cd3ε, cd3ζ, CD5, CD22, CD79a, CD278 (ICOS), DAP12, fcrγ, and CD66 d. Exemplary CD3 zeta signaling domains that can be used in the CARs of the present disclosure include the amino acid sequences of SEQ ID NO 27 or 5.
The CAR intracellular signaling domain optionally includes a co-stimulatory signaling domain that, when activated with a primary or classical (e.g., ITAM-driven) activation signal, promotes or enhances a T cell response, such as T cell activation, cytokine production, proliferation, differentiation, survival, effector function, or a combination thereof. Co-stimulatory signaling domains for the CAR include, for example, CD27, CD28, CD40L, GITR, NKG2C, CARD1, CD2, CD7, CD27, CD30, CD40, CD54 (ICAM), CD83, CD134 (OX-40), CD137 (4-1 BB), CD150 (SLAMF 1), CD152 (CTLA 4), CD223 (LAG 3), CD226, CD270 (HVEM), CD273 (PD-L2), CD274 (PD-L1), CD278 (ICOS), DAP10, LAT, LFA-1, LIGHT, NKG2C, SLP76, TRIM, ZAP70, or any combination thereof. In particular embodiments, the costimulatory signaling domain comprises an OX40, CD2, CD27, CD28, ICAM-1, LFA-1 (CD 11a/CD 18), ICOS (CD 278), or 4-1BB (CD 137) signaling domain. Exemplary CD28 costimulatory signaling domains that can be used in the CARs of the present disclosure include the amino acid sequences of SEQ ID NO 26 or 4. An exemplary 4-1BB costimulatory signaling domain comprises the amino acid sequence of SEQ ID NO: 122. In certain embodiments, the CAR comprises one, two, or more co-stimulatory signaling domains.
In some embodiments, the CAR is a recombinant receptor consisting of an scFv binding domain derived from an antibody, a transmembrane domain, and an intracellular signaling domain. In some embodiments, the intracellular signaling domain is from a TCR.
In certain embodiments, the chimeric antigen receptor comprises an amino acid sequence from any mammalian species, including human, primate, cow, horse, goat, sheep, dog, cat, mouse, rat, rabbit, guinea pig, transgenic species thereof, or any combination thereof. In certain embodiments, the chimeric antigen receptor is murine, chimeric, human or humanized.
In certain embodiments, the CAR is a first generation CAR, a second generation CAR, or a third generation CAR. First generation CARs typically have an intracellular signaling domain comprising cd3ζ, fcγri, or other intracellular signaling domain containing an activation domain of ITAM to provide a T cell activation signal. The second generation CAR further comprises a costimulatory signaling domain (e.g., from an endogenous T cell costimulatory receptor, such as CD28, 4-1BB, or ICOS). The third generation CAR includes an activation domain comprising ITAM, a first costimulatory signaling domain, and a second costimulatory signaling domain.
In some embodiments, one or more of the extracellular domain, the binding domain, the linker, the transmembrane domain, the intracellular signaling domain, or the costimulatory domain comprises a linking amino acid. "connecting amino acid" or "connecting amino acid residues" refers to one or more (e.g., about 2-20) amino acid residues between two adjacent domains, motifs, regions, modules or fragments of a protein, such as between a binding domain and an adjacent linker, between a transmembrane domain and an adjacent extracellular or intracellular domain, or at one or both ends of a linker connecting the two domains, motifs, regions, modules or fragments (e.g., between a linker and an adjacent binding domain, or between a linker and an adjacent hinge). The linking amino acids may be created by the construct design of the fusion protein (e.g., amino acid residues generated during construction of the polynucleotide encoding the fusion protein by use of restriction sites or self-cleaving peptide sequences). For example, the transmembrane domain of the fusion protein may have one or more linking amino acids at the amino terminus, the carboxy terminus, or both.
Exemplary binding domain, extracellular spacer, transmembrane domain, and intracellular signaling domain sequences for the CARs of the present disclosure are listed in table 11.
Table 11.
/>
In certain embodiments, the host cell modified with the chimeric Tim receptor co-expresses a recombinant TCR. Recombinant TCR proteins comprise "traditional" TCRs consisting of heterodimers of an alpha chain polypeptide and a beta chain polypeptide or heterodimers of a gamma chain polypeptide and a delta chain polypeptide, binding fragments thereof, and fusion proteins, including, for example, single chain TCRs, single domain TCRs, soluble TCR fusion TCR proteins, and TCR fusion constructs (trucs TM ). In certain embodiments, the tandem expression cassette includes a polynucleotide encoding a recombinant tcrp chain comprising a tcrp variable region and a tcrp constant region, and a polynucleotide encoding a recombinant tcra chain comprising a tcra variable region and a tcra constant region. In certain embodiments, the recombinant TCR is an enhanced affinity TCR. In one embodiment, the recombinant TCR is an enhanced affinity TCR.
In certain embodiments, the recombinant TCR-binding protein is a single chain TCR (scTCR) comprising vα linked to vβ via a flexible linker. In some embodiments, the scTCR comprises a vα -linker-vβ polypeptide. In other embodiments, the scTCR comprises a vβ -linker-vα polypeptide.
In certain embodiments, host cells modified with chimeric Tim receptors may also be modified to co-express single chain TCR (scTCR) fusion proteins. The scTCR fusion protein includes a binding domain comprising a scTCR (TCR V.alpha.domain linked to a TCR V.beta.domain), optionally an extracellular spacer, a transmembrane domain, and an intracellular component comprising a single intracellular signaling domain providing T cell activation signals (e.g., an activation domain containing CD3 zeta ITAM) and optionally a costimulatory signaling domain (see, aggen et al 2012, gene therapy 19:365-374; stone et al, cancer immunology and immunotherapy (Cancer immunology), 2014, 63:1163-76).
In certain embodiments, host cells modified with a chimeric Tim receptor can also be modified to co-express a T cell receptor-based chimeric antigen receptor (TCR-CAR). TCR-CARs are heterodimeric fusion proteins, which typically comprise a soluble TCR (a polypeptide chain comprising a vα domain and a cα domain, and a polypeptide chain comprising a vβ domain and a cβ domain), wherein the vβcβ polypeptide chain is linked to a transmembrane domain and an intracellular signaling component (e.g., an ITAM-containing activation domain and optionally a co-stimulatory signaling domain) (see, e.g., walsen et al, 2017, science report (Scientific Reports) & 7: 10713).
In certain embodiments, an engineered host cell that co-expresses a chimeric Tim receptor and a cellular immunotherapeutic (e.g., CAR, TCR, etc.) includes a recombinant nucleic acid encoding the chimeric Tim receptor and a recombinant nucleic acid molecule encoding the cellular immunotherapeutic on different vectors within the engineered host cell.
In some embodiments, an engineered host cell that co-expresses a chimeric Tim receptor and a cellular immunotherapeutic (e.g., CAR, TCR, etc.) includes a recombinant nucleic acid encoding the chimeric Tim receptor and a recombinant nucleic acid molecule encoding the cellular immunotherapeutic on the same vector as the chimeric Tim receptor within the engineered host cell. The chimeric Tim receptor and the cellular immunotherapeutic agent may be expressed under the control of different promoters on the same vector (e.g., at different multiple cloning sites). Alternatively, the chimeric Tim receptor and cellular immunotherapeutic agent may be expressed under the control of one promoter in a polycistronic vector (e.g., a tandem expression vector). The polynucleotide sequence encoding the chimeric Tim receptor and the polynucleotide sequence encoding the cellular immunotherapeutic may be isolated by IRES or viral 2A peptide in a polycistronic vector.
Tandem expression cassettes, tandem expression vectors, and engineered host cells comprising them are described in international application publication No. WO2019/191339, which is incorporated herein by reference in its entirety.
Host cells expressing the chimeric Tim receptor can be administered to a subject alone or in combination with other therapeutic agents including, for example, CAR-T cells, TCRs, antibodies, radiation therapies, chemotherapy, small molecules, oncolytic viruses, electric pulse therapies, and the like.
In certain embodiments, the chimeric Tim receptor and the adoptive cellular immunotherapeutic (e.g., CAR, TCR-CAR, TCR, etc., as described above) are administered to a subject in the same host cell or in different host cells. In certain embodiments, the chimeric Tim receptor and the adoptive cellular immunotherapeutic are expressed in the same host cell from the same vector or from different vectors. In certain embodiments, the chimeric Tim receptor and the adoptive cellular immunotherapeutic are expressed in the same host cell from a polycistronic vector. In certain embodiments, the chimeric Tim receptor is expressed in the same host cell type as the adoptive cellular immunotherapeutic (e.g., the chimeric Tim receptor is expressed in CD 4T cells and the CAR/or TCR is expressed in CD 4T cells, or the chimeric Tim receptor is expressed in CD8T cells and the CAR/or TCR is expressed in CD8T cells). In other embodiments, the chimeric Tim receptor is expressed in a different host cell type as an adoptive immunotherapeutic (e.g., the chimeric Tim receptor is expressed in CD 4T cells and the CAR/or TCR is expressed in CD8T cells). Cellular immunotherapy compositions, methods of manufacture, and methods of use comprising combinations of immune cells or cell subsets engineered with chimeric Tim receptors and cellular immunotherapeutic agents (e.g., CARs, TCRs, etc.) are described in PCT international publication No. WO2019/191340, which is incorporated herein by reference in its entirety.
Exemplary antigens that recombinant TCR, affinity enhanced TCR, CAR, TCR-CAR or scTCR fusion proteins can target include WT-1, mesothelin, MART-1, NY-ESO-1, MAGE-A3, HPV E7, survivin, alpha fetoprotein and tumor specific neoantigens.
The CARs of the present disclosure can target a variety of antigens, including viral antigens, bacterial antigens, fungal antigens, parasitic antigens, tumor antigens, autoimmune disease antigens. Exemplary antigens that a CAR may target include CD138, CD38, CD33, CD123, CD72, CD79a, CD79B, mesothelin, PSMA, BCMA, ROR1, MUC-16, L1CAM, CD22, CD19, CD20, CD23, CD24, CD37, CD30, CA125, CD56, c-Met, EGFR, GD-3, HPV E6, HPV E7, MUC-1, HER2, folate receptor alpha, CD97, CD171, CD179a, CD44v6, WT1, VEGF-alpha, VEGFR1, IL-13 Ralpha 2, IL-11 Ralpha, PSA, fcRH5, NKG2D ligand, NY-ESO-1, TAG-72, CEA, hepcidin A2, hepcidin B2, lewis A antigen, MAGE-A1, RAGE-1, folate receptor beta, EGFRviii, VEGFR-2, SSX-4, LGT 3, acetyl sugar-2, acetyl sugar G2, and GD-2.
Radiation therapy includes external beam radiation therapy (e.g., conventional external beam radiation therapy, stereotactic radiation therapy, three-dimensional conformal radiation therapy, intensity modulated radiation therapy, volume modulated arc therapy, particle therapy, proton therapy, and auger therapy), brachytherapy, systemic radioisotope therapy, intraoperative radiation therapy, or any combination thereof.
Exemplary antibodies for use in combination with the chimeric Tim compositions described herein include rituximab (rituximab), pertuzumab (pertuzumab), trastuzumab (trastuzumab), alemtuzumab (alemtuzumab), tiuximab (Ibritumomab tiuxetan), bentuximab (Brentuximab vedotin), cetuximab (cetuximab), bevacizumab (bevacizumab), acimumab (abciximab), adalimumab (adalimumab), alfumagram (alexaprop), barlizumab (basilizimab), belimumab (bezimab), bei Zuoluo mab (bezlotoxumab), cinacazumab (canakiumab), cetuzumab (certolizumab pegol), daclizumab (daclizumab), dienumab (denoxiab), alemtuzumab (bevacizumab), lizumab (alemtuzumab), and adalimumab (paluzumab).
Exemplary inhibitors of immune checkpoint molecules that may be used in conjunction with the chimeric Tim compositions described herein include checkpoint inhibitors that target PD-L1, PD-L2, CD80, CD86, B7-H3, B7-H4, HVEM, adenosine, GAL9, VISTA, CEACAM-1, CEACAM-3, CEACAM-5, PVRL2, PD-1, CTLA-4, BTLA, KIR, LAG3, TIM3, A2aR, CD244/2B4, CD160, TIGIT, LAIR-1, PVRIG/CD112R, or any combination thereof. In certain embodiments, the immune checkpoint inhibitor may be an antibody, a peptide, an RNAi agent, or a small molecule. Antibodies specific for CTLA-4 may be ipilimumab (ipilimumab) or tremelimumab (tremelimumab). The antibody specific for PD-1 may be pidizumab (pidirizumab), nivolumab (nivolumab) or pembrolizumab (pembrolizumab). The antibody specific for PD-L1 may be Dewaruzumab (durvalumab), ab-zhuzumab (atezolizumab), or Avelumab (avelumab).
Exemplary chemotherapies for use in conjunction with the chimeric Tim receptor compositions described herein can include alkylating agents, platinum-based agents, cytotoxic agents, chromatin function inhibitors, topoisomerase inhibitors, microtubule-inhibiting drugs, DNA damaging agents, antimetabolites (e.g., folic acid antagonists, pyrimidine analogs, purine analogs, and sugar-modified analogs), DNA synthesis inhibitors, DNA interacting agents (e.g., intercalating agents), and DNA repair inhibitors.
Chemotherapy includes nonspecific cytotoxic agents that inhibit mitosis or cell division, as well as molecular targeted therapies that prevent the growth and spread of cancer cells by targeting specific molecules (e.g., oncogenes) that are involved in tumor growth, progression, and metastasis. Exemplary non-specific chemotherapeutics for use in conjunction with the expression cassette compositions described herein can include alkylating agents, platinum-based agents, cytotoxic agents, chromatin function inhibitors, topoisomerase inhibitors, microtubule-inhibiting drugs, DNA damaging agents, antimetabolites (e.g., folic acid antagonists, pyrimidine analogs, purine analogs, and sugar-modified analogs), DNA synthesis inhibitors, DNA-interacting agents (e.g., intercalating agents), hypomethylation agents, and DNA repair inhibitors.
Examples of chemotherapeutic agents contemplated for use in the combination therapies contemplated herein include vemurafenib,Dabrafenib, trametinib, cobicitinib and anastrozoleBicalutamide->Bleomycin sulfateBusulfan->Busulfan injection>Capecitabine->N4-pentoxycarbonyl-5-deoxy-5-fluorocytosine nucleoside, carboplatin +.>Carmustine>ChlorambucilCisplatin->Cladribine>Cyclophosphamide (/ -s)>Or->) Cytarabine, cytosine-ArabicGlycoside->Cytarabine liposome injection>Dacarbazine->Actinomycin (actinomycin D, cosmegan), daunorubicin hydrochloride +.>Daunorubicin citrate liposome injection>Dexamethasone, docetaxel +.>Doxorubicin hydrochloride->Etoposide->Fludarabine phosphate->5-fluorouracilFluotamide->Tizacitabine, gemcitabine (difluodeoxycytidine), hydroxyureaIdarubicin->Ifosfamide->Irinotecan->L-asparaginase->Calcium leucovorin, melphalan +.>6-mercaptopurine->Methotrexate>Mitoxantrone->Getuzumab, paclitaxel +.>Phoenix (yttrium 90/MX-DTPA), penstatin and polifeprosan 20 +/f for carmustine-containing implants>Tamoxifen citrateTeniposide->6-thioguanine, thiotepa, tirapazamine >Topotecane hydrochloride for injection>Vinblastine->Vincristine->Ibrutinib, vinatoxin, crizotinib, aprepitant, bujitinib, ceritinib and vinorelbine +.>
Exemplary alkylating agents for combination therapies contemplated herein include nitrogen mustards, ethyleneimine derivatives, alkyl sulfonates, nitrosoureas and triazenes, uratemustine (amisulci) Uracil nitrogen/>) Mustard of nitrogenCyclophosphamide (/ -s)>Revimmune TM ) Ifosfamide->Melamine->Chlorambucil->Pipobromine-> Triethylenemelamine->Triethylenethiophosphamide, temozolomide +.>Thiotepa->Busulfan (Busulfan)Carmustine>Lomustine>StreptozotocinAnd dacarbazine->Other exemplary alkylating agents for combination therapies contemplated herein include, but are not limited to, oxaliplatin +.>Temozolomide (+)>And->) The method comprises the steps of carrying out a first treatment on the surface of the Actinomycetes (actinomycetes)Plain (also called actinomycin D,)>) The method comprises the steps of carrying out a first treatment on the surface of the Melphalan (also known as L-PAM, L-oncolytic toxin and phenylalanine mustard,/->) The method comprises the steps of carrying out a first treatment on the surface of the Altretamine (also known as altretamine (HMM)) ->) The method comprises the steps of carrying out a first treatment on the surface of the Carmustine>BendamustineBusulfan (/ -herba)>And->) The method comprises the steps of carrying out a first treatment on the surface of the Carboplatin->Lomustine (also known as CCNU,) The method comprises the steps of carrying out a first treatment on the surface of the Cisplatin (also known as CDDP,>and->-AQ); chlorambucil->Cyclophosphamide (/ -s)>And->) The method comprises the steps of carrying out a first treatment on the surface of the Dacarbazine (also known as DTIC, DIC and imidazole carboxamide,) >) The method comprises the steps of carrying out a first treatment on the surface of the Altretamine (also known as altretamine (HMM)) ->) The method comprises the steps of carrying out a first treatment on the surface of the Ifosfamide->Prednumustine; methyl benzyl hydrazineDichloromethyldiethylamine (also known as nitrogen mustard, nitrogen medium and mechlorethamine hydrochloride,/-)>) The method comprises the steps of carrying out a first treatment on the surface of the Streptozotocin->Thiotepa (also known as thiophosphamide, TESPA and TSPA,/-for example)>) The method comprises the steps of carrying out a first treatment on the surface of the Cyclophosphamide (cyclophosphamide)And bendamustine hydrochloride
Exemplary platinum-based agents for the combination therapies contemplated herein include carboplatin, cisplatin, oxaliplatin, nedaplatin, picoplatin, satraplatin, phenanthrlatin, and triplatin tetranitrate.
Exemplary hypomethylation agents for combination therapy include azacytidine and decitabine.
Exemplary molecular targeted inhibitors for use in conjunction with the chimeric Tim receptor compositions described herein include small molecules that target molecules involved in cancer cell growth and survival, including, for example, receptor tyrosine kinase inhibitors, RAF inhibitors, BCL-2 inhibitors, ABL inhibitors, TRK inhibitors, c-KIT inhibitors, c-MET inhibitors, CDK4/6 inhibitors, FAK inhibitors, FGFR inhibitors, FLT3 inhibitors, IDH1 inhibitors, IDH2 inhibitors, PDGFRA inhibitors, and RET inhibitors.
Exemplary molecular targeted therapies include hormone antagonists, signaling inhibitors, gene expression inhibitors (e.g., translation inhibitors), apoptosis inducers, angiogenesis inhibitors (e.g., VEGF pathway inhibitors), tyrosine kinase inhibitors (e.g., EGF/EGFR pathway inhibitors), growth factor inhibitors, GTPase inhibitors, serine/threonine kinase inhibitors, transcription factor inhibitors, cancer-related driver gene mutation inhibitors, B-Raf inhibitors, MEK inhibitors, mTOR inhibitors, adenosine pathway inhibitors, EGFR inhibitors, PI3K inhibitors, BCL2 inhibitors, VEGFR inhibitors, MET inhibitors, MYC inhibitors, BCR-ABL inhibitors, HER2 inhibitors, H-RAS inhibitors, K-RAS inhibitors, PDGFR inhibitors, ALK inhibitors, ROS1 inhibitors, BTK inhibitors, TRK inhibitors, c-KIT inhibitors, c-MET inhibitors, CDK4/6 inhibitors, FAK inhibitors, FGFR inhibitors, FLT3 inhibitors, IDH1 inhibitors, IDH2 inhibitors, PARP inhibitors, PDGFRA inhibitors, and RET inhibitors. In certain embodiments, using molecular targeted therapies includes administering molecular targeted therapies specific for a molecular target to a subject identified as having a tumor with the molecular target (e.g., driving an oncogene). In certain embodiments, the molecular target has an activating mutation. In certain embodiments, the use of chimeric Tim receptor modified cells in combination with a molecular targeted inhibitor increases the intensity of the anti-tumor response, the persistence of the anti-tumor response, or both. In certain embodiments, less than typical doses of molecular targeted therapies are used in combination with cells modified with chimeric Tim receptors.
Exemplary angiogenesis inhibitors include, but are not limited to, A6 (Angstrom Pharmaceuticals), ABT-510 (Abbott Laboratories), ABT-627 (atrasentan) (Abbott Laboratories/Xinlay), ABT-869 (Abbott laboratories), actimid (CC 4047, pomalidomide) (Celgene Corporation), adGVGPEDF.11D (GenVec), ADH-1 (Exherin) (Adherex Technologies), AEE788 (Novartis), AG-013136 (axitinib) (Pfizer), AG3340 (primenta) (Agouron Pharmaceuticals), AGX1053 (AngioGenex), AGX51 (AngioGenex), ALN-VSP (ALN-VSP O2) (Alnylam Pharmaceuticals), AMG 386 (Amgen), AMG706 (Amgen) Apatinib (YN 968D 1) (Jiangsu Hengrui Medicine), AP23573 (ground phosphorus limus/MK 8669) (Ariad Pharmaceuticals), AQ4N (Novavea), ARQ 197 (ArQule), ASA404 (Novartis/Antisoma), attomode (Callisto Pharmaceuticals), ATN-161 (Attenuon), AV-412 (Aveo Pharmaceuticals), AV-951 (Aveo Pharmaceuticals), avastin (Bevacizumab) (Genntech), AZD2171 (Sidinib/Recentin) (AstraZeneca), BAY 57-9352 (tiratinib) (Bayer), BEZ235 (Novartis), BIBF1120 (Boehringer Ingelheim Pharmaceuticals), BIBW 2992 (Boehringer Ingelheim Pharmaceuticals), BMS-275291 (Bristol-Myers Squibb), BMS-582664 (brinib) (Bristol-Myers Squibb), BMS-690514 (Bristol-Myers Squibb), calcitriol, CCI-779 (torisel) (Wyeth), CDP-791 (Imclone Systems), cephalotaxine (homocephalotaxine/HHT) (ChemGenex Therapeutics), celecoxib (celecoxib) (Pfizer), CEP-7055 (Cephalon/Sanofi), CHIR-265 (Chiron Corporation), NGR-TNF, COL-3 (Metastat) (Collagenex Pharmaceuticals), combretastatin (Oxigene), CP-751, 871 (Figitumumab) (Pfizer), CP-547, 632 (Pfizer), CS-7017 (Daiichi Sankyo Pharma), CT-322 (Adginex) (Adneus) curcumin, dalteparin (famoxamine) (Pfizer), disulfiram (antabust), E7820 (Eisai Limited), E7080 (Eisai Limited), EMD 121974 (cilengitide) (EMD Pharmaceuticals), ENMD-1198 (EntreMed), ENMD-2076 (EntreMed), endness (simcore), erbitux (ImClone/Bristol-Myers Squibb), EZN-2208 (Enzon Pharmaceuticals), EZN-2968 (Enzon Pharmaceuticals), GC1008 (Genzyme), genistein, GSK1363089 (fortinib) (GlaxoSmithKline), GW786034 (pazosmithkline), GT-111 (Vascular Biogenics ltd), GT-111 (paxosmithkline), IMC-1121B (ramucirumab) (ImClone Systems), IMC-18F1 (ImClone Systems), IMC-3G3 (ImClone LLC), INCB007839 (Incyte Corporation), INGN 241 (Introgen Therapeutics), iressa (ZD 1839/gefitinib), LBH589 (Faridak/Panobinostst) (Novartis), lucentis (ranibizumab) (Genntech/Novartis), LY317615 (Enzastaurin) (Eli Lilly and Company), macugen (piplitani) (Pfizer), MEDI522 (Abegrin) (MedImmune), MLN518 (tanditinib) (Millennium), neovastat (AE 941/benifene) (Aetenna Zentaris), nexavar (Bayer/Onyx), NM-3 (Genzymoport), nadine (Cougar Biotechnology), NPI-2358), OSI (Paloma Pharmaceuticals-Paloma Pharmaceuticals (6339), inc.), panzem capsules (2 ME 2) (EntreMed), panzem NCD (2 ME 2) (EntreMed), PF-0234066 (Pfizer), PF-04554878 (Pfizer), PI-88 (Progen Industries/Medigen Biotechnology), PKC412 (Novartis), tea polyphenol E (green tea extract) (Polypheno E International, inc.), PPI-2458 (Praecis Pharmaceuticals), PTC299 (PTC Therapeutics), PTK787 (Watanani) (Novartis), PXD101 (belisestat) (CuraGen Corporation), RAD001 (everolimus) (Novartis), RAF265 (Novartis), ruigafini (BAY 73-4506) (Bayer), revlimid (Celgene), anecortave (Alcon Research), SN38 (liposome) (Neopharm), SNS-032 (BMS-387032) (Sunesis), SOM230 (Papanicotide) (Novartis), squalamine (Genaera), suramin, soptan (Pfizer), taroKam (Genntech), TB-403 (Thrombogenics), tempostatin (Collard Biopharmaceuticals), tetrathiomolybdate (Sigma-Aldrich), TG100801 (TargeGen), thalidomide (Celgene Corporation), tinzaparin sodium, TKI258 (Novartis), TRC093 (Tracon Pharmaceuticals Int.), VEGF Trap (Abelcep) (Regeneron Pharmaceuticals), VEGF Trap-Eye (Regeneron Pharmaceuticals), veglin (VasGene Therapeutics), bortezomib (lennium), XL (Exelxis), XL (XL 6474), exelxis (TK), xl (XK 6474), exelxix (ZS), XK (ZS 6474) and Exelxix (ZS).
Exemplary B-Raf inhibitors include vemurafenib, dabrafenib and Kang Naifei ni.
Exemplary MEK inhibitors include bimetanib, cobetanib, refatinib, semetanib, and tramatinib.
Exemplary BTK inhibitors include ibrutinib, loxo-305, tiratinib, GDC-0853, acartinib, ONO-4059, capetinib, BGB-3111, HM71224 and M7583.
Exemplary TRK inhibitors include emtrictinib, lartinib, CH7057288, ONO-7579, LOXO-101, letatinib, and LOXO-195.
Exemplary c-KIT inhibitors include imatinib, sunitinib, and bunatinib.
Exemplary c-MET inhibitors include carbamazepine, crizotinib, tivantinib, onapristal bead mab, INCB28060, AMG-458, sivoratib, and terbutanib.
Exemplary CDK4/6 inhibitors include palbociclib, rebabociclib, flumazenil and troraxili.
Exemplary FAK inhibitors include difatinib, GSK2256098, BI853520 and PF-00562271.
Exemplary FGFR inhibitors include erdasatinib, pemitinib, inflitinib, luo Jiati ni, AZD4547, BGJ398, FP-1039, and ARQ 087.
Exemplary FLT-3 inhibitors include quezatinib, clarithromycin, ji Ruiti, midostaurin, and letatinib.
Exemplary IDH1 inhibitors include Ai Funi cloth, BAY-1436032 and AGI-5198.
Exemplary IDH2 inhibitors include azepine.
Exemplary PDGFRA inhibitors include imatinib, regorafenib, clarithromycin, and olamumab.
Exemplary pan-RAF inhibitors include belvarafenib, LXH, LY3009120, INU-152 and HM95573.
Exemplary RET inhibitors include lenvatinib, aletinib, vandetanib, cabozitinib, BLU-667, and LOXO-292.
Exemplary ROS1 inhibitors include ceritinib, loratidine, emtrictinib, crizotinib, TPX-0005, and DS-6051b.
Exemplary Vascular Endothelial Growth Factor (VEGF) receptor inhibitors include, but are not limited to bevacizumabAxitinib->Alanine brinib (BMS-582664, (S) - ((R) -1- (4- (4-fluoro-2-methyl-1H-indol-5-yloxy) -5-methylpyrrolo [2, 1-f)][1,2,4]Triazin-6-yloxy) propan-2-yl) 2-aminopropionate); sorafenib->Pazopanib->Sunitinib malate->Sidinib (AZD 2171, CAS 288383-20-1); nidaminib (BIBF 1120, CAS 928326-83-4); foretinib (GSK 1363089); tiratinib (BAY 57-9352, CAS 332012-40-5); apatinib (YN 968D1, CAS 811803-05-1); imatinib- >Panatinib (AP 24534, CAS 943319-70-8); tivozanib (AV 951, CAS 475108-18-0); regorafenib (BAY 73-4506, CAS 755037-03-7); varanib dihydrochloride (PTK 787, CAS 212141-51-0); brinib (BMS-540215, CAS 649735-46-6); vandetanib (>Or AZD 6474); motrasenib diphosphate (AMG 706, CAS 857876-30-3, N- (2, 3-dihydro-3, 3-dimethyl-1H-indol-6-yl) -2- [ (4-pyridylmethyl) amino)]-3-pyridinecarboxamide as described in PCT publication No. WO 02/066470); poly Wei Tini di-lactate (TKI 258, CAS 852433-84-2); linfanib (ABT 869, CAS 796967-16-3); cabotinib(XL 184, CAS 849217-68-1); litatinib (CAS 111358-88-4); n- [5- [ [ [5- (1, 1-dimethylethyl) -2-oxazolyl ]]Methyl group]Thio-]-2-thiazolyl]-4-piperidinecarboxamide (BMS 3803, CAS 345627-80-7); (3R, 4R) -4-amino-1- ((4- ((3-methoxyphenyl) amino) pyrrolo [2, 1-f)][1,2,4]Triazin-5-yl) methyl) piperidin-3-ol (BMS 690514); n- (3, 4-dichloro-2-fluorophenyl) -6-methoxy-7- [ [ (3 a alpha, 5 beta, 6a alpha) -octahydro-2-methylcyclopenta [ c ]]Pyrrol-5-yl]Methoxy group]-4-quinazolinamine (XL 647, CAS 781613-23-8); 4-methyl-3- [ [ 1-methyl-6- (3-pyridinyl) -1H-pyrazolo [3,4-d ] ]Pyrimidin-4-yl]Amino group]-N- [3- (trifluoromethyl) phenyl ]]Benzamide (BHG 712, CAS 940310-85-0); and Abelmoschus->
Exemplary EGF pathway inhibitors include, but are not limited to, tyrosine phosphorylation inhibitor 46, EKB-569, erlotinibGefitinib>Erbitux, nimotuzumab, lapatinib +.>Cetuximab (anti-EGFR mAb), 188 Re-labeled Nituzumab (anti-EGFR mAb), and those compounds generally and specifically disclosed in WO 97/02266, EP 0 564 409, WO 99/03854, EP 0 520 722, EP 0 566 226, EP 0 787 722, EP 0 837 063, U.S. Pat. No. 5,747,498, WO 98/10767, WO 97/30034, WO 97/49688, WO97/38983 and WO 96/33980. Exemplary EGFR antibodies include, but are not limited to, cetuximab +.>Panitumumab->Matuzumab (EM)D-72000); trastuzumab->Nituzumab (hR 3); zatuzumab; theraCIM h-R3; MDX0447 (CAS 339151-96-1); and ch806 (mAb-806, CAS 946414-09-1). Exemplary Epidermal Growth Factor Receptor (EGFR) inhibitors include, but are not limited to erlotinib hydrochloride->Ceritinib; b, b; ornitinib; icotinib; gefitinib>N- [4- [ (3-chloro-4-fluorobenzene) amino group ]-7- [ [ (3 "S") -tetrahydro-3-furanyl group]Oxy group]-6-quinazolinyl]-4 (dimethylamino) -2-butenamide,) The method comprises the steps of carrying out a first treatment on the surface of the Vandetanib->Lapatinib->(3R, 4R) -4-amino-1- ((4- ((3-methoxyphenyl) amino) pyrrolo [2, 1-f)][1,2,4]Triazin-5-yl) methyl) piperidin-3-ol (BMS 690514); kanetinib dihydrochloride (CI-1033); 6- [4- [ (4-ethyl-1-piperazinyl) methyl]Phenyl group]-N- [ (1R) -1-phenylethyl]-7H-pyrrolo [2,3-d]Pyrimidine-4-amine (AEE 788, CAS 497839-62-0); xylolitinib (TAK 165); pelitinib (EKB 569); afatinib (BIBW 2992); lenatinib (HKI-272); n- [4- [ [1- [ (3-fluorophenyl) methyl)]-1H-indazol-5-yl]Amino group]-5-methylpyrrolo [2,1-f][1,2,4]Triazin-6-yl]-carbamic acid, (3S) -3-morpholinomethyl ester (BMS 599626); n- (3, 4-dichloro-2-fluorophenyl) -6-methoxy-7- [ [ (3 a alpha, 5 beta, 6a alpha) -octahydro-2-methylcyclopenta [ c ]]Pyrrol-5-yl]Methoxy group]-4-quinazolinamine (XL 647, CAS 781613-23-8); 4- [4- [ [ (1R) -1-phenylethyl]Amino group]-7H-pyrrolo [2,3-d]Pyrimidin-6-yl]Phenol (PKI 166, CAS 187724)61-4); luo Xiti Ni.
Exemplary mTOR inhibitors include, but are not limited to, rapamycinAnd analogs and derivatives thereof; SDZ-RAD; temsirolimus (+)>Also known as CCI-779); gespholimus (previously known as deferolimus, dimethyl phosphinic acid (1R, 2R, 4S) -4- [ (2R) -2[ (1R, 9S,12S,15R,16E,18R,19R,21R,23S,24E,26E,28Z,30S,32S, 35R) -1, 18-dihydroxy-19,30-dimethoxy-15,17,21,23,29,35-hexamethyl-2,3,10,14,20-pentoxy-11, 36-dioxa-4-azatricyclo [ 30.3.1.0) 4,9 ]Thirty-sixteen-16,24,26,28-tetraen-12-yl]Propyl group]-2-methoxycyclohexyl, also known as AP23573 and MK8669, and described in PCT publication No. WO 03/064383; everolimus (+)>Or RAD 001); rapamycin (AY 22989,)>) The method comprises the steps of carrying out a first treatment on the surface of the Sima Pi Mord (CAS 164301-51-3); (5- {2, 4-bis [ (3S) -3-methylmorpholin-4-yl)]Pyrido [2,3-d ]]Pyrimidin-7-yl } -2-methoxyphenyl) methanol (AZD 8055); 2-amino-8- [ trans-4- (2-hydroxyethoxy) cyclohexyl]-6- (6-methoxy-3-pyridinyl) -4-methyl-pyrido [2,3-d]Pyrimidin-7 (8H) -one (PF 04691502, CAS 1013101-36-4); and N 2 - [1, 4-dioxo- [ [4- (4-oxo-8-phenyl-4H-1-benzopyran-2-yl) morpholin-4-yl ]]Methoxy group]Butyl group]-L-arginyl glycyl-L-alpha-aspartyl-L-serine-inner salt (SF 1126, CAS 936487-67-1).
Exemplary phosphoinositide 3-kinase (PI 3K) inhibitors include, but are not limited to, du Weili sibutra, iderani, 4- [2- (1H-indazol-4-yl) -6- [ [4- (methylsulfonyl) piperazin-1-yl ] methyl ] thieno [3,2-d ] pyrimidin-4-yl ] morpholine (also known as GDC 0941 and described in PCT publication nos. WO 09/036082 and WO 09/055730); 2-methyl-2- [4- [ 3-methyl-2-oxo-8- (quinolin-3-yl) -2, 3-dihydroimidazo [4,5-c ] quinolin-1-yl ] phenyl ] propionitrile (also known as BEZ 235 or NVP-BEZ 235 and described in PCT publication No. WO 06/122806); 4- (trifluoromethyl) -5- (2, 6-dimorpholin-4-yl) pyridin-2-amine (also known as BKM120 or NVP-BKM120 and described in PCT publication No. WO 2007/084786); cerclage (VX 680 or MK-0457, cas 639089-54-6); (5Z) -5- [ [4- (4-pyridinyl) -6-quinolinyl ] methylene ] -2, 4-thiazolidinedione (GSK 1059615, CAS 958852-01-2); (1E, 4S,4aR,5R,6aS,9 aR) -5- (acetoxy) -1- [ (di-2-propenylamino) methylene ] -4,4a,5, 6a, 8,9 a-octahydro-11-hydroxy-4- (methoxymethyl) -4a, 6 a-dimethyl-cyclopenta [5,6] naphtho [1,2-c ] pyran-2,7,10 (1H) -trione (PX 866, CAS 502632-66-8); and 8-phenyl-2- (morpholin-4-yl) -chromen-4-one (LY 294002, CAS 154447-36-6). Exemplary Protein Kinase B (PKB) or AKT inhibitors include, but are not limited to, 8- [4- (1-aminocyclobutyl) benzene ] -9-phenyl-1, 2, 4-thiazolo [3,4-f ] [1,6] naphthyridin-3 (2H) -one (MK-2206, CAS 1032349-93-1); pirifaxine (KRX 0401); 4-dodecyl-N-1, 3, 4-thiadiazol-2-yl-benzenesulfonamide (PHT-427, CAS 1191951-57-1); 4- [2- (4-amino-1, 2, 5-oxadiazol-3-yl) -1-ethyl-7- [ (3S) -3-piperidinylmethoxy ] -1H-imidazo [4,5-c ] pyridin-4-yl ] -2-methyl-3-butyn-2-ol (GSK 690693, CAS 937174-76-0); 8- (1-hydroxyethyl) -2-methoxy-3- [ (4-methoxyphenyl) methoxy ] -6H-dibenzo [ b, d ] pyran-6-one (palomid 529, P529, or SG-00529); tricirbin (6-amino-4-methyl-8- (. Beta. -D-ribofuranosyl) -4H, 8H-pyrrolo [4,3,2-de ] pyrimido [4,5-c ] pyridazine); (αs) - α - [ [ [5- (3-methyl-1H-indazol-5-yl) -3-pyridinyl ] oxy ] methyl ] -phenethylamine (a 675563, CAS 552325-73-2); 4- [ (4-chlorophenyl) methyl ] -1- (7H-pyrrolo [2,3-d ] pyrimidin-4-yl) -4-piperidinamine (CCT 128930, CAS 885499-61-6); 4- (4-chlorophenyl) -4- [4- (1H-pyrazol-4-yl) phenyl ] -piperidine (AT 7867, CAS 857531-00-1); and Archexin (RX-0201, CAS 663232-27-7).
In certain embodiments, the tyrosine kinase inhibitor used in combination with the chimeric Tim receptor-modified cells is an Anaplastic Lymphoma Kinase (ALK) inhibitor. Exemplary ALK inhibitors include crizotinib, ceritinib, aletinib, buganidine, dalanatercept, emtrictinib, and loratidine.
In certain embodiments in which the chimeric Tim receptor-modified cells are administered in combination with one or more additional therapies, the one or more additional therapies may be administered at a dose that if administered as monotherapy may be considered to be lower than the therapeutic dose. In such embodiments, the chimeric Tim receptors can provide additive or synergistic effects such that one or more additional therapies can be administered at lower doses. Combination therapy comprises administering a chimeric Tim receptor composition as described herein prior to (e.g., 1 day to 30 days or more prior to) additional therapy, concurrently with (on the same day) or after (e.g., 1 day to 30 days or more after) additional therapy. In certain embodiments, the chimeric Tim receptor-modified cells are administered after administration of one or more additional therapies. In further embodiments, the chimeric Tim receptor modified cells are administered 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 days after administration of the one or more additional therapies. In still further embodiments, the cells modified with the chimeric Tim receptor are administered within 4 weeks, within 3 weeks, within 2 weeks, or within 1 week after administration of the one or more additional therapies. Where the one or more additional therapies involve multiple doses, the chimeric Tim receptor-modified cells can be administered after an initial dose of the one or more additional therapies, after a final dose of the one or more additional therapies, or between multiple doses of the one or more additional therapies.
In certain embodiments, the methods of the present disclosure comprise a depletion step. To mitigate toxicity to the subject, the step of removing the chimeric Tim receptor from the subject can be performed after a sufficiently long period of therapeutic benefit. In such embodiments, the chimeric Tim receptor vector can comprise an inducible suicide gene, such as iCASP9, inducible Fas, or HSV-TK. Similarly, chimeric Tim receptor vectors can be designed to express known cell surface antigens, such as CD20 or truncated EGFR (SEQ ID NO: 16), which facilitate depletion of transduced cells by infusion of related monoclonal antibodies (mabs), such as rituximab against CD20 or cetuximab against EGFR. Alemtuzumab (Alemtuzumab) targeting CD52 present on the surface of mature lymphocytes can also be used to deplete transduced B cells, T cells, or natural killer cells.
Subjects that can be treated with the compositions and methods of the present disclosure include animals, such as humans, primates, cows, horses, sheep, dogs, cats, mice, rats, rabbits, guinea pigs, or pigs. The subject may be male or female, and may be of any suitable age, including infant, juvenile, adolescent, adult and geriatric subjects.
These and other changes can be made to the embodiments in light of the above detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the present disclosure.
Examples
Example 1
Evaluation of the synergistic effect of TIM-CER-T cells on synthetic lethal PARP inhibitors in ovarian cancer
Kuramochi ovarian cancer cells expressing mCherry-NLS plasmid were incubated with 0.78 to 100uM of PARP inhibitor nilaparib. The number of Kuramochi cells/wells was tracked via imaging. At t=50, the number of Kuramochi cells in the culture monotonically decreased with increasing nilaparib concentration. The results are shown in fig. 1A.
Similar experiments were performed at different doses of the PARP inhibitors nilaparib, olaparib, tazopanib, veliparib and Lu Kapa, and Kuramochi cell numbers were plotted at t=50 h. Taraxazopanib and nilaparib showed the most sensitive EC 50 Values, followed by Lu Kapa and olaparib. Among the five PARP inhibitors tested, veliparib had minimal effect on the number of Kuramochi cells detected. At t=5 At 0h, nilaparib and Lu Kapa rib almost eliminated Kuramochi cultures. The results are shown in fig. 1B.
Example 2
PARP inhibitors up-regulate surface phosphatidylserine and have negligible effect on CD4/CD 8T cells
Kuramochi cells expressing mCherry-NLS plasmid were incubated with different concentrations of nilaparib, tim4-Fc chimera and anti-mouse IgG2a antibody conjugated to Alexa 488. The number of tim4+kuramochi cells (i.e., green subjects) increased significantly and above the IgG only control when it responded to incubation with nilaparib even at a concentration of 1.56 μm (fig. 2A-2B). In response to 1.56-12.5 μm nilaparib (fig. 2C), the number of Kuramochi cells increased, indicating that PARP inhibition induced surface phosphatidylserine without killing Kuramochi cells.
Co-cultures of primary human CD4+ and CD8+ T cells were incubated with different concentrations of Nilapatinib and T cell viability, diameter and density were measured using a Vicell cell counter on days 7, 8 and 9 (corresponding to days 1, 2 and 3 after incubation with Nilapatinib) after activation with TransAct. T cell viability, average diameter and expansion showed negligible changes from day 7 to day 9 as a function of nilaparib concentration (fig. 3).
Example 3
Chimeric TIM receptor/nilaparib co-kills kuramiochi cells at different doses in vitro
Kuramochi cells expressing mCherry-NLS plasmid were incubated with 25, 12.5 or 6.25 μm nilaparib for 20 hours. The next day, the concentration of nilaparib was reduced to 0.52 μm, and a co-culture of primary human cd4+ and cd8+ T cells expressing chimeric Tim receptor construct 13A (Tim 4 binding domain-CD 28 transmembrane domain-CD 28 co-stimulatory domain-CD 3 zeta signaling domain) (SEQ ID NO: 162) was added to Kuramochi culture. According to experimental conditions, T cell cultures expressing chimeric Tim receptor construct 13A significantly reduced the number of Kuramochi cells and were significantly lower than the number of Kuramochi cells in cultures mimicking the transduction control (control-T). The number of Kuramochi cells expressing mCherry-NLS was monitored via IncuCyte. The results are shown in fig. 4. The combination therapy of chimeric Tim receptor construct 13A and nilaparib at different doses synergistically kills Kuramochi cells.
Kuramochi cells expressing mCherry-NLS plasmid were incubated with 1.56. Mu.M nilaparib for about 20 hours. The following day, the medium was removed from the cells and replaced with fresh medium with 0. Mu.M nilaparib, and primary human CD4+ and CD8+ T cells expressing the chimeric Tim receptor CTX140 (Tim 4 binding domain-CD 28 hinge-CD 28 transmembrane-CD 28 costimulatory domain-DAP 12) (SEQ ID NO: 195) or CTX156 (tEGFR control) were added to the Kuramochi culture. The number of Kuramochi cells expressing mCherry-NLS was monitored via IncuCyte. The results are shown in fig. 5. T cell cultures expressing the chimeric Tim receptor construct CTX140 significantly reduced the number of Kuramochi cells and were significantly lower than the number of Kuramochi cells in cultures mimicking the transduction control.
2,500 Kuramochi ovarian cancer cells expressing the mCherry-NLS plasmid were plated on day 0. 25, 12.5 or 6.25. Mu.M nilaparib was added to the cell culture after about 4 hours. About 20 hours after the initial nilaparib dose, primary human cd4+ and cd8+ T cells expressing chimeric Tim receptor CTX137 (Tim 4 binding domain-CD 28 transmembrane-CD 28 costimulatory domain-DAP 12) (SEQ ID NO: 197) or CTX156 (tgfr control) and a maintenance dose of 0.52 μm nilaparib were added. The results of the 25 μm nilaparib pretreatment are shown in fig. 6. The results of the 25, 12.5 or 6.25 μm nilaparib pretreatment with varying effector to target (E: T) ratios are shown in fig. 7. T cell cultures expressing the chimeric Tim receptor construct CTX137 significantly reduced the number of Kuramochi cells and were significantly lower than the number of Kuramochi cells in cultures mimicking the transduction control.
To induce Ptd-Ser exposure, BRCA-2 mutated Kuramochi cell lines were treated with a therapeutic dose of the PARP inhibitor nilaparib. Brief exposure to nilaparib causes changes in membrane phospholipid symmetry in a dose-dependent manner and effectively inhibits Kuramochi cell growth (fig. 8A). The addition of the chimeric Tim4 receptor pCTX133 (Tim 4-TLR2-CD3 z) enhanced the in vitro potency of nilaparib at a low effector to target ratio (1:1) compared to the transduced control, demonstrating the ability of pCTX133 to elicit a direct cytotoxic effect on target cells (fig. 8B).
Example 4
Chimeric TIM receptor/nilaparib synergistic killing of a2780 cells
T cell transduction and culture: CD4 and CD 8T cells were isolated from frozen healthy donor PBMCs using Miltenyi cd4+ and cd8+ isolation kits. CD4 and CD 8T cells were then mixed at a 1:1 ratio and incubated overnight in OpTmizer medium supplemented with cell serum replacement, L-glutamine, glutaMAX, and IL-2, IL-7, and IL-15 cytokines in flat bottom 24-well plates, and the tranact diluted 1:50. T cells were transduced with the appropriate virus with moi=10, 8 μg/mL polyaromatic and 1:50 transactt in flat bottom 96 well plates 16-24 hours after activation with transactt. About 24 hours after transduction, T cells were transferred to 24 well GRex plates in Optmizer medium supplemented with cell serum replacement, L-glutamine, glutamax, and IL-2, IL-7, and IL-15 cytokines. T cells were counted approximately every two days thereafter and fresh medium was replenished.
Cell line engineering:a2780 (human ovarian carcinoma cell line) and Kuramochi (BRCA-deficient human ovarian carcinoma cell line) cells were transduced with lentiviral vectors encoding mCherry-Nuclear Localization Sequences (NLS) genes, and then classified according to mCherry expression. Clone sorting, expansion and banking were performed on the A2780-mCherry-NLS cell line, while expansion and extensive banking were performed on the Kuramochi-mCherry-NLS cells. Cell lines were thawed in RPMI 1640 supplemented with 10% FBS and maintained in culture up to about passage 25.
Co-culture assay: on day 0, 2,500A 2780-mCh-NLS or Kuramoch-mCh-NLS cells were placed in NUNC Edge 96 well plates and Nilapatinib (free base) was added at appropriate concentrations after about 4 hours, all in RPMI 1640+10% FBS. After about 20 hours, the medium was removed and replaced with the appropriate concentration of nilaparib (free base) and the appropriate number of T cells, all in the OpTmizer medium supplemented with cell serum replacement, L-glutamine, glutaMAX, and IL-2, IL-7, and IL-15 cytokines. When using A2780-mCh-NLS cells, the supernatant is centrifuged and resuspended in T cell culture medium to preserve any suspended components of A2780 cells. Plates were immediately transferred to IncuCyte as appropriate.
Flow cytometry measurement of surface PS:A2780-mCh-NLS cells were treated with 1.56 or 25. Mu.M nilaparib or with an equivalent volume of DMSO (control). After 48 hours, the samples were trypsinized and stained with Tim4-Fc followed by fluorescent-labeled secondary antibodies to Tim 4-Fc. The samples were immediately analyzed via flow cytometry.
As shown in FIGS. 9A-9B, T cells modified with chimeric Tim4 receptor pCTX247 (Tim 4 binding domain-CD 28 transmembrane-CD 28 signaling domain-CD 3 zeta signaling domain; SEQ ID NO: 257) exhibited anti-tumor activity in vitro in two ovarian cancer cell lines. As shown in FIG. 10, T cells modified with the chimeric Tim4 receptor pCTX797 (Tim 4 binding domain-CD 28 transmembrane-CD 28 signaling domain-CD 3 zeta signaling domain; SEQ ID NO: 258) exhibited in vitro antitumor activity in the A2780 ovarian cancer model.
As shown in fig. 11A-11B, phosphatidylserine was presented on the cell surface in response to nilaparib in both ovarian cancer models.
As shown in FIG. 12, the chimeric Tim4 receptor pCTX797 (Tim 4 binding domain-CD 28 transmembrane-CD 28 signaling domain-CD 3 zeta signaling domain; SEQ ID NO: 258) showed synergy with additional PARP inhibitors (Lu Kapa Ni, olaparib and Nilaparib) compared to the truncated EGFR (EGFRt) control (pCTX 236).
The various embodiments described above may be combined to provide further embodiments. All U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications, and non-patent publications cited in this specification and/or listed in the application data sheet, including, but not limited to, U.S. provisional patent application No. 63/066,150 filed on 8/14/2020, U.S. provisional patent application No. 63/087,049 filed on 10/2020, and U.S. provisional patent application No. 63/226,712 filed on 7/28/2021, are incorporated herein by reference in their entirety. Aspects of the embodiments can be modified if necessary to employ concepts of the various patents, applications and publications to provide yet further embodiments.
These and other changes can be made to the embodiments in light of the above detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the present disclosure.
Sequence listing
<110> Senro treatment Co
<120> compositions and methods for treating cancer with chimeric TIM receptor in combination with poly (ADP-ribose) polymerase inhibitors
<130> 200265.415WO
<150> 63/066,150
<151> 2020-08-14
<150> 63/087,049
<151> 2020-10-02
<150> 63/226,712
<151> 2021-07-28
<160> 258
<170> patent in version 3.5
<210> 1
<211> 756
<212> PRT
<213> Chile person
<400> 1
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Leu Leu Met Ile Ile Ala
305 310 315 320
Pro Ser Leu Gly Phe Val Leu Phe Ala Leu Phe Val Ala Phe Leu Leu
325 330 335
Arg Gly Lys Leu Met Glu Thr Tyr Cys Ser Gln Lys His Thr Arg Leu
340 345 350
Asp Tyr Ile Gly Asp Ser Lys Asn Val Leu Asn Asp Val Gln His Gly
355 360 365
Arg Glu Asp Glu Asp Gly Leu Phe Thr Leu Met Ser Lys Glu Pro Leu
370 375 380
Ile Leu Trp Leu Met Ile Glu Phe Trp Trp Leu Tyr Leu Thr Pro Val
385 390 395 400
Thr Ser Glu Thr Val Val Thr Glu Val Leu Gly His Arg Val Thr Leu
405 410 415
Pro Cys Leu Tyr Ser Ser Trp Ser His Asn Ser Asn Ser Met Cys Trp
420 425 430
Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys Lys Glu Ala Leu Ile Arg
435 440 445
Thr Asp Gly Met Arg Val Thr Ser Arg Lys Ser Ala Lys Tyr Arg Leu
450 455 460
Gln Gly Thr Ile Pro Arg Gly Asp Val Ser Leu Thr Ile Leu Asn Pro
465 470 475 480
Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys Arg Ile Glu Val Pro Gly
485 490 495
Trp Phe Asn Asp Val Lys Ile Asn Val Arg Leu Asn Leu Gln Arg Ala
500 505 510
Ser Thr Thr Thr His Arg Thr Ala Thr Thr Thr Thr Arg Arg Thr Thr
515 520 525
Thr Thr Ser Pro Thr Thr Thr Arg Gln Met Thr Thr Thr Pro Ala Ala
530 535 540
Leu Pro Thr Thr Val Val Thr Thr Pro Asp Leu Thr Thr Gly Thr Pro
545 550 555 560
Leu Gln Met Thr Thr Ile Ala Val Phe Thr Thr Ala Asn Thr Cys Leu
565 570 575
Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu Ala Thr Gly Leu Leu Thr
580 585 590
Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu Thr Ala Glu Ser Glu Thr
595 600 605
Val Leu Pro Ser Asp Ser Trp Ser Ser Val Glu Ser Thr Ser Ala Asp
610 615 620
Thr Val Leu Leu Thr Ser Lys Glu Ser Lys Val Trp Asp Leu Pro Ser
625 630 635 640
Thr Ser His Val Ser Met Trp Lys Thr Ser Asp Ser Val Ser Ser Pro
645 650 655
Gln Pro Gly Ala Ser Asp Thr Ala Val Pro Glu Gln Asn Lys Thr Thr
660 665 670
Lys Thr Gly Gln Met Asp Gly Ile Pro Met Ser Met Lys Asn Glu Met
675 680 685
Pro Ile Ser Gln Leu Leu Met Ile Ile Ala Pro Ser Leu Gly Phe Val
690 695 700
Leu Phe Ala Leu Phe Val Ala Phe Leu Leu Arg Gly Lys Leu Met Glu
705 710 715 720
Thr Tyr Cys Ser Gln Lys His Thr Arg Leu Asp Tyr Ile Gly Asp Ser
725 730 735
Lys Asn Val Leu Asn Asp Val Gln His Gly Arg Glu Asp Glu Asp Gly
740 745 750
Leu Phe Thr Leu
755
<210> 2
<211> 314
<212> PRT
<213> Chile person
<220>
<221> SIGNAL
<222> (1)..(24)
<400> 2
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln
305 310
<210> 3
<211> 12
<212> PRT
<213> artificial sequence
<220>
<223> modified IgG4 hinge
<400> 3
Glu Ser Lys Tyr Gly Pro Pro Cys Pro Pro Cys Pro
1 5 10
<210> 4
<211> 41
<212> PRT
<213> Chile person
<400> 4
Arg Ser Lys Arg Ser Arg Leu Leu His Ser Asp Tyr Met Asn Met Thr
1 5 10 15
Pro Arg Arg Pro Gly Pro Thr Arg Lys His Tyr Gln Pro Tyr Ala Pro
20 25 30
Pro Arg Asp Phe Ala Ala Tyr Arg Ser
35 40
<210> 5
<211> 112
<212> PRT
<213> artificial sequence
<220>
<223> mutant human CD3z contains the activation domain of ITAM
<400> 5
Arg Val Lys Phe Ser Arg Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly
1 5 10 15
Gln Asn Gln Leu Tyr Asn Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr
20 25 30
Asp Val Leu Asp Lys Arg Arg Gly Arg Asp Pro Glu Met Gly Gly Lys
35 40 45
Pro Arg Arg Lys Asn Pro Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys
50 55 60
Asp Lys Met Ala Glu Ala Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg
65 70 75 80
Arg Arg Gly Lys Gly His Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala
85 90 95
Thr Lys Asp Thr Tyr Asp Ala Leu His Met Gln Ala Leu Pro Pro Arg
100 105 110
<210> 6
<211> 21
<212> PRT
<213> Chile person
<400> 6
Leu Leu Met Ile Ile Ala Pro Ser Leu Gly Phe Val Leu Phe Ala Leu
1 5 10 15
Phe Val Ala Phe Leu
20
<210> 7
<211> 27
<212> PRT
<213> Chile person
<400> 7
Phe Trp Val Leu Val Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu
1 5 10 15
Leu Val Thr Val Ala Phe Ile Ile Phe Trp Val
20 25
<210> 8
<211> 21
<212> PRT
<213> Chile person
<400> 8
Ile Tyr Ala Gly Val Cys Ile Ser Val Leu Val Leu Leu Ala Leu Leu
1 5 10 15
Gly Val Ile Ile Ala
20
<210> 9
<211> 52
<212> PRT
<213> Chile person
<400> 9
Tyr Phe Leu Gly Arg Leu Val Pro Arg Gly Arg Gly Ala Ala Glu Ala
1 5 10 15
Ala Thr Arg Lys Gln Arg Ile Thr Glu Thr Glu Ser Pro Tyr Gln Glu
20 25 30
Leu Gln Gly Gln Arg Ser Asp Val Tyr Ser Asp Leu Asn Thr Gln Arg
35 40 45
Pro Tyr Tyr Lys
50
<210> 10
<211> 22
<212> PRT
<213> Chile person
<400> 10
Met Leu Leu Leu Val Thr Ser Leu Leu Leu Cys Glu Leu Pro His Pro
1 5 10 15
Ala Phe Leu Leu Ile Pro
20
<210> 11
<211> 24
<212> PRT
<213> Chile person
<400> 11
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser
20
<210> 12
<211> 18
<212> PRT
<213> artificial sequence
<220>
<223> T2A self-cleaving peptides
<400> 12
Glu Gly Arg Gly Ser Leu Leu Thr Cys Gly Asp Val Glu Glu Asn Pro
1 5 10 15
Gly Pro
<210> 13
<211> 19
<212> PRT
<213> artificial sequence
<220>
<223> P2A self-cleaving peptides
<400> 13
Ala Thr Asn Phe Ser Leu Leu Lys Gln Ala Gly Asp Val Glu Glu Asn
1 5 10 15
Pro Gly Pro
<210> 14
<211> 20
<212> PRT
<213> artificial sequence
<220>
<223> E2A self-cleaving peptides
<400> 14
Gln Cys Thr Asn Tyr Ala Leu Leu Lys Leu Ala Gly Asp Val Glu Ser
1 5 10 15
Asn Pro Gly Pro
20
<210> 15
<211> 22
<212> PRT
<213> artificial sequence
<220>
<223> F2A self-cleaving peptides
<400> 15
Val Lys Gln Thr Leu Asn Phe Asp Leu Leu Lys Leu Ala Gly Asp Val
1 5 10 15
Glu Ser Asn Pro Gly Pro
20
<210> 16
<211> 285
<212> PRT
<213> Chile person
<400> 16
Arg Lys Val Cys Asn Gly Ile Gly Ile Gly Glu Phe Lys Asp Ser Leu
1 5 10 15
Ser Ile Asn Ala Thr Asn Ile Lys His Phe Lys Asn Cys Thr Ser Ile
20 25 30
Ser Gly Asp Leu His Ile Leu Pro Val Ala Phe Arg Gly Asp Ser Phe
35 40 45
Thr His Thr Pro Pro Leu Asp Pro Gln Glu Leu Asp Ile Leu Lys Thr
50 55 60
Val Lys Glu Ile Thr Gly Phe Leu Leu Ile Gln Ala Trp Pro Glu Asn
65 70 75 80
Arg Thr Asp Leu His Ala Phe Glu Asn Leu Glu Ile Ile Arg Gly Arg
85 90 95
Thr Lys Gln His Gly Gln Phe Ser Leu Ala Val Val Ser Leu Asn Ile
100 105 110
Thr Ser Leu Gly Leu Arg Ser Leu Lys Glu Ile Ser Asp Gly Asp Val
115 120 125
Ile Ile Ser Gly Asn Lys Asn Leu Cys Tyr Ala Asn Thr Ile Asn Trp
130 135 140
Lys Lys Leu Phe Gly Thr Ser Gly Gln Lys Thr Lys Ile Ile Ser Asn
145 150 155 160
Arg Gly Glu Asn Ser Cys Lys Ala Thr Gly Gln Val Cys His Ala Leu
165 170 175
Cys Ser Pro Glu Gly Cys Trp Gly Pro Glu Pro Arg Asp Cys Val Ser
180 185 190
Cys Arg Asn Val Ser Arg Gly Arg Glu Cys Val Asp Lys Cys Asn Leu
195 200 205
Leu Glu Gly Glu Pro Arg Glu Phe Val Glu Asn Ser Glu Cys Ile Gln
210 215 220
Cys His Pro Glu Cys Leu Pro Gln Ala Met Asn Ile Thr Cys Thr Gly
225 230 235 240
Arg Gly Pro Asp Asn Cys Ile Gln Cys Ala His Tyr Ile Asp Gly Pro
245 250 255
His Cys Val Lys Thr Cys Pro Ala Gly Val Met Gly Glu Asn Asn Thr
260 265 270
Leu Val Trp Lys Tyr Ala Asp Ala Gly His Val Cys His
275 280 285
<210> 17
<211> 192
<212> PRT
<213> Chile person
<400> 17
Met Gln Ala Ile Lys Cys Val Val Val Gly Asp Gly Ala Val Gly Lys
1 5 10 15
Thr Cys Leu Leu Ile Ser Tyr Thr Thr Asn Ala Phe Pro Gly Glu Tyr
20 25 30
Ile Pro Thr Val Phe Asp Asn Tyr Ser Ala Asn Val Met Val Asp Gly
35 40 45
Lys Pro Val Asn Leu Gly Leu Trp Asp Thr Ala Gly Gln Glu Asp Tyr
50 55 60
Asp Arg Leu Arg Pro Leu Ser Tyr Pro Gln Thr Asp Val Phe Leu Ile
65 70 75 80
Cys Phe Ser Leu Val Ser Pro Ala Ser Phe Glu Asn Val Arg Ala Lys
85 90 95
Trp Tyr Pro Glu Val Arg His His Cys Pro Asn Thr Pro Ile Ile Leu
100 105 110
Val Gly Thr Lys Leu Asp Leu Arg Asp Asp Lys Asp Thr Ile Glu Lys
115 120 125
Leu Lys Glu Lys Lys Leu Thr Pro Ile Thr Tyr Pro Gln Gly Leu Ala
130 135 140
Met Ala Lys Glu Ile Gly Ala Val Lys Tyr Leu Glu Cys Ser Ala Leu
145 150 155 160
Thr Gln Arg Gly Leu Lys Thr Val Phe Asp Glu Ala Ile Arg Ala Val
165 170 175
Leu Cys Pro Pro Pro Val Lys Lys Arg Lys Arg Lys Cys Leu Leu Leu
180 185 190
<210> 18
<211> 215
<212> PRT
<213> Chile person
<400> 18
Met Ala Ser Arg Gly Ala Thr Arg Pro Asn Gly Pro Asn Thr Gly Asn
1 5 10 15
Lys Ile Cys Gln Phe Lys Leu Val Leu Leu Gly Glu Ser Ala Val Gly
20 25 30
Lys Ser Ser Leu Val Leu Arg Phe Val Lys Gly Gln Phe His Glu Phe
35 40 45
Gln Glu Ser Thr Ile Gly Ala Ala Phe Leu Thr Gln Thr Val Cys Leu
50 55 60
Asp Asp Thr Thr Val Lys Phe Glu Ile Trp Asp Thr Ala Gly Gln Glu
65 70 75 80
Arg Tyr His Ser Leu Ala Pro Met Tyr Tyr Arg Gly Ala Gln Ala Ala
85 90 95
Ile Val Val Tyr Asp Ile Thr Asn Glu Glu Ser Phe Ala Arg Ala Lys
100 105 110
Asn Trp Val Lys Glu Leu Gln Arg Gln Ala Ser Pro Asn Ile Val Ile
115 120 125
Ala Leu Ser Gly Asn Lys Ala Asp Leu Ala Asn Lys Arg Ala Val Asp
130 135 140
Phe Gln Glu Ala Gln Ser Tyr Ala Asp Asp Asn Ser Leu Leu Phe Met
145 150 155 160
Glu Thr Ser Ala Lys Thr Ser Met Asn Val Asn Glu Ile Phe Met Ala
165 170 175
Ile Ala Lys Lys Leu Pro Lys Asn Glu Pro Gln Asn Pro Gly Ala Asn
180 185 190
Ser Ala Arg Gly Arg Gly Val Asp Leu Thr Glu Pro Thr Gln Pro Thr
195 200 205
Arg Asn Gln Cys Cys Ser Asn
210 215
<210> 19
<211> 207
<212> PRT
<213> Chile person
<400> 19
Met Thr Ser Arg Lys Lys Val Leu Leu Lys Val Ile Ile Leu Gly Asp
1 5 10 15
Ser Gly Val Gly Lys Thr Ser Leu Met Asn Gln Tyr Val Asn Lys Lys
20 25 30
Phe Ser Asn Gln Tyr Lys Ala Thr Ile Gly Ala Asp Phe Leu Thr Lys
35 40 45
Glu Val Met Val Asp Asp Arg Leu Val Thr Met Gln Ile Trp Asp Thr
50 55 60
Ala Gly Gln Glu Arg Phe Gln Ser Leu Gly Val Ala Phe Tyr Arg Gly
65 70 75 80
Ala Asp Cys Cys Val Leu Val Phe Asp Val Thr Ala Pro Asn Thr Phe
85 90 95
Lys Thr Leu Asp Ser Trp Arg Asp Glu Phe Leu Ile Gln Ala Ser Pro
100 105 110
Arg Asp Pro Glu Asn Phe Pro Phe Val Val Leu Gly Asn Lys Ile Asp
115 120 125
Leu Glu Asn Arg Gln Val Ala Thr Lys Arg Ala Gln Ala Trp Cys Tyr
130 135 140
Ser Lys Asn Asn Ile Pro Tyr Phe Glu Thr Ser Ala Lys Glu Ala Ile
145 150 155 160
Asn Val Glu Gln Ala Phe Gln Thr Ile Ala Arg Asn Ala Leu Lys Gln
165 170 175
Glu Thr Glu Val Glu Leu Tyr Asn Glu Phe Pro Glu Pro Ile Lys Leu
180 185 190
Asp Lys Asn Asp Arg Ala Lys Ala Ser Ala Glu Ser Cys Ser Cys
195 200 205
<210> 20
<211> 184
<212> PRT
<213> Chile person
<400> 20
Met Arg Glu Tyr Lys Leu Val Val Leu Gly Ser Gly Gly Val Gly Lys
1 5 10 15
Ser Ala Leu Thr Val Gln Phe Val Gln Gly Ile Phe Val Glu Lys Tyr
20 25 30
Asp Pro Thr Ile Glu Asp Ser Tyr Arg Lys Gln Val Glu Val Asp Cys
35 40 45
Gln Gln Cys Met Leu Glu Ile Leu Asp Thr Ala Gly Thr Glu Gln Phe
50 55 60
Thr Ala Met Arg Asp Leu Tyr Met Lys Asn Gly Gln Gly Phe Ala Leu
65 70 75 80
Val Tyr Ser Ile Thr Ala Gln Ser Thr Phe Asn Asp Leu Gln Asp Leu
85 90 95
Arg Glu Gln Ile Leu Arg Val Lys Asp Thr Glu Asp Val Pro Met Ile
100 105 110
Leu Val Gly Asn Lys Cys Asp Leu Glu Asp Glu Arg Val Val Gly Lys
115 120 125
Glu Gln Gly Gln Asn Leu Ala Arg Gln Trp Cys Asn Cys Ala Phe Leu
130 135 140
Glu Ser Ser Ala Lys Ser Lys Ile Asn Val Asn Glu Ile Phe Tyr Asp
145 150 155 160
Leu Val Arg Gln Ile Asn Arg Lys Thr Pro Val Glu Lys Lys Lys Pro
165 170 175
Lys Lys Lys Ser Cys Leu Leu Leu
180
<210> 21
<211> 193
<212> PRT
<213> Chile person
<400> 21
Met Ala Ala Ile Arg Lys Lys Leu Val Ile Val Gly Asp Gly Ala Cys
1 5 10 15
Gly Lys Thr Cys Leu Leu Ile Val Phe Ser Lys Asp Gln Phe Pro Glu
20 25 30
Val Tyr Val Pro Thr Val Phe Glu Asn Tyr Val Ala Asp Ile Glu Val
35 40 45
Asp Gly Lys Gln Val Glu Leu Ala Leu Trp Asp Thr Ala Gly Gln Glu
50 55 60
Asp Tyr Asp Arg Leu Arg Pro Leu Ser Tyr Pro Asp Thr Asp Val Ile
65 70 75 80
Leu Met Cys Phe Ser Ile Asp Ser Pro Asp Ser Leu Glu Asn Ile Pro
85 90 95
Glu Lys Trp Thr Pro Glu Val Lys His Phe Cys Pro Asn Val Pro Ile
100 105 110
Ile Leu Val Gly Asn Lys Lys Asp Leu Arg Asn Asp Glu His Thr Arg
115 120 125
Arg Glu Leu Ala Lys Met Lys Gln Glu Pro Val Lys Pro Glu Glu Gly
130 135 140
Arg Asp Met Ala Asn Arg Ile Gly Ala Phe Gly Tyr Met Glu Cys Ser
145 150 155 160
Ala Lys Thr Lys Asp Gly Val Arg Glu Val Phe Glu Met Ala Thr Arg
165 170 175
Ala Ala Leu Gln Ala Arg Arg Gly Lys Lys Lys Ser Gly Cys Leu Val
180 185 190
Leu
<210> 22
<211> 191
<212> PRT
<213> Chile person
<400> 22
Met Gln Thr Ile Lys Cys Val Val Val Gly Asp Gly Ala Val Gly Lys
1 5 10 15
Thr Cys Leu Leu Ile Ser Tyr Thr Thr Asn Lys Phe Pro Ser Glu Tyr
20 25 30
Val Pro Thr Val Phe Asp Asn Tyr Ala Val Thr Val Met Ile Gly Gly
35 40 45
Glu Pro Tyr Thr Leu Gly Leu Phe Asp Thr Ala Gly Gln Glu Asp Tyr
50 55 60
Asp Arg Leu Arg Pro Leu Ser Tyr Pro Gln Thr Asp Val Phe Leu Val
65 70 75 80
Cys Phe Ser Val Val Ser Pro Ser Ser Phe Glu Asn Val Lys Glu Lys
85 90 95
Trp Val Pro Glu Ile Thr His His Cys Pro Lys Thr Pro Phe Leu Leu
100 105 110
Val Gly Thr Gln Ile Asp Leu Arg Asp Asp Pro Ser Thr Ile Glu Lys
115 120 125
Leu Ala Lys Asn Lys Gln Lys Pro Ile Thr Pro Glu Thr Ala Glu Lys
130 135 140
Leu Ala Arg Asp Leu Lys Ala Val Lys Tyr Val Glu Cys Ser Ala Leu
145 150 155 160
Thr Gln Lys Gly Leu Lys Asn Val Phe Asp Glu Ala Ile Leu Ala Ala
165 170 175
Leu Glu Pro Pro Glu Pro Lys Lys Ser Arg Arg Cys Val Leu Leu
180 185 190
<210> 23
<211> 21
<212> PRT
<213> mice
<400> 23
Ile Leu Ile Ile Ala Cys Cys Val Gly Phe Val Leu Met Val Leu Leu
1 5 10 15
Phe Leu Ala Phe Leu
20
<210> 24
<211> 279
<212> PRT
<213> mice
<220>
<221> SIGNAL
<222> (1)..(22)
<400> 24
Met Ser Lys Gly Leu Leu Leu Leu Trp Leu Val Thr Glu Leu Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Ala Ala Ser Glu Asp Thr Ile Ile Gly Phe Leu
20 25 30
Gly Gln Pro Val Thr Leu Pro Cys His Tyr Leu Ser Trp Ser Gln Ser
35 40 45
Arg Asn Ser Met Cys Trp Gly Lys Gly Ser Cys Pro Asn Ser Lys Cys
50 55 60
Asn Ala Glu Leu Leu Arg Thr Asp Gly Thr Arg Ile Ile Ser Arg Lys
65 70 75 80
Ser Thr Lys Tyr Thr Leu Leu Gly Lys Val Gln Phe Gly Glu Val Ser
85 90 95
Leu Thr Ile Ser Asn Thr Asn Arg Gly Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Lys Asn Val Arg
115 120 125
Leu Glu Leu Arg Arg Ala Thr Thr Thr Lys Lys Pro Thr Thr Thr Thr
130 135 140
Arg Pro Thr Thr Thr Pro Tyr Val Thr Thr Thr Thr Pro Glu Leu Leu
145 150 155 160
Pro Thr Thr Val Met Thr Thr Ser Val Leu Pro Thr Thr Thr Pro Pro
165 170 175
Gln Thr Leu Ala Thr Thr Ala Phe Ser Thr Ala Val Thr Thr Cys Pro
180 185 190
Ser Thr Thr Pro Gly Ser Phe Ser Gln Glu Thr Thr Lys Gly Ser Ala
195 200 205
Phe Thr Thr Glu Ser Glu Thr Leu Pro Ala Ser Asn His Ser Gln Arg
210 215 220
Ser Met Met Thr Ile Ser Thr Asp Ile Ala Val Leu Arg Pro Thr Gly
225 230 235 240
Ser Asn Pro Gly Ile Leu Pro Ser Thr Ser Gln Leu Thr Thr Gln Lys
245 250 255
Thr Thr Leu Thr Thr Ser Glu Ser Leu Gln Lys Thr Thr Lys Ser His
260 265 270
Gln Ile Asn Ser Arg Gln Thr
275
<210> 25
<211> 22
<212> PRT
<213> mice
<400> 25
Met Ser Lys Gly Leu Leu Leu Leu Trp Leu Val Thr Glu Leu Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Ala
20
<210> 26
<211> 41
<212> PRT
<213> artificial sequence
<220>
<223> human CD28 costimulatory signaling domain with L186G/L187G substitution (position reference full-length protein)
<400> 26
Arg Ser Lys Arg Ser Arg Gly Gly His Ser Asp Tyr Met Asn Met Thr
1 5 10 15
Pro Arg Arg Pro Gly Pro Thr Arg Lys His Tyr Gln Pro Tyr Ala Pro
20 25 30
Pro Arg Asp Phe Ala Ala Tyr Arg Ser
35 40
<210> 27
<211> 113
<212> PRT
<213> Chile person
<400> 27
Arg Val Lys Phe Ser Arg Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly
1 5 10 15
Gln Asn Gln Leu Tyr Asn Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr
20 25 30
Asp Val Leu Asp Lys Arg Arg Gly Arg Asp Pro Glu Met Gly Gly Lys
35 40 45
Pro Gln Arg Arg Lys Asn Pro Gln Glu Gly Leu Tyr Asn Glu Leu Gln
50 55 60
Lys Asp Lys Met Ala Glu Ala Tyr Ser Glu Ile Gly Met Lys Gly Glu
65 70 75 80
Arg Arg Arg Gly Lys Gly His Asp Gly Leu Tyr Gln Gly Leu Ser Thr
85 90 95
Ala Thr Lys Asp Thr Tyr Asp Ala Leu His Met Gln Ala Leu Pro Pro
100 105 110
Arg
<210> 28
<211> 23
<212> PRT
<213> artificial sequence
<220>
<223> T2A self-cleaving peptide variants
<400> 28
Leu Glu Gly Gly Gly Glu Gly Arg Gly Ser Leu Leu Thr Cys Gly Asp
1 5 10 15
Val Glu Glu Asn Pro Gly Pro
20
<210> 29
<211> 19
<212> PRT
<213> artificial sequence
<220>
<223> T2A self-cleaving peptide variants
<400> 29
Glu Gly Arg Gly Ser Leu Leu Thr Cys Gly Asp Val Glu Glu Asn Pro
1 5 10 15
Gly Pro Arg
<210> 30
<211> 24
<212> PRT
<213> artificial sequence
<220>
<223> T2A self-cleaving peptide variants
<400> 30
Leu Glu Gly Gly Gly Glu Gly Arg Gly Ser Leu Leu Thr Cys Gly Asp
1 5 10 15
Val Glu Glu Asn Pro Gly Pro Arg
20
<210> 31
<211> 27
<212> PRT
<213> artificial sequence
<220>
<223> P2A self-cleaving peptide variants
<400> 31
Arg Ala Lys Arg Ser Gly Ser Gly Ala Thr Asn Phe Ser Leu Leu Lys
1 5 10 15
Gln Ala Gly Asp Val Glu Glu Asn Pro Gly Pro
20 25
<210> 32
<211> 39
<212> PRT
<213> artificial sequence
<220>
<223> CD28 hinge region
<400> 32
Ile Glu Val Met Tyr Pro Pro Pro Tyr Leu Asp Asn Glu Lys Ser Asn
1 5 10 15
Gly Thr Ile Ile His Val Lys Gly Lys His Leu Cys Pro Ser Pro Leu
20 25 30
Phe Pro Gly Pro Ser Lys Pro
35
<210> 33
<211> 24
<212> PRT
<213> artificial sequence
<220>
<223> CD8a transmembrane domain
<400> 33
Ile Tyr Ile Trp Ala Pro Leu Ala Gly Thr Cys Gly Val Leu Leu Leu
1 5 10 15
Ser Leu Val Ile Thr Leu Tyr Cys
20
<210> 34
<211> 111
<212> PRT
<213> Chile person
<400> 34
Glu Thr Val Val Thr Glu Val Leu Gly His Arg Val Thr Leu Pro Cys
1 5 10 15
Leu Tyr Ser Ser Trp Ser His Asn Ser Asn Ser Met Cys Trp Gly Lys
20 25 30
Asp Gln Cys Pro Tyr Ser Gly Cys Lys Glu Ala Leu Ile Arg Thr Asp
35 40 45
Gly Met Arg Val Thr Ser Arg Lys Ser Ala Lys Tyr Arg Leu Gln Gly
50 55 60
Thr Ile Pro Arg Gly Asp Val Ser Leu Thr Ile Leu Asn Pro Ser Glu
65 70 75 80
Ser Asp Ser Gly Val Tyr Cys Cys Arg Ile Glu Val Pro Gly Trp Phe
85 90 95
Asn Asp Val Lys Ile Asn Val Arg Leu Asn Leu Gln Arg Ala Ser
100 105 110
<210> 35
<211> 179
<212> PRT
<213> Chile person
<400> 35
Thr Thr Thr His Arg Thr Ala Thr Thr Thr Thr Arg Arg Thr Thr Thr
1 5 10 15
Thr Ser Pro Thr Thr Thr Arg Gln Met Thr Thr Thr Pro Ala Ala Leu
20 25 30
Pro Thr Thr Val Val Thr Thr Pro Asp Leu Thr Thr Gly Thr Pro Leu
35 40 45
Gln Met Thr Thr Ile Ala Val Phe Thr Thr Ala Asn Thr Cys Leu Ser
50 55 60
Leu Thr Pro Ser Thr Leu Pro Glu Glu Ala Thr Gly Leu Leu Thr Pro
65 70 75 80
Glu Pro Ser Lys Glu Gly Pro Ile Leu Thr Ala Glu Ser Glu Thr Val
85 90 95
Leu Pro Ser Asp Ser Trp Ser Ser Val Glu Ser Thr Ser Ala Asp Thr
100 105 110
Val Leu Leu Thr Ser Lys Glu Ser Lys Val Trp Asp Leu Pro Ser Thr
115 120 125
Ser His Val Ser Met Trp Lys Thr Ser Asp Ser Val Ser Ser Pro Gln
130 135 140
Pro Gly Ala Ser Asp Thr Ala Val Pro Glu Gln Asn Lys Thr Thr Lys
145 150 155 160
Thr Gly Gln Met Asp Gly Ile Pro Met Ser Met Lys Asn Glu Met Pro
165 170 175
Ile Ser Gln
<210> 36
<211> 364
<212> PRT
<213> Chile person
<400> 36
Met His Pro Gln Val Val Ile Leu Ser Leu Ile Leu His Leu Ala Asp
1 5 10 15
Ser Val Ala Gly Ser Val Lys Val Gly Gly Glu Ala Gly Pro Ser Val
20 25 30
Thr Leu Pro Cys His Tyr Ser Gly Ala Val Thr Ser Met Cys Trp Asn
35 40 45
Arg Gly Ser Cys Ser Leu Phe Thr Cys Gln Asn Gly Ile Val Trp Thr
50 55 60
Asn Gly Thr His Val Thr Tyr Arg Lys Asp Thr Arg Tyr Lys Leu Leu
65 70 75 80
Gly Asp Leu Ser Arg Arg Asp Val Ser Leu Thr Ile Glu Asn Thr Ala
85 90 95
Val Ser Asp Ser Gly Val Tyr Cys Cys Arg Val Glu His Arg Gly Trp
100 105 110
Phe Asn Asp Met Lys Ile Thr Val Ser Leu Glu Ile Val Pro Pro Lys
115 120 125
Val Thr Thr Thr Pro Ile Val Thr Thr Val Pro Thr Val Thr Thr Val
130 135 140
Arg Thr Ser Thr Thr Val Pro Thr Thr Thr Thr Val Pro Met Thr Thr
145 150 155 160
Val Pro Thr Thr Thr Val Pro Thr Thr Met Ser Ile Pro Thr Thr Thr
165 170 175
Thr Val Leu Thr Thr Met Thr Val Ser Thr Thr Thr Ser Val Pro Thr
180 185 190
Thr Thr Ser Ile Pro Thr Thr Thr Ser Val Pro Val Thr Thr Thr Val
195 200 205
Ser Thr Phe Val Pro Pro Met Pro Leu Pro Arg Gln Asn His Glu Pro
210 215 220
Val Ala Thr Ser Pro Ser Ser Pro Gln Pro Ala Glu Thr His Pro Thr
225 230 235 240
Thr Leu Gln Gly Ala Ile Arg Arg Glu Pro Thr Ser Ser Pro Leu Tyr
245 250 255
Ser Tyr Thr Thr Asp Gly Asn Asp Thr Val Thr Glu Ser Ser Asp Gly
260 265 270
Leu Trp Asn Asn Asn Gln Thr Gln Leu Phe Leu Glu His Ser Leu Leu
275 280 285
Thr Ala Asn Thr Thr Lys Gly Ile Tyr Ala Gly Val Cys Ile Ser Val
290 295 300
Leu Val Leu Leu Ala Leu Leu Gly Val Ile Ile Ala Lys Lys Tyr Phe
305 310 315 320
Phe Lys Lys Glu Val Gln Gln Leu Ser Val Ser Phe Ser Ser Leu Gln
325 330 335
Ile Lys Ala Leu Gln Asn Ala Val Glu Lys Glu Val Gln Ala Glu Asp
340 345 350
Asn Ile Tyr Ile Glu Asn Ser Leu Tyr Ala Thr Asp
355 360
<210> 37
<211> 295
<212> PRT
<213> Chile person
<220>
<221> SIGNAL
<222> (1)..(20)
<400> 37
Met His Pro Gln Val Val Ile Leu Ser Leu Ile Leu His Leu Ala Asp
1 5 10 15
Ser Val Ala Gly Ser Val Lys Val Gly Gly Glu Ala Gly Pro Ser Val
20 25 30
Thr Leu Pro Cys His Tyr Ser Gly Ala Val Thr Ser Met Cys Trp Asn
35 40 45
Arg Gly Ser Cys Ser Leu Phe Thr Cys Gln Asn Gly Ile Val Trp Thr
50 55 60
Asn Gly Thr His Val Thr Tyr Arg Lys Asp Thr Arg Tyr Lys Leu Leu
65 70 75 80
Gly Asp Leu Ser Arg Arg Asp Val Ser Leu Thr Ile Glu Asn Thr Ala
85 90 95
Val Ser Asp Ser Gly Val Tyr Cys Cys Arg Val Glu His Arg Gly Trp
100 105 110
Phe Asn Asp Met Lys Ile Thr Val Ser Leu Glu Ile Val Pro Pro Lys
115 120 125
Val Thr Thr Thr Pro Ile Val Thr Thr Val Pro Thr Val Thr Thr Val
130 135 140
Arg Thr Ser Thr Thr Val Pro Thr Thr Thr Thr Val Pro Met Thr Thr
145 150 155 160
Val Pro Thr Thr Thr Val Pro Thr Thr Met Ser Ile Pro Thr Thr Thr
165 170 175
Thr Val Leu Thr Thr Met Thr Val Ser Thr Thr Thr Ser Val Pro Thr
180 185 190
Thr Thr Ser Ile Pro Thr Thr Thr Ser Val Pro Val Thr Thr Thr Val
195 200 205
Ser Thr Phe Val Pro Pro Met Pro Leu Pro Arg Gln Asn His Glu Pro
210 215 220
Val Ala Thr Ser Pro Ser Ser Pro Gln Pro Ala Glu Thr His Pro Thr
225 230 235 240
Thr Leu Gln Gly Ala Ile Arg Arg Glu Pro Thr Ser Ser Pro Leu Tyr
245 250 255
Ser Tyr Thr Thr Asp Gly Asn Asp Thr Val Thr Glu Ser Ser Asp Gly
260 265 270
Leu Trp Asn Asn Asn Gln Thr Gln Leu Phe Leu Glu His Ser Leu Leu
275 280 285
Thr Ala Asn Thr Thr Lys Gly
290 295
<210> 38
<211> 108
<212> PRT
<213> Chile person
<400> 38
Ser Val Lys Val Gly Gly Glu Ala Gly Pro Ser Val Thr Leu Pro Cys
1 5 10 15
His Tyr Ser Gly Ala Val Thr Ser Met Cys Trp Asn Arg Gly Ser Cys
20 25 30
Ser Leu Phe Thr Cys Gln Asn Gly Ile Val Trp Thr Asn Gly Thr His
35 40 45
Val Thr Tyr Arg Lys Asp Thr Arg Tyr Lys Leu Leu Gly Asp Leu Ser
50 55 60
Arg Arg Asp Val Ser Leu Thr Ile Glu Asn Thr Ala Val Ser Asp Ser
65 70 75 80
Gly Val Tyr Cys Cys Arg Val Glu His Arg Gly Trp Phe Asn Asp Met
85 90 95
Lys Ile Thr Val Ser Leu Glu Ile Val Pro Pro Lys
100 105
<210> 39
<211> 167
<212> PRT
<213> Chile person
<400> 39
Val Thr Thr Thr Pro Ile Val Thr Thr Val Pro Thr Val Thr Thr Val
1 5 10 15
Arg Thr Ser Thr Thr Val Pro Thr Thr Thr Thr Val Pro Met Thr Thr
20 25 30
Val Pro Thr Thr Thr Val Pro Thr Thr Met Ser Ile Pro Thr Thr Thr
35 40 45
Thr Val Leu Thr Thr Met Thr Val Ser Thr Thr Thr Ser Val Pro Thr
50 55 60
Thr Thr Ser Ile Pro Thr Thr Thr Ser Val Pro Val Thr Thr Thr Val
65 70 75 80
Ser Thr Phe Val Pro Pro Met Pro Leu Pro Arg Gln Asn His Glu Pro
85 90 95
Val Ala Thr Ser Pro Ser Ser Pro Gln Pro Ala Glu Thr His Pro Thr
100 105 110
Thr Leu Gln Gly Ala Ile Arg Arg Glu Pro Thr Ser Ser Pro Leu Tyr
115 120 125
Ser Tyr Thr Thr Asp Gly Asn Asp Thr Val Thr Glu Ser Ser Asp Gly
130 135 140
Leu Trp Asn Asn Asn Gln Thr Gln Leu Phe Leu Glu His Ser Leu Leu
145 150 155 160
Thr Ala Asn Thr Thr Lys Gly
165
<210> 40
<211> 20
<212> PRT
<213> Chile person
<400> 40
Met His Pro Gln Val Val Ile Leu Ser Leu Ile Leu His Leu Ala Asp
1 5 10 15
Ser Val Ala Gly
20
<210> 41
<211> 108
<212> PRT
<213> artificial sequence
<220>
<223> modified Tim1IgV Domain
<400> 41
Ser Val Lys Val Gly Gly Glu Ala Gly Pro Ser Val Thr Leu Pro Cys
1 5 10 15
His Tyr Ser Gly Ala Val Thr Ser Met Cys Trp Asn Arg Gly Ser Cys
20 25 30
Ser Leu Phe Thr Cys Gln Asn Gly Ile Val Trp Thr Asn Gly Thr His
35 40 45
Val Thr Tyr Arg Lys Asp Thr Arg Tyr Lys Leu Leu Gly Asp Leu Ser
50 55 60
Arg Gly Asp Val Ser Leu Thr Ile Glu Asn Thr Ala Val Ser Asp Ser
65 70 75 80
Gly Val Tyr Cys Cys Arg Val Glu His Arg Gly Trp Phe Asn Asp Met
85 90 95
Lys Ile Thr Val Ser Leu Glu Ile Val Pro Pro Lys
100 105
<210> 42
<211> 290
<212> PRT
<213> Chile person
<400> 42
Glu Thr Val Val Thr Glu Val Leu Gly His Arg Val Thr Leu Pro Cys
1 5 10 15
Leu Tyr Ser Ser Trp Ser His Asn Ser Asn Ser Met Cys Trp Gly Lys
20 25 30
Asp Gln Cys Pro Tyr Ser Gly Cys Lys Glu Ala Leu Ile Arg Thr Asp
35 40 45
Gly Met Arg Val Thr Ser Arg Lys Ser Ala Lys Tyr Arg Leu Gln Gly
50 55 60
Thr Ile Pro Arg Gly Asp Val Ser Leu Thr Ile Leu Asn Pro Ser Glu
65 70 75 80
Ser Asp Ser Gly Val Tyr Cys Cys Arg Ile Glu Val Pro Gly Trp Phe
85 90 95
Asn Asp Val Lys Ile Asn Val Arg Leu Asn Leu Gln Arg Ala Ser Thr
100 105 110
Thr Thr His Arg Thr Ala Thr Thr Thr Thr Arg Arg Thr Thr Thr Thr
115 120 125
Ser Pro Thr Thr Thr Arg Gln Met Thr Thr Thr Pro Ala Ala Leu Pro
130 135 140
Thr Thr Val Val Thr Thr Pro Asp Leu Thr Thr Gly Thr Pro Leu Gln
145 150 155 160
Met Thr Thr Ile Ala Val Phe Thr Thr Ala Asn Thr Cys Leu Ser Leu
165 170 175
Thr Pro Ser Thr Leu Pro Glu Glu Ala Thr Gly Leu Leu Thr Pro Glu
180 185 190
Pro Ser Lys Glu Gly Pro Ile Leu Thr Ala Glu Ser Glu Thr Val Leu
195 200 205
Pro Ser Asp Ser Trp Ser Ser Val Glu Ser Thr Ser Ala Asp Thr Val
210 215 220
Leu Leu Thr Ser Lys Glu Ser Lys Val Trp Asp Leu Pro Ser Thr Ser
225 230 235 240
His Val Ser Met Trp Lys Thr Ser Asp Ser Val Ser Ser Pro Gln Pro
245 250 255
Gly Ala Ser Asp Thr Ala Val Pro Glu Gln Asn Lys Thr Thr Lys Thr
260 265 270
Gly Gln Met Asp Gly Ile Pro Met Ser Met Lys Asn Glu Met Pro Ile
275 280 285
Ser Gln
290
<210> 43
<211> 275
<212> PRT
<213> Chile person
<400> 43
Ser Val Lys Val Gly Gly Glu Ala Gly Pro Ser Val Thr Leu Pro Cys
1 5 10 15
His Tyr Ser Gly Ala Val Thr Ser Met Cys Trp Asn Arg Gly Ser Cys
20 25 30
Ser Leu Phe Thr Cys Gln Asn Gly Ile Val Trp Thr Asn Gly Thr His
35 40 45
Val Thr Tyr Arg Lys Asp Thr Arg Tyr Lys Leu Leu Gly Asp Leu Ser
50 55 60
Arg Arg Asp Val Ser Leu Thr Ile Glu Asn Thr Ala Val Ser Asp Ser
65 70 75 80
Gly Val Tyr Cys Cys Arg Val Glu His Arg Gly Trp Phe Asn Asp Met
85 90 95
Lys Ile Thr Val Ser Leu Glu Ile Val Pro Pro Lys Val Thr Thr Thr
100 105 110
Pro Ile Val Thr Thr Val Pro Thr Val Thr Thr Val Arg Thr Ser Thr
115 120 125
Thr Val Pro Thr Thr Thr Thr Val Pro Met Thr Thr Val Pro Thr Thr
130 135 140
Thr Val Pro Thr Thr Met Ser Ile Pro Thr Thr Thr Thr Val Leu Thr
145 150 155 160
Thr Met Thr Val Ser Thr Thr Thr Ser Val Pro Thr Thr Thr Ser Ile
165 170 175
Pro Thr Thr Thr Ser Val Pro Val Thr Thr Thr Val Ser Thr Phe Val
180 185 190
Pro Pro Met Pro Leu Pro Arg Gln Asn His Glu Pro Val Ala Thr Ser
195 200 205
Pro Ser Ser Pro Gln Pro Ala Glu Thr His Pro Thr Thr Leu Gln Gly
210 215 220
Ala Ile Arg Arg Glu Pro Thr Ser Ser Pro Leu Tyr Ser Tyr Thr Thr
225 230 235 240
Asp Gly Asn Asp Thr Val Thr Glu Ser Ser Asp Gly Leu Trp Asn Asn
245 250 255
Asn Gln Thr Gln Leu Phe Leu Glu His Ser Leu Leu Thr Ala Asn Thr
260 265 270
Thr Lys Gly
275
<210> 44
<211> 48
<212> PRT
<213> Chile person
<400> 44
Lys Lys Tyr Phe Phe Lys Lys Glu Val Gln Gln Leu Ser Val Ser Phe
1 5 10 15
Ser Ser Leu Gln Ile Lys Ala Leu Gln Asn Ala Val Glu Lys Glu Val
20 25 30
Gln Ala Glu Asp Asn Ile Tyr Ile Glu Asn Ser Leu Tyr Ala Thr Asp
35 40 45
<210> 45
<211> 43
<212> PRT
<213> Chile person
<400> 45
Leu Arg Gly Lys Leu Met Glu Thr Tyr Cys Ser Gln Lys His Thr Arg
1 5 10 15
Leu Asp Tyr Ile Gly Asp Ser Lys Asn Val Leu Asn Asp Val Gln His
20 25 30
Gly Arg Glu Asp Glu Asp Gly Leu Phe Thr Leu
35 40
<210> 46
<211> 274
<212> PRT
<213> artificial sequence
<220>
<223> TRAF6 Signal transduction Domain
<400> 46
Met Ser Leu Leu Asn Cys Glu Asn Ser Cys Gly Ser Ser Gln Ser Glu
1 5 10 15
Ser Asp Cys Cys Val Ala Met Ala Ser Ser Cys Ser Ala Val Thr Lys
20 25 30
Asp Asp Ser Val Gly Gly Thr Ala Ser Thr Gly Asn Leu Ser Ser Ser
35 40 45
Phe Met Glu Glu Ile Gln Gly Tyr Asp Val Glu Phe Asp Pro Pro Leu
50 55 60
Glu Ser Lys Tyr Glu Cys Pro Ile Cys Leu Met Ala Leu Arg Glu Ala
65 70 75 80
Val Gln Thr Pro Cys Gly His Arg Phe Cys Lys Ala Cys Ile Ile Lys
85 90 95
Ser Ile Arg Asp Ala Gly His Lys Cys Pro Val Asp Asn Glu Ile Leu
100 105 110
Leu Glu Asn Gln Leu Phe Pro Asp Asn Phe Ala Lys Arg Glu Ile Leu
115 120 125
Ser Leu Met Val Lys Cys Pro Asn Glu Gly Cys Leu His Lys Met Glu
130 135 140
Leu Arg His Leu Glu Asp His Gln Ala His Cys Glu Phe Ala Leu Met
145 150 155 160
Asp Cys Pro Gln Cys Gln Arg Pro Phe Gln Lys Phe His Ile Asn Ile
165 170 175
His Ile Leu Lys Asp Cys Pro Arg Arg Gln Val Ser Cys Asp Asn Cys
180 185 190
Ala Ala Ser Met Ala Phe Glu Asp Lys Glu Ile His Asp Gln Asn Cys
195 200 205
Pro Leu Ala Asn Val Ile Cys Glu Tyr Cys Asn Thr Ile Leu Ile Arg
210 215 220
Glu Gln Met Pro Asn His Tyr Asp Leu Asp Cys Pro Thr Ala Pro Ile
225 230 235 240
Pro Cys Thr Phe Ser Thr Phe Gly Cys His Glu Lys Met Gln Arg Asn
245 250 255
His Leu Ala Arg His Leu Gln Glu Asn Thr Gln Ser His Met Arg Met
260 265 270
Leu Ala
<210> 47
<211> 193
<212> PRT
<213> artificial sequence
<220>
<223> TLR8 signaling domain
<400> 47
His His Leu Phe Tyr Trp Asp Val Trp Phe Ile Tyr Asn Val Cys Leu
1 5 10 15
Ala Lys Val Lys Gly Tyr Arg Ser Leu Ser Thr Ser Gln Thr Phe Tyr
20 25 30
Asp Ala Tyr Ile Ser Tyr Asp Thr Lys Asp Ala Ser Val Thr Asp Trp
35 40 45
Val Ile Asn Glu Leu Arg Tyr His Leu Glu Glu Ser Arg Asp Lys Asn
50 55 60
Val Leu Leu Cys Leu Glu Glu Arg Asp Trp Asp Pro Gly Leu Ala Ile
65 70 75 80
Ile Asp Asn Leu Met Gln Ser Ile Asn Gln Ser Lys Lys Thr Val Phe
85 90 95
Val Leu Thr Lys Lys Tyr Ala Lys Ser Trp Asn Phe Lys Thr Ala Phe
100 105 110
Tyr Leu Ala Leu Gln Arg Leu Met Asp Glu Asn Met Asp Val Ile Ile
115 120 125
Phe Ile Leu Leu Glu Pro Val Leu Gln His Ser Gln Tyr Leu Arg Leu
130 135 140
Arg Gln Arg Ile Cys Lys Ser Ser Ile Leu Gln Trp Pro Asp Asn Pro
145 150 155 160
Lys Ala Glu Gly Leu Phe Trp Gln Thr Leu Arg Asn Val Val Leu Thr
165 170 175
Glu Asn Asp Ser Arg Tyr Asn Asn Met Tyr Val Asp Ser Ile Lys Gln
180 185 190
Tyr
<210> 48
<211> 303
<212> PRT
<213> artificial sequence
<220>
<223> TRAF2 Signal transduction Domain
<400> 48
Met Ala Ala Ala Ser Val Thr Pro Pro Gly Ser Leu Glu Leu Leu Gln
1 5 10 15
Pro Gly Phe Ser Lys Thr Leu Leu Gly Thr Lys Leu Glu Ala Lys Tyr
20 25 30
Leu Cys Ser Ala Cys Arg Asn Val Leu Arg Arg Pro Phe Gln Ala Gln
35 40 45
Cys Gly His Arg Tyr Cys Ser Phe Cys Leu Ala Ser Ile Leu Ser Ser
50 55 60
Gly Pro Gln Asn Cys Ala Ala Cys Val His Glu Gly Ile Tyr Glu Glu
65 70 75 80
Gly Ile Ser Ile Leu Glu Ser Ser Ser Ala Phe Pro Asp Asn Ala Ala
85 90 95
Arg Arg Glu Val Glu Ser Leu Pro Ala Val Cys Pro Ser Asp Gly Cys
100 105 110
Thr Trp Lys Gly Thr Leu Lys Glu Tyr Glu Ser Cys His Glu Gly Arg
115 120 125
Cys Pro Leu Met Leu Thr Glu Cys Pro Ala Cys Lys Gly Leu Val Arg
130 135 140
Leu Gly Glu Lys Glu Arg His Leu Glu His Glu Cys Pro Glu Arg Ser
145 150 155 160
Leu Ser Cys Arg His Cys Arg Ala Pro Cys Cys Gly Ala Asp Val Lys
165 170 175
Ala His His Glu Val Cys Pro Lys Phe Pro Leu Thr Cys Asp Gly Cys
180 185 190
Gly Lys Lys Lys Ile Pro Arg Glu Lys Phe Gln Asp His Val Lys Thr
195 200 205
Cys Gly Lys Cys Arg Val Pro Cys Arg Phe His Ala Ile Gly Cys Leu
210 215 220
Glu Thr Val Glu Gly Glu Lys Gln Gln Glu His Glu Val Gln Trp Leu
225 230 235 240
Arg Glu His Leu Ala Met Leu Leu Ser Ser Val Leu Glu Ala Lys Pro
245 250 255
Leu Leu Gly Asp Gln Ser His Ala Gly Ser Glu Leu Leu Gln Arg Cys
260 265 270
Glu Ser Leu Glu Lys Lys Thr Ala Thr Phe Glu Asn Ile Val Cys Val
275 280 285
Leu Asn Arg Glu Val Glu Arg Val Ala Met Thr Ala Glu Ala Cys
290 295 300
<210> 49
<211> 476
<212> PRT
<213> artificial sequence
<220>
<223> chimeric Tim-Tim1IgV-Tim1 mucin-Tim 1TM-Tim1SD-CD3zSD
<400> 49
Met His Pro Gln Val Val Ile Leu Ser Leu Ile Leu His Leu Ala Asp
1 5 10 15
Ser Val Ala Gly Ser Val Lys Val Gly Gly Glu Ala Gly Pro Ser Val
20 25 30
Thr Leu Pro Cys His Tyr Ser Gly Ala Val Thr Ser Met Cys Trp Asn
35 40 45
Arg Gly Ser Cys Ser Leu Phe Thr Cys Gln Asn Gly Ile Val Trp Thr
50 55 60
Asn Gly Thr His Val Thr Tyr Arg Lys Asp Thr Arg Tyr Lys Leu Leu
65 70 75 80
Gly Asp Leu Ser Arg Arg Asp Val Ser Leu Thr Ile Glu Asn Thr Ala
85 90 95
Val Ser Asp Ser Gly Val Tyr Cys Cys Arg Val Glu His Arg Gly Trp
100 105 110
Phe Asn Asp Met Lys Ile Thr Val Ser Leu Glu Ile Val Pro Pro Lys
115 120 125
Val Thr Thr Thr Pro Ile Val Thr Thr Val Pro Thr Val Thr Thr Val
130 135 140
Arg Thr Ser Thr Thr Val Pro Thr Thr Thr Thr Val Pro Met Thr Thr
145 150 155 160
Val Pro Thr Thr Thr Val Pro Thr Thr Met Ser Ile Pro Thr Thr Thr
165 170 175
Thr Val Leu Thr Thr Met Thr Val Ser Thr Thr Thr Ser Val Pro Thr
180 185 190
Thr Thr Ser Ile Pro Thr Thr Thr Ser Val Pro Val Thr Thr Thr Val
195 200 205
Ser Thr Phe Val Pro Pro Met Pro Leu Pro Arg Gln Asn His Glu Pro
210 215 220
Val Ala Thr Ser Pro Ser Ser Pro Gln Pro Ala Glu Thr His Pro Thr
225 230 235 240
Thr Leu Gln Gly Ala Ile Arg Arg Glu Pro Thr Ser Ser Pro Leu Tyr
245 250 255
Ser Tyr Thr Thr Asp Gly Asn Asp Thr Val Thr Glu Ser Ser Asp Gly
260 265 270
Leu Trp Asn Asn Asn Gln Thr Gln Leu Phe Leu Glu His Ser Leu Leu
275 280 285
Thr Ala Asn Thr Thr Lys Gly Ile Tyr Ala Gly Val Cys Ile Ser Val
290 295 300
Leu Val Leu Leu Ala Leu Leu Gly Val Ile Ile Ala Lys Lys Tyr Phe
305 310 315 320
Phe Lys Lys Glu Val Gln Gln Leu Ser Val Ser Phe Ser Ser Leu Gln
325 330 335
Ile Lys Ala Leu Gln Asn Ala Val Glu Lys Glu Val Gln Ala Glu Asp
340 345 350
Asn Ile Tyr Ile Glu Asn Ser Leu Tyr Ala Thr Asp Arg Val Lys Phe
355 360 365
Ser Arg Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu
370 375 380
Tyr Asn Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp
385 390 395 400
Lys Arg Arg Gly Arg Asp Pro Glu Met Gly Gly Lys Pro Arg Arg Lys
405 410 415
Asn Pro Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala
420 425 430
Glu Ala Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys
435 440 445
Gly His Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr
450 455 460
Tyr Asp Ala Leu His Met Gln Ala Leu Pro Pro Arg
465 470 475
<210> 50
<211> 471
<212> PRT
<213> artificial sequence
<220>
<223> chimeric Tim-Tim1IgV-Tim1 mucin-Tim 1TM-Tim4SD-CD3zSD
<400> 50
Met His Pro Gln Val Val Ile Leu Ser Leu Ile Leu His Leu Ala Asp
1 5 10 15
Ser Val Ala Gly Ser Val Lys Val Gly Gly Glu Ala Gly Pro Ser Val
20 25 30
Thr Leu Pro Cys His Tyr Ser Gly Ala Val Thr Ser Met Cys Trp Asn
35 40 45
Arg Gly Ser Cys Ser Leu Phe Thr Cys Gln Asn Gly Ile Val Trp Thr
50 55 60
Asn Gly Thr His Val Thr Tyr Arg Lys Asp Thr Arg Tyr Lys Leu Leu
65 70 75 80
Gly Asp Leu Ser Arg Arg Asp Val Ser Leu Thr Ile Glu Asn Thr Ala
85 90 95
Val Ser Asp Ser Gly Val Tyr Cys Cys Arg Val Glu His Arg Gly Trp
100 105 110
Phe Asn Asp Met Lys Ile Thr Val Ser Leu Glu Ile Val Pro Pro Lys
115 120 125
Val Thr Thr Thr Pro Ile Val Thr Thr Val Pro Thr Val Thr Thr Val
130 135 140
Arg Thr Ser Thr Thr Val Pro Thr Thr Thr Thr Val Pro Met Thr Thr
145 150 155 160
Val Pro Thr Thr Thr Val Pro Thr Thr Met Ser Ile Pro Thr Thr Thr
165 170 175
Thr Val Leu Thr Thr Met Thr Val Ser Thr Thr Thr Ser Val Pro Thr
180 185 190
Thr Thr Ser Ile Pro Thr Thr Thr Ser Val Pro Val Thr Thr Thr Val
195 200 205
Ser Thr Phe Val Pro Pro Met Pro Leu Pro Arg Gln Asn His Glu Pro
210 215 220
Val Ala Thr Ser Pro Ser Ser Pro Gln Pro Ala Glu Thr His Pro Thr
225 230 235 240
Thr Leu Gln Gly Ala Ile Arg Arg Glu Pro Thr Ser Ser Pro Leu Tyr
245 250 255
Ser Tyr Thr Thr Asp Gly Asn Asp Thr Val Thr Glu Ser Ser Asp Gly
260 265 270
Leu Trp Asn Asn Asn Gln Thr Gln Leu Phe Leu Glu His Ser Leu Leu
275 280 285
Thr Ala Asn Thr Thr Lys Gly Ile Tyr Ala Gly Val Cys Ile Ser Val
290 295 300
Leu Val Leu Leu Ala Leu Leu Gly Val Ile Ile Ala Leu Arg Gly Lys
305 310 315 320
Leu Met Glu Thr Tyr Cys Ser Gln Lys His Thr Arg Leu Asp Tyr Ile
325 330 335
Gly Asp Ser Lys Asn Val Leu Asn Asp Val Gln His Gly Arg Glu Asp
340 345 350
Glu Asp Gly Leu Phe Thr Leu Arg Val Lys Phe Ser Arg Ser Ala Asp
355 360 365
Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn Glu Leu Asn
370 375 380
Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg Arg Gly Arg
385 390 395 400
Asp Pro Glu Met Gly Gly Lys Pro Arg Arg Lys Asn Pro Gln Glu Gly
405 410 415
Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu Ala Tyr Ser Glu
420 425 430
Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His Asp Gly Leu
435 440 445
Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp Ala Leu His
450 455 460
Met Gln Ala Leu Pro Pro Arg
465 470
<210> 51
<211> 363
<212> PRT
<213> artificial sequence
<220>
<223> chimeric Tim-Tim1IgV-Tim1 mucin-CD 28TM-CD28SD
<400> 51
Met His Pro Gln Val Val Ile Leu Ser Leu Ile Leu His Leu Ala Asp
1 5 10 15
Ser Val Ala Gly Ser Val Lys Val Gly Gly Glu Ala Gly Pro Ser Val
20 25 30
Thr Leu Pro Cys His Tyr Ser Gly Ala Val Thr Ser Met Cys Trp Asn
35 40 45
Arg Gly Ser Cys Ser Leu Phe Thr Cys Gln Asn Gly Ile Val Trp Thr
50 55 60
Asn Gly Thr His Val Thr Tyr Arg Lys Asp Thr Arg Tyr Lys Leu Leu
65 70 75 80
Gly Asp Leu Ser Arg Arg Asp Val Ser Leu Thr Ile Glu Asn Thr Ala
85 90 95
Val Ser Asp Ser Gly Val Tyr Cys Cys Arg Val Glu His Arg Gly Trp
100 105 110
Phe Asn Asp Met Lys Ile Thr Val Ser Leu Glu Ile Val Pro Pro Lys
115 120 125
Val Thr Thr Thr Pro Ile Val Thr Thr Val Pro Thr Val Thr Thr Val
130 135 140
Arg Thr Ser Thr Thr Val Pro Thr Thr Thr Thr Val Pro Met Thr Thr
145 150 155 160
Val Pro Thr Thr Thr Val Pro Thr Thr Met Ser Ile Pro Thr Thr Thr
165 170 175
Thr Val Leu Thr Thr Met Thr Val Ser Thr Thr Thr Ser Val Pro Thr
180 185 190
Thr Thr Ser Ile Pro Thr Thr Thr Ser Val Pro Val Thr Thr Thr Val
195 200 205
Ser Thr Phe Val Pro Pro Met Pro Leu Pro Arg Gln Asn His Glu Pro
210 215 220
Val Ala Thr Ser Pro Ser Ser Pro Gln Pro Ala Glu Thr His Pro Thr
225 230 235 240
Thr Leu Gln Gly Ala Ile Arg Arg Glu Pro Thr Ser Ser Pro Leu Tyr
245 250 255
Ser Tyr Thr Thr Asp Gly Asn Asp Thr Val Thr Glu Ser Ser Asp Gly
260 265 270
Leu Trp Asn Asn Asn Gln Thr Gln Leu Phe Leu Glu His Ser Leu Leu
275 280 285
Thr Ala Asn Thr Thr Lys Gly Phe Trp Val Leu Val Val Val Gly Gly
290 295 300
Val Leu Ala Cys Tyr Ser Leu Leu Val Thr Val Ala Phe Ile Ile Phe
305 310 315 320
Trp Val Arg Ser Lys Arg Ser Arg Leu Leu His Ser Asp Tyr Met Asn
325 330 335
Met Thr Pro Arg Arg Pro Gly Pro Thr Arg Lys His Tyr Gln Pro Tyr
340 345 350
Ala Pro Pro Arg Asp Phe Ala Ala Tyr Arg Ser
355 360
<210> 52
<211> 590
<212> PRT
<213> artificial sequence
<220>
<223> chimeric Tim-Tim1IgV-Tim1 mucin-Tim 1TM-TRAF6SD
<400> 52
Met His Pro Gln Val Val Ile Leu Ser Leu Ile Leu His Leu Ala Asp
1 5 10 15
Ser Val Ala Gly Ser Val Lys Val Gly Gly Glu Ala Gly Pro Ser Val
20 25 30
Thr Leu Pro Cys His Tyr Ser Gly Ala Val Thr Ser Met Cys Trp Asn
35 40 45
Arg Gly Ser Cys Ser Leu Phe Thr Cys Gln Asn Gly Ile Val Trp Thr
50 55 60
Asn Gly Thr His Val Thr Tyr Arg Lys Asp Thr Arg Tyr Lys Leu Leu
65 70 75 80
Gly Asp Leu Ser Arg Arg Asp Val Ser Leu Thr Ile Glu Asn Thr Ala
85 90 95
Val Ser Asp Ser Gly Val Tyr Cys Cys Arg Val Glu His Arg Gly Trp
100 105 110
Phe Asn Asp Met Lys Ile Thr Val Ser Leu Glu Ile Val Pro Pro Lys
115 120 125
Val Thr Thr Thr Pro Ile Val Thr Thr Val Pro Thr Val Thr Thr Val
130 135 140
Arg Thr Ser Thr Thr Val Pro Thr Thr Thr Thr Val Pro Met Thr Thr
145 150 155 160
Val Pro Thr Thr Thr Val Pro Thr Thr Met Ser Ile Pro Thr Thr Thr
165 170 175
Thr Val Leu Thr Thr Met Thr Val Ser Thr Thr Thr Ser Val Pro Thr
180 185 190
Thr Thr Ser Ile Pro Thr Thr Thr Ser Val Pro Val Thr Thr Thr Val
195 200 205
Ser Thr Phe Val Pro Pro Met Pro Leu Pro Arg Gln Asn His Glu Pro
210 215 220
Val Ala Thr Ser Pro Ser Ser Pro Gln Pro Ala Glu Thr His Pro Thr
225 230 235 240
Thr Leu Gln Gly Ala Ile Arg Arg Glu Pro Thr Ser Ser Pro Leu Tyr
245 250 255
Ser Tyr Thr Thr Asp Gly Asn Asp Thr Val Thr Glu Ser Ser Asp Gly
260 265 270
Leu Trp Asn Asn Asn Gln Thr Gln Leu Phe Leu Glu His Ser Leu Leu
275 280 285
Thr Ala Asn Thr Thr Lys Gly Ile Tyr Ala Gly Val Cys Ile Ser Val
290 295 300
Leu Val Leu Leu Ala Leu Leu Gly Val Ile Ile Ala Met Ser Leu Leu
305 310 315 320
Asn Cys Glu Asn Ser Cys Gly Ser Ser Gln Ser Glu Ser Asp Cys Cys
325 330 335
Val Ala Met Ala Ser Ser Cys Ser Ala Val Thr Lys Asp Asp Ser Val
340 345 350
Gly Gly Thr Ala Ser Thr Gly Asn Leu Ser Ser Ser Phe Met Glu Glu
355 360 365
Ile Gln Gly Tyr Asp Val Glu Phe Asp Pro Pro Leu Glu Ser Lys Tyr
370 375 380
Glu Cys Pro Ile Cys Leu Met Ala Leu Arg Glu Ala Val Gln Thr Pro
385 390 395 400
Cys Gly His Arg Phe Cys Lys Ala Cys Ile Ile Lys Ser Ile Arg Asp
405 410 415
Ala Gly His Lys Cys Pro Val Asp Asn Glu Ile Leu Leu Glu Asn Gln
420 425 430
Leu Phe Pro Asp Asn Phe Ala Lys Arg Glu Ile Leu Ser Leu Met Val
435 440 445
Lys Cys Pro Asn Glu Gly Cys Leu His Lys Met Glu Leu Arg His Leu
450 455 460
Glu Asp His Gln Ala His Cys Glu Phe Ala Leu Met Asp Cys Pro Gln
465 470 475 480
Cys Gln Arg Pro Phe Gln Lys Phe His Ile Asn Ile His Ile Leu Lys
485 490 495
Asp Cys Pro Arg Arg Gln Val Ser Cys Asp Asn Cys Ala Ala Ser Met
500 505 510
Ala Phe Glu Asp Lys Glu Ile His Asp Gln Asn Cys Pro Leu Ala Asn
515 520 525
Val Ile Cys Glu Tyr Cys Asn Thr Ile Leu Ile Arg Glu Gln Met Pro
530 535 540
Asn His Tyr Asp Leu Asp Cys Pro Thr Ala Pro Ile Pro Cys Thr Phe
545 550 555 560
Ser Thr Phe Gly Cys His Glu Lys Met Gln Arg Asn His Leu Ala Arg
565 570 575
His Leu Gln Glu Asn Thr Gln Ser His Met Arg Met Leu Ala
580 585 590
<210> 53
<211> 596
<212> PRT
<213> artificial sequence
<220>
<223> chimeric Tim-Tim1IgV-Tim1 mucin-CD 28TM-TRAF6SD
<400> 53
Met His Pro Gln Val Val Ile Leu Ser Leu Ile Leu His Leu Ala Asp
1 5 10 15
Ser Val Ala Gly Ser Val Lys Val Gly Gly Glu Ala Gly Pro Ser Val
20 25 30
Thr Leu Pro Cys His Tyr Ser Gly Ala Val Thr Ser Met Cys Trp Asn
35 40 45
Arg Gly Ser Cys Ser Leu Phe Thr Cys Gln Asn Gly Ile Val Trp Thr
50 55 60
Asn Gly Thr His Val Thr Tyr Arg Lys Asp Thr Arg Tyr Lys Leu Leu
65 70 75 80
Gly Asp Leu Ser Arg Arg Asp Val Ser Leu Thr Ile Glu Asn Thr Ala
85 90 95
Val Ser Asp Ser Gly Val Tyr Cys Cys Arg Val Glu His Arg Gly Trp
100 105 110
Phe Asn Asp Met Lys Ile Thr Val Ser Leu Glu Ile Val Pro Pro Lys
115 120 125
Val Thr Thr Thr Pro Ile Val Thr Thr Val Pro Thr Val Thr Thr Val
130 135 140
Arg Thr Ser Thr Thr Val Pro Thr Thr Thr Thr Val Pro Met Thr Thr
145 150 155 160
Val Pro Thr Thr Thr Val Pro Thr Thr Met Ser Ile Pro Thr Thr Thr
165 170 175
Thr Val Leu Thr Thr Met Thr Val Ser Thr Thr Thr Ser Val Pro Thr
180 185 190
Thr Thr Ser Ile Pro Thr Thr Thr Ser Val Pro Val Thr Thr Thr Val
195 200 205
Ser Thr Phe Val Pro Pro Met Pro Leu Pro Arg Gln Asn His Glu Pro
210 215 220
Val Ala Thr Ser Pro Ser Ser Pro Gln Pro Ala Glu Thr His Pro Thr
225 230 235 240
Thr Leu Gln Gly Ala Ile Arg Arg Glu Pro Thr Ser Ser Pro Leu Tyr
245 250 255
Ser Tyr Thr Thr Asp Gly Asn Asp Thr Val Thr Glu Ser Ser Asp Gly
260 265 270
Leu Trp Asn Asn Asn Gln Thr Gln Leu Phe Leu Glu His Ser Leu Leu
275 280 285
Thr Ala Asn Thr Thr Lys Gly Phe Trp Val Leu Val Val Val Gly Gly
290 295 300
Val Leu Ala Cys Tyr Ser Leu Leu Val Thr Val Ala Phe Ile Ile Phe
305 310 315 320
Trp Val Met Ser Leu Leu Asn Cys Glu Asn Ser Cys Gly Ser Ser Gln
325 330 335
Ser Glu Ser Asp Cys Cys Val Ala Met Ala Ser Ser Cys Ser Ala Val
340 345 350
Thr Lys Asp Asp Ser Val Gly Gly Thr Ala Ser Thr Gly Asn Leu Ser
355 360 365
Ser Ser Phe Met Glu Glu Ile Gln Gly Tyr Asp Val Glu Phe Asp Pro
370 375 380
Pro Leu Glu Ser Lys Tyr Glu Cys Pro Ile Cys Leu Met Ala Leu Arg
385 390 395 400
Glu Ala Val Gln Thr Pro Cys Gly His Arg Phe Cys Lys Ala Cys Ile
405 410 415
Ile Lys Ser Ile Arg Asp Ala Gly His Lys Cys Pro Val Asp Asn Glu
420 425 430
Ile Leu Leu Glu Asn Gln Leu Phe Pro Asp Asn Phe Ala Lys Arg Glu
435 440 445
Ile Leu Ser Leu Met Val Lys Cys Pro Asn Glu Gly Cys Leu His Lys
450 455 460
Met Glu Leu Arg His Leu Glu Asp His Gln Ala His Cys Glu Phe Ala
465 470 475 480
Leu Met Asp Cys Pro Gln Cys Gln Arg Pro Phe Gln Lys Phe His Ile
485 490 495
Asn Ile His Ile Leu Lys Asp Cys Pro Arg Arg Gln Val Ser Cys Asp
500 505 510
Asn Cys Ala Ala Ser Met Ala Phe Glu Asp Lys Glu Ile His Asp Gln
515 520 525
Asn Cys Pro Leu Ala Asn Val Ile Cys Glu Tyr Cys Asn Thr Ile Leu
530 535 540
Ile Arg Glu Gln Met Pro Asn His Tyr Asp Leu Asp Cys Pro Thr Ala
545 550 555 560
Pro Ile Pro Cys Thr Phe Ser Thr Phe Gly Cys His Glu Lys Met Gln
565 570 575
Arg Asn His Leu Ala Arg His Leu Gln Glu Asn Thr Gln Ser His Met
580 585 590
Arg Met Leu Ala
595
<210> 54
<211> 619
<212> PRT
<213> artificial sequence
<220>
<223> chimeric Tim-Tim1IgV-Tim1 mucin-Tim 1TM-TRAF2SD
<400> 54
Met His Pro Gln Val Val Ile Leu Ser Leu Ile Leu His Leu Ala Asp
1 5 10 15
Ser Val Ala Gly Ser Val Lys Val Gly Gly Glu Ala Gly Pro Ser Val
20 25 30
Thr Leu Pro Cys His Tyr Ser Gly Ala Val Thr Ser Met Cys Trp Asn
35 40 45
Arg Gly Ser Cys Ser Leu Phe Thr Cys Gln Asn Gly Ile Val Trp Thr
50 55 60
Asn Gly Thr His Val Thr Tyr Arg Lys Asp Thr Arg Tyr Lys Leu Leu
65 70 75 80
Gly Asp Leu Ser Arg Arg Asp Val Ser Leu Thr Ile Glu Asn Thr Ala
85 90 95
Val Ser Asp Ser Gly Val Tyr Cys Cys Arg Val Glu His Arg Gly Trp
100 105 110
Phe Asn Asp Met Lys Ile Thr Val Ser Leu Glu Ile Val Pro Pro Lys
115 120 125
Val Thr Thr Thr Pro Ile Val Thr Thr Val Pro Thr Val Thr Thr Val
130 135 140
Arg Thr Ser Thr Thr Val Pro Thr Thr Thr Thr Val Pro Met Thr Thr
145 150 155 160
Val Pro Thr Thr Thr Val Pro Thr Thr Met Ser Ile Pro Thr Thr Thr
165 170 175
Thr Val Leu Thr Thr Met Thr Val Ser Thr Thr Thr Ser Val Pro Thr
180 185 190
Thr Thr Ser Ile Pro Thr Thr Thr Ser Val Pro Val Thr Thr Thr Val
195 200 205
Ser Thr Phe Val Pro Pro Met Pro Leu Pro Arg Gln Asn His Glu Pro
210 215 220
Val Ala Thr Ser Pro Ser Ser Pro Gln Pro Ala Glu Thr His Pro Thr
225 230 235 240
Thr Leu Gln Gly Ala Ile Arg Arg Glu Pro Thr Ser Ser Pro Leu Tyr
245 250 255
Ser Tyr Thr Thr Asp Gly Asn Asp Thr Val Thr Glu Ser Ser Asp Gly
260 265 270
Leu Trp Asn Asn Asn Gln Thr Gln Leu Phe Leu Glu His Ser Leu Leu
275 280 285
Thr Ala Asn Thr Thr Lys Gly Ile Tyr Ala Gly Val Cys Ile Ser Val
290 295 300
Leu Val Leu Leu Ala Leu Leu Gly Val Ile Ile Ala Met Ala Ala Ala
305 310 315 320
Ser Val Thr Pro Pro Gly Ser Leu Glu Leu Leu Gln Pro Gly Phe Ser
325 330 335
Lys Thr Leu Leu Gly Thr Lys Leu Glu Ala Lys Tyr Leu Cys Ser Ala
340 345 350
Cys Arg Asn Val Leu Arg Arg Pro Phe Gln Ala Gln Cys Gly His Arg
355 360 365
Tyr Cys Ser Phe Cys Leu Ala Ser Ile Leu Ser Ser Gly Pro Gln Asn
370 375 380
Cys Ala Ala Cys Val His Glu Gly Ile Tyr Glu Glu Gly Ile Ser Ile
385 390 395 400
Leu Glu Ser Ser Ser Ala Phe Pro Asp Asn Ala Ala Arg Arg Glu Val
405 410 415
Glu Ser Leu Pro Ala Val Cys Pro Ser Asp Gly Cys Thr Trp Lys Gly
420 425 430
Thr Leu Lys Glu Tyr Glu Ser Cys His Glu Gly Arg Cys Pro Leu Met
435 440 445
Leu Thr Glu Cys Pro Ala Cys Lys Gly Leu Val Arg Leu Gly Glu Lys
450 455 460
Glu Arg His Leu Glu His Glu Cys Pro Glu Arg Ser Leu Ser Cys Arg
465 470 475 480
His Cys Arg Ala Pro Cys Cys Gly Ala Asp Val Lys Ala His His Glu
485 490 495
Val Cys Pro Lys Phe Pro Leu Thr Cys Asp Gly Cys Gly Lys Lys Lys
500 505 510
Ile Pro Arg Glu Lys Phe Gln Asp His Val Lys Thr Cys Gly Lys Cys
515 520 525
Arg Val Pro Cys Arg Phe His Ala Ile Gly Cys Leu Glu Thr Val Glu
530 535 540
Gly Glu Lys Gln Gln Glu His Glu Val Gln Trp Leu Arg Glu His Leu
545 550 555 560
Ala Met Leu Leu Ser Ser Val Leu Glu Ala Lys Pro Leu Leu Gly Asp
565 570 575
Gln Ser His Ala Gly Ser Glu Leu Leu Gln Arg Cys Glu Ser Leu Glu
580 585 590
Lys Lys Thr Ala Thr Phe Glu Asn Ile Val Cys Val Leu Asn Arg Glu
595 600 605
Val Glu Arg Val Ala Met Thr Ala Glu Ala Cys
610 615
<210> 55
<211> 625
<212> PRT
<213> artificial sequence
<220>
<223> chimeric Tim-Tim1IgV-Tim1 mucin-CD 28TM-TRAF2SD
<400> 55
Met His Pro Gln Val Val Ile Leu Ser Leu Ile Leu His Leu Ala Asp
1 5 10 15
Ser Val Ala Gly Ser Val Lys Val Gly Gly Glu Ala Gly Pro Ser Val
20 25 30
Thr Leu Pro Cys His Tyr Ser Gly Ala Val Thr Ser Met Cys Trp Asn
35 40 45
Arg Gly Ser Cys Ser Leu Phe Thr Cys Gln Asn Gly Ile Val Trp Thr
50 55 60
Asn Gly Thr His Val Thr Tyr Arg Lys Asp Thr Arg Tyr Lys Leu Leu
65 70 75 80
Gly Asp Leu Ser Arg Arg Asp Val Ser Leu Thr Ile Glu Asn Thr Ala
85 90 95
Val Ser Asp Ser Gly Val Tyr Cys Cys Arg Val Glu His Arg Gly Trp
100 105 110
Phe Asn Asp Met Lys Ile Thr Val Ser Leu Glu Ile Val Pro Pro Lys
115 120 125
Val Thr Thr Thr Pro Ile Val Thr Thr Val Pro Thr Val Thr Thr Val
130 135 140
Arg Thr Ser Thr Thr Val Pro Thr Thr Thr Thr Val Pro Met Thr Thr
145 150 155 160
Val Pro Thr Thr Thr Val Pro Thr Thr Met Ser Ile Pro Thr Thr Thr
165 170 175
Thr Val Leu Thr Thr Met Thr Val Ser Thr Thr Thr Ser Val Pro Thr
180 185 190
Thr Thr Ser Ile Pro Thr Thr Thr Ser Val Pro Val Thr Thr Thr Val
195 200 205
Ser Thr Phe Val Pro Pro Met Pro Leu Pro Arg Gln Asn His Glu Pro
210 215 220
Val Ala Thr Ser Pro Ser Ser Pro Gln Pro Ala Glu Thr His Pro Thr
225 230 235 240
Thr Leu Gln Gly Ala Ile Arg Arg Glu Pro Thr Ser Ser Pro Leu Tyr
245 250 255
Ser Tyr Thr Thr Asp Gly Asn Asp Thr Val Thr Glu Ser Ser Asp Gly
260 265 270
Leu Trp Asn Asn Asn Gln Thr Gln Leu Phe Leu Glu His Ser Leu Leu
275 280 285
Thr Ala Asn Thr Thr Lys Gly Phe Trp Val Leu Val Val Val Gly Gly
290 295 300
Val Leu Ala Cys Tyr Ser Leu Leu Val Thr Val Ala Phe Ile Ile Phe
305 310 315 320
Trp Val Met Ala Ala Ala Ser Val Thr Pro Pro Gly Ser Leu Glu Leu
325 330 335
Leu Gln Pro Gly Phe Ser Lys Thr Leu Leu Gly Thr Lys Leu Glu Ala
340 345 350
Lys Tyr Leu Cys Ser Ala Cys Arg Asn Val Leu Arg Arg Pro Phe Gln
355 360 365
Ala Gln Cys Gly His Arg Tyr Cys Ser Phe Cys Leu Ala Ser Ile Leu
370 375 380
Ser Ser Gly Pro Gln Asn Cys Ala Ala Cys Val His Glu Gly Ile Tyr
385 390 395 400
Glu Glu Gly Ile Ser Ile Leu Glu Ser Ser Ser Ala Phe Pro Asp Asn
405 410 415
Ala Ala Arg Arg Glu Val Glu Ser Leu Pro Ala Val Cys Pro Ser Asp
420 425 430
Gly Cys Thr Trp Lys Gly Thr Leu Lys Glu Tyr Glu Ser Cys His Glu
435 440 445
Gly Arg Cys Pro Leu Met Leu Thr Glu Cys Pro Ala Cys Lys Gly Leu
450 455 460
Val Arg Leu Gly Glu Lys Glu Arg His Leu Glu His Glu Cys Pro Glu
465 470 475 480
Arg Ser Leu Ser Cys Arg His Cys Arg Ala Pro Cys Cys Gly Ala Asp
485 490 495
Val Lys Ala His His Glu Val Cys Pro Lys Phe Pro Leu Thr Cys Asp
500 505 510
Gly Cys Gly Lys Lys Lys Ile Pro Arg Glu Lys Phe Gln Asp His Val
515 520 525
Lys Thr Cys Gly Lys Cys Arg Val Pro Cys Arg Phe His Ala Ile Gly
530 535 540
Cys Leu Glu Thr Val Glu Gly Glu Lys Gln Gln Glu His Glu Val Gln
545 550 555 560
Trp Leu Arg Glu His Leu Ala Met Leu Leu Ser Ser Val Leu Glu Ala
565 570 575
Lys Pro Leu Leu Gly Asp Gln Ser His Ala Gly Ser Glu Leu Leu Gln
580 585 590
Arg Cys Glu Ser Leu Glu Lys Lys Thr Ala Thr Phe Glu Asn Ile Val
595 600 605
Cys Val Leu Asn Arg Glu Val Glu Arg Val Ala Met Thr Ala Glu Ala
610 615 620
Cys
625
<210> 56
<211> 621
<212> PRT
<213> artificial sequence
<220>
<223> chimeric Tim-Tim1IgV-Tim1 mucin-Tim 1TM-TLR8SD-CD3zSD
<400> 56
Met His Pro Gln Val Val Ile Leu Ser Leu Ile Leu His Leu Ala Asp
1 5 10 15
Ser Val Ala Gly Ser Val Lys Val Gly Gly Glu Ala Gly Pro Ser Val
20 25 30
Thr Leu Pro Cys His Tyr Ser Gly Ala Val Thr Ser Met Cys Trp Asn
35 40 45
Arg Gly Ser Cys Ser Leu Phe Thr Cys Gln Asn Gly Ile Val Trp Thr
50 55 60
Asn Gly Thr His Val Thr Tyr Arg Lys Asp Thr Arg Tyr Lys Leu Leu
65 70 75 80
Gly Asp Leu Ser Arg Arg Asp Val Ser Leu Thr Ile Glu Asn Thr Ala
85 90 95
Val Ser Asp Ser Gly Val Tyr Cys Cys Arg Val Glu His Arg Gly Trp
100 105 110
Phe Asn Asp Met Lys Ile Thr Val Ser Leu Glu Ile Val Pro Pro Lys
115 120 125
Val Thr Thr Thr Pro Ile Val Thr Thr Val Pro Thr Val Thr Thr Val
130 135 140
Arg Thr Ser Thr Thr Val Pro Thr Thr Thr Thr Val Pro Met Thr Thr
145 150 155 160
Val Pro Thr Thr Thr Val Pro Thr Thr Met Ser Ile Pro Thr Thr Thr
165 170 175
Thr Val Leu Thr Thr Met Thr Val Ser Thr Thr Thr Ser Val Pro Thr
180 185 190
Thr Thr Ser Ile Pro Thr Thr Thr Ser Val Pro Val Thr Thr Thr Val
195 200 205
Ser Thr Phe Val Pro Pro Met Pro Leu Pro Arg Gln Asn His Glu Pro
210 215 220
Val Ala Thr Ser Pro Ser Ser Pro Gln Pro Ala Glu Thr His Pro Thr
225 230 235 240
Thr Leu Gln Gly Ala Ile Arg Arg Glu Pro Thr Ser Ser Pro Leu Tyr
245 250 255
Ser Tyr Thr Thr Asp Gly Asn Asp Thr Val Thr Glu Ser Ser Asp Gly
260 265 270
Leu Trp Asn Asn Asn Gln Thr Gln Leu Phe Leu Glu His Ser Leu Leu
275 280 285
Thr Ala Asn Thr Thr Lys Gly Ile Tyr Ala Gly Val Cys Ile Ser Val
290 295 300
Leu Val Leu Leu Ala Leu Leu Gly Val Ile Ile Ala His His Leu Phe
305 310 315 320
Tyr Trp Asp Val Trp Phe Ile Tyr Asn Val Cys Leu Ala Lys Val Lys
325 330 335
Gly Tyr Arg Ser Leu Ser Thr Ser Gln Thr Phe Tyr Asp Ala Tyr Ile
340 345 350
Ser Tyr Asp Thr Lys Asp Ala Ser Val Thr Asp Trp Val Ile Asn Glu
355 360 365
Leu Arg Tyr His Leu Glu Glu Ser Arg Asp Lys Asn Val Leu Leu Cys
370 375 380
Leu Glu Glu Arg Asp Trp Asp Pro Gly Leu Ala Ile Ile Asp Asn Leu
385 390 395 400
Met Gln Ser Ile Asn Gln Ser Lys Lys Thr Val Phe Val Leu Thr Lys
405 410 415
Lys Tyr Ala Lys Ser Trp Asn Phe Lys Thr Ala Phe Tyr Leu Ala Leu
420 425 430
Gln Arg Leu Met Asp Glu Asn Met Asp Val Ile Ile Phe Ile Leu Leu
435 440 445
Glu Pro Val Leu Gln His Ser Gln Tyr Leu Arg Leu Arg Gln Arg Ile
450 455 460
Cys Lys Ser Ser Ile Leu Gln Trp Pro Asp Asn Pro Lys Ala Glu Gly
465 470 475 480
Leu Phe Trp Gln Thr Leu Arg Asn Val Val Leu Thr Glu Asn Asp Ser
485 490 495
Arg Tyr Asn Asn Met Tyr Val Asp Ser Ile Lys Gln Tyr Arg Val Lys
500 505 510
Phe Ser Arg Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln
515 520 525
Leu Tyr Asn Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu
530 535 540
Asp Lys Arg Arg Gly Arg Asp Pro Glu Met Gly Gly Lys Pro Arg Arg
545 550 555 560
Lys Asn Pro Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met
565 570 575
Ala Glu Ala Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg Arg Arg Gly
580 585 590
Lys Gly His Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp
595 600 605
Thr Tyr Asp Ala Leu His Met Gln Ala Leu Pro Pro Arg
610 615 620
<210> 57
<211> 415
<212> PRT
<213> artificial sequence
<220>
<223> chimeric Tim-Tim1IgV-Tim1 mucin-CD 28TM-CD28SD-DAP12SD
<400> 57
Met His Pro Gln Val Val Ile Leu Ser Leu Ile Leu His Leu Ala Asp
1 5 10 15
Ser Val Ala Gly Ser Val Lys Val Gly Gly Glu Ala Gly Pro Ser Val
20 25 30
Thr Leu Pro Cys His Tyr Ser Gly Ala Val Thr Ser Met Cys Trp Asn
35 40 45
Arg Gly Ser Cys Ser Leu Phe Thr Cys Gln Asn Gly Ile Val Trp Thr
50 55 60
Asn Gly Thr His Val Thr Tyr Arg Lys Asp Thr Arg Tyr Lys Leu Leu
65 70 75 80
Gly Asp Leu Ser Arg Arg Asp Val Ser Leu Thr Ile Glu Asn Thr Ala
85 90 95
Val Ser Asp Ser Gly Val Tyr Cys Cys Arg Val Glu His Arg Gly Trp
100 105 110
Phe Asn Asp Met Lys Ile Thr Val Ser Leu Glu Ile Val Pro Pro Lys
115 120 125
Val Thr Thr Thr Pro Ile Val Thr Thr Val Pro Thr Val Thr Thr Val
130 135 140
Arg Thr Ser Thr Thr Val Pro Thr Thr Thr Thr Val Pro Met Thr Thr
145 150 155 160
Val Pro Thr Thr Thr Val Pro Thr Thr Met Ser Ile Pro Thr Thr Thr
165 170 175
Thr Val Leu Thr Thr Met Thr Val Ser Thr Thr Thr Ser Val Pro Thr
180 185 190
Thr Thr Ser Ile Pro Thr Thr Thr Ser Val Pro Val Thr Thr Thr Val
195 200 205
Ser Thr Phe Val Pro Pro Met Pro Leu Pro Arg Gln Asn His Glu Pro
210 215 220
Val Ala Thr Ser Pro Ser Ser Pro Gln Pro Ala Glu Thr His Pro Thr
225 230 235 240
Thr Leu Gln Gly Ala Ile Arg Arg Glu Pro Thr Ser Ser Pro Leu Tyr
245 250 255
Ser Tyr Thr Thr Asp Gly Asn Asp Thr Val Thr Glu Ser Ser Asp Gly
260 265 270
Leu Trp Asn Asn Asn Gln Thr Gln Leu Phe Leu Glu His Ser Leu Leu
275 280 285
Thr Ala Asn Thr Thr Lys Gly Phe Trp Val Leu Val Val Val Gly Gly
290 295 300
Val Leu Ala Cys Tyr Ser Leu Leu Val Thr Val Ala Phe Ile Ile Phe
305 310 315 320
Trp Val Arg Ser Lys Arg Ser Arg Leu Leu His Ser Asp Tyr Met Asn
325 330 335
Met Thr Pro Arg Arg Pro Gly Pro Thr Arg Lys His Tyr Gln Pro Tyr
340 345 350
Ala Pro Pro Arg Asp Phe Ala Ala Tyr Arg Ser Tyr Phe Leu Gly Arg
355 360 365
Leu Val Pro Arg Gly Arg Gly Ala Ala Glu Ala Ala Thr Arg Lys Gln
370 375 380
Arg Ile Thr Glu Thr Glu Ser Pro Tyr Gln Glu Leu Gln Gly Gln Arg
385 390 395 400
Ser Asp Val Tyr Ser Asp Leu Asn Thr Gln Arg Pro Tyr Tyr Lys
405 410 415
<210> 58
<211> 409
<212> PRT
<213> artificial sequence
<220>
<223> chimeric Tim-Tim1IgV-Tim1 mucin-Tim 1TM-CD28SD-DAP12SD
<400> 58
Met His Pro Gln Val Val Ile Leu Ser Leu Ile Leu His Leu Ala Asp
1 5 10 15
Ser Val Ala Gly Ser Val Lys Val Gly Gly Glu Ala Gly Pro Ser Val
20 25 30
Thr Leu Pro Cys His Tyr Ser Gly Ala Val Thr Ser Met Cys Trp Asn
35 40 45
Arg Gly Ser Cys Ser Leu Phe Thr Cys Gln Asn Gly Ile Val Trp Thr
50 55 60
Asn Gly Thr His Val Thr Tyr Arg Lys Asp Thr Arg Tyr Lys Leu Leu
65 70 75 80
Gly Asp Leu Ser Arg Arg Asp Val Ser Leu Thr Ile Glu Asn Thr Ala
85 90 95
Val Ser Asp Ser Gly Val Tyr Cys Cys Arg Val Glu His Arg Gly Trp
100 105 110
Phe Asn Asp Met Lys Ile Thr Val Ser Leu Glu Ile Val Pro Pro Lys
115 120 125
Val Thr Thr Thr Pro Ile Val Thr Thr Val Pro Thr Val Thr Thr Val
130 135 140
Arg Thr Ser Thr Thr Val Pro Thr Thr Thr Thr Val Pro Met Thr Thr
145 150 155 160
Val Pro Thr Thr Thr Val Pro Thr Thr Met Ser Ile Pro Thr Thr Thr
165 170 175
Thr Val Leu Thr Thr Met Thr Val Ser Thr Thr Thr Ser Val Pro Thr
180 185 190
Thr Thr Ser Ile Pro Thr Thr Thr Ser Val Pro Val Thr Thr Thr Val
195 200 205
Ser Thr Phe Val Pro Pro Met Pro Leu Pro Arg Gln Asn His Glu Pro
210 215 220
Val Ala Thr Ser Pro Ser Ser Pro Gln Pro Ala Glu Thr His Pro Thr
225 230 235 240
Thr Leu Gln Gly Ala Ile Arg Arg Glu Pro Thr Ser Ser Pro Leu Tyr
245 250 255
Ser Tyr Thr Thr Asp Gly Asn Asp Thr Val Thr Glu Ser Ser Asp Gly
260 265 270
Leu Trp Asn Asn Asn Gln Thr Gln Leu Phe Leu Glu His Ser Leu Leu
275 280 285
Thr Ala Asn Thr Thr Lys Gly Ile Tyr Ala Gly Val Cys Ile Ser Val
290 295 300
Leu Val Leu Leu Ala Leu Leu Gly Val Ile Ile Ala Arg Ser Lys Arg
305 310 315 320
Ser Arg Leu Leu His Ser Asp Tyr Met Asn Met Thr Pro Arg Arg Pro
325 330 335
Gly Pro Thr Arg Lys His Tyr Gln Pro Tyr Ala Pro Pro Arg Asp Phe
340 345 350
Ala Ala Tyr Arg Ser Tyr Phe Leu Gly Arg Leu Val Pro Arg Gly Arg
355 360 365
Gly Ala Ala Glu Ala Ala Thr Arg Lys Gln Arg Ile Thr Glu Thr Glu
370 375 380
Ser Pro Tyr Gln Glu Leu Gln Gly Gln Arg Ser Asp Val Tyr Ser Asp
385 390 395 400
Leu Asn Thr Gln Arg Pro Tyr Tyr Lys
405
<210> 59
<211> 490
<212> PRT
<213> artificial sequence
<220>
<223> chimeric Tim-Tim4IgV-Tim4 mucin-Tim 4TM-Tim4SD-CD3zSD
<400> 59
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Leu Leu Met Ile Ile Ala
305 310 315 320
Pro Ser Leu Gly Phe Val Leu Phe Ala Leu Phe Val Ala Phe Leu Leu
325 330 335
Arg Gly Lys Leu Met Glu Thr Tyr Cys Ser Gln Lys His Thr Arg Leu
340 345 350
Asp Tyr Ile Gly Asp Ser Lys Asn Val Leu Asn Asp Val Gln His Gly
355 360 365
Arg Glu Asp Glu Asp Gly Leu Phe Thr Leu Arg Val Lys Phe Ser Arg
370 375 380
Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn
385 390 395 400
Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg
405 410 415
Arg Gly Arg Asp Pro Glu Met Gly Gly Lys Pro Arg Arg Lys Asn Pro
420 425 430
Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu Ala
435 440 445
Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His
450 455 460
Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp
465 470 475 480
Ala Leu His Met Gln Ala Leu Pro Pro Arg
485 490
<210> 60
<211> 495
<212> PRT
<213> artificial sequence
<220>
<223> chimeric Tim-Tim4IgV-Tim4 mucin-Tim 4TM-Tim1SD-CD3zSD
<400> 60
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Leu Leu Met Ile Ile Ala
305 310 315 320
Pro Ser Leu Gly Phe Val Leu Phe Ala Leu Phe Val Ala Phe Leu Lys
325 330 335
Lys Tyr Phe Phe Lys Lys Glu Val Gln Gln Leu Ser Val Ser Phe Ser
340 345 350
Ser Leu Gln Ile Lys Ala Leu Gln Asn Ala Val Glu Lys Glu Val Gln
355 360 365
Ala Glu Asp Asn Ile Tyr Ile Glu Asn Ser Leu Tyr Ala Thr Asp Arg
370 375 380
Val Lys Phe Ser Arg Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln
385 390 395 400
Asn Gln Leu Tyr Asn Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp
405 410 415
Val Leu Asp Lys Arg Arg Gly Arg Asp Pro Glu Met Gly Gly Lys Pro
420 425 430
Arg Arg Lys Asn Pro Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp
435 440 445
Lys Met Ala Glu Ala Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg Arg
450 455 460
Arg Gly Lys Gly His Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala Thr
465 470 475 480
Lys Asp Thr Tyr Asp Ala Leu His Met Gln Ala Leu Pro Pro Arg
485 490 495
<210> 61
<211> 382
<212> PRT
<213> artificial sequence
<220>
<223> chimeric Tim-Tim4IgV-Tim4 mucin-CD 28TM-CD28SD
<400> 61
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Phe Trp Val Leu Val Val
305 310 315 320
Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu Val Thr Val Ala Phe
325 330 335
Ile Ile Phe Trp Val Arg Ser Lys Arg Ser Arg Leu Leu His Ser Asp
340 345 350
Tyr Met Asn Met Thr Pro Arg Arg Pro Gly Pro Thr Arg Lys His Tyr
355 360 365
Gln Pro Tyr Ala Pro Pro Arg Asp Phe Ala Ala Tyr Arg Ser
370 375 380
<210> 62
<211> 609
<212> PRT
<213> artificial sequence
<220>
<223> chimeric Tim-Tim4IgV-Tim4 mucin-Tim 4TM-TRAF6SD
<400> 62
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Leu Leu Met Ile Ile Ala
305 310 315 320
Pro Ser Leu Gly Phe Val Leu Phe Ala Leu Phe Val Ala Phe Leu Met
325 330 335
Ser Leu Leu Asn Cys Glu Asn Ser Cys Gly Ser Ser Gln Ser Glu Ser
340 345 350
Asp Cys Cys Val Ala Met Ala Ser Ser Cys Ser Ala Val Thr Lys Asp
355 360 365
Asp Ser Val Gly Gly Thr Ala Ser Thr Gly Asn Leu Ser Ser Ser Phe
370 375 380
Met Glu Glu Ile Gln Gly Tyr Asp Val Glu Phe Asp Pro Pro Leu Glu
385 390 395 400
Ser Lys Tyr Glu Cys Pro Ile Cys Leu Met Ala Leu Arg Glu Ala Val
405 410 415
Gln Thr Pro Cys Gly His Arg Phe Cys Lys Ala Cys Ile Ile Lys Ser
420 425 430
Ile Arg Asp Ala Gly His Lys Cys Pro Val Asp Asn Glu Ile Leu Leu
435 440 445
Glu Asn Gln Leu Phe Pro Asp Asn Phe Ala Lys Arg Glu Ile Leu Ser
450 455 460
Leu Met Val Lys Cys Pro Asn Glu Gly Cys Leu His Lys Met Glu Leu
465 470 475 480
Arg His Leu Glu Asp His Gln Ala His Cys Glu Phe Ala Leu Met Asp
485 490 495
Cys Pro Gln Cys Gln Arg Pro Phe Gln Lys Phe His Ile Asn Ile His
500 505 510
Ile Leu Lys Asp Cys Pro Arg Arg Gln Val Ser Cys Asp Asn Cys Ala
515 520 525
Ala Ser Met Ala Phe Glu Asp Lys Glu Ile His Asp Gln Asn Cys Pro
530 535 540
Leu Ala Asn Val Ile Cys Glu Tyr Cys Asn Thr Ile Leu Ile Arg Glu
545 550 555 560
Gln Met Pro Asn His Tyr Asp Leu Asp Cys Pro Thr Ala Pro Ile Pro
565 570 575
Cys Thr Phe Ser Thr Phe Gly Cys His Glu Lys Met Gln Arg Asn His
580 585 590
Leu Ala Arg His Leu Gln Glu Asn Thr Gln Ser His Met Arg Met Leu
595 600 605
Ala
<210> 63
<211> 615
<212> PRT
<213> artificial sequence
<220>
<223> chimeric Tim-Tim4IgV-Tim4 mucin-CD 28TM-TRAF6SD
<400> 63
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Phe Trp Val Leu Val Val
305 310 315 320
Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu Val Thr Val Ala Phe
325 330 335
Ile Ile Phe Trp Val Met Ser Leu Leu Asn Cys Glu Asn Ser Cys Gly
340 345 350
Ser Ser Gln Ser Glu Ser Asp Cys Cys Val Ala Met Ala Ser Ser Cys
355 360 365
Ser Ala Val Thr Lys Asp Asp Ser Val Gly Gly Thr Ala Ser Thr Gly
370 375 380
Asn Leu Ser Ser Ser Phe Met Glu Glu Ile Gln Gly Tyr Asp Val Glu
385 390 395 400
Phe Asp Pro Pro Leu Glu Ser Lys Tyr Glu Cys Pro Ile Cys Leu Met
405 410 415
Ala Leu Arg Glu Ala Val Gln Thr Pro Cys Gly His Arg Phe Cys Lys
420 425 430
Ala Cys Ile Ile Lys Ser Ile Arg Asp Ala Gly His Lys Cys Pro Val
435 440 445
Asp Asn Glu Ile Leu Leu Glu Asn Gln Leu Phe Pro Asp Asn Phe Ala
450 455 460
Lys Arg Glu Ile Leu Ser Leu Met Val Lys Cys Pro Asn Glu Gly Cys
465 470 475 480
Leu His Lys Met Glu Leu Arg His Leu Glu Asp His Gln Ala His Cys
485 490 495
Glu Phe Ala Leu Met Asp Cys Pro Gln Cys Gln Arg Pro Phe Gln Lys
500 505 510
Phe His Ile Asn Ile His Ile Leu Lys Asp Cys Pro Arg Arg Gln Val
515 520 525
Ser Cys Asp Asn Cys Ala Ala Ser Met Ala Phe Glu Asp Lys Glu Ile
530 535 540
His Asp Gln Asn Cys Pro Leu Ala Asn Val Ile Cys Glu Tyr Cys Asn
545 550 555 560
Thr Ile Leu Ile Arg Glu Gln Met Pro Asn His Tyr Asp Leu Asp Cys
565 570 575
Pro Thr Ala Pro Ile Pro Cys Thr Phe Ser Thr Phe Gly Cys His Glu
580 585 590
Lys Met Gln Arg Asn His Leu Ala Arg His Leu Gln Glu Asn Thr Gln
595 600 605
Ser His Met Arg Met Leu Ala
610 615
<210> 64
<211> 638
<212> PRT
<213> artificial sequence
<220>
<223> chimeric Tim-Tim4IgV-Tim4 mucin-Tim 4TM-TRAF2SD
<400> 64
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Leu Leu Met Ile Ile Ala
305 310 315 320
Pro Ser Leu Gly Phe Val Leu Phe Ala Leu Phe Val Ala Phe Leu Met
325 330 335
Ala Ala Ala Ser Val Thr Pro Pro Gly Ser Leu Glu Leu Leu Gln Pro
340 345 350
Gly Phe Ser Lys Thr Leu Leu Gly Thr Lys Leu Glu Ala Lys Tyr Leu
355 360 365
Cys Ser Ala Cys Arg Asn Val Leu Arg Arg Pro Phe Gln Ala Gln Cys
370 375 380
Gly His Arg Tyr Cys Ser Phe Cys Leu Ala Ser Ile Leu Ser Ser Gly
385 390 395 400
Pro Gln Asn Cys Ala Ala Cys Val His Glu Gly Ile Tyr Glu Glu Gly
405 410 415
Ile Ser Ile Leu Glu Ser Ser Ser Ala Phe Pro Asp Asn Ala Ala Arg
420 425 430
Arg Glu Val Glu Ser Leu Pro Ala Val Cys Pro Ser Asp Gly Cys Thr
435 440 445
Trp Lys Gly Thr Leu Lys Glu Tyr Glu Ser Cys His Glu Gly Arg Cys
450 455 460
Pro Leu Met Leu Thr Glu Cys Pro Ala Cys Lys Gly Leu Val Arg Leu
465 470 475 480
Gly Glu Lys Glu Arg His Leu Glu His Glu Cys Pro Glu Arg Ser Leu
485 490 495
Ser Cys Arg His Cys Arg Ala Pro Cys Cys Gly Ala Asp Val Lys Ala
500 505 510
His His Glu Val Cys Pro Lys Phe Pro Leu Thr Cys Asp Gly Cys Gly
515 520 525
Lys Lys Lys Ile Pro Arg Glu Lys Phe Gln Asp His Val Lys Thr Cys
530 535 540
Gly Lys Cys Arg Val Pro Cys Arg Phe His Ala Ile Gly Cys Leu Glu
545 550 555 560
Thr Val Glu Gly Glu Lys Gln Gln Glu His Glu Val Gln Trp Leu Arg
565 570 575
Glu His Leu Ala Met Leu Leu Ser Ser Val Leu Glu Ala Lys Pro Leu
580 585 590
Leu Gly Asp Gln Ser His Ala Gly Ser Glu Leu Leu Gln Arg Cys Glu
595 600 605
Ser Leu Glu Lys Lys Thr Ala Thr Phe Glu Asn Ile Val Cys Val Leu
610 615 620
Asn Arg Glu Val Glu Arg Val Ala Met Thr Ala Glu Ala Cys
625 630 635
<210> 65
<211> 644
<212> PRT
<213> artificial sequence
<220>
<223> chimeric Tim-Tim4IgV-Tim4 mucin-CD 28TM-TRAF2SD
<400> 65
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Phe Trp Val Leu Val Val
305 310 315 320
Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu Val Thr Val Ala Phe
325 330 335
Ile Ile Phe Trp Val Met Ala Ala Ala Ser Val Thr Pro Pro Gly Ser
340 345 350
Leu Glu Leu Leu Gln Pro Gly Phe Ser Lys Thr Leu Leu Gly Thr Lys
355 360 365
Leu Glu Ala Lys Tyr Leu Cys Ser Ala Cys Arg Asn Val Leu Arg Arg
370 375 380
Pro Phe Gln Ala Gln Cys Gly His Arg Tyr Cys Ser Phe Cys Leu Ala
385 390 395 400
Ser Ile Leu Ser Ser Gly Pro Gln Asn Cys Ala Ala Cys Val His Glu
405 410 415
Gly Ile Tyr Glu Glu Gly Ile Ser Ile Leu Glu Ser Ser Ser Ala Phe
420 425 430
Pro Asp Asn Ala Ala Arg Arg Glu Val Glu Ser Leu Pro Ala Val Cys
435 440 445
Pro Ser Asp Gly Cys Thr Trp Lys Gly Thr Leu Lys Glu Tyr Glu Ser
450 455 460
Cys His Glu Gly Arg Cys Pro Leu Met Leu Thr Glu Cys Pro Ala Cys
465 470 475 480
Lys Gly Leu Val Arg Leu Gly Glu Lys Glu Arg His Leu Glu His Glu
485 490 495
Cys Pro Glu Arg Ser Leu Ser Cys Arg His Cys Arg Ala Pro Cys Cys
500 505 510
Gly Ala Asp Val Lys Ala His His Glu Val Cys Pro Lys Phe Pro Leu
515 520 525
Thr Cys Asp Gly Cys Gly Lys Lys Lys Ile Pro Arg Glu Lys Phe Gln
530 535 540
Asp His Val Lys Thr Cys Gly Lys Cys Arg Val Pro Cys Arg Phe His
545 550 555 560
Ala Ile Gly Cys Leu Glu Thr Val Glu Gly Glu Lys Gln Gln Glu His
565 570 575
Glu Val Gln Trp Leu Arg Glu His Leu Ala Met Leu Leu Ser Ser Val
580 585 590
Leu Glu Ala Lys Pro Leu Leu Gly Asp Gln Ser His Ala Gly Ser Glu
595 600 605
Leu Leu Gln Arg Cys Glu Ser Leu Glu Lys Lys Thr Ala Thr Phe Glu
610 615 620
Asn Ile Val Cys Val Leu Asn Arg Glu Val Glu Arg Val Ala Met Thr
625 630 635 640
Ala Glu Ala Cys
<210> 66
<211> 644
<212> PRT
<213> artificial sequence
<220>
<223> chimeric Tim-Tim4IgV-Tim4 mucin-Tim 1TM-TLR8SD-CD3zSD
<400> 66
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Phe Trp Val Leu Val Val
305 310 315 320
Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu Val Thr Val Ala Phe
325 330 335
Ile Ile Phe Trp Val Met Ala Ala Ala Ser Val Thr Pro Pro Gly Ser
340 345 350
Leu Glu Leu Leu Gln Pro Gly Phe Ser Lys Thr Leu Leu Gly Thr Lys
355 360 365
Leu Glu Ala Lys Tyr Leu Cys Ser Ala Cys Arg Asn Val Leu Arg Arg
370 375 380
Pro Phe Gln Ala Gln Cys Gly His Arg Tyr Cys Ser Phe Cys Leu Ala
385 390 395 400
Ser Ile Leu Ser Ser Gly Pro Gln Asn Cys Ala Ala Cys Val His Glu
405 410 415
Gly Ile Tyr Glu Glu Gly Ile Ser Ile Leu Glu Ser Ser Ser Ala Phe
420 425 430
Pro Asp Asn Ala Ala Arg Arg Glu Val Glu Ser Leu Pro Ala Val Cys
435 440 445
Pro Ser Asp Gly Cys Thr Trp Lys Gly Thr Leu Lys Glu Tyr Glu Ser
450 455 460
Cys His Glu Gly Arg Cys Pro Leu Met Leu Thr Glu Cys Pro Ala Cys
465 470 475 480
Lys Gly Leu Val Arg Leu Gly Glu Lys Glu Arg His Leu Glu His Glu
485 490 495
Cys Pro Glu Arg Ser Leu Ser Cys Arg His Cys Arg Ala Pro Cys Cys
500 505 510
Gly Ala Asp Val Lys Ala His His Glu Val Cys Pro Lys Phe Pro Leu
515 520 525
Thr Cys Asp Gly Cys Gly Lys Lys Lys Ile Pro Arg Glu Lys Phe Gln
530 535 540
Asp His Val Lys Thr Cys Gly Lys Cys Arg Val Pro Cys Arg Phe His
545 550 555 560
Ala Ile Gly Cys Leu Glu Thr Val Glu Gly Glu Lys Gln Gln Glu His
565 570 575
Glu Val Gln Trp Leu Arg Glu His Leu Ala Met Leu Leu Ser Ser Val
580 585 590
Leu Glu Ala Lys Pro Leu Leu Gly Asp Gln Ser His Ala Gly Ser Glu
595 600 605
Leu Leu Gln Arg Cys Glu Ser Leu Glu Lys Lys Thr Ala Thr Phe Glu
610 615 620
Asn Ile Val Cys Val Leu Asn Arg Glu Val Glu Arg Val Ala Met Thr
625 630 635 640
Ala Glu Ala Cys
<210> 67
<211> 628
<212> PRT
<213> artificial sequence
<220>
<223> chimeric Tim-Tim4IgV-Tim4 mucin-Tim 1TM-TLR8SD-CD3zSD
<400> 67
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Val Thr Thr Thr Pro Ile Val Thr Thr
130 135 140
Val Pro Thr Val Thr Thr Val Arg Thr Ser Thr Thr Val Pro Thr Thr
145 150 155 160
Thr Thr Val Pro Met Thr Thr Val Pro Thr Thr Thr Val Pro Thr Thr
165 170 175
Met Ser Ile Pro Thr Thr Thr Thr Val Leu Thr Thr Met Thr Val Ser
180 185 190
Thr Thr Thr Ser Val Pro Thr Thr Thr Ser Ile Pro Thr Thr Thr Ser
195 200 205
Val Pro Val Thr Thr Thr Val Ser Thr Phe Val Pro Pro Met Pro Leu
210 215 220
Pro Arg Gln Asn His Glu Pro Val Ala Thr Ser Pro Ser Ser Pro Gln
225 230 235 240
Pro Ala Glu Thr His Pro Thr Thr Leu Gln Gly Ala Ile Arg Arg Glu
245 250 255
Pro Thr Ser Ser Pro Leu Tyr Ser Tyr Thr Thr Asp Gly Asn Asp Thr
260 265 270
Val Thr Glu Ser Ser Asp Gly Leu Trp Asn Asn Asn Gln Thr Gln Leu
275 280 285
Phe Leu Glu His Ser Leu Leu Thr Ala Asn Thr Thr Lys Gly Ile Tyr
290 295 300
Ala Gly Val Cys Ile Ser Val Leu Val Leu Leu Ala Leu Leu Gly Val
305 310 315 320
Ile Ile Ala His His Leu Phe Tyr Trp Asp Val Trp Phe Ile Tyr Asn
325 330 335
Val Cys Leu Ala Lys Val Lys Gly Tyr Arg Ser Leu Ser Thr Ser Gln
340 345 350
Thr Phe Tyr Asp Ala Tyr Ile Ser Tyr Asp Thr Lys Asp Ala Ser Val
355 360 365
Thr Asp Trp Val Ile Asn Glu Leu Arg Tyr His Leu Glu Glu Ser Arg
370 375 380
Asp Lys Asn Val Leu Leu Cys Leu Glu Glu Arg Asp Trp Asp Pro Gly
385 390 395 400
Leu Ala Ile Ile Asp Asn Leu Met Gln Ser Ile Asn Gln Ser Lys Lys
405 410 415
Thr Val Phe Val Leu Thr Lys Lys Tyr Ala Lys Ser Trp Asn Phe Lys
420 425 430
Thr Ala Phe Tyr Leu Ala Leu Gln Arg Leu Met Asp Glu Asn Met Asp
435 440 445
Val Ile Ile Phe Ile Leu Leu Glu Pro Val Leu Gln His Ser Gln Tyr
450 455 460
Leu Arg Leu Arg Gln Arg Ile Cys Lys Ser Ser Ile Leu Gln Trp Pro
465 470 475 480
Asp Asn Pro Lys Ala Glu Gly Leu Phe Trp Gln Thr Leu Arg Asn Val
485 490 495
Val Leu Thr Glu Asn Asp Ser Arg Tyr Asn Asn Met Tyr Val Asp Ser
500 505 510
Ile Lys Gln Tyr Arg Val Lys Phe Ser Arg Ser Ala Asp Ala Pro Ala
515 520 525
Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn Glu Leu Asn Leu Gly Arg
530 535 540
Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg Arg Gly Arg Asp Pro Glu
545 550 555 560
Met Gly Gly Lys Pro Arg Arg Lys Asn Pro Gln Glu Gly Leu Tyr Asn
565 570 575
Glu Leu Gln Lys Asp Lys Met Ala Glu Ala Tyr Ser Glu Ile Gly Met
580 585 590
Lys Gly Glu Arg Arg Arg Gly Lys Gly His Asp Gly Leu Tyr Gln Gly
595 600 605
Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp Ala Leu His Met Gln Ala
610 615 620
Leu Pro Pro Arg
625
<210> 68
<211> 416
<212> PRT
<213> artificial sequence
<220>
<223> chimeric Tim-Tim4IgV-Tim1 mucin-Tim 1TM-CD28SD-DAP12SD
<400> 68
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Val Thr Thr Thr Pro Ile Val Thr Thr
130 135 140
Val Pro Thr Val Thr Thr Val Arg Thr Ser Thr Thr Val Pro Thr Thr
145 150 155 160
Thr Thr Val Pro Met Thr Thr Val Pro Thr Thr Thr Val Pro Thr Thr
165 170 175
Met Ser Ile Pro Thr Thr Thr Thr Val Leu Thr Thr Met Thr Val Ser
180 185 190
Thr Thr Thr Ser Val Pro Thr Thr Thr Ser Ile Pro Thr Thr Thr Ser
195 200 205
Val Pro Val Thr Thr Thr Val Ser Thr Phe Val Pro Pro Met Pro Leu
210 215 220
Pro Arg Gln Asn His Glu Pro Val Ala Thr Ser Pro Ser Ser Pro Gln
225 230 235 240
Pro Ala Glu Thr His Pro Thr Thr Leu Gln Gly Ala Ile Arg Arg Glu
245 250 255
Pro Thr Ser Ser Pro Leu Tyr Ser Tyr Thr Thr Asp Gly Asn Asp Thr
260 265 270
Val Thr Glu Ser Ser Asp Gly Leu Trp Asn Asn Asn Gln Thr Gln Leu
275 280 285
Phe Leu Glu His Ser Leu Leu Thr Ala Asn Thr Thr Lys Gly Ile Tyr
290 295 300
Ala Gly Val Cys Ile Ser Val Leu Val Leu Leu Ala Leu Leu Gly Val
305 310 315 320
Ile Ile Ala Arg Ser Lys Arg Ser Arg Leu Leu His Ser Asp Tyr Met
325 330 335
Asn Met Thr Pro Arg Arg Pro Gly Pro Thr Arg Lys His Tyr Gln Pro
340 345 350
Tyr Ala Pro Pro Arg Asp Phe Ala Ala Tyr Arg Ser Tyr Phe Leu Gly
355 360 365
Arg Leu Val Pro Arg Gly Arg Gly Ala Ala Glu Ala Ala Thr Arg Lys
370 375 380
Gln Arg Ile Thr Glu Thr Glu Ser Pro Tyr Gln Glu Leu Gln Gly Gln
385 390 395 400
Arg Ser Asp Val Tyr Ser Asp Leu Asn Thr Gln Arg Pro Tyr Tyr Lys
405 410 415
<210> 69
<211> 422
<212> PRT
<213> artificial sequence
<220>
<223> chimeric Tim-Tim4IgV-Tim1 mucin-CD 28TM-CD28SD-DAP12SD
<400> 69
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Val Thr Thr Thr Pro Ile Val Thr Thr
130 135 140
Val Pro Thr Val Thr Thr Val Arg Thr Ser Thr Thr Val Pro Thr Thr
145 150 155 160
Thr Thr Val Pro Met Thr Thr Val Pro Thr Thr Thr Val Pro Thr Thr
165 170 175
Met Ser Ile Pro Thr Thr Thr Thr Val Leu Thr Thr Met Thr Val Ser
180 185 190
Thr Thr Thr Ser Val Pro Thr Thr Thr Ser Ile Pro Thr Thr Thr Ser
195 200 205
Val Pro Val Thr Thr Thr Val Ser Thr Phe Val Pro Pro Met Pro Leu
210 215 220
Pro Arg Gln Asn His Glu Pro Val Ala Thr Ser Pro Ser Ser Pro Gln
225 230 235 240
Pro Ala Glu Thr His Pro Thr Thr Leu Gln Gly Ala Ile Arg Arg Glu
245 250 255
Pro Thr Ser Ser Pro Leu Tyr Ser Tyr Thr Thr Asp Gly Asn Asp Thr
260 265 270
Val Thr Glu Ser Ser Asp Gly Leu Trp Asn Asn Asn Gln Thr Gln Leu
275 280 285
Phe Leu Glu His Ser Leu Leu Thr Ala Asn Thr Thr Lys Gly Phe Trp
290 295 300
Val Leu Val Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu Val
305 310 315 320
Thr Val Ala Phe Ile Ile Phe Trp Val Arg Ser Lys Arg Ser Arg Leu
325 330 335
Leu His Ser Asp Tyr Met Asn Met Thr Pro Arg Arg Pro Gly Pro Thr
340 345 350
Arg Lys His Tyr Gln Pro Tyr Ala Pro Pro Arg Asp Phe Ala Ala Tyr
355 360 365
Arg Ser Tyr Phe Leu Gly Arg Leu Val Pro Arg Gly Arg Gly Ala Ala
370 375 380
Glu Ala Ala Thr Arg Lys Gln Arg Ile Thr Glu Thr Glu Ser Pro Tyr
385 390 395 400
Gln Glu Leu Gln Gly Gln Arg Ser Asp Val Tyr Ser Asp Leu Asn Thr
405 410 415
Gln Arg Pro Tyr Tyr Lys
420
<210> 70
<211> 45
<212> PRT
<213> artificial sequence
<220>
<223> CD8a hinge region
<400> 70
Thr Thr Thr Pro Ala Pro Arg Pro Pro Thr Pro Ala Pro Thr Ile Ala
1 5 10 15
Ser Gln Pro Leu Ser Leu Arg Pro Glu Ala Cys Arg Pro Ala Ala Gly
20 25 30
Gly Ala Val His Thr Arg Gly Leu Asp Phe Ala Cys Asp
35 40 45
<210> 71
<211> 496
<212> PRT
<213> artificial sequence
<220>
<223> chimeric Tim-TimIgV-Tim4 mucin-CD 28TM-CD28SD-CD3zSD
<400> 71
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Phe Trp Val Leu Val Val
305 310 315 320
Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu Val Thr Val Ala Phe
325 330 335
Ile Ile Phe Trp Val Arg Ser Lys Arg Ser Arg Leu Leu His Ser Asp
340 345 350
Tyr Met Asn Met Thr Pro Arg Arg Pro Gly Pro Thr Arg Lys His Tyr
355 360 365
Gln Pro Tyr Ala Pro Pro Arg Asp Phe Ala Ala Tyr Arg Ser Ser Arg
370 375 380
Val Lys Phe Ser Arg Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln
385 390 395 400
Asn Gln Leu Tyr Asn Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp
405 410 415
Val Leu Asp Lys Arg Arg Gly Arg Asp Pro Glu Met Gly Gly Lys Pro
420 425 430
Gln Arg Arg Lys Asn Pro Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys
435 440 445
Asp Lys Met Ala Glu Ala Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg
450 455 460
Arg Arg Gly Lys Gly His Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala
465 470 475 480
Thr Lys Asp Thr Tyr Asp Ala Leu His Met Gln Ala Leu Pro Pro Arg
485 490 495
<210> 72
<211> 510
<212> PRT
<213> artificial sequence
<220>
<223> hTIM4-TIM4-TIM4tm-TLR2ICD
<220>
<221> SIGNAL
<222> (1)..(24)
<400> 72
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Leu Leu Met Ile Ile Ala
305 310 315 320
Pro Ser Leu Gly Phe Val Leu Phe Ala Leu Phe Val Ala Phe Leu His
325 330 335
Arg Phe His Gly Leu Trp Tyr Met Lys Met Met Trp Ala Trp Leu Gln
340 345 350
Ala Lys Arg Lys Pro Arg Lys Ala Pro Ser Arg Asn Ile Cys Tyr Asp
355 360 365
Ala Phe Val Ser Tyr Ser Glu Arg Asp Ala Tyr Trp Val Glu Asn Leu
370 375 380
Met Val Gln Glu Leu Glu Asn Phe Asn Pro Pro Phe Lys Leu Cys Leu
385 390 395 400
His Lys Arg Asp Phe Ile Pro Gly Lys Trp Ile Ile Asp Asn Ile Ile
405 410 415
Asp Ser Ile Glu Lys Ser His Lys Thr Val Phe Val Leu Ser Glu Asn
420 425 430
Phe Val Lys Ser Glu Trp Cys Lys Tyr Glu Leu Asp Phe Ser His Phe
435 440 445
Arg Leu Phe Asp Glu Asn Asn Asp Ala Ala Ile Leu Ile Leu Leu Glu
450 455 460
Pro Ile Glu Lys Lys Ala Ile Pro Gln Arg Phe Cys Lys Leu Arg Lys
465 470 475 480
Ile Met Asn Thr Lys Thr Tyr Leu Glu Trp Pro Met Asp Glu Ala Gln
485 490 495
Arg Glu Gly Phe Trp Val Asn Leu Arg Ala Ala Ile Lys Ser
500 505 510
<210> 73
<211> 528
<212> PRT
<213> artificial sequence
<220>
<223> hTIM4-TIM4-TIM4tm-TLR8ICD
<220>
<221> SIGNAL
<222> (1)..(24)
<400> 73
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Leu Leu Met Ile Ile Ala
305 310 315 320
Pro Ser Leu Gly Phe Val Leu Phe Ala Leu Phe Val Ala Phe Leu His
325 330 335
His Leu Phe Tyr Trp Asp Val Trp Phe Ile Tyr Asn Val Cys Leu Ala
340 345 350
Lys Val Lys Gly Tyr Arg Ser Leu Ser Thr Ser Gln Thr Phe Tyr Asp
355 360 365
Ala Tyr Ile Ser Tyr Asp Thr Lys Asp Ala Ser Val Thr Asp Trp Val
370 375 380
Ile Asn Glu Leu Arg Tyr His Leu Glu Glu Ser Arg Asp Lys Asn Val
385 390 395 400
Leu Leu Cys Leu Glu Glu Arg Asp Trp Asp Pro Gly Leu Ala Ile Ile
405 410 415
Asp Asn Leu Met Gln Ser Ile Asn Gln Ser Lys Lys Thr Val Phe Val
420 425 430
Leu Thr Lys Lys Tyr Ala Lys Ser Trp Asn Phe Lys Thr Ala Phe Tyr
435 440 445
Leu Ala Leu Gln Arg Leu Met Asp Glu Asn Met Asp Val Ile Ile Phe
450 455 460
Ile Leu Leu Glu Pro Val Leu Gln His Ser Gln Tyr Leu Arg Leu Arg
465 470 475 480
Gln Arg Ile Cys Lys Ser Ser Ile Leu Gln Trp Pro Asp Asn Pro Lys
485 490 495
Ala Glu Gly Leu Phe Trp Gln Thr Leu Arg Asn Val Val Leu Thr Glu
500 505 510
Asn Asp Ser Arg Tyr Asn Asn Met Tyr Val Asp Ser Ile Lys Gln Tyr
515 520 525
<210> 74
<400> 74
000
<210> 75
<400> 75
000
<210> 76
<400> 76
000
<210> 77
<400> 77
000
<210> 78
<400> 78
000
<210> 79
<400> 79
000
<210> 80
<400> 80
000
<210> 81
<400> 81
000
<210> 82
<400> 82
000
<210> 83
<400> 83
000
<210> 84
<400> 84
000
<210> 85
<400> 85
000
<210> 86
<400> 86
000
<210> 87
<400> 87
000
<210> 88
<400> 88
000
<210> 89
<211> 15
<212> PRT
<213> artificial sequence
<220>
<223> Flexible Joint
<400> 89
Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser
1 5 10 15
<210> 90
<211> 15
<212> PRT
<213> artificial sequence
<220>
<223> Flexible Joint
<400> 90
Gly Thr Gly Gly Ser Gly Gly Thr Gly Ser Gly Thr Gly Thr Ser
1 5 10 15
<210> 91
<211> 12
<212> PRT
<213> artificial sequence
<220>
<223> IgG4 hinge region (short)
<400> 91
Glu Ser Lys Tyr Gly Pro Pro Cys Pro Pro Cys Pro
1 5 10
<210> 92
<211> 45
<212> PRT
<213> artificial sequence
<220>
<223> CD8a hinge region
<400> 92
Thr Thr Thr Pro Ala Pro Arg Pro Pro Thr Pro Ala Pro Thr Ile Ala
1 5 10 15
Ser Gln Pro Leu Ser Leu Arg Pro Glu Ala Cys Arg Pro Ala Ala Gly
20 25 30
Gly Ala Val His Thr Arg Gly Leu Asp Phe Ala Cys Asp
35 40 45
<210> 93
<211> 39
<212> PRT
<213> artificial sequence
<220>
<223> CD28 hinge region
<400> 93
Ile Glu Val Met Tyr Pro Pro Pro Tyr Leu Asp Asn Glu Lys Ser Asn
1 5 10 15
Gly Thr Ile Ile His Val Lys Gly Lys His Leu Cys Pro Ser Pro Leu
20 25 30
Phe Pro Gly Pro Ser Lys Pro
35
<210> 94
<211> 24
<212> PRT
<213> artificial sequence
<220>
<223> CD8a transmembrane region
<400> 94
Ile Tyr Ile Trp Ala Pro Leu Ala Gly Thr Cys Gly Val Leu Leu Leu
1 5 10 15
Ser Leu Val Ile Thr Leu Tyr Cys
20
<210> 95
<211> 27
<212> PRT
<213> artificial sequence
<220>
<223> CD28 transmembrane region
<400> 95
Phe Trp Val Leu Val Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu
1 5 10 15
Leu Val Thr Val Ala Phe Ile Ile Phe Trp Val
20 25
<210> 96
<211> 113
<212> PRT
<213> artificial sequence
<220>
<223> wild-type CD3z signaling domain
<400> 96
Arg Val Lys Phe Ser Arg Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly
1 5 10 15
Gln Asn Gln Leu Tyr Asn Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr
20 25 30
Asp Val Leu Asp Lys Arg Arg Gly Arg Asp Pro Glu Met Gly Gly Lys
35 40 45
Pro Gln Arg Arg Lys Asn Pro Gln Glu Gly Leu Tyr Asn Glu Leu Gln
50 55 60
Lys Asp Lys Met Ala Glu Ala Tyr Ser Glu Ile Gly Met Lys Gly Glu
65 70 75 80
Arg Arg Arg Gly Lys Gly His Asp Gly Leu Tyr Gln Gly Leu Ser Thr
85 90 95
Ala Thr Lys Asp Thr Tyr Asp Ala Leu His Met Gln Ala Leu Pro Pro
100 105 110
Arg
<210> 97
<211> 112
<212> PRT
<213> artificial sequence
<220>
<223> variant CD3z signaling domain
<400> 97
Arg Val Lys Phe Ser Arg Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly
1 5 10 15
Gln Asn Gln Leu Tyr Asn Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr
20 25 30
Asp Val Leu Asp Lys Arg Arg Gly Arg Asp Pro Glu Met Gly Gly Lys
35 40 45
Pro Arg Arg Lys Asn Pro Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys
50 55 60
Asp Lys Met Ala Glu Ala Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg
65 70 75 80
Arg Arg Gly Lys Gly His Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala
85 90 95
Thr Lys Asp Thr Tyr Asp Ala Leu His Met Gln Ala Leu Pro Pro Arg
100 105 110
<210> 98
<211> 41
<212> PRT
<213> artificial sequence
<220>
<223> wild-type CD28 costimulatory signaling domain
<400> 98
Arg Ser Lys Arg Ser Arg Leu Leu His Ser Asp Tyr Met Asn Met Thr
1 5 10 15
Pro Arg Arg Pro Gly Pro Thr Arg Lys His Tyr Gln Pro Tyr Ala Pro
20 25 30
Pro Arg Asp Phe Ala Ala Tyr Arg Ser
35 40
<210> 99
<211> 41
<212> PRT
<213> artificial sequence
<220>
<223> variant CD28 Co-stimulatory signaling domain with L186G/L187G substitution, position reference full-length protein
<400> 99
Arg Ser Lys Arg Ser Arg Gly Gly His Ser Asp Tyr Met Asn Met Thr
1 5 10 15
Pro Arg Arg Pro Gly Pro Thr Arg Lys His Tyr Gln Pro Tyr Ala Pro
20 25 30
Pro Arg Asp Phe Ala Ala Tyr Arg Ser
35 40
<210> 100
<211> 42
<212> PRT
<213> artificial sequence
<220>
<223> 4-1BB costimulatory signaling domain
<400> 100
Lys Arg Gly Arg Lys Lys Leu Leu Tyr Ile Phe Lys Gln Pro Phe Met
1 5 10 15
Arg Pro Val Gln Thr Thr Gln Glu Glu Asp Gly Cys Ser Cys Arg Phe
20 25 30
Pro Glu Glu Glu Glu Gly Gly Cys Glu Leu
35 40
<210> 101
<400> 101
000
<210> 102
<400> 102
000
<210> 103
<400> 103
000
<210> 104
<400> 104
000
<210> 105
<400> 105
000
<210> 106
<400> 106
000
<210> 107
<400> 107
000
<210> 108
<400> 108
000
<210> 109
<400> 109
000
<210> 110
<400> 110
000
<210> 111
<400> 111
000
<210> 112
<400> 112
000
<210> 113
<400> 113
000
<210> 114
<400> 114
000
<210> 115
<400> 115
000
<210> 116
<400> 116
000
<210> 117
<211> 21
<212> PRT
<213> artificial sequence
<220>
<223> GMCSFR_signal peptide
<400> 117
Met Leu Leu Val Thr Ser Leu Leu Leu Cys Glu Leu Pro His Pro Ala
1 5 10 15
Phe Leu Leu Ile Pro
20
<210> 118
<211> 41
<212> PRT
<213> Chile person
<400> 118
Arg Ser Lys Arg Ser Arg Leu Leu His Ser Asp Tyr Met Asn Met Thr
1 5 10 15
Pro Arg Arg Pro Gly Pro Thr Arg Lys His Tyr Gln Pro Tyr Ala Pro
20 25 30
Pro Arg Asp Phe Ala Ala Tyr Arg Ser
35 40
<210> 119
<211> 41
<212> PRT
<213> artificial sequence
<220>
<223> CD28 costimulatory signaling domain with substitution of L186G/L187G (position reference full-length protein)
<400> 119
Arg Ser Lys Arg Ser Arg Gly Gly His Ser Asp Tyr Met Asn Met Thr
1 5 10 15
Pro Arg Arg Pro Gly Pro Thr Arg Lys His Tyr Gln Pro Tyr Ala Pro
20 25 30
Pro Arg Asp Phe Ala Ala Tyr Arg Ser
35 40
<210> 120
<211> 42
<212> PRT
<213> artificial sequence
<220>
<223> OX40 costimulatory signaling Domain
<400> 120
Ala Leu Tyr Leu Leu Arg Arg Asp Gln Arg Leu Pro Pro Asp Ala His
1 5 10 15
Lys Pro Pro Gly Gly Gly Ser Phe Arg Thr Pro Ile Gln Glu Glu Gln
20 25 30
Ala Asp Ala His Ser Thr Leu Ala Lys Ile
35 40
<210> 121
<211> 116
<212> PRT
<213> artificial sequence
<220>
<223> CD2 costimulatory signaling domain
<400> 121
Lys Arg Lys Lys Gln Arg Ser Arg Arg Asn Asp Glu Glu Leu Glu Thr
1 5 10 15
Arg Ala His Arg Val Ala Thr Glu Glu Arg Gly Arg Lys Pro His Gln
20 25 30
Ile Pro Ala Ser Thr Pro Gln Asn Pro Ala Thr Ser Gln His Pro Pro
35 40 45
Pro Pro Pro Gly His Arg Ser Gln Ala Pro Ser His Arg Pro Pro Pro
50 55 60
Pro Gly His Arg Val Gln His Gln Pro Gln Lys Arg Pro Pro Ala Pro
65 70 75 80
Ser Gly Thr Gln Val His Gln Gln Lys Gly Pro Pro Leu Pro Arg Pro
85 90 95
Arg Val Gln Pro Lys Pro Pro His Gly Ala Ala Glu Asn Ser Leu Ser
100 105 110
Pro Ser Ser Asn
115
<210> 122
<211> 42
<212> PRT
<213> artificial sequence
<220>
<223> 4-1BB costimulatory signaling domain
<400> 122
Lys Arg Gly Arg Lys Lys Leu Leu Tyr Ile Phe Lys Gln Pro Phe Met
1 5 10 15
Arg Pro Val Gln Thr Thr Gln Glu Glu Asp Gly Cys Ser Cys Arg Phe
20 25 30
Pro Glu Glu Glu Glu Gly Gly Cys Glu Leu
35 40
<210> 123
<211> 48
<212> PRT
<213> artificial sequence
<220>
<223> CD27 costimulatory signaling domain
<400> 123
Gln Arg Arg Lys Tyr Arg Ser Asn Lys Gly Glu Ser Pro Val Glu Pro
1 5 10 15
Ala Glu Pro Cys His Tyr Ser Cys Pro Arg Glu Glu Glu Gly Ser Thr
20 25 30
Ile Pro Ile Gln Glu Asp Tyr Arg Lys Pro Glu Pro Ala Cys Ser Pro
35 40 45
<210> 124
<211> 29
<212> PRT
<213> artificial sequence
<220>
<223> ICAM-1 costimulatory signaling Domain
<400> 124
Asn Arg Gln Arg Lys Ile Lys Lys Tyr Arg Leu Gln Gln Ala Gln Lys
1 5 10 15
Gly Thr Pro Met Lys Pro Asn Thr Gln Ala Thr Pro Pro
20 25
<210> 125
<211> 46
<212> PRT
<213> artificial sequence
<220>
<223> LFA-1 costimulatory signaling domain
<400> 125
Lys Ala Leu Ile His Leu Ser Asp Leu Arg Glu Tyr Arg Arg Phe Glu
1 5 10 15
Lys Glu Lys Leu Lys Ser Gln Trp Asn Asn Asp Asn Pro Leu Phe Lys
20 25 30
Ser Ala Thr Thr Thr Val Met Asn Pro Lys Phe Ala Glu Ser
35 40 45
<210> 126
<211> 38
<212> PRT
<213> artificial sequence
<220>
<223> ICOS costimulatory signaling Domain
<400> 126
Cys Trp Leu Thr Lys Lys Lys Tyr Ser Ser Ser Val His Asp Pro Asn
1 5 10 15
Gly Glu Tyr Met Phe Met Arg Ala Val Asn Thr Ala Lys Lys Ser Arg
20 25 30
Leu Thr Asp Val Thr Leu
35
<210> 127
<211> 188
<212> PRT
<213> artificial sequence
<220>
<223> CD30 costimulatory signaling domain
<400> 127
His Arg Arg Ala Cys Arg Lys Arg Ile Arg Gln Lys Leu His Leu Cys
1 5 10 15
Tyr Pro Val Gln Thr Ser Gln Pro Lys Leu Glu Leu Val Asp Ser Arg
20 25 30
Pro Arg Arg Ser Ser Thr Gln Leu Arg Ser Gly Ala Ser Val Thr Glu
35 40 45
Pro Val Ala Glu Glu Arg Gly Leu Met Ser Gln Pro Leu Met Glu Thr
50 55 60
Cys His Ser Val Gly Ala Ala Tyr Leu Glu Ser Leu Pro Leu Gln Asp
65 70 75 80
Ala Ser Pro Ala Gly Gly Pro Ser Ser Pro Arg Asp Leu Pro Glu Pro
85 90 95
Arg Val Ser Thr Glu His Thr Asn Asn Lys Ile Glu Lys Ile Tyr Ile
100 105 110
Met Lys Ala Asp Thr Val Ile Val Gly Thr Val Lys Ala Glu Leu Pro
115 120 125
Glu Gly Arg Gly Leu Ala Gly Pro Ala Glu Pro Glu Leu Glu Glu Glu
130 135 140
Leu Glu Ala Asp His Thr Pro His Tyr Pro Glu Gln Glu Thr Glu Pro
145 150 155 160
Pro Leu Gly Ser Cys Ser Asp Val Met Leu Ser Val Glu Glu Glu Gly
165 170 175
Lys Glu Asp Pro Leu Pro Thr Ala Ala Ser Gly Lys
180 185
<210> 128
<211> 62
<212> PRT
<213> artificial sequence
<220>
<223> CD40 costimulatory signaling domain
<400> 128
Lys Lys Val Ala Lys Lys Pro Thr Asn Lys Ala Pro His Pro Lys Gln
1 5 10 15
Glu Pro Gln Glu Ile Asn Phe Pro Asp Asp Leu Pro Gly Ser Asn Thr
20 25 30
Ala Ala Pro Val Gln Glu Thr Leu His Gly Cys Gln Pro Val Thr Gln
35 40 45
Glu Asp Gly Lys Glu Ser Arg Ile Ser Val Gln Glu Arg Gln
50 55 60
<210> 129
<211> 97
<212> PRT
<213> artificial sequence
<220>
<223> PD-1 costimulatory signaling domain
<400> 129
Cys Ser Arg Ala Ala Arg Gly Thr Ile Gly Ala Arg Arg Thr Gly Gln
1 5 10 15
Pro Leu Lys Glu Asp Pro Ser Ala Val Pro Val Phe Ser Val Asp Tyr
20 25 30
Gly Glu Leu Asp Phe Gln Trp Arg Glu Lys Thr Pro Glu Pro Pro Val
35 40 45
Pro Cys Val Pro Glu Gln Thr Glu Tyr Ala Thr Ile Val Phe Pro Ser
50 55 60
Gly Met Gly Thr Ser Ser Pro Ala Arg Arg Gly Ser Ala Asp Gly Pro
65 70 75 80
Arg Ser Ala Gln Pro Leu Arg Pro Glu Asp Gly His Cys Ser Trp Pro
85 90 95
Leu
<210> 130
<211> 39
<212> PRT
<213> artificial sequence
<220>
<223> CD7 costimulatory signaling domain
<400> 130
Arg Thr Gln Ile Lys Lys Leu Cys Ser Trp Arg Asp Lys Asn Ser Ala
1 5 10 15
Ala Cys Val Val Tyr Glu Asp Met Ser His Ser Arg Cys Asn Thr Leu
20 25 30
Ser Ser Pro Asn Gln Tyr Gln
35
<210> 131
<211> 37
<212> PRT
<213> artificial sequence
<220>
<223> LIGHT co-stimulatory signaling domain
<400> 131
Met Glu Glu Ser Val Val Arg Pro Ser Val Phe Val Val Asp Gly Gln
1 5 10 15
Thr Asp Ile Pro Phe Thr Arg Leu Gly Arg Ser His Arg Arg Gln Ser
20 25 30
Cys Ser Val Ala Arg
35
<210> 132
<211> 70
<212> PRT
<213> artificial sequence
<220>
<223> NKG2C costimulatory signaling domain
<400> 132
Met Ser Lys Gln Arg Gly Thr Phe Ser Glu Val Ser Leu Ala Gln Asp
1 5 10 15
Pro Lys Arg Gln Gln Arg Lys Pro Lys Gly Asn Lys Ser Ser Ile Ser
20 25 30
Gly Thr Glu Gln Glu Ile Phe Gln Val Glu Leu Asn Leu Gln Asn Pro
35 40 45
Ser Leu Asn His Gln Gly Ile Asp Lys Ile Tyr Asp Cys Gln Gly Leu
50 55 60
Leu Pro Pro Pro Glu Lys
65 70
<210> 133
<211> 47
<212> PRT
<213> artificial sequence
<220>
<223> B7-H3 costimulatory signaling domain
<400> 133
Cys Trp Arg Lys Ile Lys Gln Ser Cys Glu Glu Glu Asn Ala Gly Ala
1 5 10 15
Glu Asp Gln Asp Gly Glu Gly Glu Gly Ser Lys Thr Ala Leu Gln Pro
20 25 30
Leu Lys His Ser Asp Ser Lys Glu Asp Asp Gly Gln Glu Ile Ala
35 40 45
<210> 134
<211> 113
<212> PRT
<213> Chile person
<400> 134
Arg Val Lys Phe Ser Arg Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly
1 5 10 15
Gln Asn Gln Leu Tyr Asn Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr
20 25 30
Asp Val Leu Asp Lys Arg Arg Gly Arg Asp Pro Glu Met Gly Gly Lys
35 40 45
Pro Gln Arg Arg Lys Asn Pro Gln Glu Gly Leu Tyr Asn Glu Leu Gln
50 55 60
Lys Asp Lys Met Ala Glu Ala Tyr Ser Glu Ile Gly Met Lys Gly Glu
65 70 75 80
Arg Arg Arg Gly Lys Gly His Asp Gly Leu Tyr Gln Gly Leu Ser Thr
85 90 95
Ala Thr Lys Asp Thr Tyr Asp Ala Leu His Met Gln Ala Leu Pro Pro
100 105 110
Arg
<210> 135
<211> 112
<212> PRT
<213> artificial sequence
<220>
<223> mutant human CD3z contains the activation domain of ITAM
<400> 135
Arg Val Lys Phe Ser Arg Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly
1 5 10 15
Gln Asn Gln Leu Tyr Asn Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr
20 25 30
Asp Val Leu Asp Lys Arg Arg Gly Arg Asp Pro Glu Met Gly Gly Lys
35 40 45
Pro Arg Arg Lys Asn Pro Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys
50 55 60
Asp Lys Met Ala Glu Ala Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg
65 70 75 80
Arg Arg Gly Lys Gly His Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala
85 90 95
Thr Lys Asp Thr Tyr Asp Ala Leu His Met Gln Ala Leu Pro Pro Arg
100 105 110
<210> 136
<211> 45
<212> PRT
<213> artificial sequence
<220>
<223> CD3g contains the activation domain of ITAM
<400> 136
Gly Gln Asp Gly Val Arg Gln Ser Arg Ala Ser Asp Lys Gln Thr Leu
1 5 10 15
Leu Pro Asn Asp Gln Leu Tyr Gln Pro Leu Lys Asp Arg Glu Asp Asp
20 25 30
Gln Tyr Ser His Leu Gln Gly Asn Gln Leu Arg Arg Asn
35 40 45
<210> 137
<211> 45
<212> PRT
<213> artificial sequence
<220>
<223> CD3d contains the activation domain of ITAM
<400> 137
Gly His Glu Thr Gly Arg Leu Ser Gly Ala Ala Asp Thr Gln Ala Leu
1 5 10 15
Leu Arg Asn Asp Gln Val Tyr Gln Pro Leu Arg Asp Arg Asp Asp Ala
20 25 30
Gln Tyr Ser His Leu Gly Gly Asn Trp Ala Arg Asn Lys
35 40 45
<210> 138
<211> 55
<212> PRT
<213> artificial sequence
<220>
<223> CD3e contains the activation domain of ITAM
<400> 138
Lys Asn Arg Lys Ala Lys Ala Lys Pro Val Thr Arg Gly Ala Gly Ala
1 5 10 15
Gly Gly Arg Gln Arg Gly Gln Asn Lys Glu Arg Pro Pro Pro Val Pro
20 25 30
Asn Pro Asp Tyr Glu Pro Ile Arg Lys Gly Gln Arg Asp Leu Tyr Ser
35 40 45
Gly Leu Asn Gln Arg Arg Ile
50 55
<210> 139
<211> 93
<212> PRT
<213> artificial sequence
<220>
<223> CD5 contains the activation domain of ITAM
<400> 139
Lys Lys Leu Val Lys Lys Phe Arg Gln Lys Lys Gln Arg Gln Trp Ile
1 5 10 15
Gly Pro Thr Gly Met Asn Gln Asn Met Ser Phe His Arg Asn His Thr
20 25 30
Ala Thr Val Arg Ser His Ala Glu Asn Pro Thr Ala Ser His Val Asp
35 40 45
Asn Glu Tyr Ser Gln Pro Pro Arg Asn Ser His Leu Ser Ala Tyr Pro
50 55 60
Ala Leu Glu Gly Ala Leu His Arg Ser Ser Met Gln Pro Asp Asn Ser
65 70 75 80
Ser Asp Ser Asp Tyr Asp Leu His Gly Ala Gln Arg Leu
85 90
<210> 140
<211> 141
<212> PRT
<213> artificial sequence
<220>
<223> CD22 contains the activation domain of ITAM
<400> 140
Lys Leu Gln Arg Arg Trp Lys Arg Thr Gln Ser Gln Gln Gly Leu Gln
1 5 10 15
Glu Asn Ser Ser Gly Gln Ser Phe Phe Val Arg Asn Lys Lys Val Arg
20 25 30
Arg Ala Pro Leu Ser Glu Gly Pro His Ser Leu Gly Cys Tyr Asn Pro
35 40 45
Met Met Glu Asp Gly Ile Ser Tyr Thr Thr Leu Arg Phe Pro Glu Met
50 55 60
Asn Ile Pro Arg Thr Gly Asp Ala Glu Ser Ser Glu Met Gln Arg Pro
65 70 75 80
Pro Pro Asp Cys Asp Asp Thr Val Thr Tyr Ser Ala Leu His Lys Arg
85 90 95
Gln Val Gly Asp Tyr Glu Asn Val Ile Pro Asp Phe Pro Glu Asp Glu
100 105 110
Gly Ile His Tyr Ser Glu Leu Ile Gln Phe Gly Val Gly Glu Arg Pro
115 120 125
Gln Ala Gln Glu Asn Val Asp Tyr Val Ile Leu Lys His
130 135 140
<210> 141
<211> 61
<212> PRT
<213> artificial sequence
<220>
<223> CD79a contains the activation domain of ITAM
<400> 141
Arg Lys Arg Trp Gln Asn Glu Lys Leu Gly Leu Asp Ala Gly Asp Glu
1 5 10 15
Tyr Glu Asp Glu Asn Leu Tyr Glu Gly Leu Asn Leu Asp Asp Cys Ser
20 25 30
Met Tyr Glu Asp Ile Ser Arg Gly Leu Gln Gly Thr Tyr Gln Asp Val
35 40 45
Gly Ser Leu Asn Ile Gly Asp Val Gln Leu Glu Lys Pro
50 55 60
<210> 142
<211> 24
<212> PRT
<213> artificial sequence
<220>
<223> DAP10 contains the activation Domain of ITAM
<400> 142
Leu Cys Ala Arg Pro Arg Arg Ser Pro Ala Gln Glu Asp Gly Lys Val
1 5 10 15
Tyr Ile Asn Met Pro Gly Arg Gly
20
<210> 143
<211> 76
<212> PRT
<213> artificial sequence
<220>
<223> CD66d contains the activation domain of ITAM
<400> 143
Ala Lys Thr Gly Arg Thr Ser Ile Gln Arg Asp Leu Lys Glu Gln Gln
1 5 10 15
Pro Gln Ala Leu Ala Pro Gly Arg Gly Pro Ser His Ser Ser Ala Phe
20 25 30
Ser Met Ser Pro Leu Ser Thr Ala Gln Ala Pro Leu Pro Asn Pro Arg
35 40 45
Thr Ala Ala Ser Ile Tyr Glu Glu Leu Leu Lys His Asp Thr Asn Ile
50 55 60
Tyr Cys Arg Met Asp His Lys Ala Glu Val Ala Ser
65 70 75
<210> 144
<211> 21
<212> PRT
<213> artificial sequence
<220>
<223> Tim4 transmembrane Domain
<400> 144
Leu Leu Met Ile Ile Ala Pro Ser Leu Gly Phe Val Leu Phe Ala Leu
1 5 10 15
Phe Val Ala Phe Leu
20
<210> 145
<211> 27
<212> PRT
<213> artificial sequence
<220>
<223> CD28 transmembrane Domain
<400> 145
Phe Trp Val Leu Val Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu
1 5 10 15
Leu Val Thr Val Ala Phe Ile Ile Phe Trp Val
20 25
<210> 146
<211> 27
<212> PRT
<213> artificial sequence
<220>
<223> 4-1BB transmembrane Domain
<400> 146
Ile Ile Ser Phe Phe Leu Ala Leu Thr Ser Thr Ala Leu Leu Phe Leu
1 5 10 15
Leu Phe Phe Leu Thr Leu Arg Phe Ser Val Val
20 25
<210> 147
<211> 21
<212> PRT
<213> artificial sequence
<220>
<223> OX40 transmembrane Domain
<400> 147
Val Ala Ala Ile Leu Gly Leu Gly Leu Val Leu Gly Leu Leu Gly Pro
1 5 10 15
Leu Ala Ile Leu Leu
20
<210> 148
<211> 21
<212> PRT
<213> artificial sequence
<220>
<223> CD27 transmembrane Domain
<400> 148
Ile Leu Val Ile Phe Ser Gly Met Phe Leu Val Phe Thr Leu Ala Gly
1 5 10 15
Ala Leu Phe Leu His
20
<210> 149
<211> 21
<212> PRT
<213> artificial sequence
<220>
<223> ICOS transmembrane Domain
<400> 149
Phe Trp Leu Pro Ile Gly Cys Ala Ala Phe Val Val Val Cys Ile Leu
1 5 10 15
Gly Cys Ile Leu Ile
20
<210> 150
<211> 26
<212> PRT
<213> artificial sequence
<220>
<223> CD2 transmembrane Domain
<400> 150
Ile Tyr Leu Ile Ile Gly Ile Cys Gly Gly Gly Ser Leu Leu Met Val
1 5 10 15
Phe Val Ala Leu Leu Val Phe Tyr Ile Thr
20 25
<210> 151
<211> 23
<212> PRT
<213> artificial sequence
<220>
<223> LFA-1 transmembrane Domain
<400> 151
Ile Ala Ala Ile Val Gly Gly Thr Val Ala Gly Ile Val Leu Ile Gly
1 5 10 15
Ile Leu Leu Leu Val Ile Trp
20
<210> 152
<211> 28
<212> PRT
<213> artificial sequence
<220>
<223> CD30 transmembrane Domain
<400> 152
Pro Val Leu Asp Ala Gly Pro Val Leu Phe Trp Val Ile Leu Val Leu
1 5 10 15
Val Val Val Val Gly Ser Ser Ala Phe Leu Leu Cys
20 25
<210> 153
<211> 22
<212> PRT
<213> artificial sequence
<220>
<223> CD40 transmembrane Domain
<400> 153
Ala Leu Val Val Ile Pro Ile Ile Phe Gly Ile Leu Phe Ala Ile Leu
1 5 10 15
Leu Val Leu Val Phe Ile
20
<210> 154
<211> 21
<212> PRT
<213> artificial sequence
<220>
<223> PD-1 transmembrane Domain
<400> 154
Val Gly Val Val Gly Gly Leu Leu Gly Ser Leu Val Leu Leu Val Trp
1 5 10 15
Val Leu Ala Val Ile
20
<210> 155
<211> 21
<212> PRT
<213> artificial sequence
<220>
<223> CD7 transmembrane Domain
<400> 155
Ala Ala Leu Ala Val Ile Ser Phe Leu Leu Gly Leu Gly Leu Gly Val
1 5 10 15
Ala Cys Val Leu Ala
20
<210> 156
<211> 21
<212> PRT
<213> artificial sequence
<220>
<223> LIGHT transmembrane domain
<400> 156
Val Gly Leu Gly Leu Leu Leu Leu Leu Met Gly Ala Gly Leu Ala Val
1 5 10 15
Gln Gly Trp Phe Leu
20
<210> 157
<211> 23
<212> PRT
<213> artificial sequence
<220>
<223> NKG2C transmembrane Domain
<400> 157
Leu Thr Ala Glu Val Leu Gly Ile Ile Cys Ile Val Leu Met Ala Thr
1 5 10 15
Val Leu Lys Thr Ile Val Leu
20
<210> 158
<211> 21
<212> PRT
<213> artificial sequence
<220>
<223> OX40 costimulatory signaling Domain
<400> 158
Leu Trp Val Thr Val Gly Leu Ser Val Cys Leu Ile Ala Leu Leu Val
1 5 10 15
Ala Leu Ala Phe Val
20
<210> 159
<211> 347
<212> PRT
<213> artificial sequence
<220>
<223> Tim4 binding Domain-CD 28 transmembrane-CD 28 Co-stimulatory signaling Domain
<220>
<221> SIGNAL
<222> (1)..(22)
<400> 159
Met Ser Lys Gly Leu Leu Leu Leu Trp Leu Val Thr Glu Leu Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Ala Ala Ser Glu Asp Thr Ile Ile Gly Phe Leu
20 25 30
Gly Gln Pro Val Thr Leu Pro Cys His Tyr Leu Ser Trp Ser Gln Ser
35 40 45
Arg Asn Ser Met Cys Trp Gly Lys Gly Ser Cys Pro Asn Ser Lys Cys
50 55 60
Asn Ala Glu Leu Leu Arg Thr Asp Gly Thr Arg Ile Ile Ser Arg Lys
65 70 75 80
Ser Thr Lys Tyr Thr Leu Leu Gly Lys Val Gln Phe Gly Glu Val Ser
85 90 95
Leu Thr Ile Ser Asn Thr Asn Arg Gly Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Lys Asn Val Arg
115 120 125
Leu Glu Leu Arg Arg Ala Thr Thr Thr Lys Lys Pro Thr Thr Thr Thr
130 135 140
Arg Pro Thr Thr Thr Pro Tyr Val Thr Thr Thr Thr Pro Glu Leu Leu
145 150 155 160
Pro Thr Thr Val Met Thr Thr Ser Val Leu Pro Thr Thr Thr Pro Pro
165 170 175
Gln Thr Leu Ala Thr Thr Ala Phe Ser Thr Ala Val Thr Thr Cys Pro
180 185 190
Ser Thr Thr Pro Gly Ser Phe Ser Gln Glu Thr Thr Lys Gly Ser Ala
195 200 205
Phe Thr Thr Glu Ser Glu Thr Leu Pro Ala Ser Asn His Ser Gln Arg
210 215 220
Ser Met Met Thr Ile Ser Thr Asp Ile Ala Val Leu Arg Pro Thr Gly
225 230 235 240
Ser Asn Pro Gly Ile Leu Pro Ser Thr Ser Gln Leu Thr Thr Gln Lys
245 250 255
Thr Thr Leu Thr Thr Ser Glu Ser Leu Gln Lys Thr Thr Lys Ser His
260 265 270
Gln Ile Asn Ser Arg Gln Thr Phe Trp Val Leu Val Val Val Gly Gly
275 280 285
Val Leu Ala Cys Tyr Ser Leu Leu Val Thr Val Ala Phe Ile Ile Phe
290 295 300
Trp Val Arg Ser Lys Arg Ser Arg Gly Gly His Ser Asp Tyr Met Asn
305 310 315 320
Met Thr Pro Arg Arg Pro Gly Pro Thr Arg Lys His Tyr Gln Pro Tyr
325 330 335
Ala Pro Pro Arg Asp Phe Ala Ala Tyr Arg Ser
340 345
<210> 160
<211> 341
<212> PRT
<213> artificial sequence
<220>
<223> Tim4 binding Domain-Tim 4 transmembrane-CD 28 Co-stimulatory signaling Domain
<220>
<221> SIGNAL
<222> (1)..(22)
<400> 160
Met Ser Lys Gly Leu Leu Leu Leu Trp Leu Val Thr Glu Leu Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Ala Ala Ser Glu Asp Thr Ile Ile Gly Phe Leu
20 25 30
Gly Gln Pro Val Thr Leu Pro Cys His Tyr Leu Ser Trp Ser Gln Ser
35 40 45
Arg Asn Ser Met Cys Trp Gly Lys Gly Ser Cys Pro Asn Ser Lys Cys
50 55 60
Asn Ala Glu Leu Leu Arg Thr Asp Gly Thr Arg Ile Ile Ser Arg Lys
65 70 75 80
Ser Thr Lys Tyr Thr Leu Leu Gly Lys Val Gln Phe Gly Glu Val Ser
85 90 95
Leu Thr Ile Ser Asn Thr Asn Arg Gly Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Lys Asn Val Arg
115 120 125
Leu Glu Leu Arg Arg Ala Thr Thr Thr Lys Lys Pro Thr Thr Thr Thr
130 135 140
Arg Pro Thr Thr Thr Pro Tyr Val Thr Thr Thr Thr Pro Glu Leu Leu
145 150 155 160
Pro Thr Thr Val Met Thr Thr Ser Val Leu Pro Thr Thr Thr Pro Pro
165 170 175
Gln Thr Leu Ala Thr Thr Ala Phe Ser Thr Ala Val Thr Thr Cys Pro
180 185 190
Ser Thr Thr Pro Gly Ser Phe Ser Gln Glu Thr Thr Lys Gly Ser Ala
195 200 205
Phe Thr Thr Glu Ser Glu Thr Leu Pro Ala Ser Asn His Ser Gln Arg
210 215 220
Ser Met Met Thr Ile Ser Thr Asp Ile Ala Val Leu Arg Pro Thr Gly
225 230 235 240
Ser Asn Pro Gly Ile Leu Pro Ser Thr Ser Gln Leu Thr Thr Gln Lys
245 250 255
Thr Thr Leu Thr Thr Ser Glu Ser Leu Gln Lys Thr Thr Lys Ser His
260 265 270
Gln Ile Asn Ser Arg Gln Thr Ile Leu Ile Ile Ala Cys Cys Val Gly
275 280 285
Phe Val Leu Met Val Leu Leu Phe Leu Ala Phe Leu Arg Ser Lys Arg
290 295 300
Ser Arg Gly Gly His Ser Asp Tyr Met Asn Met Thr Pro Arg Arg Pro
305 310 315 320
Gly Pro Thr Arg Lys His Tyr Gln Pro Tyr Ala Pro Pro Arg Asp Phe
325 330 335
Ala Ala Tyr Arg Ser
340
<210> 161
<211> 454
<212> PRT
<213> artificial sequence
<220>
<223> Tim4 binding Domain-Tim 4 transmembrane-4-1 BB costimulatory Signaling Domain-CD 3z contains the activation Domain of ITAM
<220>
<221> SIGNAL
<222> (1)..(22)
<400> 161
Met Ser Lys Gly Leu Leu Leu Leu Trp Leu Val Thr Glu Leu Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Ala Ala Ser Glu Asp Thr Ile Ile Gly Phe Leu
20 25 30
Gly Gln Pro Val Thr Leu Pro Cys His Tyr Leu Ser Trp Ser Gln Ser
35 40 45
Arg Asn Ser Met Cys Trp Gly Lys Gly Ser Cys Pro Asn Ser Lys Cys
50 55 60
Asn Ala Glu Leu Leu Arg Thr Asp Gly Thr Arg Ile Ile Ser Arg Lys
65 70 75 80
Ser Thr Lys Tyr Thr Leu Leu Gly Lys Val Gln Phe Gly Glu Val Ser
85 90 95
Leu Thr Ile Ser Asn Thr Asn Arg Gly Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Lys Asn Val Arg
115 120 125
Leu Glu Leu Arg Arg Ala Thr Thr Thr Lys Lys Pro Thr Thr Thr Thr
130 135 140
Arg Pro Thr Thr Thr Pro Tyr Val Thr Thr Thr Thr Pro Glu Leu Leu
145 150 155 160
Pro Thr Thr Val Met Thr Thr Ser Val Leu Pro Thr Thr Thr Pro Pro
165 170 175
Gln Thr Leu Ala Thr Thr Ala Phe Ser Thr Ala Val Thr Thr Cys Pro
180 185 190
Ser Thr Thr Pro Gly Ser Phe Ser Gln Glu Thr Thr Lys Gly Ser Ala
195 200 205
Phe Thr Thr Glu Ser Glu Thr Leu Pro Ala Ser Asn His Ser Gln Arg
210 215 220
Ser Met Met Thr Ile Ser Thr Asp Ile Ala Val Leu Arg Pro Thr Gly
225 230 235 240
Ser Asn Pro Gly Ile Leu Pro Ser Thr Ser Gln Leu Thr Thr Gln Lys
245 250 255
Thr Thr Leu Thr Thr Ser Glu Ser Leu Gln Lys Thr Thr Lys Ser His
260 265 270
Gln Ile Asn Ser Arg Gln Thr Ile Leu Ile Ile Ala Cys Cys Val Gly
275 280 285
Phe Val Leu Met Val Leu Leu Phe Leu Ala Phe Leu Lys Arg Gly Arg
290 295 300
Lys Lys Leu Leu Tyr Ile Phe Lys Gln Pro Phe Met Arg Pro Val Gln
305 310 315 320
Thr Thr Gln Glu Glu Asp Gly Cys Ser Cys Arg Phe Pro Glu Glu Glu
325 330 335
Glu Gly Gly Cys Glu Leu Arg Val Lys Phe Ser Arg Ser Ala Asp Ala
340 345 350
Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn Glu Leu Asn Leu
355 360 365
Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg Arg Gly Arg Asp
370 375 380
Pro Glu Met Gly Gly Lys Pro Arg Arg Lys Asn Pro Gln Glu Gly Leu
385 390 395 400
Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu Ala Tyr Ser Glu Ile
405 410 415
Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His Asp Gly Leu Tyr
420 425 430
Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp Ala Leu His Met
435 440 445
Gln Ala Leu Pro Pro Arg
450
<210> 162
<211> 496
<212> PRT
<213> artificial sequence
<220>
<223> construct 13ATIM4 binding Domain-CD 28 TM-CD28 costim-CD3z
<220>
<221> SIGNAL
<222> (1)..(24)
<400> 162
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Phe Trp Val Leu Val Val
305 310 315 320
Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu Val Thr Val Ala Phe
325 330 335
Ile Ile Phe Trp Val Arg Ser Lys Arg Ser Arg Leu Leu His Ser Asp
340 345 350
Tyr Met Asn Met Thr Pro Arg Arg Pro Gly Pro Thr Arg Lys His Tyr
355 360 365
Gln Pro Tyr Ala Pro Pro Arg Asp Phe Ala Ala Tyr Arg Ser Ser Arg
370 375 380
Val Lys Phe Ser Arg Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln
385 390 395 400
Asn Gln Leu Tyr Asn Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp
405 410 415
Val Leu Asp Lys Arg Arg Gly Arg Asp Pro Glu Met Gly Gly Lys Pro
420 425 430
Gln Arg Arg Lys Asn Pro Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys
435 440 445
Asp Lys Met Ala Glu Ala Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg
450 455 460
Arg Arg Gly Lys Gly His Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala
465 470 475 480
Thr Lys Asp Thr Tyr Asp Ala Leu His Met Gln Ala Leu Pro Pro Arg
485 490 495
<210> 163
<211> 22
<212> PRT
<213> artificial sequence
<220>
<223> GM-CSF signal peptide
<400> 163
Met Leu Leu Leu Val Thr Ser Leu Leu Leu Cys Glu Leu Pro His Pro
1 5 10 15
Ala Phe Leu Leu Ile Pro
20
<210> 164
<211> 41
<212> PRT
<213> Chile person
<400> 164
Arg Ser Lys Arg Ser Arg Leu Leu His Ser Asp Tyr Met Asn Met Thr
1 5 10 15
Pro Arg Arg Pro Gly Pro Thr Arg Lys His Tyr Gln Pro Tyr Ala Pro
20 25 30
Pro Arg Asp Phe Ala Ala Tyr Arg Ser
35 40
<210> 165
<211> 41
<212> PRT
<213> artificial sequence
<220>
<223> CD28 costimulatory signaling domain with substitution of L186G/L187G (position reference full-length protein)
<400> 165
Arg Ser Lys Arg Ser Arg Gly Gly His Ser Asp Tyr Met Asn Met Thr
1 5 10 15
Pro Arg Arg Pro Gly Pro Thr Arg Lys His Tyr Gln Pro Tyr Ala Pro
20 25 30
Pro Arg Asp Phe Ala Ala Tyr Arg Ser
35 40
<210> 166
<211> 42
<212> PRT
<213> artificial sequence
<220>
<223> OX40 costimulatory signaling Domain
<400> 166
Ala Leu Tyr Leu Leu Arg Arg Asp Gln Arg Leu Pro Pro Asp Ala His
1 5 10 15
Lys Pro Pro Gly Gly Gly Ser Phe Arg Thr Pro Ile Gln Glu Glu Gln
20 25 30
Ala Asp Ala His Ser Thr Leu Ala Lys Ile
35 40
<210> 167
<211> 116
<212> PRT
<213> artificial sequence
<220>
<223> CD2 costimulatory signaling domain
<400> 167
Lys Arg Lys Lys Gln Arg Ser Arg Arg Asn Asp Glu Glu Leu Glu Thr
1 5 10 15
Arg Ala His Arg Val Ala Thr Glu Glu Arg Gly Arg Lys Pro His Gln
20 25 30
Ile Pro Ala Ser Thr Pro Gln Asn Pro Ala Thr Ser Gln His Pro Pro
35 40 45
Pro Pro Pro Gly His Arg Ser Gln Ala Pro Ser His Arg Pro Pro Pro
50 55 60
Pro Gly His Arg Val Gln His Gln Pro Gln Lys Arg Pro Pro Ala Pro
65 70 75 80
Ser Gly Thr Gln Val His Gln Gln Lys Gly Pro Pro Leu Pro Arg Pro
85 90 95
Arg Val Gln Pro Lys Pro Pro His Gly Ala Ala Glu Asn Ser Leu Ser
100 105 110
Pro Ser Ser Asn
115
<210> 168
<211> 42
<212> PRT
<213> artificial sequence
<220>
<223> 4-1BB costimulatory signaling domain
<400> 168
Lys Arg Gly Arg Lys Lys Leu Leu Tyr Ile Phe Lys Gln Pro Phe Met
1 5 10 15
Arg Pro Val Gln Thr Thr Gln Glu Glu Asp Gly Cys Ser Cys Arg Phe
20 25 30
Pro Glu Glu Glu Glu Gly Gly Cys Glu Leu
35 40
<210> 169
<211> 48
<212> PRT
<213> artificial sequence
<220>
<223> CD27 costimulatory signaling domain
<400> 169
Gln Arg Arg Lys Tyr Arg Ser Asn Lys Gly Glu Ser Pro Val Glu Pro
1 5 10 15
Ala Glu Pro Cys His Tyr Ser Cys Pro Arg Glu Glu Glu Gly Ser Thr
20 25 30
Ile Pro Ile Gln Glu Asp Tyr Arg Lys Pro Glu Pro Ala Cys Ser Pro
35 40 45
<210> 170
<211> 29
<212> PRT
<213> artificial sequence
<220>
<223> ICAM-1 costimulatory signaling Domain
<400> 170
Asn Arg Gln Arg Lys Ile Lys Lys Tyr Arg Leu Gln Gln Ala Gln Lys
1 5 10 15
Gly Thr Pro Met Lys Pro Asn Thr Gln Ala Thr Pro Pro
20 25
<210> 171
<211> 46
<212> PRT
<213> artificial sequence
<220>
<223> LFA-1 costimulatory signaling domain
<400> 171
Lys Ala Leu Ile His Leu Ser Asp Leu Arg Glu Tyr Arg Arg Phe Glu
1 5 10 15
Lys Glu Lys Leu Lys Ser Gln Trp Asn Asn Asp Asn Pro Leu Phe Lys
20 25 30
Ser Ala Thr Thr Thr Val Met Asn Pro Lys Phe Ala Glu Ser
35 40 45
<210> 172
<211> 38
<212> PRT
<213> artificial sequence
<220>
<223> ICOS costimulatory signaling Domain
<400> 172
Cys Trp Leu Thr Lys Lys Lys Tyr Ser Ser Ser Val His Asp Pro Asn
1 5 10 15
Gly Glu Tyr Met Phe Met Arg Ala Val Asn Thr Ala Lys Lys Ser Arg
20 25 30
Leu Thr Asp Val Thr Leu
35
<210> 173
<211> 188
<212> PRT
<213> artificial sequence
<220>
<223> CD30 costimulatory signaling domain
<400> 173
His Arg Arg Ala Cys Arg Lys Arg Ile Arg Gln Lys Leu His Leu Cys
1 5 10 15
Tyr Pro Val Gln Thr Ser Gln Pro Lys Leu Glu Leu Val Asp Ser Arg
20 25 30
Pro Arg Arg Ser Ser Thr Gln Leu Arg Ser Gly Ala Ser Val Thr Glu
35 40 45
Pro Val Ala Glu Glu Arg Gly Leu Met Ser Gln Pro Leu Met Glu Thr
50 55 60
Cys His Ser Val Gly Ala Ala Tyr Leu Glu Ser Leu Pro Leu Gln Asp
65 70 75 80
Ala Ser Pro Ala Gly Gly Pro Ser Ser Pro Arg Asp Leu Pro Glu Pro
85 90 95
Arg Val Ser Thr Glu His Thr Asn Asn Lys Ile Glu Lys Ile Tyr Ile
100 105 110
Met Lys Ala Asp Thr Val Ile Val Gly Thr Val Lys Ala Glu Leu Pro
115 120 125
Glu Gly Arg Gly Leu Ala Gly Pro Ala Glu Pro Glu Leu Glu Glu Glu
130 135 140
Leu Glu Ala Asp His Thr Pro His Tyr Pro Glu Gln Glu Thr Glu Pro
145 150 155 160
Pro Leu Gly Ser Cys Ser Asp Val Met Leu Ser Val Glu Glu Glu Gly
165 170 175
Lys Glu Asp Pro Leu Pro Thr Ala Ala Ser Gly Lys
180 185
<210> 174
<211> 62
<212> PRT
<213> artificial sequence
<220>
<223> CD40 costimulatory signaling domain
<400> 174
Lys Lys Val Ala Lys Lys Pro Thr Asn Lys Ala Pro His Pro Lys Gln
1 5 10 15
Glu Pro Gln Glu Ile Asn Phe Pro Asp Asp Leu Pro Gly Ser Asn Thr
20 25 30
Ala Ala Pro Val Gln Glu Thr Leu His Gly Cys Gln Pro Val Thr Gln
35 40 45
Glu Asp Gly Lys Glu Ser Arg Ile Ser Val Gln Glu Arg Gln
50 55 60
<210> 175
<211> 97
<212> PRT
<213> artificial sequence
<220>
<223> PD-1 costimulatory signaling domain
<400> 175
Cys Ser Arg Ala Ala Arg Gly Thr Ile Gly Ala Arg Arg Thr Gly Gln
1 5 10 15
Pro Leu Lys Glu Asp Pro Ser Ala Val Pro Val Phe Ser Val Asp Tyr
20 25 30
Gly Glu Leu Asp Phe Gln Trp Arg Glu Lys Thr Pro Glu Pro Pro Val
35 40 45
Pro Cys Val Pro Glu Gln Thr Glu Tyr Ala Thr Ile Val Phe Pro Ser
50 55 60
Gly Met Gly Thr Ser Ser Pro Ala Arg Arg Gly Ser Ala Asp Gly Pro
65 70 75 80
Arg Ser Ala Gln Pro Leu Arg Pro Glu Asp Gly His Cys Ser Trp Pro
85 90 95
Leu
<210> 176
<211> 39
<212> PRT
<213> artificial sequence
<220>
<223> CD7 costimulatory signaling domain
<400> 176
Arg Thr Gln Ile Lys Lys Leu Cys Ser Trp Arg Asp Lys Asn Ser Ala
1 5 10 15
Ala Cys Val Val Tyr Glu Asp Met Ser His Ser Arg Cys Asn Thr Leu
20 25 30
Ser Ser Pro Asn Gln Tyr Gln
35
<210> 177
<211> 37
<212> PRT
<213> artificial sequence
<220>
<223> LIGHT co-stimulatory signaling domain
<400> 177
Met Glu Glu Ser Val Val Arg Pro Ser Val Phe Val Val Asp Gly Gln
1 5 10 15
Thr Asp Ile Pro Phe Thr Arg Leu Gly Arg Ser His Arg Arg Gln Ser
20 25 30
Cys Ser Val Ala Arg
35
<210> 178
<211> 70
<212> PRT
<213> artificial sequence
<220>
<223> NKG2C costimulatory signaling domain
<400> 178
Met Ser Lys Gln Arg Gly Thr Phe Ser Glu Val Ser Leu Ala Gln Asp
1 5 10 15
Pro Lys Arg Gln Gln Arg Lys Pro Lys Gly Asn Lys Ser Ser Ile Ser
20 25 30
Gly Thr Glu Gln Glu Ile Phe Gln Val Glu Leu Asn Leu Gln Asn Pro
35 40 45
Ser Leu Asn His Gln Gly Ile Asp Lys Ile Tyr Asp Cys Gln Gly Leu
50 55 60
Leu Pro Pro Pro Glu Lys
65 70
<210> 179
<211> 47
<212> PRT
<213> artificial sequence
<220>
<223> B7-H3 costimulatory signaling domain
<400> 179
Cys Trp Arg Lys Ile Lys Gln Ser Cys Glu Glu Glu Asn Ala Gly Ala
1 5 10 15
Glu Asp Gln Asp Gly Glu Gly Glu Gly Ser Lys Thr Ala Leu Gln Pro
20 25 30
Leu Lys His Ser Asp Ser Lys Glu Asp Asp Gly Gln Glu Ile Ala
35 40 45
<210> 180
<211> 52
<212> PRT
<213> artificial sequence
<220>
<223> DAP12
<400> 180
Tyr Phe Leu Gly Arg Leu Val Pro Arg Gly Arg Gly Ala Ala Glu Ala
1 5 10 15
Ala Thr Arg Lys Gln Arg Ile Thr Glu Thr Glu Ser Pro Tyr Gln Glu
20 25 30
Leu Gln Gly Gln Arg Ser Asp Val Tyr Ser Asp Leu Asn Thr Gln Arg
35 40 45
Pro Tyr Tyr Lys
50
<210> 181
<211> 27
<212> PRT
<213> artificial sequence
<220>
<223> CD28 transmembrane Domain
<400> 181
Phe Trp Val Leu Val Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu
1 5 10 15
Leu Val Thr Val Ala Phe Ile Ile Phe Trp Val
20 25
<210> 182
<211> 27
<212> PRT
<213> artificial sequence
<220>
<223> 4-1BB transmembrane Domain
<400> 182
Ile Ile Ser Phe Phe Leu Ala Leu Thr Ser Thr Ala Leu Leu Phe Leu
1 5 10 15
Leu Phe Phe Leu Thr Leu Arg Phe Ser Val Val
20 25
<210> 183
<211> 21
<212> PRT
<213> artificial sequence
<220>
<223> OX40 transmembrane Domain
<400> 183
Val Ala Ala Ile Leu Gly Leu Gly Leu Val Leu Gly Leu Leu Gly Pro
1 5 10 15
Leu Ala Ile Leu Leu
20
<210> 184
<211> 21
<212> PRT
<213> artificial sequence
<220>
<223> CD27 transmembrane Domain
<400> 184
Ile Leu Val Ile Phe Ser Gly Met Phe Leu Val Phe Thr Leu Ala Gly
1 5 10 15
Ala Leu Phe Leu His
20
<210> 185
<211> 21
<212> PRT
<213> artificial sequence
<220>
<223> ICOS transmembrane Domain
<400> 185
Phe Trp Leu Pro Ile Gly Cys Ala Ala Phe Val Val Val Cys Ile Leu
1 5 10 15
Gly Cys Ile Leu Ile
20
<210> 186
<211> 26
<212> PRT
<213> artificial sequence
<220>
<223> CD2 transmembrane Domain
<400> 186
Ile Tyr Leu Ile Ile Gly Ile Cys Gly Gly Gly Ser Leu Leu Met Val
1 5 10 15
Phe Val Ala Leu Leu Val Phe Tyr Ile Thr
20 25
<210> 187
<211> 23
<212> PRT
<213> artificial sequence
<220>
<223> LFA-1 transmembrane Domain
<400> 187
Ile Ala Ala Ile Val Gly Gly Thr Val Ala Gly Ile Val Leu Ile Gly
1 5 10 15
Ile Leu Leu Leu Val Ile Trp
20
<210> 188
<211> 28
<212> PRT
<213> artificial sequence
<220>
<223> CD30 transmembrane Domain
<400> 188
Pro Val Leu Asp Ala Gly Pro Val Leu Phe Trp Val Ile Leu Val Leu
1 5 10 15
Val Val Val Val Gly Ser Ser Ala Phe Leu Leu Cys
20 25
<210> 189
<211> 22
<212> PRT
<213> artificial sequence
<220>
<223> CD40 transmembrane Domain
<400> 189
Ala Leu Val Val Ile Pro Ile Ile Phe Gly Ile Leu Phe Ala Ile Leu
1 5 10 15
Leu Val Leu Val Phe Ile
20
<210> 190
<211> 21
<212> PRT
<213> artificial sequence
<220>
<223> PD-1 transmembrane Domain
<400> 190
Val Gly Val Val Gly Gly Leu Leu Gly Ser Leu Val Leu Leu Val Trp
1 5 10 15
Val Leu Ala Val Ile
20
<210> 191
<211> 21
<212> PRT
<213> artificial sequence
<220>
<223> CD7 transmembrane Domain
<400> 191
Ala Ala Leu Ala Val Ile Ser Phe Leu Leu Gly Leu Gly Leu Gly Val
1 5 10 15
Ala Cys Val Leu Ala
20
<210> 192
<211> 21
<212> PRT
<213> artificial sequence
<220>
<223> LIGHT transmembrane domain
<400> 192
Val Gly Leu Gly Leu Leu Leu Leu Leu Met Gly Ala Gly Leu Ala Val
1 5 10 15
Gln Gly Trp Phe Leu
20
<210> 193
<211> 23
<212> PRT
<213> artificial sequence
<220>
<223> NKG2C transmembrane Domain
<400> 193
Leu Thr Ala Glu Val Leu Gly Ile Ile Cys Ile Val Leu Met Ala Thr
1 5 10 15
Val Leu Lys Thr Ile Val Leu
20
<210> 194
<211> 21
<212> PRT
<213> artificial sequence
<220>
<223> OX40 costimulatory signaling Domain
<400> 194
Leu Trp Val Thr Val Gly Leu Ser Val Cys Leu Ile Ala Leu Leu Val
1 5 10 15
Ala Leu Ala Phe Val
20
<210> 195
<211> 473
<212> PRT
<213> artificial sequence
<220>
<223> Tim4 binding Domain-CD 28 hinge-CD 28 transmembrane-CD 28 Co-stimulatory signaling
domain-DAP 12 signalling domain, amino acids 1-24 are signal peptides (CTX 140)
<220>
<221> SIGNAL
<222> (1)..(24)
<400> 195
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Ile Glu Val Met Tyr Pro
305 310 315 320
Pro Pro Tyr Leu Asp Asn Glu Lys Ser Asn Gly Thr Ile Ile His Val
325 330 335
Lys Gly Lys His Leu Cys Pro Ser Pro Leu Phe Pro Gly Pro Ser Lys
340 345 350
Pro Phe Trp Val Leu Val Val Val Gly Gly Val Leu Ala Cys Tyr Ser
355 360 365
Leu Leu Val Thr Val Ala Phe Ile Ile Phe Trp Val Arg Ser Lys Arg
370 375 380
Ser Arg Leu Leu His Ser Asp Tyr Met Asn Met Thr Pro Arg Arg Pro
385 390 395 400
Gly Pro Thr Arg Lys His Tyr Gln Pro Tyr Ala Pro Pro Arg Asp Phe
405 410 415
Ala Ala Tyr Arg Ser Tyr Phe Leu Gly Arg Leu Val Pro Arg Gly Arg
420 425 430
Gly Ala Ala Glu Ala Ala Thr Arg Lys Gln Arg Ile Thr Glu Thr Glu
435 440 445
Ser Pro Tyr Gln Glu Leu Gln Gly Gln Arg Ser Asp Val Tyr Ser Asp
450 455 460
Leu Asn Thr Gln Arg Pro Tyr Tyr Lys
465 470
<210> 196
<211> 446
<212> PRT
<213> artificial sequence
<220>
<223> Tim4 binding Domain-modified IgG4 hinge-CD 28 transmembrane-CD 28 costimulatory Signaling
domain-DAP 12 signalling domain, amino acids 1-24 are signal peptides (CTX 143)
<220>
<221> SIGNAL
<222> (1)..(24)
<400> 196
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Glu Ser Lys Tyr Gly Pro
305 310 315 320
Pro Cys Pro Pro Cys Pro Phe Trp Val Leu Val Val Val Gly Gly Val
325 330 335
Leu Ala Cys Tyr Ser Leu Leu Val Thr Val Ala Phe Ile Ile Phe Trp
340 345 350
Val Arg Ser Lys Arg Ser Arg Leu Leu His Ser Asp Tyr Met Asn Met
355 360 365
Thr Pro Arg Arg Pro Gly Pro Thr Arg Lys His Tyr Gln Pro Tyr Ala
370 375 380
Pro Pro Arg Asp Phe Ala Ala Tyr Arg Ser Tyr Phe Leu Gly Arg Leu
385 390 395 400
Val Pro Arg Gly Arg Gly Ala Ala Glu Ala Ala Thr Arg Lys Gln Arg
405 410 415
Ile Thr Glu Thr Glu Ser Pro Tyr Gln Glu Leu Gln Gly Gln Arg Ser
420 425 430
Asp Val Tyr Ser Asp Leu Asn Thr Gln Arg Pro Tyr Tyr Lys
435 440 445
<210> 197
<211> 434
<212> PRT
<213> artificial sequence
<220>
<223> Tim4 binding Domain-CD 28 transmembrane-CD 28 Co-stimulatory signaling
domain-DAP 12 signalling domain, amino acids 1-24 are signal peptides (CTX 137)
<220>
<221> SIGNAL
<222> (1)..(24)
<400> 197
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Phe Trp Val Leu Val Val
305 310 315 320
Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu Val Thr Val Ala Phe
325 330 335
Ile Ile Phe Trp Val Arg Ser Lys Arg Ser Arg Leu Leu His Ser Asp
340 345 350
Tyr Met Asn Met Thr Pro Arg Arg Pro Gly Pro Thr Arg Lys His Tyr
355 360 365
Gln Pro Tyr Ala Pro Pro Arg Asp Phe Ala Ala Tyr Arg Ser Tyr Phe
370 375 380
Leu Gly Arg Leu Val Pro Arg Gly Arg Gly Ala Ala Glu Ala Ala Thr
385 390 395 400
Arg Lys Gln Arg Ile Thr Glu Thr Glu Ser Pro Tyr Gln Glu Leu Gln
405 410 415
Gly Gln Arg Ser Asp Val Tyr Ser Asp Leu Asn Thr Gln Arg Pro Tyr
420 425 430
Tyr Lys
<210> 198
<211> 428
<212> PRT
<213> artificial sequence
<220>
<223> Tim4 binding Domain-Tim 4 TM-CD28-DAP12, amino acids 1-24 are Signal peptides (CTX 256)
<220>
<221> SIGNAL
<222> (1)..(24)
<400> 198
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Leu Leu Met Ile Ile Ala
305 310 315 320
Pro Ser Leu Gly Phe Val Leu Phe Ala Leu Phe Val Ala Phe Leu Arg
325 330 335
Ser Lys Arg Ser Arg Leu Leu His Ser Asp Tyr Met Asn Met Thr Pro
340 345 350
Arg Arg Pro Gly Pro Thr Arg Lys His Tyr Gln Pro Tyr Ala Pro Pro
355 360 365
Arg Asp Phe Ala Ala Tyr Arg Ser Tyr Phe Leu Gly Arg Leu Val Pro
370 375 380
Arg Gly Arg Gly Ala Ala Glu Ala Ala Thr Arg Lys Gln Arg Ile Thr
385 390 395 400
Glu Thr Glu Ser Pro Tyr Gln Glu Leu Gln Gly Gln Arg Ser Asp Val
405 410 415
Tyr Ser Asp Leu Asn Thr Gln Arg Pro Tyr Tyr Lys
420 425
<210> 199
<400> 199
000
<210> 200
<400> 200
000
<210> 201
<400> 201
000
<210> 202
<400> 202
000
<210> 203
<400> 203
000
<210> 204
<400> 204
000
<210> 205
<400> 205
000
<210> 206
<400> 206
000
<210> 207
<400> 207
000
<210> 208
<400> 208
000
<210> 209
<400> 209
000
<210> 210
<400> 210
000
<210> 211
<400> 211
000
<210> 212
<400> 212
000
<210> 213
<400> 213
000
<210> 214
<400> 214
000
<210> 215
<400> 215
000
<210> 216
<400> 216
000
<210> 217
<400> 217
000
<210> 218
<211> 24
<212> PRT
<213> Chile person
<400> 218
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser
20
<210> 219
<211> 290
<212> PRT
<213> Chile person
<400> 219
Glu Thr Val Val Thr Glu Val Leu Gly His Arg Val Thr Leu Pro Cys
1 5 10 15
Leu Tyr Ser Ser Trp Ser His Asn Ser Asn Ser Met Cys Trp Gly Lys
20 25 30
Asp Gln Cys Pro Tyr Ser Gly Cys Lys Glu Ala Leu Ile Arg Thr Asp
35 40 45
Gly Met Arg Val Thr Ser Arg Lys Ser Ala Lys Tyr Arg Leu Gln Gly
50 55 60
Thr Ile Pro Arg Gly Asp Val Ser Leu Thr Ile Leu Asn Pro Ser Glu
65 70 75 80
Ser Asp Ser Gly Val Tyr Cys Cys Arg Ile Glu Val Pro Gly Trp Phe
85 90 95
Asn Asp Val Lys Ile Asn Val Arg Leu Asn Leu Gln Arg Ala Ser Thr
100 105 110
Thr Thr His Arg Thr Ala Thr Thr Thr Thr Arg Arg Thr Thr Thr Thr
115 120 125
Ser Pro Thr Thr Thr Arg Gln Met Thr Thr Thr Pro Ala Ala Leu Pro
130 135 140
Thr Thr Val Val Thr Thr Pro Asp Leu Thr Thr Gly Thr Pro Leu Gln
145 150 155 160
Met Thr Thr Ile Ala Val Phe Thr Thr Ala Asn Thr Cys Leu Ser Leu
165 170 175
Thr Pro Ser Thr Leu Pro Glu Glu Ala Thr Gly Leu Leu Thr Pro Glu
180 185 190
Pro Ser Lys Glu Gly Pro Ile Leu Thr Ala Glu Ser Glu Thr Val Leu
195 200 205
Pro Ser Asp Ser Trp Ser Ser Val Glu Ser Thr Ser Ala Asp Thr Val
210 215 220
Leu Leu Thr Ser Lys Glu Ser Lys Val Trp Asp Leu Pro Ser Thr Ser
225 230 235 240
His Val Ser Met Trp Lys Thr Ser Asp Ser Val Ser Ser Pro Gln Pro
245 250 255
Gly Ala Ser Asp Thr Ala Val Pro Glu Gln Asn Lys Thr Thr Lys Thr
260 265 270
Gly Gln Met Asp Gly Ile Pro Met Ser Met Lys Asn Glu Met Pro Ile
275 280 285
Ser Gln
290
<210> 220
<211> 27
<212> PRT
<213> Chile person
<400> 220
Phe Trp Val Leu Val Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu
1 5 10 15
Leu Val Thr Val Ala Phe Ile Ile Phe Trp Val
20 25
<210> 221
<211> 21
<212> PRT
<213> Chile person
<400> 221
Leu Leu Met Ile Ile Ala Pro Ser Leu Gly Phe Val Leu Phe Ala Leu
1 5 10 15
Phe Val Ala Phe Leu
20
<210> 222
<211> 175
<212> PRT
<213> Chile person
<400> 222
His Arg Phe His Gly Leu Trp Tyr Met Lys Met Met Trp Ala Trp Leu
1 5 10 15
Gln Ala Lys Arg Lys Pro Arg Lys Ala Pro Ser Arg Asn Ile Cys Tyr
20 25 30
Asp Ala Phe Val Ser Tyr Ser Glu Arg Asp Ala Tyr Trp Val Glu Asn
35 40 45
Leu Met Val Gln Glu Leu Glu Asn Phe Asn Pro Pro Phe Lys Leu Cys
50 55 60
Leu His Lys Arg Asp Phe Ile Pro Gly Lys Trp Ile Ile Asp Asn Ile
65 70 75 80
Ile Asp Ser Ile Glu Lys Ser His Lys Thr Val Phe Val Leu Ser Glu
85 90 95
Asn Phe Val Lys Ser Glu Trp Cys Lys Tyr Glu Leu Asp Phe Ser His
100 105 110
Phe Arg Leu Phe Asp Glu Asn Asn Asp Ala Ala Ile Leu Ile Leu Leu
115 120 125
Glu Pro Ile Glu Lys Lys Ala Ile Pro Gln Arg Phe Cys Lys Leu Arg
130 135 140
Lys Ile Met Asn Thr Lys Thr Tyr Leu Glu Trp Pro Met Asp Glu Ala
145 150 155 160
Gln Arg Glu Gly Phe Trp Val Asn Leu Arg Ala Ala Ile Lys Ser
165 170 175
<210> 223
<211> 193
<212> PRT
<213> Chile person
<400> 223
His His Leu Phe Tyr Trp Asp Val Trp Phe Ile Tyr Asn Val Cys Leu
1 5 10 15
Ala Lys Val Lys Gly Tyr Arg Ser Leu Ser Thr Ser Gln Thr Phe Tyr
20 25 30
Asp Ala Tyr Ile Ser Tyr Asp Thr Lys Asp Ala Ser Val Thr Asp Trp
35 40 45
Val Ile Asn Glu Leu Arg Tyr His Leu Glu Glu Ser Arg Asp Lys Asn
50 55 60
Val Leu Leu Cys Leu Glu Glu Arg Asp Trp Asp Pro Gly Leu Ala Ile
65 70 75 80
Ile Asp Asn Leu Met Gln Ser Ile Asn Gln Ser Lys Lys Thr Val Phe
85 90 95
Val Leu Thr Lys Lys Tyr Ala Lys Ser Trp Asn Phe Lys Thr Ala Phe
100 105 110
Tyr Leu Ala Leu Gln Arg Leu Met Asp Glu Asn Met Asp Val Ile Ile
115 120 125
Phe Ile Leu Leu Glu Pro Val Leu Gln His Ser Gln Tyr Leu Arg Leu
130 135 140
Arg Gln Arg Ile Cys Lys Ser Ser Ile Leu Gln Trp Pro Asp Asn Pro
145 150 155 160
Lys Ala Glu Gly Leu Phe Trp Gln Thr Leu Arg Asn Val Val Leu Thr
165 170 175
Glu Asn Asp Ser Arg Tyr Asn Asn Met Tyr Val Asp Ser Ile Lys Gln
180 185 190
Tyr
<210> 224
<211> 42
<212> PRT
<213> Chile person
<400> 224
Arg Gly Lys Leu Met Glu Thr Tyr Cys Ser Gln Lys His Thr Arg Leu
1 5 10 15
Asp Tyr Ile Gly Asp Ser Lys Asn Val Leu Asn Asp Val Gln His Gly
20 25 30
Arg Glu Asp Glu Asp Gly Leu Phe Thr Leu
35 40
<210> 225
<211> 43
<212> PRT
<213> Chile person
<400> 225
Met Arg Gly Lys Leu Met Glu Thr Tyr Cys Ser Gln Lys His Thr Arg
1 5 10 15
Leu Asp Tyr Ile Gly Asp Ser Lys Asn Val Leu Asn Asp Val Gln His
20 25 30
Gly Arg Glu Asp Glu Asp Gly Leu Phe Thr Leu
35 40
<210> 226
<400> 226
000
<210> 227
<211> 496
<212> PRT
<213> artificial sequence
<220>
<223> hTIM4-TIM4-CD28tm-CD28icd-CD3zICD
<220>
<221> SIGNAL
<222> (1)..(22)
<400> 227
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Gln Phe Trp Val Leu Val
305 310 315 320
Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu Val Thr Val Ala
325 330 335
Phe Ile Ile Phe Trp Val Arg Ser Lys Arg Ser Arg Leu Leu His Ser
340 345 350
Asp Tyr Met Asn Met Thr Pro Arg Arg Pro Gly Pro Thr Arg Lys His
355 360 365
Tyr Gln Pro Tyr Ala Pro Pro Arg Asp Phe Ala Ala Tyr Arg Ser Arg
370 375 380
Val Lys Phe Ser Arg Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln
385 390 395 400
Asn Gln Leu Tyr Asn Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp
405 410 415
Val Leu Asp Lys Arg Arg Gly Arg Asp Pro Glu Met Gly Gly Lys Pro
420 425 430
Gln Arg Arg Lys Asn Pro Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys
435 440 445
Asp Lys Met Ala Glu Ala Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg
450 455 460
Arg Arg Gly Lys Gly His Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala
465 470 475 480
Thr Lys Asp Thr Tyr Asp Ala Leu His Met Gln Ala Leu Pro Pro Arg
485 490 495
<210> 228
<211> 671
<212> PRT
<213> artificial sequence
<220>
<223> hTIM4-TIM4-CD28tm-CD28icd-TLR2ICD-CD3zICD
<220>
<221> SIGNAL
<222> (1)..(22)
<400> 228
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Gln Phe Trp Val Leu Val
305 310 315 320
Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu Val Thr Val Ala
325 330 335
Phe Ile Ile Phe Trp Val Arg Ser Lys Arg Ser Arg Leu Leu His Ser
340 345 350
Asp Tyr Met Asn Met Thr Pro Arg Arg Pro Gly Pro Thr Arg Lys His
355 360 365
Tyr Gln Pro Tyr Ala Pro Pro Arg Asp Phe Ala Ala Tyr Arg Ser His
370 375 380
Arg Phe His Gly Leu Trp Tyr Met Lys Met Met Trp Ala Trp Leu Gln
385 390 395 400
Ala Lys Arg Lys Pro Arg Lys Ala Pro Ser Arg Asn Ile Cys Tyr Asp
405 410 415
Ala Phe Val Ser Tyr Ser Glu Arg Asp Ala Tyr Trp Val Glu Asn Leu
420 425 430
Met Val Gln Glu Leu Glu Asn Phe Asn Pro Pro Phe Lys Leu Cys Leu
435 440 445
His Lys Arg Asp Phe Ile Pro Gly Lys Trp Ile Ile Asp Asn Ile Ile
450 455 460
Asp Ser Ile Glu Lys Ser His Lys Thr Val Phe Val Leu Ser Glu Asn
465 470 475 480
Phe Val Lys Ser Glu Trp Cys Lys Tyr Glu Leu Asp Phe Ser His Phe
485 490 495
Arg Leu Phe Asp Glu Asn Asn Asp Ala Ala Ile Leu Ile Leu Leu Glu
500 505 510
Pro Ile Glu Lys Lys Ala Ile Pro Gln Arg Phe Cys Lys Leu Arg Lys
515 520 525
Ile Met Asn Thr Lys Thr Tyr Leu Glu Trp Pro Met Asp Glu Ala Gln
530 535 540
Arg Glu Gly Phe Trp Val Asn Leu Arg Ala Ala Ile Lys Ser Arg Val
545 550 555 560
Lys Phe Ser Arg Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn
565 570 575
Gln Leu Tyr Asn Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val
580 585 590
Leu Asp Lys Arg Arg Gly Arg Asp Pro Glu Met Gly Gly Lys Pro Gln
595 600 605
Arg Arg Lys Asn Pro Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp
610 615 620
Lys Met Ala Glu Ala Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg Arg
625 630 635 640
Arg Gly Lys Gly His Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala Thr
645 650 655
Lys Asp Thr Tyr Asp Ala Leu His Met Gln Ala Leu Pro Pro Arg
660 665 670
<210> 229
<211> 671
<212> PRT
<213> artificial sequence
<220>
<223> hTIM4-TIM4-CD28tm-CD28icd-CD3zICD-TLR2ICD
<220>
<221> SIGNAL
<222> (1)..(22)
<400> 229
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Gln Phe Trp Val Leu Val
305 310 315 320
Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu Val Thr Val Ala
325 330 335
Phe Ile Ile Phe Trp Val Arg Ser Lys Arg Ser Arg Leu Leu His Ser
340 345 350
Asp Tyr Met Asn Met Thr Pro Arg Arg Pro Gly Pro Thr Arg Lys His
355 360 365
Tyr Gln Pro Tyr Ala Pro Pro Arg Asp Phe Ala Ala Tyr Arg Ser Arg
370 375 380
Val Lys Phe Ser Arg Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln
385 390 395 400
Asn Gln Leu Tyr Asn Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp
405 410 415
Val Leu Asp Lys Arg Arg Gly Arg Asp Pro Glu Met Gly Gly Lys Pro
420 425 430
Gln Arg Arg Lys Asn Pro Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys
435 440 445
Asp Lys Met Ala Glu Ala Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg
450 455 460
Arg Arg Gly Lys Gly His Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala
465 470 475 480
Thr Lys Asp Thr Tyr Asp Ala Leu His Met Gln Ala Leu Pro Pro Arg
485 490 495
His Arg Phe His Gly Leu Trp Tyr Met Lys Met Met Trp Ala Trp Leu
500 505 510
Gln Ala Lys Arg Lys Pro Arg Lys Ala Pro Ser Arg Asn Ile Cys Tyr
515 520 525
Asp Ala Phe Val Ser Tyr Ser Glu Arg Asp Ala Tyr Trp Val Glu Asn
530 535 540
Leu Met Val Gln Glu Leu Glu Asn Phe Asn Pro Pro Phe Lys Leu Cys
545 550 555 560
Leu His Lys Arg Asp Phe Ile Pro Gly Lys Trp Ile Ile Asp Asn Ile
565 570 575
Ile Asp Ser Ile Glu Lys Ser His Lys Thr Val Phe Val Leu Ser Glu
580 585 590
Asn Phe Val Lys Ser Glu Trp Cys Lys Tyr Glu Leu Asp Phe Ser His
595 600 605
Phe Arg Leu Phe Asp Glu Asn Asn Asp Ala Ala Ile Leu Ile Leu Leu
610 615 620
Glu Pro Ile Glu Lys Lys Ala Ile Pro Gln Arg Phe Cys Lys Leu Arg
625 630 635 640
Lys Ile Met Asn Thr Lys Thr Tyr Leu Glu Trp Pro Met Asp Glu Ala
645 650 655
Gln Arg Glu Gly Phe Trp Val Asn Leu Arg Ala Ala Ile Lys Ser
660 665 670
<210> 230
<211> 689
<212> PRT
<213> artificial sequence
<220>
<223> hTIM4-TIM4-CD28tm-CD28icd-TLR8ICD-CD3zICD
<220>
<221> SIGNAL
<222> (1)..(22)
<400> 230
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Gln Phe Trp Val Leu Val
305 310 315 320
Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu Val Thr Val Ala
325 330 335
Phe Ile Ile Phe Trp Val Arg Ser Lys Arg Ser Arg Leu Leu His Ser
340 345 350
Asp Tyr Met Asn Met Thr Pro Arg Arg Pro Gly Pro Thr Arg Lys His
355 360 365
Tyr Gln Pro Tyr Ala Pro Pro Arg Asp Phe Ala Ala Tyr Arg Ser His
370 375 380
His Leu Phe Tyr Trp Asp Val Trp Phe Ile Tyr Asn Val Cys Leu Ala
385 390 395 400
Lys Val Lys Gly Tyr Arg Ser Leu Ser Thr Ser Gln Thr Phe Tyr Asp
405 410 415
Ala Tyr Ile Ser Tyr Asp Thr Lys Asp Ala Ser Val Thr Asp Trp Val
420 425 430
Ile Asn Glu Leu Arg Tyr His Leu Glu Glu Ser Arg Asp Lys Asn Val
435 440 445
Leu Leu Cys Leu Glu Glu Arg Asp Trp Asp Pro Gly Leu Ala Ile Ile
450 455 460
Asp Asn Leu Met Gln Ser Ile Asn Gln Ser Lys Lys Thr Val Phe Val
465 470 475 480
Leu Thr Lys Lys Tyr Ala Lys Ser Trp Asn Phe Lys Thr Ala Phe Tyr
485 490 495
Leu Ala Leu Gln Arg Leu Met Asp Glu Asn Met Asp Val Ile Ile Phe
500 505 510
Ile Leu Leu Glu Pro Val Leu Gln His Ser Gln Tyr Leu Arg Leu Arg
515 520 525
Gln Arg Ile Cys Lys Ser Ser Ile Leu Gln Trp Pro Asp Asn Pro Lys
530 535 540
Ala Glu Gly Leu Phe Trp Gln Thr Leu Arg Asn Val Val Leu Thr Glu
545 550 555 560
Asn Asp Ser Arg Tyr Asn Asn Met Tyr Val Asp Ser Ile Lys Gln Tyr
565 570 575
Arg Val Lys Phe Ser Arg Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly
580 585 590
Gln Asn Gln Leu Tyr Asn Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr
595 600 605
Asp Val Leu Asp Lys Arg Arg Gly Arg Asp Pro Glu Met Gly Gly Lys
610 615 620
Pro Gln Arg Arg Lys Asn Pro Gln Glu Gly Leu Tyr Asn Glu Leu Gln
625 630 635 640
Lys Asp Lys Met Ala Glu Ala Tyr Ser Glu Ile Gly Met Lys Gly Glu
645 650 655
Arg Arg Arg Gly Lys Gly His Asp Gly Leu Tyr Gln Gly Leu Ser Thr
660 665 670
Ala Thr Lys Asp Thr Tyr Asp Ala Leu His Met Gln Ala Leu Pro Pro
675 680 685
Arg
<210> 231
<211> 689
<212> PRT
<213> artificial sequence
<220>
<223> hTIM4-TIM4-CD28tm-CD28icd-CD3zICD-TLR8ICD
<220>
<221> SIGNAL
<222> (1)..(22)
<400> 231
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Gln Phe Trp Val Leu Val
305 310 315 320
Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu Val Thr Val Ala
325 330 335
Phe Ile Ile Phe Trp Val Arg Ser Lys Arg Ser Arg Leu Leu His Ser
340 345 350
Asp Tyr Met Asn Met Thr Pro Arg Arg Pro Gly Pro Thr Arg Lys His
355 360 365
Tyr Gln Pro Tyr Ala Pro Pro Arg Asp Phe Ala Ala Tyr Arg Ser Arg
370 375 380
Val Lys Phe Ser Arg Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln
385 390 395 400
Asn Gln Leu Tyr Asn Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp
405 410 415
Val Leu Asp Lys Arg Arg Gly Arg Asp Pro Glu Met Gly Gly Lys Pro
420 425 430
Gln Arg Arg Lys Asn Pro Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys
435 440 445
Asp Lys Met Ala Glu Ala Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg
450 455 460
Arg Arg Gly Lys Gly His Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala
465 470 475 480
Thr Lys Asp Thr Tyr Asp Ala Leu His Met Gln Ala Leu Pro Pro Arg
485 490 495
His His Leu Phe Tyr Trp Asp Val Trp Phe Ile Tyr Asn Val Cys Leu
500 505 510
Ala Lys Val Lys Gly Tyr Arg Ser Leu Ser Thr Ser Gln Thr Phe Tyr
515 520 525
Asp Ala Tyr Ile Ser Tyr Asp Thr Lys Asp Ala Ser Val Thr Asp Trp
530 535 540
Val Ile Asn Glu Leu Arg Tyr His Leu Glu Glu Ser Arg Asp Lys Asn
545 550 555 560
Val Leu Leu Cys Leu Glu Glu Arg Asp Trp Asp Pro Gly Leu Ala Ile
565 570 575
Ile Asp Asn Leu Met Gln Ser Ile Asn Gln Ser Lys Lys Thr Val Phe
580 585 590
Val Leu Thr Lys Lys Tyr Ala Lys Ser Trp Asn Phe Lys Thr Ala Phe
595 600 605
Tyr Leu Ala Leu Gln Arg Leu Met Asp Glu Asn Met Asp Val Ile Ile
610 615 620
Phe Ile Leu Leu Glu Pro Val Leu Gln His Ser Gln Tyr Leu Arg Leu
625 630 635 640
Arg Gln Arg Ile Cys Lys Ser Ser Ile Leu Gln Trp Pro Asp Asn Pro
645 650 655
Lys Ala Glu Gly Leu Phe Trp Gln Thr Leu Arg Asn Val Val Leu Thr
660 665 670
Glu Asn Asp Ser Arg Tyr Asn Asn Met Tyr Val Asp Ser Ile Lys Gln
675 680 685
Tyr
<210> 232
<211> 630
<212> PRT
<213> artificial sequence
<220>
<223> hTIM4-TIM4-CD28tm-TLR2ICD-CD3zICD
<220>
<221> SIGNAL
<222> (1)..(22)
<400> 232
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Gln Phe Trp Val Leu Val
305 310 315 320
Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu Val Thr Val Ala
325 330 335
Phe Ile Ile Phe Trp Val His Arg Phe His Gly Leu Trp Tyr Met Lys
340 345 350
Met Met Trp Ala Trp Leu Gln Ala Lys Arg Lys Pro Arg Lys Ala Pro
355 360 365
Ser Arg Asn Ile Cys Tyr Asp Ala Phe Val Ser Tyr Ser Glu Arg Asp
370 375 380
Ala Tyr Trp Val Glu Asn Leu Met Val Gln Glu Leu Glu Asn Phe Asn
385 390 395 400
Pro Pro Phe Lys Leu Cys Leu His Lys Arg Asp Phe Ile Pro Gly Lys
405 410 415
Trp Ile Ile Asp Asn Ile Ile Asp Ser Ile Glu Lys Ser His Lys Thr
420 425 430
Val Phe Val Leu Ser Glu Asn Phe Val Lys Ser Glu Trp Cys Lys Tyr
435 440 445
Glu Leu Asp Phe Ser His Phe Arg Leu Phe Asp Glu Asn Asn Asp Ala
450 455 460
Ala Ile Leu Ile Leu Leu Glu Pro Ile Glu Lys Lys Ala Ile Pro Gln
465 470 475 480
Arg Phe Cys Lys Leu Arg Lys Ile Met Asn Thr Lys Thr Tyr Leu Glu
485 490 495
Trp Pro Met Asp Glu Ala Gln Arg Glu Gly Phe Trp Val Asn Leu Arg
500 505 510
Ala Ala Ile Lys Ser Arg Val Lys Phe Ser Arg Ser Ala Asp Ala Pro
515 520 525
Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn Glu Leu Asn Leu Gly
530 535 540
Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg Arg Gly Arg Asp Pro
545 550 555 560
Glu Met Gly Gly Lys Pro Gln Arg Arg Lys Asn Pro Gln Glu Gly Leu
565 570 575
Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu Ala Tyr Ser Glu Ile
580 585 590
Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His Asp Gly Leu Tyr
595 600 605
Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp Ala Leu His Met
610 615 620
Gln Ala Leu Pro Pro Arg
625 630
<210> 233
<211> 630
<212> PRT
<213> artificial sequence
<220>
<223> hTIM4-TIM4-CD28tm-CD3zICD-TLR2ICD
<220>
<221> SIGNAL
<222> (1)..(22)
<400> 233
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Gln Phe Trp Val Leu Val
305 310 315 320
Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu Val Thr Val Ala
325 330 335
Phe Ile Ile Phe Trp Val Arg Val Lys Phe Ser Arg Ser Ala Asp Ala
340 345 350
Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn Glu Leu Asn Leu
355 360 365
Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg Arg Gly Arg Asp
370 375 380
Pro Glu Met Gly Gly Lys Pro Gln Arg Arg Lys Asn Pro Gln Glu Gly
385 390 395 400
Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu Ala Tyr Ser Glu
405 410 415
Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His Asp Gly Leu
420 425 430
Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp Ala Leu His
435 440 445
Met Gln Ala Leu Pro Pro Arg His Arg Phe His Gly Leu Trp Tyr Met
450 455 460
Lys Met Met Trp Ala Trp Leu Gln Ala Lys Arg Lys Pro Arg Lys Ala
465 470 475 480
Pro Ser Arg Asn Ile Cys Tyr Asp Ala Phe Val Ser Tyr Ser Glu Arg
485 490 495
Asp Ala Tyr Trp Val Glu Asn Leu Met Val Gln Glu Leu Glu Asn Phe
500 505 510
Asn Pro Pro Phe Lys Leu Cys Leu His Lys Arg Asp Phe Ile Pro Gly
515 520 525
Lys Trp Ile Ile Asp Asn Ile Ile Asp Ser Ile Glu Lys Ser His Lys
530 535 540
Thr Val Phe Val Leu Ser Glu Asn Phe Val Lys Ser Glu Trp Cys Lys
545 550 555 560
Tyr Glu Leu Asp Phe Ser His Phe Arg Leu Phe Asp Glu Asn Asn Asp
565 570 575
Ala Ala Ile Leu Ile Leu Leu Glu Pro Ile Glu Lys Lys Ala Ile Pro
580 585 590
Gln Arg Phe Cys Lys Leu Arg Lys Ile Met Asn Thr Lys Thr Tyr Leu
595 600 605
Glu Trp Pro Met Asp Glu Ala Gln Arg Glu Gly Phe Trp Val Asn Leu
610 615 620
Arg Ala Ala Ile Lys Ser
625 630
<210> 234
<211> 648
<212> PRT
<213> artificial sequence
<220>
<223> hTIM4-TIM4-CD28tm-TLR8ICD-CD3zICD
<220>
<221> SIGNAL
<222> (1)..(22)
<400> 234
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Gln Phe Trp Val Leu Val
305 310 315 320
Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu Val Thr Val Ala
325 330 335
Phe Ile Ile Phe Trp Val His His Leu Phe Tyr Trp Asp Val Trp Phe
340 345 350
Ile Tyr Asn Val Cys Leu Ala Lys Val Lys Gly Tyr Arg Ser Leu Ser
355 360 365
Thr Ser Gln Thr Phe Tyr Asp Ala Tyr Ile Ser Tyr Asp Thr Lys Asp
370 375 380
Ala Ser Val Thr Asp Trp Val Ile Asn Glu Leu Arg Tyr His Leu Glu
385 390 395 400
Glu Ser Arg Asp Lys Asn Val Leu Leu Cys Leu Glu Glu Arg Asp Trp
405 410 415
Asp Pro Gly Leu Ala Ile Ile Asp Asn Leu Met Gln Ser Ile Asn Gln
420 425 430
Ser Lys Lys Thr Val Phe Val Leu Thr Lys Lys Tyr Ala Lys Ser Trp
435 440 445
Asn Phe Lys Thr Ala Phe Tyr Leu Ala Leu Gln Arg Leu Met Asp Glu
450 455 460
Asn Met Asp Val Ile Ile Phe Ile Leu Leu Glu Pro Val Leu Gln His
465 470 475 480
Ser Gln Tyr Leu Arg Leu Arg Gln Arg Ile Cys Lys Ser Ser Ile Leu
485 490 495
Gln Trp Pro Asp Asn Pro Lys Ala Glu Gly Leu Phe Trp Gln Thr Leu
500 505 510
Arg Asn Val Val Leu Thr Glu Asn Asp Ser Arg Tyr Asn Asn Met Tyr
515 520 525
Val Asp Ser Ile Lys Gln Tyr Arg Val Lys Phe Ser Arg Ser Ala Asp
530 535 540
Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn Glu Leu Asn
545 550 555 560
Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg Arg Gly Arg
565 570 575
Asp Pro Glu Met Gly Gly Lys Pro Gln Arg Arg Lys Asn Pro Gln Glu
580 585 590
Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu Ala Tyr Ser
595 600 605
Glu Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His Asp Gly
610 615 620
Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp Ala Leu
625 630 635 640
His Met Gln Ala Leu Pro Pro Arg
645
<210> 235
<211> 648
<212> PRT
<213> artificial sequence
<220>
<223> hTIM4-TIM4-CD28tm-CD3zICD-TLR8ICD
<220>
<221> SIGNAL
<222> (1)..(22)
<400> 235
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Gln Phe Trp Val Leu Val
305 310 315 320
Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu Val Thr Val Ala
325 330 335
Phe Ile Ile Phe Trp Val Arg Val Lys Phe Ser Arg Ser Ala Asp Ala
340 345 350
Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn Glu Leu Asn Leu
355 360 365
Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg Arg Gly Arg Asp
370 375 380
Pro Glu Met Gly Gly Lys Pro Gln Arg Arg Lys Asn Pro Gln Glu Gly
385 390 395 400
Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu Ala Tyr Ser Glu
405 410 415
Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His Asp Gly Leu
420 425 430
Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp Ala Leu His
435 440 445
Met Gln Ala Leu Pro Pro Arg His His Leu Phe Tyr Trp Asp Val Trp
450 455 460
Phe Ile Tyr Asn Val Cys Leu Ala Lys Val Lys Gly Tyr Arg Ser Leu
465 470 475 480
Ser Thr Ser Gln Thr Phe Tyr Asp Ala Tyr Ile Ser Tyr Asp Thr Lys
485 490 495
Asp Ala Ser Val Thr Asp Trp Val Ile Asn Glu Leu Arg Tyr His Leu
500 505 510
Glu Glu Ser Arg Asp Lys Asn Val Leu Leu Cys Leu Glu Glu Arg Asp
515 520 525
Trp Asp Pro Gly Leu Ala Ile Ile Asp Asn Leu Met Gln Ser Ile Asn
530 535 540
Gln Ser Lys Lys Thr Val Phe Val Leu Thr Lys Lys Tyr Ala Lys Ser
545 550 555 560
Trp Asn Phe Lys Thr Ala Phe Tyr Leu Ala Leu Gln Arg Leu Met Asp
565 570 575
Glu Asn Met Asp Val Ile Ile Phe Ile Leu Leu Glu Pro Val Leu Gln
580 585 590
His Ser Gln Tyr Leu Arg Leu Arg Gln Arg Ile Cys Lys Ser Ser Ile
595 600 605
Leu Gln Trp Pro Asp Asn Pro Lys Ala Glu Gly Leu Phe Trp Gln Thr
610 615 620
Leu Arg Asn Val Val Leu Thr Glu Asn Asp Ser Arg Tyr Asn Asn Met
625 630 635 640
Tyr Val Asp Ser Ile Lys Gln Tyr
645
<210> 236
<211> 729
<212> PRT
<213> artificial sequence
<220>
<223> hTIM4-TIM4-CD28tm-TRAF6ICD-CD3zICD
<220>
<221> SIGNAL
<222> (1)..(22)
<400> 236
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Gln Phe Trp Val Leu Val
305 310 315 320
Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu Val Thr Val Ala
325 330 335
Phe Ile Ile Phe Trp Val Met Ser Leu Leu Asn Cys Glu Asn Ser Cys
340 345 350
Gly Ser Ser Gln Ser Glu Ser Asp Cys Cys Val Ala Met Ala Ser Ser
355 360 365
Cys Ser Ala Val Thr Lys Asp Asp Ser Val Gly Gly Thr Ala Ser Thr
370 375 380
Gly Asn Leu Ser Ser Ser Phe Met Glu Glu Ile Gln Gly Tyr Asp Val
385 390 395 400
Glu Phe Asp Pro Pro Leu Glu Ser Lys Tyr Glu Cys Pro Ile Cys Leu
405 410 415
Met Ala Leu Arg Glu Ala Val Gln Thr Pro Cys Gly His Arg Phe Cys
420 425 430
Lys Ala Cys Ile Ile Lys Ser Ile Arg Asp Ala Gly His Lys Cys Pro
435 440 445
Val Asp Asn Glu Ile Leu Leu Glu Asn Gln Leu Phe Pro Asp Asn Phe
450 455 460
Ala Lys Arg Glu Ile Leu Ser Leu Met Val Lys Cys Pro Asn Glu Gly
465 470 475 480
Cys Leu His Lys Met Glu Leu Arg His Leu Glu Asp His Gln Ala His
485 490 495
Cys Glu Phe Ala Leu Met Asp Cys Pro Gln Cys Gln Arg Pro Phe Gln
500 505 510
Lys Phe His Ile Asn Ile His Ile Leu Lys Asp Cys Pro Arg Arg Gln
515 520 525
Val Ser Cys Asp Asn Cys Ala Ala Ser Met Ala Phe Glu Asp Lys Glu
530 535 540
Ile His Asp Gln Asn Cys Pro Leu Ala Asn Val Ile Cys Glu Tyr Cys
545 550 555 560
Asn Thr Ile Leu Ile Arg Glu Gln Met Pro Asn His Tyr Asp Leu Asp
565 570 575
Cys Pro Thr Ala Pro Ile Pro Cys Thr Phe Ser Thr Phe Gly Cys His
580 585 590
Glu Lys Met Gln Arg Asn His Leu Ala Arg His Leu Gln Glu Asn Thr
595 600 605
Gln Ser His Met Arg Met Leu Ala Arg Val Lys Phe Ser Arg Ser Ala
610 615 620
Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn Glu Leu
625 630 635 640
Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg Arg Gly
645 650 655
Arg Asp Pro Glu Met Gly Gly Lys Pro Gln Arg Arg Lys Asn Pro Gln
660 665 670
Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu Ala Tyr
675 680 685
Ser Glu Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His Asp
690 695 700
Gly Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp Ala
705 710 715 720
Leu His Met Gln Ala Leu Pro Pro Arg
725
<210> 237
<211> 729
<212> PRT
<213> artificial sequence
<220>
<223> hTIM4-TIM4-CD28tm-CD3zICD-TRAF6ICD
<220>
<221> SIGNAL
<222> (1)..(22)
<400> 237
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Gln Phe Trp Val Leu Val
305 310 315 320
Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu Val Thr Val Ala
325 330 335
Phe Ile Ile Phe Trp Val Arg Val Lys Phe Ser Arg Ser Ala Asp Ala
340 345 350
Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn Glu Leu Asn Leu
355 360 365
Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg Arg Gly Arg Asp
370 375 380
Pro Glu Met Gly Gly Lys Pro Gln Arg Arg Lys Asn Pro Gln Glu Gly
385 390 395 400
Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu Ala Tyr Ser Glu
405 410 415
Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His Asp Gly Leu
420 425 430
Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp Ala Leu His
435 440 445
Met Gln Ala Leu Pro Pro Arg Met Ser Leu Leu Asn Cys Glu Asn Ser
450 455 460
Cys Gly Ser Ser Gln Ser Glu Ser Asp Cys Cys Val Ala Met Ala Ser
465 470 475 480
Ser Cys Ser Ala Val Thr Lys Asp Asp Ser Val Gly Gly Thr Ala Ser
485 490 495
Thr Gly Asn Leu Ser Ser Ser Phe Met Glu Glu Ile Gln Gly Tyr Asp
500 505 510
Val Glu Phe Asp Pro Pro Leu Glu Ser Lys Tyr Glu Cys Pro Ile Cys
515 520 525
Leu Met Ala Leu Arg Glu Ala Val Gln Thr Pro Cys Gly His Arg Phe
530 535 540
Cys Lys Ala Cys Ile Ile Lys Ser Ile Arg Asp Ala Gly His Lys Cys
545 550 555 560
Pro Val Asp Asn Glu Ile Leu Leu Glu Asn Gln Leu Phe Pro Asp Asn
565 570 575
Phe Ala Lys Arg Glu Ile Leu Ser Leu Met Val Lys Cys Pro Asn Glu
580 585 590
Gly Cys Leu His Lys Met Glu Leu Arg His Leu Glu Asp His Gln Ala
595 600 605
His Cys Glu Phe Ala Leu Met Asp Cys Pro Gln Cys Gln Arg Pro Phe
610 615 620
Gln Lys Phe His Ile Asn Ile His Ile Leu Lys Asp Cys Pro Arg Arg
625 630 635 640
Gln Val Ser Cys Asp Asn Cys Ala Ala Ser Met Ala Phe Glu Asp Lys
645 650 655
Glu Ile His Asp Gln Asn Cys Pro Leu Ala Asn Val Ile Cys Glu Tyr
660 665 670
Cys Asn Thr Ile Leu Ile Arg Glu Gln Met Pro Asn His Tyr Asp Leu
675 680 685
Asp Cys Pro Thr Ala Pro Ile Pro Cys Thr Phe Ser Thr Phe Gly Cys
690 695 700
His Glu Lys Met Gln Arg Asn His Leu Ala Arg His Leu Gln Glu Asn
705 710 715 720
Thr Gln Ser His Met Arg Met Leu Ala
725
<210> 238
<211> 490
<212> PRT
<213> artificial sequence
<220>
<223> hTIM4-TIM4-TIM4tm-CD28icd-CD3zICD
<220>
<221> SIGNAL
<222> (1)..(22)
<400> 238
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Leu Leu Met Ile Ile Ala
305 310 315 320
Pro Ser Leu Gly Phe Val Leu Phe Ala Leu Phe Val Ala Phe Leu Leu
325 330 335
Arg Ser Lys Arg Ser Arg Leu Leu His Ser Asp Tyr Met Asn Met Thr
340 345 350
Pro Arg Arg Pro Gly Pro Thr Arg Lys His Tyr Gln Pro Tyr Ala Pro
355 360 365
Pro Arg Asp Phe Ala Ala Tyr Arg Ser Arg Val Lys Phe Ser Arg Ser
370 375 380
Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn Glu
385 390 395 400
Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg Arg
405 410 415
Gly Arg Asp Pro Glu Met Gly Gly Lys Pro Gln Arg Arg Lys Asn Pro
420 425 430
Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu Ala
435 440 445
Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His
450 455 460
Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp
465 470 475 480
Ala Leu His Met Gln Ala Leu Pro Pro Arg
485 490
<210> 239
<211> 665
<212> PRT
<213> artificial sequence
<220>
<223> hTIM4-TIM4-TIM4tm-CD28icd-TLR2ICD-CD3zICD
<220>
<221> SIGNAL
<222> (1)..(22)
<400> 239
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Leu Leu Met Ile Ile Ala
305 310 315 320
Pro Ser Leu Gly Phe Val Leu Phe Ala Leu Phe Val Ala Phe Leu Leu
325 330 335
Arg Ser Lys Arg Ser Arg Leu Leu His Ser Asp Tyr Met Asn Met Thr
340 345 350
Pro Arg Arg Pro Gly Pro Thr Arg Lys His Tyr Gln Pro Tyr Ala Pro
355 360 365
Pro Arg Asp Phe Ala Ala Tyr Arg Ser His Arg Phe His Gly Leu Trp
370 375 380
Tyr Met Lys Met Met Trp Ala Trp Leu Gln Ala Lys Arg Lys Pro Arg
385 390 395 400
Lys Ala Pro Ser Arg Asn Ile Cys Tyr Asp Ala Phe Val Ser Tyr Ser
405 410 415
Glu Arg Asp Ala Tyr Trp Val Glu Asn Leu Met Val Gln Glu Leu Glu
420 425 430
Asn Phe Asn Pro Pro Phe Lys Leu Cys Leu His Lys Arg Asp Phe Ile
435 440 445
Pro Gly Lys Trp Ile Ile Asp Asn Ile Ile Asp Ser Ile Glu Lys Ser
450 455 460
His Lys Thr Val Phe Val Leu Ser Glu Asn Phe Val Lys Ser Glu Trp
465 470 475 480
Cys Lys Tyr Glu Leu Asp Phe Ser His Phe Arg Leu Phe Asp Glu Asn
485 490 495
Asn Asp Ala Ala Ile Leu Ile Leu Leu Glu Pro Ile Glu Lys Lys Ala
500 505 510
Ile Pro Gln Arg Phe Cys Lys Leu Arg Lys Ile Met Asn Thr Lys Thr
515 520 525
Tyr Leu Glu Trp Pro Met Asp Glu Ala Gln Arg Glu Gly Phe Trp Val
530 535 540
Asn Leu Arg Ala Ala Ile Lys Ser Arg Val Lys Phe Ser Arg Ser Ala
545 550 555 560
Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn Glu Leu
565 570 575
Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg Arg Gly
580 585 590
Arg Asp Pro Glu Met Gly Gly Lys Pro Gln Arg Arg Lys Asn Pro Gln
595 600 605
Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu Ala Tyr
610 615 620
Ser Glu Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His Asp
625 630 635 640
Gly Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp Ala
645 650 655
Leu His Met Gln Ala Leu Pro Pro Arg
660 665
<210> 240
<211> 665
<212> PRT
<213> artificial sequence
<220>
<223> hTIM4-TIM4-TIM4tm-CD28icd-CD3zICD-TLR2ICD
<220>
<221> SIGNAL
<222> (1)..(22)
<400> 240
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Leu Leu Met Ile Ile Ala
305 310 315 320
Pro Ser Leu Gly Phe Val Leu Phe Ala Leu Phe Val Ala Phe Leu Leu
325 330 335
Arg Ser Lys Arg Ser Arg Leu Leu His Ser Asp Tyr Met Asn Met Thr
340 345 350
Pro Arg Arg Pro Gly Pro Thr Arg Lys His Tyr Gln Pro Tyr Ala Pro
355 360 365
Pro Arg Asp Phe Ala Ala Tyr Arg Ser Arg Val Lys Phe Ser Arg Ser
370 375 380
Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn Glu
385 390 395 400
Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg Arg
405 410 415
Gly Arg Asp Pro Glu Met Gly Gly Lys Pro Gln Arg Arg Lys Asn Pro
420 425 430
Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu Ala
435 440 445
Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His
450 455 460
Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp
465 470 475 480
Ala Leu His Met Gln Ala Leu Pro Pro Arg His Arg Phe His Gly Leu
485 490 495
Trp Tyr Met Lys Met Met Trp Ala Trp Leu Gln Ala Lys Arg Lys Pro
500 505 510
Arg Lys Ala Pro Ser Arg Asn Ile Cys Tyr Asp Ala Phe Val Ser Tyr
515 520 525
Ser Glu Arg Asp Ala Tyr Trp Val Glu Asn Leu Met Val Gln Glu Leu
530 535 540
Glu Asn Phe Asn Pro Pro Phe Lys Leu Cys Leu His Lys Arg Asp Phe
545 550 555 560
Ile Pro Gly Lys Trp Ile Ile Asp Asn Ile Ile Asp Ser Ile Glu Lys
565 570 575
Ser His Lys Thr Val Phe Val Leu Ser Glu Asn Phe Val Lys Ser Glu
580 585 590
Trp Cys Lys Tyr Glu Leu Asp Phe Ser His Phe Arg Leu Phe Asp Glu
595 600 605
Asn Asn Asp Ala Ala Ile Leu Ile Leu Leu Glu Pro Ile Glu Lys Lys
610 615 620
Ala Ile Pro Gln Arg Phe Cys Lys Leu Arg Lys Ile Met Asn Thr Lys
625 630 635 640
Thr Tyr Leu Glu Trp Pro Met Asp Glu Ala Gln Arg Glu Gly Phe Trp
645 650 655
Val Asn Leu Arg Ala Ala Ile Lys Ser
660 665
<210> 241
<211> 683
<212> PRT
<213> artificial sequence
<220>
<223> hTIM4-TIM4-TIM4tm-CD28icd-TLR8ICD-CD3zICD
<220>
<221> SIGNAL
<222> (1)..(22)
<400> 241
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Leu Leu Met Ile Ile Ala
305 310 315 320
Pro Ser Leu Gly Phe Val Leu Phe Ala Leu Phe Val Ala Phe Leu Leu
325 330 335
Arg Ser Lys Arg Ser Arg Leu Leu His Ser Asp Tyr Met Asn Met Thr
340 345 350
Pro Arg Arg Pro Gly Pro Thr Arg Lys His Tyr Gln Pro Tyr Ala Pro
355 360 365
Pro Arg Asp Phe Ala Ala Tyr Arg Ser His His Leu Phe Tyr Trp Asp
370 375 380
Val Trp Phe Ile Tyr Asn Val Cys Leu Ala Lys Val Lys Gly Tyr Arg
385 390 395 400
Ser Leu Ser Thr Ser Gln Thr Phe Tyr Asp Ala Tyr Ile Ser Tyr Asp
405 410 415
Thr Lys Asp Ala Ser Val Thr Asp Trp Val Ile Asn Glu Leu Arg Tyr
420 425 430
His Leu Glu Glu Ser Arg Asp Lys Asn Val Leu Leu Cys Leu Glu Glu
435 440 445
Arg Asp Trp Asp Pro Gly Leu Ala Ile Ile Asp Asn Leu Met Gln Ser
450 455 460
Ile Asn Gln Ser Lys Lys Thr Val Phe Val Leu Thr Lys Lys Tyr Ala
465 470 475 480
Lys Ser Trp Asn Phe Lys Thr Ala Phe Tyr Leu Ala Leu Gln Arg Leu
485 490 495
Met Asp Glu Asn Met Asp Val Ile Ile Phe Ile Leu Leu Glu Pro Val
500 505 510
Leu Gln His Ser Gln Tyr Leu Arg Leu Arg Gln Arg Ile Cys Lys Ser
515 520 525
Ser Ile Leu Gln Trp Pro Asp Asn Pro Lys Ala Glu Gly Leu Phe Trp
530 535 540
Gln Thr Leu Arg Asn Val Val Leu Thr Glu Asn Asp Ser Arg Tyr Asn
545 550 555 560
Asn Met Tyr Val Asp Ser Ile Lys Gln Tyr Arg Val Lys Phe Ser Arg
565 570 575
Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn
580 585 590
Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg
595 600 605
Arg Gly Arg Asp Pro Glu Met Gly Gly Lys Pro Gln Arg Arg Lys Asn
610 615 620
Pro Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu
625 630 635 640
Ala Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly
645 650 655
His Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr
660 665 670
Asp Ala Leu His Met Gln Ala Leu Pro Pro Arg
675 680
<210> 242
<211> 683
<212> PRT
<213> artificial sequence
<220>
<223> hTIM4-TIM4-TIM4tm-CD28icd-CD3zICD-TLR8ICD
<220>
<221> SIGNAL
<222> (1)..(22)
<400> 242
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Leu Leu Met Ile Ile Ala
305 310 315 320
Pro Ser Leu Gly Phe Val Leu Phe Ala Leu Phe Val Ala Phe Leu Leu
325 330 335
Arg Ser Lys Arg Ser Arg Leu Leu His Ser Asp Tyr Met Asn Met Thr
340 345 350
Pro Arg Arg Pro Gly Pro Thr Arg Lys His Tyr Gln Pro Tyr Ala Pro
355 360 365
Pro Arg Asp Phe Ala Ala Tyr Arg Ser Arg Val Lys Phe Ser Arg Ser
370 375 380
Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn Glu
385 390 395 400
Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg Arg
405 410 415
Gly Arg Asp Pro Glu Met Gly Gly Lys Pro Gln Arg Arg Lys Asn Pro
420 425 430
Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu Ala
435 440 445
Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His
450 455 460
Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp
465 470 475 480
Ala Leu His Met Gln Ala Leu Pro Pro Arg His His Leu Phe Tyr Trp
485 490 495
Asp Val Trp Phe Ile Tyr Asn Val Cys Leu Ala Lys Val Lys Gly Tyr
500 505 510
Arg Ser Leu Ser Thr Ser Gln Thr Phe Tyr Asp Ala Tyr Ile Ser Tyr
515 520 525
Asp Thr Lys Asp Ala Ser Val Thr Asp Trp Val Ile Asn Glu Leu Arg
530 535 540
Tyr His Leu Glu Glu Ser Arg Asp Lys Asn Val Leu Leu Cys Leu Glu
545 550 555 560
Glu Arg Asp Trp Asp Pro Gly Leu Ala Ile Ile Asp Asn Leu Met Gln
565 570 575
Ser Ile Asn Gln Ser Lys Lys Thr Val Phe Val Leu Thr Lys Lys Tyr
580 585 590
Ala Lys Ser Trp Asn Phe Lys Thr Ala Phe Tyr Leu Ala Leu Gln Arg
595 600 605
Leu Met Asp Glu Asn Met Asp Val Ile Ile Phe Ile Leu Leu Glu Pro
610 615 620
Val Leu Gln His Ser Gln Tyr Leu Arg Leu Arg Gln Arg Ile Cys Lys
625 630 635 640
Ser Ser Ile Leu Gln Trp Pro Asp Asn Pro Lys Ala Glu Gly Leu Phe
645 650 655
Trp Gln Thr Leu Arg Asn Val Val Leu Thr Glu Asn Asp Ser Arg Tyr
660 665 670
Asn Asn Met Tyr Val Asp Ser Ile Lys Gln Tyr
675 680
<210> 243
<211> 624
<212> PRT
<213> artificial sequence
<220>
<223> hTIM4-TIM4-TIM4tm-TLR2ICD-CD3zICD
<220>
<221> SIGNAL
<222> (1)..(22)
<400> 243
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Leu Leu Met Ile Ile Ala
305 310 315 320
Pro Ser Leu Gly Phe Val Leu Phe Ala Leu Phe Val Ala Phe Leu Leu
325 330 335
His Arg Phe His Gly Leu Trp Tyr Met Lys Met Met Trp Ala Trp Leu
340 345 350
Gln Ala Lys Arg Lys Pro Arg Lys Ala Pro Ser Arg Asn Ile Cys Tyr
355 360 365
Asp Ala Phe Val Ser Tyr Ser Glu Arg Asp Ala Tyr Trp Val Glu Asn
370 375 380
Leu Met Val Gln Glu Leu Glu Asn Phe Asn Pro Pro Phe Lys Leu Cys
385 390 395 400
Leu His Lys Arg Asp Phe Ile Pro Gly Lys Trp Ile Ile Asp Asn Ile
405 410 415
Ile Asp Ser Ile Glu Lys Ser His Lys Thr Val Phe Val Leu Ser Glu
420 425 430
Asn Phe Val Lys Ser Glu Trp Cys Lys Tyr Glu Leu Asp Phe Ser His
435 440 445
Phe Arg Leu Phe Asp Glu Asn Asn Asp Ala Ala Ile Leu Ile Leu Leu
450 455 460
Glu Pro Ile Glu Lys Lys Ala Ile Pro Gln Arg Phe Cys Lys Leu Arg
465 470 475 480
Lys Ile Met Asn Thr Lys Thr Tyr Leu Glu Trp Pro Met Asp Glu Ala
485 490 495
Gln Arg Glu Gly Phe Trp Val Asn Leu Arg Ala Ala Ile Lys Ser Arg
500 505 510
Val Lys Phe Ser Arg Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln
515 520 525
Asn Gln Leu Tyr Asn Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp
530 535 540
Val Leu Asp Lys Arg Arg Gly Arg Asp Pro Glu Met Gly Gly Lys Pro
545 550 555 560
Gln Arg Arg Lys Asn Pro Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys
565 570 575
Asp Lys Met Ala Glu Ala Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg
580 585 590
Arg Arg Gly Lys Gly His Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala
595 600 605
Thr Lys Asp Thr Tyr Asp Ala Leu His Met Gln Ala Leu Pro Pro Arg
610 615 620
<210> 244
<211> 624
<212> PRT
<213> artificial sequence
<220>
<223> hTIM4-TIM4-TIM4tm-CD3zICD-TLR2ICD
<220>
<221> SIGNAL
<222> (1)..(22)
<400> 244
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Leu Leu Met Ile Ile Ala
305 310 315 320
Pro Ser Leu Gly Phe Val Leu Phe Ala Leu Phe Val Ala Phe Leu Leu
325 330 335
Arg Val Lys Phe Ser Arg Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly
340 345 350
Gln Asn Gln Leu Tyr Asn Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr
355 360 365
Asp Val Leu Asp Lys Arg Arg Gly Arg Asp Pro Glu Met Gly Gly Lys
370 375 380
Pro Gln Arg Arg Lys Asn Pro Gln Glu Gly Leu Tyr Asn Glu Leu Gln
385 390 395 400
Lys Asp Lys Met Ala Glu Ala Tyr Ser Glu Ile Gly Met Lys Gly Glu
405 410 415
Arg Arg Arg Gly Lys Gly His Asp Gly Leu Tyr Gln Gly Leu Ser Thr
420 425 430
Ala Thr Lys Asp Thr Tyr Asp Ala Leu His Met Gln Ala Leu Pro Pro
435 440 445
Arg His Arg Phe His Gly Leu Trp Tyr Met Lys Met Met Trp Ala Trp
450 455 460
Leu Gln Ala Lys Arg Lys Pro Arg Lys Ala Pro Ser Arg Asn Ile Cys
465 470 475 480
Tyr Asp Ala Phe Val Ser Tyr Ser Glu Arg Asp Ala Tyr Trp Val Glu
485 490 495
Asn Leu Met Val Gln Glu Leu Glu Asn Phe Asn Pro Pro Phe Lys Leu
500 505 510
Cys Leu His Lys Arg Asp Phe Ile Pro Gly Lys Trp Ile Ile Asp Asn
515 520 525
Ile Ile Asp Ser Ile Glu Lys Ser His Lys Thr Val Phe Val Leu Ser
530 535 540
Glu Asn Phe Val Lys Ser Glu Trp Cys Lys Tyr Glu Leu Asp Phe Ser
545 550 555 560
His Phe Arg Leu Phe Asp Glu Asn Asn Asp Ala Ala Ile Leu Ile Leu
565 570 575
Leu Glu Pro Ile Glu Lys Lys Ala Ile Pro Gln Arg Phe Cys Lys Leu
580 585 590
Arg Lys Ile Met Asn Thr Lys Thr Tyr Leu Glu Trp Pro Met Asp Glu
595 600 605
Ala Gln Arg Glu Gly Phe Trp Val Asn Leu Arg Ala Ala Ile Lys Ser
610 615 620
<210> 245
<211> 642
<212> PRT
<213> artificial sequence
<220>
<223> hTIM4-TIM4-TIM4tm-TLR8ICD-CD3zICD
<220>
<221> SIGNAL
<222> (1)..(22)
<400> 245
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Leu Leu Met Ile Ile Ala
305 310 315 320
Pro Ser Leu Gly Phe Val Leu Phe Ala Leu Phe Val Ala Phe Leu Leu
325 330 335
His His Leu Phe Tyr Trp Asp Val Trp Phe Ile Tyr Asn Val Cys Leu
340 345 350
Ala Lys Val Lys Gly Tyr Arg Ser Leu Ser Thr Ser Gln Thr Phe Tyr
355 360 365
Asp Ala Tyr Ile Ser Tyr Asp Thr Lys Asp Ala Ser Val Thr Asp Trp
370 375 380
Val Ile Asn Glu Leu Arg Tyr His Leu Glu Glu Ser Arg Asp Lys Asn
385 390 395 400
Val Leu Leu Cys Leu Glu Glu Arg Asp Trp Asp Pro Gly Leu Ala Ile
405 410 415
Ile Asp Asn Leu Met Gln Ser Ile Asn Gln Ser Lys Lys Thr Val Phe
420 425 430
Val Leu Thr Lys Lys Tyr Ala Lys Ser Trp Asn Phe Lys Thr Ala Phe
435 440 445
Tyr Leu Ala Leu Gln Arg Leu Met Asp Glu Asn Met Asp Val Ile Ile
450 455 460
Phe Ile Leu Leu Glu Pro Val Leu Gln His Ser Gln Tyr Leu Arg Leu
465 470 475 480
Arg Gln Arg Ile Cys Lys Ser Ser Ile Leu Gln Trp Pro Asp Asn Pro
485 490 495
Lys Ala Glu Gly Leu Phe Trp Gln Thr Leu Arg Asn Val Val Leu Thr
500 505 510
Glu Asn Asp Ser Arg Tyr Asn Asn Met Tyr Val Asp Ser Ile Lys Gln
515 520 525
Tyr Arg Val Lys Phe Ser Arg Ser Ala Asp Ala Pro Ala Tyr Gln Gln
530 535 540
Gly Gln Asn Gln Leu Tyr Asn Glu Leu Asn Leu Gly Arg Arg Glu Glu
545 550 555 560
Tyr Asp Val Leu Asp Lys Arg Arg Gly Arg Asp Pro Glu Met Gly Gly
565 570 575
Lys Pro Gln Arg Arg Lys Asn Pro Gln Glu Gly Leu Tyr Asn Glu Leu
580 585 590
Gln Lys Asp Lys Met Ala Glu Ala Tyr Ser Glu Ile Gly Met Lys Gly
595 600 605
Glu Arg Arg Arg Gly Lys Gly His Asp Gly Leu Tyr Gln Gly Leu Ser
610 615 620
Thr Ala Thr Lys Asp Thr Tyr Asp Ala Leu His Met Gln Ala Leu Pro
625 630 635 640
Pro Arg
<210> 246
<211> 642
<212> PRT
<213> artificial sequence
<220>
<223> hTIM4-TIM4-TIM4tm-CD3zICD-TLR8ICD
<220>
<221> SIGNAL
<222> (1)..(22)
<400> 246
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Leu Leu Met Ile Ile Ala
305 310 315 320
Pro Ser Leu Gly Phe Val Leu Phe Ala Leu Phe Val Ala Phe Leu Leu
325 330 335
Arg Val Lys Phe Ser Arg Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly
340 345 350
Gln Asn Gln Leu Tyr Asn Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr
355 360 365
Asp Val Leu Asp Lys Arg Arg Gly Arg Asp Pro Glu Met Gly Gly Lys
370 375 380
Pro Gln Arg Arg Lys Asn Pro Gln Glu Gly Leu Tyr Asn Glu Leu Gln
385 390 395 400
Lys Asp Lys Met Ala Glu Ala Tyr Ser Glu Ile Gly Met Lys Gly Glu
405 410 415
Arg Arg Arg Gly Lys Gly His Asp Gly Leu Tyr Gln Gly Leu Ser Thr
420 425 430
Ala Thr Lys Asp Thr Tyr Asp Ala Leu His Met Gln Ala Leu Pro Pro
435 440 445
Arg His His Leu Phe Tyr Trp Asp Val Trp Phe Ile Tyr Asn Val Cys
450 455 460
Leu Ala Lys Val Lys Gly Tyr Arg Ser Leu Ser Thr Ser Gln Thr Phe
465 470 475 480
Tyr Asp Ala Tyr Ile Ser Tyr Asp Thr Lys Asp Ala Ser Val Thr Asp
485 490 495
Trp Val Ile Asn Glu Leu Arg Tyr His Leu Glu Glu Ser Arg Asp Lys
500 505 510
Asn Val Leu Leu Cys Leu Glu Glu Arg Asp Trp Asp Pro Gly Leu Ala
515 520 525
Ile Ile Asp Asn Leu Met Gln Ser Ile Asn Gln Ser Lys Lys Thr Val
530 535 540
Phe Val Leu Thr Lys Lys Tyr Ala Lys Ser Trp Asn Phe Lys Thr Ala
545 550 555 560
Phe Tyr Leu Ala Leu Gln Arg Leu Met Asp Glu Asn Met Asp Val Ile
565 570 575
Ile Phe Ile Leu Leu Glu Pro Val Leu Gln His Ser Gln Tyr Leu Arg
580 585 590
Leu Arg Gln Arg Ile Cys Lys Ser Ser Ile Leu Gln Trp Pro Asp Asn
595 600 605
Pro Lys Ala Glu Gly Leu Phe Trp Gln Thr Leu Arg Asn Val Val Leu
610 615 620
Thr Glu Asn Asp Ser Arg Tyr Asn Asn Met Tyr Val Asp Ser Ile Lys
625 630 635 640
Gln Tyr
<210> 247
<211> 723
<212> PRT
<213> artificial sequence
<220>
<223> hTIM4-TIM4-TIM4tm-TRAF6ICD-CD3zICD
<220>
<221> SIGNAL
<222> (1)..(22)
<400> 247
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Leu Leu Met Ile Ile Ala
305 310 315 320
Pro Ser Leu Gly Phe Val Leu Phe Ala Leu Phe Val Ala Phe Leu Leu
325 330 335
Met Ser Leu Leu Asn Cys Glu Asn Ser Cys Gly Ser Ser Gln Ser Glu
340 345 350
Ser Asp Cys Cys Val Ala Met Ala Ser Ser Cys Ser Ala Val Thr Lys
355 360 365
Asp Asp Ser Val Gly Gly Thr Ala Ser Thr Gly Asn Leu Ser Ser Ser
370 375 380
Phe Met Glu Glu Ile Gln Gly Tyr Asp Val Glu Phe Asp Pro Pro Leu
385 390 395 400
Glu Ser Lys Tyr Glu Cys Pro Ile Cys Leu Met Ala Leu Arg Glu Ala
405 410 415
Val Gln Thr Pro Cys Gly His Arg Phe Cys Lys Ala Cys Ile Ile Lys
420 425 430
Ser Ile Arg Asp Ala Gly His Lys Cys Pro Val Asp Asn Glu Ile Leu
435 440 445
Leu Glu Asn Gln Leu Phe Pro Asp Asn Phe Ala Lys Arg Glu Ile Leu
450 455 460
Ser Leu Met Val Lys Cys Pro Asn Glu Gly Cys Leu His Lys Met Glu
465 470 475 480
Leu Arg His Leu Glu Asp His Gln Ala His Cys Glu Phe Ala Leu Met
485 490 495
Asp Cys Pro Gln Cys Gln Arg Pro Phe Gln Lys Phe His Ile Asn Ile
500 505 510
His Ile Leu Lys Asp Cys Pro Arg Arg Gln Val Ser Cys Asp Asn Cys
515 520 525
Ala Ala Ser Met Ala Phe Glu Asp Lys Glu Ile His Asp Gln Asn Cys
530 535 540
Pro Leu Ala Asn Val Ile Cys Glu Tyr Cys Asn Thr Ile Leu Ile Arg
545 550 555 560
Glu Gln Met Pro Asn His Tyr Asp Leu Asp Cys Pro Thr Ala Pro Ile
565 570 575
Pro Cys Thr Phe Ser Thr Phe Gly Cys His Glu Lys Met Gln Arg Asn
580 585 590
His Leu Ala Arg His Leu Gln Glu Asn Thr Gln Ser His Met Arg Met
595 600 605
Leu Ala Arg Val Lys Phe Ser Arg Ser Ala Asp Ala Pro Ala Tyr Gln
610 615 620
Gln Gly Gln Asn Gln Leu Tyr Asn Glu Leu Asn Leu Gly Arg Arg Glu
625 630 635 640
Glu Tyr Asp Val Leu Asp Lys Arg Arg Gly Arg Asp Pro Glu Met Gly
645 650 655
Gly Lys Pro Gln Arg Arg Lys Asn Pro Gln Glu Gly Leu Tyr Asn Glu
660 665 670
Leu Gln Lys Asp Lys Met Ala Glu Ala Tyr Ser Glu Ile Gly Met Lys
675 680 685
Gly Glu Arg Arg Arg Gly Lys Gly His Asp Gly Leu Tyr Gln Gly Leu
690 695 700
Ser Thr Ala Thr Lys Asp Thr Tyr Asp Ala Leu His Met Gln Ala Leu
705 710 715 720
Pro Pro Arg
<210> 248
<211> 723
<212> PRT
<213> artificial sequence
<220>
<223> hTIM4-TIM4-TIM4tm-CD3zICD-TRAF6ICD
<220>
<221> SIGNAL
<222> (1)..(22)
<400> 248
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Leu Leu Met Ile Ile Ala
305 310 315 320
Pro Ser Leu Gly Phe Val Leu Phe Ala Leu Phe Val Ala Phe Leu Leu
325 330 335
Arg Val Lys Phe Ser Arg Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly
340 345 350
Gln Asn Gln Leu Tyr Asn Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr
355 360 365
Asp Val Leu Asp Lys Arg Arg Gly Arg Asp Pro Glu Met Gly Gly Lys
370 375 380
Pro Gln Arg Arg Lys Asn Pro Gln Glu Gly Leu Tyr Asn Glu Leu Gln
385 390 395 400
Lys Asp Lys Met Ala Glu Ala Tyr Ser Glu Ile Gly Met Lys Gly Glu
405 410 415
Arg Arg Arg Gly Lys Gly His Asp Gly Leu Tyr Gln Gly Leu Ser Thr
420 425 430
Ala Thr Lys Asp Thr Tyr Asp Ala Leu His Met Gln Ala Leu Pro Pro
435 440 445
Arg Met Ser Leu Leu Asn Cys Glu Asn Ser Cys Gly Ser Ser Gln Ser
450 455 460
Glu Ser Asp Cys Cys Val Ala Met Ala Ser Ser Cys Ser Ala Val Thr
465 470 475 480
Lys Asp Asp Ser Val Gly Gly Thr Ala Ser Thr Gly Asn Leu Ser Ser
485 490 495
Ser Phe Met Glu Glu Ile Gln Gly Tyr Asp Val Glu Phe Asp Pro Pro
500 505 510
Leu Glu Ser Lys Tyr Glu Cys Pro Ile Cys Leu Met Ala Leu Arg Glu
515 520 525
Ala Val Gln Thr Pro Cys Gly His Arg Phe Cys Lys Ala Cys Ile Ile
530 535 540
Lys Ser Ile Arg Asp Ala Gly His Lys Cys Pro Val Asp Asn Glu Ile
545 550 555 560
Leu Leu Glu Asn Gln Leu Phe Pro Asp Asn Phe Ala Lys Arg Glu Ile
565 570 575
Leu Ser Leu Met Val Lys Cys Pro Asn Glu Gly Cys Leu His Lys Met
580 585 590
Glu Leu Arg His Leu Glu Asp His Gln Ala His Cys Glu Phe Ala Leu
595 600 605
Met Asp Cys Pro Gln Cys Gln Arg Pro Phe Gln Lys Phe His Ile Asn
610 615 620
Ile His Ile Leu Lys Asp Cys Pro Arg Arg Gln Val Ser Cys Asp Asn
625 630 635 640
Cys Ala Ala Ser Met Ala Phe Glu Asp Lys Glu Ile His Asp Gln Asn
645 650 655
Cys Pro Leu Ala Asn Val Ile Cys Glu Tyr Cys Asn Thr Ile Leu Ile
660 665 670
Arg Glu Gln Met Pro Asn His Tyr Asp Leu Asp Cys Pro Thr Ala Pro
675 680 685
Ile Pro Cys Thr Phe Ser Thr Phe Gly Cys His Glu Lys Met Gln Arg
690 695 700
Asn His Leu Ala Arg His Leu Gln Glu Asn Thr Gln Ser His Met Arg
705 710 715 720
Met Leu Ala
<210> 249
<211> 379
<212> PRT
<213> artificial sequence
<220>
<223> hTIM4-TIM4-TIM4tm-TIM4ICD
<220>
<221> SIGNAL
<222> (1)..(22)
<400> 249
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Leu Leu Met Ile Ile Ala
305 310 315 320
Pro Ser Leu Gly Phe Val Leu Phe Ala Leu Phe Val Ala Phe Leu Leu
325 330 335
Met Arg Gly Lys Leu Met Glu Thr Tyr Cys Ser Gln Lys His Thr Arg
340 345 350
Leu Asp Tyr Ile Gly Asp Ser Lys Asn Val Leu Asn Asp Val Gln His
355 360 365
Gly Arg Glu Asp Glu Asp Gly Leu Phe Thr Leu
370 375
<210> 250
<211> 666
<212> PRT
<213> artificial sequence
<220>
<223> hTIM4-TIM4-TIM4tm-TIM4ICD-TLR2-CD3z
<220>
<221> SIGNAL
<222> (1)..(22)
<400> 250
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Leu Leu Met Ile Ile Ala
305 310 315 320
Pro Ser Leu Gly Phe Val Leu Phe Ala Leu Phe Val Ala Phe Leu Leu
325 330 335
Arg Gly Lys Leu Met Glu Thr Tyr Cys Ser Gln Lys His Thr Arg Leu
340 345 350
Asp Tyr Ile Gly Asp Ser Lys Asn Val Leu Asn Asp Val Gln His Gly
355 360 365
Arg Glu Asp Glu Asp Gly Leu Phe Thr Leu His Arg Phe His Gly Leu
370 375 380
Trp Tyr Met Lys Met Met Trp Ala Trp Leu Gln Ala Lys Arg Lys Pro
385 390 395 400
Arg Lys Ala Pro Ser Arg Asn Ile Cys Tyr Asp Ala Phe Val Ser Tyr
405 410 415
Ser Glu Arg Asp Ala Tyr Trp Val Glu Asn Leu Met Val Gln Glu Leu
420 425 430
Glu Asn Phe Asn Pro Pro Phe Lys Leu Cys Leu His Lys Arg Asp Phe
435 440 445
Ile Pro Gly Lys Trp Ile Ile Asp Asn Ile Ile Asp Ser Ile Glu Lys
450 455 460
Ser His Lys Thr Val Phe Val Leu Ser Glu Asn Phe Val Lys Ser Glu
465 470 475 480
Trp Cys Lys Tyr Glu Leu Asp Phe Ser His Phe Arg Leu Phe Asp Glu
485 490 495
Asn Asn Asp Ala Ala Ile Leu Ile Leu Leu Glu Pro Ile Glu Lys Lys
500 505 510
Ala Ile Pro Gln Arg Phe Cys Lys Leu Arg Lys Ile Met Asn Thr Lys
515 520 525
Thr Tyr Leu Glu Trp Pro Met Asp Glu Ala Gln Arg Glu Gly Phe Trp
530 535 540
Val Asn Leu Arg Ala Ala Ile Lys Ser Arg Val Lys Phe Ser Arg Ser
545 550 555 560
Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn Glu
565 570 575
Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg Arg
580 585 590
Gly Arg Asp Pro Glu Met Gly Gly Lys Pro Gln Arg Arg Lys Asn Pro
595 600 605
Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu Ala
610 615 620
Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His
625 630 635 640
Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp
645 650 655
Ala Leu His Met Gln Ala Leu Pro Pro Arg
660 665
<210> 251
<211> 666
<212> PRT
<213> artificial sequence
<220>
<223> hTIM4-TIM4-TIM4tm-TIM4ICD-CD3z-TLR2
<220>
<221> SIGNAL
<222> (1)..(22)
<400> 251
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Leu Leu Met Ile Ile Ala
305 310 315 320
Pro Ser Leu Gly Phe Val Leu Phe Ala Leu Phe Val Ala Phe Leu Leu
325 330 335
Arg Gly Lys Leu Met Glu Thr Tyr Cys Ser Gln Lys His Thr Arg Leu
340 345 350
Asp Tyr Ile Gly Asp Ser Lys Asn Val Leu Asn Asp Val Gln His Gly
355 360 365
Arg Glu Asp Glu Asp Gly Leu Phe Thr Leu Arg Val Lys Phe Ser Arg
370 375 380
Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn
385 390 395 400
Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg
405 410 415
Arg Gly Arg Asp Pro Glu Met Gly Gly Lys Pro Gln Arg Arg Lys Asn
420 425 430
Pro Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu
435 440 445
Ala Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly
450 455 460
His Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr
465 470 475 480
Asp Ala Leu His Met Gln Ala Leu Pro Pro Arg His Arg Phe His Gly
485 490 495
Leu Trp Tyr Met Lys Met Met Trp Ala Trp Leu Gln Ala Lys Arg Lys
500 505 510
Pro Arg Lys Ala Pro Ser Arg Asn Ile Cys Tyr Asp Ala Phe Val Ser
515 520 525
Tyr Ser Glu Arg Asp Ala Tyr Trp Val Glu Asn Leu Met Val Gln Glu
530 535 540
Leu Glu Asn Phe Asn Pro Pro Phe Lys Leu Cys Leu His Lys Arg Asp
545 550 555 560
Phe Ile Pro Gly Lys Trp Ile Ile Asp Asn Ile Ile Asp Ser Ile Glu
565 570 575
Lys Ser His Lys Thr Val Phe Val Leu Ser Glu Asn Phe Val Lys Ser
580 585 590
Glu Trp Cys Lys Tyr Glu Leu Asp Phe Ser His Phe Arg Leu Phe Asp
595 600 605
Glu Asn Asn Asp Ala Ala Ile Leu Ile Leu Leu Glu Pro Ile Glu Lys
610 615 620
Lys Ala Ile Pro Gln Arg Phe Cys Lys Leu Arg Lys Ile Met Asn Thr
625 630 635 640
Lys Thr Tyr Leu Glu Trp Pro Met Asp Glu Ala Gln Arg Glu Gly Phe
645 650 655
Trp Val Asn Leu Arg Ala Ala Ile Lys Ser
660 665
<210> 252
<211> 684
<212> PRT
<213> artificial sequence
<220>
<223> hTIM4-TIM4-TIM4tm-TIM4ICD-TLR8-CD3z
<220>
<221> SIGNAL
<222> (1)..(22)
<400> 252
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Leu Leu Met Ile Ile Ala
305 310 315 320
Pro Ser Leu Gly Phe Val Leu Phe Ala Leu Phe Val Ala Phe Leu Leu
325 330 335
Arg Gly Lys Leu Met Glu Thr Tyr Cys Ser Gln Lys His Thr Arg Leu
340 345 350
Asp Tyr Ile Gly Asp Ser Lys Asn Val Leu Asn Asp Val Gln His Gly
355 360 365
Arg Glu Asp Glu Asp Gly Leu Phe Thr Leu His His Leu Phe Tyr Trp
370 375 380
Asp Val Trp Phe Ile Tyr Asn Val Cys Leu Ala Lys Val Lys Gly Tyr
385 390 395 400
Arg Ser Leu Ser Thr Ser Gln Thr Phe Tyr Asp Ala Tyr Ile Ser Tyr
405 410 415
Asp Thr Lys Asp Ala Ser Val Thr Asp Trp Val Ile Asn Glu Leu Arg
420 425 430
Tyr His Leu Glu Glu Ser Arg Asp Lys Asn Val Leu Leu Cys Leu Glu
435 440 445
Glu Arg Asp Trp Asp Pro Gly Leu Ala Ile Ile Asp Asn Leu Met Gln
450 455 460
Ser Ile Asn Gln Ser Lys Lys Thr Val Phe Val Leu Thr Lys Lys Tyr
465 470 475 480
Ala Lys Ser Trp Asn Phe Lys Thr Ala Phe Tyr Leu Ala Leu Gln Arg
485 490 495
Leu Met Asp Glu Asn Met Asp Val Ile Ile Phe Ile Leu Leu Glu Pro
500 505 510
Val Leu Gln His Ser Gln Tyr Leu Arg Leu Arg Gln Arg Ile Cys Lys
515 520 525
Ser Ser Ile Leu Gln Trp Pro Asp Asn Pro Lys Ala Glu Gly Leu Phe
530 535 540
Trp Gln Thr Leu Arg Asn Val Val Leu Thr Glu Asn Asp Ser Arg Tyr
545 550 555 560
Asn Asn Met Tyr Val Asp Ser Ile Lys Gln Tyr Arg Val Lys Phe Ser
565 570 575
Arg Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr
580 585 590
Asn Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys
595 600 605
Arg Arg Gly Arg Asp Pro Glu Met Gly Gly Lys Pro Gln Arg Arg Lys
610 615 620
Asn Pro Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala
625 630 635 640
Glu Ala Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys
645 650 655
Gly His Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr
660 665 670
Tyr Asp Ala Leu His Met Gln Ala Leu Pro Pro Arg
675 680
<210> 253
<211> 684
<212> PRT
<213> artificial sequence
<220>
<223> hTIM4-TIM4-TIM4tm-TIM4ICD-CD3z-TLR8
<220>
<221> SIGNAL
<222> (1)..(22)
<400> 253
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Leu Leu Met Ile Ile Ala
305 310 315 320
Pro Ser Leu Gly Phe Val Leu Phe Ala Leu Phe Val Ala Phe Leu Leu
325 330 335
Arg Gly Lys Leu Met Glu Thr Tyr Cys Ser Gln Lys His Thr Arg Leu
340 345 350
Asp Tyr Ile Gly Asp Ser Lys Asn Val Leu Asn Asp Val Gln His Gly
355 360 365
Arg Glu Asp Glu Asp Gly Leu Phe Thr Leu Arg Val Lys Phe Ser Arg
370 375 380
Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn
385 390 395 400
Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg
405 410 415
Arg Gly Arg Asp Pro Glu Met Gly Gly Lys Pro Gln Arg Arg Lys Asn
420 425 430
Pro Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu
435 440 445
Ala Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly
450 455 460
His Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr
465 470 475 480
Asp Ala Leu His Met Gln Ala Leu Pro Pro Arg His His Leu Phe Tyr
485 490 495
Trp Asp Val Trp Phe Ile Tyr Asn Val Cys Leu Ala Lys Val Lys Gly
500 505 510
Tyr Arg Ser Leu Ser Thr Ser Gln Thr Phe Tyr Asp Ala Tyr Ile Ser
515 520 525
Tyr Asp Thr Lys Asp Ala Ser Val Thr Asp Trp Val Ile Asn Glu Leu
530 535 540
Arg Tyr His Leu Glu Glu Ser Arg Asp Lys Asn Val Leu Leu Cys Leu
545 550 555 560
Glu Glu Arg Asp Trp Asp Pro Gly Leu Ala Ile Ile Asp Asn Leu Met
565 570 575
Gln Ser Ile Asn Gln Ser Lys Lys Thr Val Phe Val Leu Thr Lys Lys
580 585 590
Tyr Ala Lys Ser Trp Asn Phe Lys Thr Ala Phe Tyr Leu Ala Leu Gln
595 600 605
Arg Leu Met Asp Glu Asn Met Asp Val Ile Ile Phe Ile Leu Leu Glu
610 615 620
Pro Val Leu Gln His Ser Gln Tyr Leu Arg Leu Arg Gln Arg Ile Cys
625 630 635 640
Lys Ser Ser Ile Leu Gln Trp Pro Asp Asn Pro Lys Ala Glu Gly Leu
645 650 655
Phe Trp Gln Thr Leu Arg Asn Val Val Leu Thr Glu Asn Asp Ser Arg
660 665 670
Tyr Asn Asn Met Tyr Val Asp Ser Ile Lys Gln Tyr
675 680
<210> 254
<211> 553
<212> PRT
<213> artificial sequence
<220>
<223> hTIM4-TIM4-TIM4tm-TLR2ICD
<220>
<221> SIGNAL
<222> (1)..(22)
<400> 254
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Leu Leu Met Ile Ile Ala
305 310 315 320
Pro Ser Leu Gly Phe Val Leu Phe Ala Leu Phe Val Ala Phe Leu Leu
325 330 335
Arg Gly Lys Leu Met Glu Thr Tyr Cys Ser Gln Lys His Thr Arg Leu
340 345 350
Asp Tyr Ile Gly Asp Ser Lys Asn Val Leu Asn Asp Val Gln His Gly
355 360 365
Arg Glu Asp Glu Asp Gly Leu Phe Thr Leu His Arg Phe His Gly Leu
370 375 380
Trp Tyr Met Lys Met Met Trp Ala Trp Leu Gln Ala Lys Arg Lys Pro
385 390 395 400
Arg Lys Ala Pro Ser Arg Asn Ile Cys Tyr Asp Ala Phe Val Ser Tyr
405 410 415
Ser Glu Arg Asp Ala Tyr Trp Val Glu Asn Leu Met Val Gln Glu Leu
420 425 430
Glu Asn Phe Asn Pro Pro Phe Lys Leu Cys Leu His Lys Arg Asp Phe
435 440 445
Ile Pro Gly Lys Trp Ile Ile Asp Asn Ile Ile Asp Ser Ile Glu Lys
450 455 460
Ser His Lys Thr Val Phe Val Leu Ser Glu Asn Phe Val Lys Ser Glu
465 470 475 480
Trp Cys Lys Tyr Glu Leu Asp Phe Ser His Phe Arg Leu Phe Asp Glu
485 490 495
Asn Asn Asp Ala Ala Ile Leu Ile Leu Leu Glu Pro Ile Glu Lys Lys
500 505 510
Ala Ile Pro Gln Arg Phe Cys Lys Leu Arg Lys Ile Met Asn Thr Lys
515 520 525
Thr Tyr Leu Glu Trp Pro Met Asp Glu Ala Gln Arg Glu Gly Phe Trp
530 535 540
Val Asn Leu Arg Ala Ala Ile Lys Ser
545 550
<210> 255
<211> 571
<212> PRT
<213> artificial sequence
<220>
<223> hTIM4-TIM4-TIM4tm-TLR8ICD
<220>
<221> SIGNAL
<222> (1)..(22)
<400> 255
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Leu Leu Met Ile Ile Ala
305 310 315 320
Pro Ser Leu Gly Phe Val Leu Phe Ala Leu Phe Val Ala Phe Leu Leu
325 330 335
Arg Gly Lys Leu Met Glu Thr Tyr Cys Ser Gln Lys His Thr Arg Leu
340 345 350
Asp Tyr Ile Gly Asp Ser Lys Asn Val Leu Asn Asp Val Gln His Gly
355 360 365
Arg Glu Asp Glu Asp Gly Leu Phe Thr Leu His His Leu Phe Tyr Trp
370 375 380
Asp Val Trp Phe Ile Tyr Asn Val Cys Leu Ala Lys Val Lys Gly Tyr
385 390 395 400
Arg Ser Leu Ser Thr Ser Gln Thr Phe Tyr Asp Ala Tyr Ile Ser Tyr
405 410 415
Asp Thr Lys Asp Ala Ser Val Thr Asp Trp Val Ile Asn Glu Leu Arg
420 425 430
Tyr His Leu Glu Glu Ser Arg Asp Lys Asn Val Leu Leu Cys Leu Glu
435 440 445
Glu Arg Asp Trp Asp Pro Gly Leu Ala Ile Ile Asp Asn Leu Met Gln
450 455 460
Ser Ile Asn Gln Ser Lys Lys Thr Val Phe Val Leu Thr Lys Lys Tyr
465 470 475 480
Ala Lys Ser Trp Asn Phe Lys Thr Ala Phe Tyr Leu Ala Leu Gln Arg
485 490 495
Leu Met Asp Glu Asn Met Asp Val Ile Ile Phe Ile Leu Leu Glu Pro
500 505 510
Val Leu Gln His Ser Gln Tyr Leu Arg Leu Arg Gln Arg Ile Cys Lys
515 520 525
Ser Ser Ile Leu Gln Trp Pro Asp Asn Pro Lys Ala Glu Gly Leu Phe
530 535 540
Trp Gln Thr Leu Arg Asn Val Val Leu Thr Glu Asn Asp Ser Arg Tyr
545 550 555 560
Asn Asn Met Tyr Val Asp Ser Ile Lys Gln Tyr
565 570
<210> 256
<211> 598
<212> PRT
<213> artificial sequence
<220>
<223> HPV 16E 7 TCRB chain-P2A-TCRa chain, amino acids 309-335 are P2A sequences
<400> 256
Met Ala Pro Gly Leu Leu Cys Trp Ala Leu Leu Cys Leu Leu Gly Ala
1 5 10 15
Gly Leu Val Asp Ala Gly Val Thr Gln Ser Pro Thr His Leu Ile Lys
20 25 30
Thr Arg Gly Gln Gln Val Thr Leu Arg Cys Ser Pro Lys Ser Gly His
35 40 45
Asp Thr Val Ser Trp Tyr Gln Gln Ala Leu Gly Gln Gly Pro Gln Phe
50 55 60
Ile Phe Gln Tyr Tyr Glu Glu Glu Glu Arg Gln Arg Gly Asn Phe Pro
65 70 75 80
Asp Arg Phe Ser Gly His Gln Phe Pro Asn Tyr Ser Ser Glu Leu Asn
85 90 95
Val Asn Ala Leu Leu Leu Gly Asp Ser Ala Leu Tyr Leu Cys Ala Ser
100 105 110
Ser Leu Gly Trp Arg Gly Gly Arg Tyr Asn Glu Gln Phe Phe Gly Pro
115 120 125
Gly Thr Arg Leu Thr Val Leu Glu Asp Leu Arg Asn Val Thr Pro Pro
130 135 140
Lys Val Ser Leu Phe Glu Pro Ser Lys Ala Glu Ile Ala Asn Lys Gln
145 150 155 160
Lys Ala Thr Leu Val Cys Leu Ala Arg Gly Phe Phe Pro Asp His Val
165 170 175
Glu Leu Ser Trp Trp Val Asn Gly Lys Glu Val His Ser Gly Val Cys
180 185 190
Thr Asp Pro Gln Ala Tyr Lys Glu Ser Asn Tyr Ser Tyr Cys Leu Ser
195 200 205
Ser Arg Leu Arg Val Ser Ala Thr Phe Trp His Asn Pro Arg Asn His
210 215 220
Phe Arg Cys Gln Val Gln Phe His Gly Leu Ser Glu Glu Asp Lys Trp
225 230 235 240
Pro Glu Gly Ser Pro Lys Pro Val Thr Gln Asn Ile Ser Ala Glu Ala
245 250 255
Trp Gly Arg Ala Asp Cys Gly Ile Thr Ser Ala Ser Tyr Gln Gln Gly
260 265 270
Val Leu Ser Ala Thr Ile Leu Tyr Glu Ile Leu Leu Gly Lys Ala Thr
275 280 285
Leu Tyr Ala Val Leu Val Ser Thr Leu Val Val Met Ala Met Val Lys
290 295 300
Arg Lys Asn Ser Arg Ala Lys Arg Ser Gly Ser Gly Ala Thr Asn Phe
305 310 315 320
Ser Leu Leu Lys Gln Ala Gly Asp Val Glu Glu Asn Pro Gly Pro Met
325 330 335
Trp Gly Val Phe Leu Leu Tyr Val Ser Met Lys Met Gly Gly Thr Thr
340 345 350
Gly Gln Asn Ile Asp Gln Pro Thr Glu Met Thr Ala Thr Glu Gly Ala
355 360 365
Ile Val Gln Ile Asn Cys Thr Tyr Gln Thr Ser Gly Phe Asn Gly Leu
370 375 380
Phe Trp Tyr Gln Gln His Ala Gly Glu Ala Pro Thr Phe Leu Ser Tyr
385 390 395 400
Asn Val Leu Asp Gly Leu Glu Glu Lys Gly Arg Phe Ser Ser Phe Leu
405 410 415
Ser Arg Ser Lys Gly Tyr Ser Tyr Leu Leu Leu Lys Glu Leu Gln Met
420 425 430
Lys Asp Ser Ala Ser Tyr Leu Cys Ala Ser Val Asp Gly Asn Asn Arg
435 440 445
Leu Ala Phe Gly Lys Gly Asn Gln Val Val Val Ile Pro Asn Ile Gln
450 455 460
Asn Pro Glu Pro Ala Val Tyr Gln Leu Lys Asp Pro Arg Ser Gln Asp
465 470 475 480
Ser Thr Leu Cys Leu Phe Thr Asp Phe Asp Ser Gln Ile Asn Val Pro
485 490 495
Lys Thr Met Glu Ser Gly Thr Phe Ile Thr Asp Lys Cys Val Leu Asp
500 505 510
Met Lys Ala Met Asp Ser Lys Ser Asn Gly Ala Ile Ala Trp Ser Asn
515 520 525
Gln Thr Ser Phe Thr Cys Gln Asp Ile Phe Lys Glu Thr Asn Ala Thr
530 535 540
Tyr Pro Ser Ser Asp Val Pro Cys Asp Ala Thr Leu Thr Glu Lys Ser
545 550 555 560
Phe Glu Thr Asp Met Asn Leu Asn Phe Gln Asn Leu Leu Val Ile Val
565 570 575
Leu Arg Ile Leu Leu Leu Lys Val Ala Gly Phe Asn Leu Leu Met Thr
580 585 590
Leu Arg Leu Trp Ser Ser
595
<210> 257
<211> 496
<212> PRT
<213> artificial sequence
<220>
<223> pCTX247 Tim4 Signal peptide-Tim 4 ECD-CD28 TM-CD28 ICD-CD3z ICD
<400> 257
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Phe Trp Val Leu Val Val
305 310 315 320
Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu Val Thr Val Ala Phe
325 330 335
Ile Ile Phe Trp Val Arg Ser Lys Arg Ser Arg Leu Leu His Ser Asp
340 345 350
Tyr Met Asn Met Thr Pro Arg Arg Pro Gly Pro Thr Arg Lys His Tyr
355 360 365
Gln Pro Tyr Ala Pro Pro Arg Asp Phe Ala Ala Tyr Arg Ser Ser Arg
370 375 380
Val Lys Phe Ser Arg Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln
385 390 395 400
Asn Gln Leu Tyr Asn Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp
405 410 415
Val Leu Asp Lys Arg Arg Gly Arg Asp Pro Glu Met Gly Gly Lys Pro
420 425 430
Gln Arg Arg Lys Asn Pro Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys
435 440 445
Asp Lys Met Ala Glu Ala Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg
450 455 460
Arg Arg Gly Lys Gly His Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala
465 470 475 480
Thr Lys Asp Thr Tyr Asp Ala Leu His Met Gln Ala Leu Pro Pro Arg
485 490 495
<210> 258
<211> 496
<212> PRT
<213> artificial sequence
<220>
<223> pCTX797 Tim4 Signal peptide-Tim 4 ECD-CD28 TM-CD28 ICD-CD3z ICD
<400> 258
Met Ser Lys Glu Pro Leu Ile Leu Trp Leu Met Ile Glu Phe Trp Trp
1 5 10 15
Leu Tyr Leu Thr Pro Val Thr Ser Glu Thr Val Val Thr Glu Val Leu
20 25 30
Gly His Arg Val Thr Leu Pro Cys Leu Tyr Ser Ser Trp Ser His Asn
35 40 45
Ser Asn Ser Met Cys Trp Gly Lys Asp Gln Cys Pro Tyr Ser Gly Cys
50 55 60
Lys Glu Ala Leu Ile Arg Thr Asp Gly Met Arg Val Thr Ser Arg Lys
65 70 75 80
Ser Ala Lys Tyr Arg Leu Gln Gly Thr Ile Pro Arg Gly Asp Val Ser
85 90 95
Leu Thr Ile Leu Asn Pro Ser Glu Ser Asp Ser Gly Val Tyr Cys Cys
100 105 110
Arg Ile Glu Val Pro Gly Trp Phe Asn Asp Val Lys Ile Asn Val Arg
115 120 125
Leu Asn Leu Gln Arg Ala Ser Thr Thr Thr His Arg Thr Ala Thr Thr
130 135 140
Thr Thr Arg Arg Thr Thr Thr Thr Ser Pro Thr Thr Thr Arg Gln Met
145 150 155 160
Thr Thr Thr Pro Ala Ala Leu Pro Thr Thr Val Val Thr Thr Pro Asp
165 170 175
Leu Thr Thr Gly Thr Pro Leu Gln Met Thr Thr Ile Ala Val Phe Thr
180 185 190
Thr Ala Asn Thr Cys Leu Ser Leu Thr Pro Ser Thr Leu Pro Glu Glu
195 200 205
Ala Thr Gly Leu Leu Thr Pro Glu Pro Ser Lys Glu Gly Pro Ile Leu
210 215 220
Thr Ala Glu Ser Glu Thr Val Leu Pro Ser Asp Ser Trp Ser Ser Val
225 230 235 240
Glu Ser Thr Ser Ala Asp Thr Val Leu Leu Thr Ser Lys Glu Ser Lys
245 250 255
Val Trp Asp Leu Pro Ser Thr Ser His Val Ser Met Trp Lys Thr Ser
260 265 270
Asp Ser Val Ser Ser Pro Gln Pro Gly Ala Ser Asp Thr Ala Val Pro
275 280 285
Glu Gln Asn Lys Thr Thr Lys Thr Gly Gln Met Asp Gly Ile Pro Met
290 295 300
Ser Met Lys Asn Glu Met Pro Ile Ser Gln Phe Trp Val Leu Val Val
305 310 315 320
Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu Val Thr Val Ala Phe
325 330 335
Ile Ile Phe Trp Val Arg Ser Lys Arg Ser Arg Leu Leu His Ser Asp
340 345 350
Tyr Met Asn Met Thr Pro Arg Arg Pro Gly Pro Thr Arg Lys His Tyr
355 360 365
Gln Pro Tyr Ala Pro Pro Arg Asp Phe Ala Ala Tyr Arg Ser Ser Arg
370 375 380
Val Lys Phe Ser Arg Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln
385 390 395 400
Asn Gln Leu Tyr Asn Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp
405 410 415
Val Leu Asp Lys Arg Arg Gly Arg Asp Pro Glu Met Gly Gly Lys Pro
420 425 430
Gln Arg Arg Lys Asn Pro Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys
435 440 445
Asp Lys Met Ala Glu Ala Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg
450 455 460
Arg Arg Gly Lys Gly His Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala
465 470 475 480
Thr Lys Asp Thr Tyr Asp Ala Leu His Met Gln Ala Leu Pro Pro Arg
485 490 495

Claims (88)

1. A method of treating cancer in a subject in need thereof, wherein the cancer is breast cancer, ovarian cancer, colorectal cancer, fallopian tube cancer, peritoneal cancer, prostate cancer, lung cancer, or melanoma, the method comprising administering to the subject an effective amount of:
a chimeric T cell immunoglobulin and mucin (Tim) receptor comprising a single chain chimeric protein comprising:
(a) An extracellular domain comprising a binding domain, the binding domain comprising:
(i) A Tim1 IgV domain or a Tim4 IgV domain; and
(ii) A Tim1 mucin domain or a Tim4 mucin domain;
(b) An intracellular signaling domain, wherein the intracellular signaling domain comprises a primary intracellular signaling domain and optionally a secondary intracellular signaling domain; and
(c) A transmembrane domain located between and connecting the extracellular domain and the intracellular signaling domain; and
Inhibitors of poly (ADP-ribose) polymerase (PARP).
2. The method of claim 1, wherein the breast cancer is a triple negative breast cancer.
3. The method of claim 1, wherein the ovarian cancer is advanced ovarian cancer.
4. The method of claim 1, wherein the prostate cancer is advanced prostate cancer.
5. The method of claim 1, wherein the lung cancer is non-small cell lung cancer.
6. The method of any one of claims 1 to 5, wherein the cancer is a breast cancer gene (BRCA) mutated cancer.
7. The method of any one of claims 6, wherein the cancer is BRCA1 mutant cancer, BRCA2 mutant cancer, or both.
8. The method of any one of claims 1 to 7, wherein the PARP inhibitor is talazopanib (tazopanib), nilaparib (ruaparib), lu Kapa ni (ruaparib), olaparib (olaparib), veliparib (veliparib), CEP 9722, E7016, AG014699, MK4827, BMN-673, pamiparib (Pamiparib), or a combination thereof.
9. The method of any one of claims 1 to 8, wherein the PARP inhibitor comprises nilaparib.
10. The method of any one of claims 1 to 8, wherein the PARP inhibitor comprises talazapanib.
11. The method of any one of claims 1 to 8, wherein the PARP inhibitor comprises Lu Kapa ni.
12. The method of any one of claims 1 to 8, wherein the PARP inhibitor comprises olaparib.
13. The method of any one of claims 1 to 8, wherein the PARP inhibitor comprises veliparib.
14. The method of any one of claims 1 to 8, wherein the PARP inhibitor comprises CEP 9722.
15. The method of any one of claims 1 to 8, wherein the PARP inhibitor comprises E7016.
16. The method of any one of claims 1 to 8, wherein the PARP inhibitor comprises AG014699.
17. The method of any one of claims 1 to 8, wherein the PARP inhibitor comprises MK4827.
18. The method of any one of claims 1 to 8, wherein the PARP inhibitor comprises BMN-673.
19. The method of any one of claims 1 to 8, wherein the PARP inhibitor comprises pamipril.
20. The method of any one of claims 1 to 19, further comprising administering an additional therapeutic agent.
21. The method of claim 20, wherein the additional therapeutic agent comprises radiation therapy, cellular immunotherapy, antibodies, immune checkpoint molecule inhibitors, chemotherapy, hormonal therapy, peptides, antibiotics, antiviral agents, antifungal agents, anti-inflammatory agents, UV light therapy, electrical pulse therapy, high intensity focused ultrasound therapy, oncolytic virus therapy, small molecule therapy, or a combination thereof.
22. The method of claim 21, wherein the cellular immunotherapy is a chimeric antigen receptor or a T cell receptor.
23. The method of claim 20 or 21, wherein the additional therapeutic agent comprises an angiogenesis inhibitor (e.g., VEGF pathway inhibitor), a tyrosine kinase inhibitor (e.g., EGF pathway inhibitor), a receptor tyrosine kinase inhibitor, a growth factor inhibitor, a GTPase inhibitor, a serine/threonine kinase inhibitor, a transcription factor inhibitor, a B-Raf inhibitor, a MEK inhibitor, an mTOR inhibitor, an EGFR inhibitor, an ALK inhibitor, a ROS1 inhibitor, a BCL-2 inhibitor, a PI3K inhibitor, a VEGFR inhibitor, a BCR-ABL inhibitor, a MET inhibitor, a MYC inhibitor, an ABL inhibitor, a HER2 inhibitor, a BTK inhibitor, an H-RAS inhibitor, a K-RAS inhibitor, a PDGFR inhibitor, a TRK inhibitor, a c-KIT inhibitor, a c-MET inhibitor, a CDK4/6 inhibitor, a FAK inhibitor, an FGFR inhibitor, an FLT3 inhibitor, an IDH1 inhibitor, an IDH2 inhibitor, a PDGFRA inhibitor, or a RET inhibitor.
24. The method of any one of claims 1-23, wherein the binding domain comprises the Tim1 IgV domain and the Tim1 mucin domain.
25. The method of any one of claims 1-23, wherein the binding domain comprises the Tim4 IgV domain and the Tim4 mucin domain.
26. The method of any one of claims 1-23, wherein the binding domain comprises the Tim1 IgV domain and the Tim4 mucin domain.
27. The method of any one of claims 1-23, wherein the binding domain comprises the Tim4 IgV domain and the Tim1 mucin domain.
28. The method of any one of claims 1 to 24 or 26, wherein the Tim1 IgV domain comprises the amino acid sequence set forth in SEQ ID No. 38.
29. The method of any one of claims 1 to 24, 26 or 28, wherein the Tim1 IgV domain is a modified Tim1 IgV domain comprising the R66G substitution in SEQ ID No. 38.
30. The method of claim 29, wherein the modified Tim1 IgV domain comprises the amino acid sequence set forth in SEQ ID No. 41.
31. The method of any one of claims 1 to 25 or 27 to 30, wherein the Tim1 mucin domain comprises the amino acid sequence set forth in SEQ ID NO 39.
32. The method of any one of claims 1 to 23, 25 or 27, wherein the Tim4 IgV domain comprises the amino acid sequence set forth in SEQ ID NO 34.
33. The method of any one of claims 1 to 23, 25 or 26, wherein the Tim4 mucin domain comprises the amino acid sequence set forth in SEQ ID No. 35.
34. The method of any one of claims 1-33, wherein the transmembrane domain comprises a Tim4 transmembrane domain, a Tim1 transmembrane domain, a CD28 transmembrane domain, a 4-1BB transmembrane domain, an OX40 transmembrane domain, a CD27 transmembrane domain, an ICOS transmembrane domain, a CD2 transmembrane domain, an LFA-1 transmembrane domain, a CD30 transmembrane domain, a CD40 transmembrane domain, a PD-1 transmembrane domain, a CD7 transmembrane domain, a LIGHT transmembrane domain, a NKG2C transmembrane domain, or a B7-H3 transmembrane domain.
35. The method of claim 34, wherein the Tim4 transmembrane domain comprises or consists of the amino acid sequence of SEQ ID NO 144 or 23; the Tim1 transmembrane domain comprises or consists of the amino acid sequence of SEQ ID NO. 8; the CD28 transmembrane domain comprises or consists of the amino acid sequence of SEQ ID NO. 145; the 4-1BB transmembrane domain comprises or consists of the amino acid sequence of SEQ ID NO. 146; the OX40 transmembrane domain comprises or consists of the amino acid sequence of SEQ ID NO 147; the CD27 transmembrane domain comprises or consists of the amino acid sequence of SEQ ID NO. 148; the ICOS transmembrane domain comprises or consists of the amino acid sequence of SEQ ID NO. 149; the CD2 transmembrane domain comprises or consists of the amino acid sequence of SEQ ID NO. 150; the LFA-1 transmembrane domain comprises or consists of the amino acid sequence of SEQ ID NO. 151; the CD30 transmembrane domain comprises or consists of the amino acid sequence of SEQ ID NO. 152; the CD40 transmembrane domain comprises or consists of the amino acid sequence of SEQ ID NO 153; the PD-1 transmembrane domain comprises or consists of the amino acid sequence of SEQ ID NO. 154; the CD7 transmembrane domain comprises or consists of the amino acid sequence of SEQ ID NO. 155; the LIGHT transmembrane domain comprises or consists of the amino acid sequence of SEQ ID NO. 156; the NKG2C transmembrane domain comprises or consists of the amino acid sequence of SEQ ID NO. 157; or the B7-H3 transmembrane domain comprises or consists of the amino acid sequence of SEQ ID NO. 158.
36. The method of any one of claims 1 to 34, wherein the transmembrane domain comprises a Tim1 transmembrane domain, a Tim4 transmembrane domain, or a CD28 transmembrane domain.
37. The method of claim 42, wherein the Tim1 transmembrane domain comprises the amino acid sequence set forth in SEQ ID No. 8, the Tim4 transmembrane domain comprises the amino acid sequence set forth in SEQ ID No. 6 or 23, or the CD28 transmembrane domain comprises the amino acid sequence set forth in SEQ ID No. 7.
38. The method of any one of claims 1 to 37, wherein the chimeric Tim receptor further comprises an extracellular spacer domain.
39. The method of claim 38, wherein the extracellular spacer domain comprises an IgG4 hinge region or a CD28 hinge region.
40. The method of claim 39, wherein the IgG4 hinge region comprises the amino acid sequence set forth in SEQ ID NO. 3 or the CD28 hinge region comprises the amino acid sequence set forth in SEQ ID NO. 32.
41. The method of any one of claims 1 to 40, wherein the primary signaling domain comprises a CD28 costimulatory signaling domain; 4-1BB costimulatory signaling domain; a CD27 costimulatory signaling domain; ICOS costimulatory signaling domain; LFA-1 costimulatory signaling domain; OX40 costimulatory signaling domain; a CD2 costimulatory signaling domain; or ICAM-1 costimulatory signaling domain.
42. The method of claim 41, wherein the CD28 costimulatory signaling domain comprises the amino acid sequence of SEQ id No. 118 or 119; the 4-1BB costimulatory signaling domain comprises the amino acid sequence of SEQ ID NO. 122; the CD27 costimulatory signaling domain comprises the amino acid sequence of SEQ ID NO. 169; the ICOS costimulatory signaling domain comprises the amino acid sequence of SEQ ID NO. 172; the LFA-1 co-stimulatory signaling domain includes the amino acid sequence of SEQ ID NO. 171; the OX40 co-stimulatory signaling domain includes the amino acid sequence of SEQ ID NO. 166; the CD2 costimulatory signaling domain comprises the amino acid sequence of SEQ ID NO. 167; or the ICAM-1 costimulatory signaling comprises the amino acid sequence of SEQ ID NO: 170.
43. The method of any one of claims 1-42, wherein the secondary signaling domain comprises a CD3 zeta signaling domain.
44. The method of claim 43, wherein said CD3 zeta signaling domain comprises the amino acid sequence of SEQ ID NO. 5 or SEQ ID NO. 27.
45. The method of any one of claims 1 to 40, wherein the primary signaling domain comprises a CD28 costimulatory signaling domain; 4-1BB costimulatory signaling domain; a CD27 costimulatory signaling domain; ICOS costimulatory signaling domain; LFA-1 costimulatory signaling domain; OX40 costimulatory signaling domain; a CD2 costimulatory signaling domain; or ICAM-1 costimulatory signaling domain.
46. The method of claim 45, wherein the CD28 costimulatory signaling domain comprises the amino acid sequence of SEQ ID No. 118 or 119; the 4-1BB costimulatory signaling domain comprises the amino acid sequence of SEQ ID NO. 122; the CD27 costimulatory signaling domain comprises the amino acid sequence of SEQ ID NO. 169; the ICOS costimulatory signaling domain comprises the amino acid sequence of SEQ ID NO. 172; the LFA-1 co-stimulatory signaling domain includes the amino acid sequence of SEQ ID NO. 171; the OX40 co-stimulatory signaling domain includes the amino acid sequence of SEQ ID NO. 166; the CD2 costimulatory signaling domain comprises the amino acid sequence of SEQ ID NO. 167; or the ICAM-1 costimulatory signaling domain comprises the amino acid sequence of SEQ ID NO: 170.
47. The method of any one of claims 1 to 42, 45 or 46, wherein the secondary signaling domain comprises a DAP12 signaling domain.
48. The method of claim 47, wherein the DAP12 signaling domain comprises the amino acid sequence of SEQ ID NO. 180.
49. The method of any one of claims 1 to 40, wherein the primary intracellular signaling domain comprises a Tim1 signaling domain, a Tim4 signaling domain, a TRAF2 signaling domain, a TRAF6 signaling domain, a CD28 signaling domain, a DAP12 signaling domain, a CD3 zeta signaling domain, a TLR2 signaling domain, or a TLR8 signaling domain.
50. The method of claim 49, wherein the Tim1 signaling domain comprises the amino acid sequence set forth in SEQ ID No. 44, the Tim4 signaling domain comprises the amino acid sequence set forth in SEQ ID No. 45, 224, or 225, the TRAF2 signaling domain comprises the amino acid sequence set forth in SEQ ID No. 48, the TRAF6 signaling domain comprises the amino acid sequence set forth in SEQ ID No. 46, the CD28 signaling domain comprises the amino acid sequence set forth in SEQ ID No. 4 or 26, the DAP12 signaling domain comprises the amino acid sequence set forth in SEQ ID No. 9, the CD3 zeta signaling domain comprises the amino acid sequence set forth in SEQ ID No. 5, and the TLR2 signaling domain comprises the amino acid sequence set forth in SEQ ID No. 222. Or the TLR8 signaling domain comprises the amino acid sequence set forth in SEQ ID No. 47.
51. The method of any one of claims 1 to 42, 49 or 50, wherein the secondary intracellular signaling domain comprises a Tim1 signaling domain, a Tim4 signaling domain, a TRAF2 signaling domain, a TRAF6 signaling domain, a CD28 signaling domain, a DAP12 signaling domain, a CD3 zeta signaling domain, a TLR2 signaling domain, or a TLR8 signaling domain.
52. The method of claim 51, wherein the Tim1 signaling domain comprises the amino acid sequence set forth in SEQ ID No. 44, the Tim4 signaling domain comprises the amino acid sequence set forth in SEQ ID No. 45, 224, or 225, the TRAF2 signaling domain comprises the amino acid sequence set forth in SEQ ID No. 48, the TRAF6 signaling domain comprises the amino acid sequence set forth in SEQ ID No. 46, the CD28 signaling domain comprises the amino acid sequence set forth in SEQ ID No. 4 or 26, the DAP12 signaling domain comprises the amino acid sequence set forth in SEQ ID No. 9, the CD3 zeta signaling domain comprises the amino acid sequence set forth in SEQ ID No. 5, and the TLR2 signaling domain comprises the amino acid sequence set forth in SEQ ID No. 222. Or the TLR8 signaling domain comprises the amino acid sequence set forth in SEQ ID No. 47.
53. The method of any one of claims 1 to 52, wherein
(i) The binding domain comprises the Tim4 IgV domain and the Tim1 mucin domain, the primary intracellular signaling domain comprises a TLR8 signaling domain, the secondary intracellular signaling domain comprises a CD3 zeta signaling domain, and the transmembrane domain comprises a Tim1 transmembrane domain;
(ii) The binding domain comprises the Tim4 IgV domain and the Tim1 mucin domain; the primary intracellular signaling domain comprises a CD28 signaling domain, the secondary intracellular signaling domain comprises a DAP12 signaling domain, and the transmembrane domain comprises a Tim1 transmembrane domain; or alternatively
(iii) The binding domain comprises the Tim4 IgV domain and the Tim1 mucin domain; the primary intracellular signaling domain comprises a CD28 signaling domain, the secondary intracellular signaling domain comprises a DAP12 signaling domain, and the transmembrane domain comprises a CD28 transmembrane domain.
54. The method of claim 53, wherein:
(i) The Tim4 IgV domain comprises the amino acid sequence of SEQ ID NO. 34, the Tim1 mucin domain comprises the amino acid sequence of SEQ ID NO. 39, the TLR8 signaling domain comprises the amino acid sequence of SEQ ID NO. 47, and the CD3 zeta signaling domain comprises the amino acid sequence of SEQ ID NO. 5 or SEQ ID NO. 27; and the Tim1 transmembrane domain comprises the amino acid sequence of SEQ ID NO. 8;
(ii) The Tim4 IgV domain comprises the amino acid sequence of SEQ ID NO. 34, the Tim1 mucin domain comprises the amino acid sequence of SEQ ID NO. 39, the CD28 signaling domain comprises the amino acid sequence of SEQ ID NO. 4, and the DAP12 signaling domain comprises the amino acid sequence of SEQ ID NO. 9; and the Tim1 transmembrane domain comprises the amino acid sequence of SEQ ID NO. 8; or alternatively
(iii) The Tim4 IgV domain comprises the amino acid sequence of SEQ ID NO. 34, the Tim1 mucin domain comprises the amino acid sequence of SEQ ID NO. 39, the CD28 signaling domain comprises the amino acid sequence of SEQ ID NO. 4, and the DAP12 signaling domain comprises the amino acid sequence of SEQ ID NO. 9;
and the CD28 transmembrane domain comprises the amino acid sequence of SEQ ID NO. 7.
55. The method of claim 53 or 54, wherein:
(i) The single chain chimeric protein comprises amino acids 25-628 of SEQ ID NO. 67;
(ii) The single chain chimeric protein comprises amino acids 25-416 of SEQ ID NO. 68; or alternatively
(iii) The single chain chimeric protein comprises amino acids 25-422 of SEQ ID NO. 69.
56. The method of any one of claims 53 to 55, wherein:
(i) The single chain chimeric protein comprises the amino acid sequence of SEQ ID NO. 67;
(ii) The single chain chimeric protein comprises the amino acid sequence of SEQ ID NO. 68; or alternatively
(iii) The single chain chimeric protein comprises the amino acid sequence of SEQ ID NO. 69.
57. The method of any one of claims 1 to 52, wherein the chimeric receptor comprises:
(i) The binding domain comprising the Tim1 IgV domain and the Tim1 mucin domain; the primary intracellular signaling domain comprising a Tim1 signaling domain, the secondary intracellular signaling domain comprising a CD3 zeta signaling domain, and the transmembrane domain comprising a Tim1 transmembrane domain;
(ii) The binding domain comprising the Tim1 IgV domain and the Tim1 mucin domain, the primary intracellular signaling domain comprising a Tim4 signaling domain, the secondary intracellular signaling domain comprising a CD3 zeta signaling domain; and the transmembrane domain comprising a Tim1 transmembrane domain;
(iii) The binding domain comprising the Tim1 IgV domain and the Tim1 mucin domain; the primary intracellular signaling domain comprising a CD28 signaling domain and the transmembrane domain comprising a CD28 transmembrane domain;
(iv) The binding domain comprising the Tim1 IgV domain and the Tim1 mucin domain; the primary intracellular signaling domain comprising a TRAF6 signaling domain and the transmembrane domain comprising a Tim1 transmembrane domain;
(v) The binding domain comprising the Tim1 IgV domain and the Tim1 mucin domain; the primary intracellular signaling domain comprising a TRAF6 signaling domain and the transmembrane domain comprising a CD28 transmembrane domain;
(vi) The binding domain comprising the Tim1 IgV domain and the Tim1 mucin domain; the primary intracellular signaling domain comprising a TRAF2 signaling domain and the transmembrane domain comprising a Tim1 transmembrane domain;
(vii) The binding domain comprising the Tim1 IgV domain and the Tim1 mucin domain; the primary intracellular signaling domain comprising a TRAF2 signaling domain and the transmembrane domain comprising a CD28 transmembrane domain;
(viii) The binding domain comprising the Tim1 IgV domain and the Tim1 mucin domain; the primary intracellular signaling domain comprising a TLR8 signaling domain, the secondary intracellular signaling domain comprising a CD3 zeta signaling domain, and the transmembrane domain comprising a Tim1 transmembrane domain; (ix) The binding domain comprising the Tim1 IgV domain and the Tim1 mucin domain; the primary intracellular signaling domain comprising a CD28 signaling domain, the secondary intracellular signaling domain comprising a DAP12 signaling domain, and the transmembrane domain comprising a CD28 transmembrane domain; or alternatively
(x) The binding domain comprising the Tim1 IgV domain and the Tim1 mucin domain; the primary intracellular signaling domain comprising a CD28 signaling domain, the secondary intracellular signaling domain comprising a DAP12 signaling domain, and the transmembrane domain comprising a Tim1 transmembrane domain.
58. The method of claim 57, wherein the chimeric Tim4 receptor comprises:
(i) The Tim1 IgV domain comprising the amino acid sequence of SEQ ID No. 38, the Tim1 mucin domain comprising the amino acid sequence of SEQ ID No. 39, the Tim1 signaling domain comprising the amino acid sequence of SEQ ID No. 44, the CD3 zeta signaling structure comprising the amino acid sequence of SEQ ID No. 4, and the Tim1 transmembrane domain comprising the amino acid sequence of SEQ ID No. 8;
(ii) Said Tim1 IgV domain comprising the amino acid sequence of SEQ ID NO. 38, said Tim1 mucin domain comprising the amino acid sequence of SEQ ID NO. 39, said Tim4 signaling domain comprising the amino acid sequence of SEQ ID NO. 45, 224 or 225, said CD3 zeta signaling domain comprising the amino acid sequence of SEQ ID NO. 5 or SEQ ID NO. 27; said Tim1 transmembrane domain comprising the amino acid sequence of SEQ ID NO. 8;
(iii) The Tim1 IgV domain comprising the amino acid sequence of SEQ ID No. 38, the Tim1 mucin domain comprising the amino acid sequence of SEQ ID No. 39, the CD28 signaling domain comprising the amino acid sequence of SEQ ID No. 4, and the CD28 transmembrane domain comprising the amino acid sequence of SEQ ID No. 7;
(iv) The Tim1 IgV domain comprising the amino acid sequence of SEQ ID No. 38, the Tim1 mucin domain comprising the amino acid sequence of SEQ ID No. 39, the TRAF6 signaling domain comprising the amino acid sequence of SEQ ID No. 46, and the Tim1 transmembrane domain comprising the amino acid sequence of SEQ ID No. 8;
(v) The Tim1 IgV domain comprising the amino acid sequence of SEQ ID No. 38, the Tim1 mucin domain comprising the amino acid sequence of SEQ ID No. 39, the TRAF6 signaling domain comprising the amino acid sequence of SEQ ID No. 46, and the CD28 transmembrane domain comprising the amino acid sequence of SEQ ID No. 7;
(vi) The Tim1 IgV domain comprising the amino acid sequence of SEQ ID No. 38, the Tim1 mucin domain comprising the amino acid sequence of SEQ ID No. 39, the TRAF2 signaling domain comprising the amino acid sequence of SEQ ID No. 48, and the Tim1 transmembrane domain comprising the amino acid sequence of SEQ ID No. 8;
(vii) The Tim1 IgV domain comprising the amino acid sequence of SEQ ID No. 38, the Tim1 mucin domain comprising the amino acid sequence of SEQ ID No. 39, the TRAF2 signaling domain comprising the amino acid sequence of SEQ ID No. 48, and the CD28 transmembrane domain comprising the amino acid sequence of SEQ ID No. 7;
(viii) The Tim1 IgV domain comprising the amino acid sequence of SEQ ID No. 38, the Tim1 mucin domain comprising the amino acid sequence of SEQ ID No. 39, the TLR8 signaling domain comprising the amino acid sequence of SEQ ID No. 47, the CD3 zeta signaling domain comprising the amino acid sequence of SEQ ID No. 5 or SEQ ID No. 27, and the Tim1 transmembrane domain comprising the amino acid sequence of SEQ ID No. 8;
(ix) The Tim1 IgV domain comprising the amino acid sequence of SEQ ID No. 38, the Tim1 mucin domain comprising the amino acid sequence of SEQ ID No. 39, the CD28 signaling domain comprising the amino acid sequence of SEQ ID No. 4, the DAP12 signaling domain comprising the amino acid sequence of SEQ ID No. 9, and the CD28 transmembrane domain comprising the amino acid sequence of SEQ ID No. 7; or alternatively
(x) The Tim1 IgV domain comprising the amino acid sequence of SEQ ID NO. 38, the Tim1 mucin domain comprising the amino acid sequence of SEQ ID NO. 39, the CD28 signaling domain comprising the amino acid sequence of SEQ ID NO. 4, the DAP12 signaling domain comprising the amino acid sequence of SEQ ID NO. 9, and the Tim1 transmembrane domain comprising the amino acid sequence of SEQ ID NO. 8.
59. The method of any one of claims 1 to 52, wherein the chimeric Tim receptor comprises:
(i) Said single chain chimeric protein comprising amino acids 21-456 of SEQ ID NO. 49;
(ii) Said single chain chimeric protein comprising amino acids 21-471 of SEQ ID NO. 50;
(iii) Said single chain chimeric protein comprising amino acids 21-363 of SEQ ID NO. 51;
(iv) Said single chain chimeric protein comprising amino acids 21-590 of SEQ ID NO. 52;
(v) The single chain chimeric protein comprising amino acids 21-596 of SEQ ID NO. 53;
(vi) The single chain chimeric protein comprising amino acids 21-619 of SEQ ID NO. 54;
(vii) Said single chain chimeric protein comprising amino acids 21-625 of SEQ ID NO. 55;
(viii) Said single chain chimeric protein comprising amino acids 21-621 of SEQ ID NO. 56;
(ix) Said single chain chimeric protein comprising amino acids 21-415 of SEQ ID NO. 57; or alternatively
(x) The single chain chimeric protein comprising amino acids 21-409 of SEQ ID NO. 58.
60. The method of claim 59, wherein the chimeric Tim receptor comprises:
(i) The single chain chimeric protein comprising the amino acid sequence of SEQ ID NO. 49;
(ii) The single chain chimeric protein comprising the amino acid sequence of SEQ ID NO. 50;
(iii) The single chain chimeric protein comprising the amino acid sequence of SEQ ID NO. 51;
(iv) The single chain chimeric protein comprising the amino acid sequence of SEQ ID NO. 52;
(v) The single chain chimeric protein comprising the amino acid sequence of SEQ ID NO. 53;
(vi) Said single chain chimeric protein comprising the amino acid sequence of SEQ ID NO. 54;
(vii) Said single chain chimeric protein comprising the amino acid sequence of SEQ ID NO. 55;
(viii) Said single chain chimeric protein comprising the amino acid sequence of SEQ ID NO. 56;
(ix) Said single chain chimeric protein comprising the amino acid sequence of SEQ ID NO. 57; or alternatively
(x) The single chain chimeric protein comprising the amino acid sequence of SEQ ID NO. 58.
61. The method of any one of claims 1 to 52, wherein the chimeric Tim receptor comprises:
(i) The binding domain comprising the Tim1 IgV domain and the Tim1 mucin domain; the primary intracellular signaling domain comprising a Tim1 signaling domain, the secondary intracellular signaling domain comprising a CD3 zeta signaling domain, and the transmembrane domain comprising a Tim1 transmembrane domain;
(ii) The binding domain comprising the Tim1 IgV domain and the Tim1 mucin domain, the primary intracellular signaling domain comprising a Tim4 signaling domain, the secondary intracellular signaling domain comprising a CD3 zeta signaling domain; and the transmembrane domain comprising a Tim1 transmembrane domain;
(iii) The binding domain comprising the Tim4 IgV domain and the Tim4 mucin domain; the primary intracellular signaling domain comprising a Tim4 signaling domain, the secondary intracellular signaling domain comprising a CD3 zeta signaling domain; and the transmembrane domain comprising a Tim4 transmembrane domain; or alternatively
(iv) The binding domain comprising the Tim4 IgV domain and the Tim4 mucin domain; the primary intracellular signaling domain comprising a Tim1 signaling domain, the secondary intracellular signaling domain comprising a CD3 zeta signaling domain; and the transmembrane domain comprising a Tim4 transmembrane domain.
62. The method of claim 61, wherein the chimeric Tim receptor comprises:
(i) The Tim1 IgV domain comprising the amino acid sequence of SEQ ID No. 38, the Tim1 mucin domain comprising the amino acid sequence of SEQ ID No. 39, the Tim1 signaling domain comprising the amino acid sequence of SEQ ID No. 44, the CD3 zeta signaling domain comprising the amino acid sequence of SEQ ID No. 5 or SEQ ID No. 27, and the Tim1 transmembrane domain comprising the amino acid sequence of SEQ ID No. 8;
(ii) Said Tim1 IgV domain comprising the amino acid sequence of SEQ ID NO. 38, said Tim1 mucin domain comprising the amino acid sequence of SEQ ID NO. 39, said Tim4 signaling domain comprising the amino acid sequence of SEQ ID NO. 45, 224 or 225, said CD3 zeta signaling domain comprising the amino acid sequence of SEQ ID NO. 5 or SEQ ID NO. 27; said Tim1 transmembrane domain comprising the amino acid sequence of SEQ ID NO. 8;
(iii) Said Tim4 IgV domain comprising the amino acid sequence of SEQ ID NO. 34, said Tim4 mucin domain comprising the amino acid sequence of SEQ ID NO. 35, said Tim4 signaling domain comprising the amino acid sequence of SEQ ID NO. 45, 224 or 225, said CD3 zeta signaling domain comprising the amino acid sequence of SEQ ID NO. 5 or SEQ ID NO. 27; said Tim4 transmembrane domain comprising the amino acid sequence of SEQ ID NO. 6; or alternatively
(iv) The Tim4 IgV domain comprising the amino acid sequence of SEQ ID No. 34, the Tim4 mucin domain comprising the amino acid sequence of SEQ ID No. 35, the Tim1 signaling domain comprising the amino acid sequence of SEQ ID No. 44, the CD3 zeta signaling domain comprising the amino acid sequence of SEQ ID No. 5 or SEQ ID No. 27; and the Tim4 transmembrane domain comprising the amino acid sequence of SEQ ID NO. 6.
63. The method of claim 61 or 62, wherein the chimeric Tim receptor comprises:
(i) Said single chain chimeric protein comprising amino acids 21-456 of SEQ ID NO. 49;
(ii) Said single chain chimeric protein comprising amino acids 21-471 of SEQ ID NO. 50;
(iii) Said single chain chimeric protein comprising amino acids 25-490 of SEQ ID NO. 59; or alternatively
(iv) The single chain chimeric protein comprising amino acids 25-495 of SEQ ID NO. 60.
64. The method of any one of claims 61 to 63, wherein the chimeric Tim receptor comprises:
(i) The single chain chimeric protein comprising the amino acid sequence of SEQ ID NO. 49;
(ii) The single chain chimeric protein comprising the amino acid sequence of SEQ ID NO. 50;
(iii) The single chain chimeric protein comprising the amino acid sequence of SEQ ID NO. 59; or alternatively
(iv) The single chain chimeric protein comprising the amino acid sequence of SEQ ID NO. 60.
65. The method of any one of claims 1 to 52, wherein the chimeric Tim receptor comprises:
(i) The single chain chimeric protein comprising the amino acid sequence of SEQ ID NO. 195 or amino acids 25-473 of SEQ ID NO. 195;
(ii) The single chain chimeric protein comprising the amino acid sequence of SEQ ID NO. 196 or amino acids 25-446 of SEQ ID NO. 196;
(iii) The single chain chimeric protein comprising the amino acid sequence of SEQ ID No. 197 or amino acids 25-434 of SEQ ID No. 197; or alternatively
(iv) Comprising the amino acid sequence of SEQ ID NO. 198 or amino acids 25-428 of SEQ ID NO. 198.
66. The method of any one of claims 1 to 52, wherein the chimeric Tim receptor comprises:
(a) An extracellular domain comprising a binding domain, the binding domain comprising: (i) a Tim4 IgV domain and a Tim4 mucin domain;
(b) An intracellular signaling domain, wherein the intracellular signaling domain comprises a primary intracellular signaling domain selected from the group consisting of a CD28 signaling domain, a CD3 zeta signaling domain, and a 4-1BB signaling domain, and a secondary intracellular signaling domain selected from the group consisting of a TLR2 signaling domain or a TLR8 signaling domain; and
(c) A transmembrane domain located between and connecting the extracellular domain and the intracellular signaling domain.
67. The method of claim 66, wherein the Tim4 IgV domain comprises the amino acid sequence set forth in SEQ ID No. 34, or the Tim4 mucin domain comprises the amino acid sequence set forth in SEQ ID No. 35, or both.
68. The method of claim 67, wherein the binding domain comprises the amino acid sequence of SEQ ID NO. 2 or 42.
69. The method of any one of claims 66 to 68, wherein the chimeric Tim receptor further comprises an extracellular spacer domain.
70. The method of claim 69, wherein the extracellular spacer domain comprises an IgG4 hinge region or a CD28 hinge region.
71. The method of claim 70, wherein the IgG4 hinge region comprises the amino acid sequence set forth in SEQ ID NO. 3 or the CD28 hinge region comprises the amino acid sequence set forth in SEQ ID NO. 32.
72. The method of any one of claims 66-71, wherein the transmembrane domain comprises a Tim1 transmembrane domain, a Tim4 transmembrane domain, or a CD28 transmembrane domain.
73. The method of claim 72, wherein the Tim1 transmembrane domain comprises the amino acid sequence set forth in SEQ ID No. 8, the Tim4 transmembrane domain comprises the amino acid sequence set forth in SEQ ID No. 6 or 23, or the CD28 transmembrane domain comprises the amino acid sequence set forth in SEQ ID No. 7.
74. The method of any one of claims 66-73, wherein the CD28 signaling domain comprises the amino acid sequence set forth in SEQ ID No. 4 or SEQ ID No. 26, the CD3 zeta signaling domain comprises the amino acid sequence set forth in SEQ ID No. 5 or SEQ ID No. 27, or the 4-1BB signaling domain comprises the amino acid sequence set forth in SEQ ID No. 100.
75. The method of any one of claims 66 to 74, wherein the TLR2 signaling domain comprises the amino acid sequence set forth in SEQ ID No. 222 or the TLR8 signaling domain comprises the amino acid sequence set forth in SEQ ID No. 47.
76. The method of any one of claims 1 to 52, wherein the chimeric Tim receptor comprises:
(a) An extracellular domain comprising a binding domain, the binding domain comprising: (i) a Tim4 IgV domain and a Tim4 mucin domain;
(b) An intracellular signaling domain, wherein the intracellular signaling domain comprises a primary intracellular signaling domain comprising a signaling domain comprising an immune receptor tyrosine activation motif (ITAM); a secondary intracellular signaling domain comprising a costimulatory signaling domain, a Tim1 signaling domain, or a Tim4 signaling domain; and a tertiary intracellular signaling domain comprising a TLR signaling domain; and
(c) A transmembrane domain located between and connecting the extracellular domain and the intracellular signaling domain.
77. The chimeric Tim receptor of claim 76, wherein the ITAM-containing signaling domain is a CD3 zeta signaling domain or a DAP12 signaling domain.
78. The chimeric Tim receptor of claim 76 or 77, wherein the costimulatory signaling domain is a 4-1BB signaling domain or a CD28 signaling domain.
79. The chimeric Tim receptor of any one of claims 76 to 78, wherein the TLR signaling domain is a TLR2 signaling domain or a TLR8 signaling domain.
80. The method of any one of claims 1-79, wherein the single chain protein comprises an amino acid sequence set forth in any one of tables 1, 2, or 4-10.
81. The method of any one of claims 1 to 80, wherein the chimeric Tim receptor is administered as a polynucleotide encoding the single chain protein.
82. The method of claim 81, wherein the chimeric Tim receptor is administered as a vector comprising the polynucleotide.
83. The method of claim 82, wherein the chimeric Tim receptor is administered as an engineered cell comprising the chimeric Tim receptor, the polynucleotide, or the vector.
84. The method of claim 83, wherein the cell is an immune cell.
85. The method of claim 83 or 84, wherein the cells are T cells.
86. The method of any one of claims 83-85, wherein the cell is a cd4+ T cell, a cd8+ T cell, or a cd4+/cd8+ T cell.
87. The method of any one of claims 83-85, wherein the cell is a human cell.
88. The method of any one of claims 1 to 87, wherein the chimeric Tim receptor is administered as a composition comprising the chimeric Tim receptor, the polynucleotide, the vector, or the engineered cell, and a pharmaceutically acceptable excipient.
CN202180070365.XA 2020-08-14 2021-08-13 Compositions and methods for treating cancer with chimeric TIM receptors in combination with poly (ADP-ribose) polymerase inhibitors Pending CN117015396A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US63/066,150 2020-08-14
US63/087,049 2020-10-02
US202163226712P 2021-07-28 2021-07-28
US63/226,712 2021-07-28
PCT/US2021/046041 WO2022036285A1 (en) 2020-08-14 2021-08-13 Compositions and methods for treating cancer with chimeric tim receptors in combination with inhibitors of poly (adp-ribose) polymerase

Publications (1)

Publication Number Publication Date
CN117015396A true CN117015396A (en) 2023-11-07

Family

ID=88576591

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180070365.XA Pending CN117015396A (en) 2020-08-14 2021-08-13 Compositions and methods for treating cancer with chimeric TIM receptors in combination with poly (ADP-ribose) polymerase inhibitors

Country Status (1)

Country Link
CN (1) CN117015396A (en)

Similar Documents

Publication Publication Date Title
JP7444781B2 (en) Cellular immunotherapy compositions and uses thereof
CN110036033B (en) Chimeric phagocytic receptor molecules
US20210024607A1 (en) Expression vectors for chimeric engulfment receptors, genetically modified host cells, and uses thereof
US11708423B2 (en) Chimeric engulfment receptor molecules and methods of use
US20210087251A1 (en) Chimeric tim4 receptors and uses thereof
US20240058446A1 (en) Chimeric tim4 receptors and uses thereof
WO2022036265A1 (en) Chimeric tim receptors and uses thereof
WO2022036285A1 (en) Compositions and methods for treating cancer with chimeric tim receptors in combination with inhibitors of poly (adp-ribose) polymerase
WO2022036287A1 (en) Anti-cd72 chimeric receptors and uses thereof
KR20230160242A (en) Lymphocyte-targeted lentiviral vectors
US20210253696A1 (en) Bivalent chimeric engulfment receptors and uses thereof
WO2023010097A1 (en) Chimeric tim4 receptors and uses thereof
CN117015396A (en) Compositions and methods for treating cancer with chimeric TIM receptors in combination with poly (ADP-ribose) polymerase inhibitors
CN116390936A (en) Chimeric TIM receptors and uses thereof
JP2023537762A (en) Compositions and methods for treating cancer using chimeric TIM receptors in combination with inhibitors of poly(ADP-ribose) polymerase
US20240150788A1 (en) Lymphocyte targeted lentiviral vectors
CA3189482A1 (en) Anti-cd72 chimeric receptors and uses thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination