CN116992779A - Simulation method and system of photovoltaic energy storage system based on digital twin model - Google Patents

Simulation method and system of photovoltaic energy storage system based on digital twin model Download PDF

Info

Publication number
CN116992779A
CN116992779A CN202311226758.2A CN202311226758A CN116992779A CN 116992779 A CN116992779 A CN 116992779A CN 202311226758 A CN202311226758 A CN 202311226758A CN 116992779 A CN116992779 A CN 116992779A
Authority
CN
China
Prior art keywords
wolf
energy storage
storage system
photovoltaic energy
algorithm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202311226758.2A
Other languages
Chinese (zh)
Other versions
CN116992779B (en
Inventor
周立专
孙海龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Guoke Hengtong Digital Energy Technology Co ltd
Original Assignee
Beijing Guoke Hengtong Digital Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Guoke Hengtong Digital Energy Technology Co ltd filed Critical Beijing Guoke Hengtong Digital Energy Technology Co ltd
Priority to CN202311226758.2A priority Critical patent/CN116992779B/en
Publication of CN116992779A publication Critical patent/CN116992779A/en
Application granted granted Critical
Publication of CN116992779B publication Critical patent/CN116992779B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0464Convolutional networks [CNN, ConvNet]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0499Feedforward networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Computing Systems (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Geometry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Computer Hardware Design (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

The invention relates to the technical field of system simulation, in particular to a photovoltaic energy storage system simulation method and system based on a digital twin model, comprising the following steps: s1: collecting historical data of each energy source device of the photovoltaic energy storage system; s2: building a numerical twin model of the photovoltaic energy storage system based on the improved CNN-BP neural network; s3: inputting updated data of each energy device of the photovoltaic energy storage system into a numerical twin model for simulation; s4: and correcting the numerical twin model based on the simulation result. According to the invention, the historical data of the photovoltaic energy storage system is acquired through the CNN algorithm improved by the improved gray wolf optimization algorithm, so that the balance between global search and local development of the algorithm can be maintained, the dynamic adjustment capability of the algorithm is improved, and the high-dimensional and complex multi-modal problems of the photovoltaic energy storage system can be satisfied; and then the BP neural network is used for carrying out fitting correction on the output of the CNN algorithm, so that the precision of the digital twin model can be improved, and the prediction error of the model can be reduced.

Description

Simulation method and system of photovoltaic energy storage system based on digital twin model
Technical Field
The invention relates to the technical field of system simulation, in particular to a photovoltaic energy storage system simulation method and system based on a digital twin model.
Background
The comprehensive energy system taking the electric power as the core comprises various energy production, transmission, storage and consumption networks, has complex structure, various devices and complex technology, and has typical nonlinear random characteristics and multi-scale dynamic characteristics. However, the conventional mathematical model has difficulty in meeting the requirements of planning design, monitoring analysis and operation optimization in the prior art, and further improvement of the modeling accuracy of the energy equipment in the mathematical model is required; the mass system data is analyzed through an artificial intelligent algorithm, so that high-precision modeling of the photovoltaic energy storage system energy equipment can be realized, and the simulation model can be continuously optimized through collecting real-time data of the physical equipment. The artificial intelligence algorithm is an important supporting technology for constructing a digital twin model of the photovoltaic energy storage system, and provides a digital and intelligent foundation for accurately constructing the digital twin simulation model of the energy equipment of the photovoltaic energy storage system.
In the prior art, training and modeling of energy equipment data are performed based on a CNN-BP neural network, the prediction effect of a deep network combination prediction model based on CNN is high in prediction accuracy, but the weight training of CNN influences the prediction effect of the model, and the improper weight training easily causes over fitting of the model, reduces the accuracy of the model and increases the prediction error of the model.
Disclosure of Invention
The invention aims to solve the defects in the background technology by providing a photovoltaic energy storage system simulation method and system based on a digital twin model.
The technical scheme adopted by the invention is as follows:
the photovoltaic energy storage system simulation method based on the digital twin model comprises the following steps:
s1: collecting historical data of each energy source device of the photovoltaic energy storage system;
s2: building a numerical twin model of the photovoltaic energy storage system based on the improved CNN-BP neural network;
s3: inputting updated data of each energy device of the photovoltaic energy storage system into a numerical twin model for simulation;
s4: correcting the numerical twin model based on the simulation result;
mapping historical data entities to an improved CNN-BP neural network to build a numerical twin model; in the improved CNN-BP neural network, in a CNN algorithm, self-coding acquisition of historical data of each energy source device of the photovoltaic energy storage system is carried out based on a resampling algorithm with a self-adjusting function.
As a preferred technical scheme of the invention: the historical data comprise illumination intensity and temperature corresponding to the photovoltaic equipment, and energy storage state and energy storage capacity corresponding to the energy storage equipment.
As a preferred technical scheme of the invention: the resampling algorithm is specifically as follows:
wherein ,in order to obtain the historical data weight value of each energy source device of the photovoltaic energy storage system,as the weight balance value of the weight,as a result of the final weight of the weight,as an index parameter of the weight factor,is the index number.
As a preferred technical scheme of the invention: in the resampling algorithm, final weights of all data in the historical data are obtainedIntroducing a time stepAnd updating to obtain the real-time weight of each data.
As a preferred technical scheme of the invention: the introduction time stepThe updating is specifically as follows:
calculating the gradient:
updating the first moment estimate and the second moment estimate:
calculating a bias corrected first moment estimate and second moment estimate:
updating weights:
wherein ,is a time stepIs used for the gradient of (a),is thatThe actual weight of the moment in time,is thatA weight gradient function of the moment in time,the exponential decay rate estimated for the first moment,for second moment estimationThe rate of decay of the index of the meter,estimated at first momentThe value of the time of day,estimated at first momentThe value of the time of day,estimated at the second momentThe value of the time of day,estimated at the second momentThe value of the time of day,for after updatingThe weight of the moment in time is that,estimated for the first moment after bias correctionThe value of the time of day,estimated for the second moment after bias correctionThe value of the time of day,is the learning rate.
As a preferred technical scheme of the invention: in the S3, in the improved CNN-BP neural network, the CNN algorithm is specifically as follows:
let the sample be at the loss function of the network output layerThe method comprises the following steps:
wherein ,for the number of neurons in the output layer of the network,is the firstThe output on the individual neurons is such that,ideal output for the objective function;
will lose the functionFor the firstIndividual neuron outputsDeviation guide is calculated:
the loss function is biased to the feature layer:
wherein ,for the last layer of features to be present,is a weight implicit to the input;
adjustment operatorThe method comprises the following steps:
wherein ,for the output of the corresponding layer,bias for the corresponding layer;
the calculation of the convolution kernel is essentially a process of multiplying and summing weights, and adjusts operators of the convolution kernel in the convolution layerThe method comprises the following steps:
wherein ,is the output of the upper layer.
As a preferred technical scheme of the invention: in the CNN algorithm, weight optimization is performed based on an improved gray wolf optimization algorithm.
As a preferred technical scheme of the invention: the improved gray wolf optimization algorithm is specifically as follows:
setting an output error of the CNN network as an fitness function, setting an optimal value of the fitness function when the error is minimum, and settingThe wolf is the head wolf,wolves are inheritors of the wolves, are of the second grade, are heard from the head wolves,wolf is of the third grade, willWolf is set as an optimal candidate solution; at the position ofWolves (wolves),Wolves (wolves),The behavior of the wolf in the process of predating the wolf searching for a game is as follows:
wherein ,for the distance of the prey object,is the firstThe position of the prey at the time of algorithm iteration,respectively the firstIterative of the secondary algorithm, the thThe position of the wolf at the time of the algorithm iteration,the number of algorithm iterations;is thatA random vector between the two,is a coefficient vector;
wherein ,is thatA random vector between the two,in order for the convergence factor to be a factor,the maximum iteration number;
when the position of the prey is found out,wolf and Chinese wolfWolf atThe wolves were gradually surrounded under the belt, and for each wolf, the position was calculated according to the following formulaSetting the update direction:
wherein ,respectively isWolves (wolves),Wolves (wolves),The distance between wolf and other individuals;as a result of the random variable,respectively isWolves (wolves),Wolves (wolves),The current position of the wolf is determined,as a vector of the position of the object,respectively isWolves (wolves),Wolf and Chinese wolfCompensating and directing the forward motion of wolves;
dynamic update according to the aboveWolves (wolves),Wolves (wolves),Position scale weight of wolf and next position:
wherein ,respectively isWolves (wolves),Wolves (wolves),The position of wolves is weighted proportionally,to surround the prey in the processThe updated position of the individual gray wolves during the secondary algorithm iteration;
updating the positions of other wolves according to the above method, judging whether the termination condition is met, if not, continuing iteration until the termination condition is met, and outputting the optimal wolf individualAnd outputting the corresponding weight value.
As a preferred technical scheme of the invention: in the improved CNN-BP neural network, the output of the CNN algorithm optimized by the improved gray-wolf optimization algorithm is input into the BP neural network, all layers of neurons form full interconnection connection through weights and thresholds, the weights and the thresholds are adjusted based on the improved gray-wolf optimization algorithm, so that the error between the output value and the expected value of the improved CNN-BP neural network is minimum, and the final result is output through a regression layer for correction.
The photovoltaic energy storage system simulation system based on the digital twin model comprises the following steps:
and a data acquisition module: the system is used for collecting historical data of each energy device of the photovoltaic energy storage system;
model building module: the numerical twin model is used for building a photovoltaic energy storage system based on the improved CNN-BP neural network;
and a system simulation module: the simulation method comprises the steps of inputting updated data of each energy device of the photovoltaic energy storage system into a numerical twin model for simulation;
model correction module: and the numerical twin model is used for correcting the numerical twin model based on the simulation result.
Compared with the prior art, the simulation method and system for the photovoltaic energy storage system based on the digital twin model provided by the invention have the beneficial effects that:
the invention builds a digital twin model of the photovoltaic energy storage system based on the improved CNN-BP neural network, wherein, the CNN algorithm improved by the improved gray wolf optimization algorithm is used for collecting the historical data of each energy source device of the photovoltaic energy storage system, so that the balance of global search and local development of the algorithm can be maintained, the dynamic adjustment capability of the algorithm is improved, and the high-dimensional and complex multi-modal problems of the photovoltaic energy storage system can be satisfied; and then the BP neural network is used for carrying out fitting correction on the output of the CNN algorithm, so that the precision of the digital twin model can be improved, and the prediction error of the model can be reduced.
Drawings
FIG. 1 is a flow chart of a method of a preferred embodiment of the present invention;
fig. 2 is a block diagram of a system in a preferred embodiment of the present invention.
The meaning of each label in the figure is: 100. a data acquisition module; 200. a model building module; 300. a system simulation module; 400. and a model correction module.
Detailed Description
It should be noted that, under the condition of no conflict, the embodiments of the present embodiments and features in the embodiments may be combined with each other, and in the following, a technical solution in the embodiments of the present invention will be clearly and completely described with reference to the drawings in the embodiments of the present invention, and it is obvious that the described embodiments are only some embodiments of the present invention, but not all embodiments. All other embodiments, which can be made by those skilled in the art based on the embodiments of the invention without making any inventive effort, are intended to be within the scope of the invention.
Referring to fig. 1, a preferred embodiment of the present invention provides a photovoltaic energy storage system simulation method based on a digital twin model, comprising the steps of:
s1: collecting historical data of each energy source device of the photovoltaic energy storage system;
s2: building a numerical twin model of the photovoltaic energy storage system based on the improved CNN-BP neural network;
s3: inputting updated data of each energy device of the photovoltaic energy storage system into a numerical twin model for simulation;
s4: and correcting the numerical twin model based on the simulation result.
The historical data comprise illumination intensity and temperature corresponding to the photovoltaic equipment, and energy storage state and energy storage capacity corresponding to the energy storage equipment.
And in the step S2, mapping the historical data entity to the improved CNN-BP neural network to build a numerical twin model.
In the improved CNN-BP neural network, in a CNN algorithm, self-coding acquisition of historical data of each energy source device of the photovoltaic energy storage system is carried out based on a resampling algorithm with a self-adjusting function.
The resampling algorithm is specifically as follows:
wherein ,in order to obtain the historical data weight value of each energy source device of the photovoltaic energy storage system,as the weight balance value of the weight,as a result of the final weight of the weight,as an index parameter of the weight factor,is the index number.
In the resampling algorithm, final weights of all data in the historical data are obtainedIntroducing a time stepAnd updating to obtain the real-time weight of each data.
Further, a time step is introducedThe updating is specifically as follows:
calculating the gradient:
updating the first moment estimate and the second moment estimate:
calculating a bias corrected first moment estimate and second moment estimate:
updating weights:
wherein ,is a time stepIs used for the gradient of (a),is thatThe actual weight of the moment in time,is thatA weight gradient function of the moment in time,the exponential decay rate estimated for the first moment,the exponential decay rate estimated for the second moment,estimated at first momentThe value of the time of day,estimated at first momentThe value of the time of day,estimated at the second momentThe value of the time of day,estimated at the second momentThe value of the time of day,for after updatingThe weight of the moment in time is that,estimated for the first moment after bias correctionThe value of the time of day,estimated for the second moment after bias correctionThe value of the time of day,is the learning rate.
In the S3, in the improved CNN-BP neural network, the CNN algorithm is specifically as follows:
let the sample be at the loss function of the network output layerThe method comprises the following steps:
wherein ,for the number of neurons in the output layer of the network,is the firstThe output on the individual neurons is such that,ideal output for the objective function;
will lose the functionFor the firstIndividual neuron outputsDeviation guide is calculated:
the loss function is biased to the feature layer:
wherein ,for the last layer of features to be present,is a weight implicit to the input;
adjustment operatorThe method comprises the following steps:
wherein ,for the output of the corresponding layer,biased for the corresponding layer.
The computation of the convolution kernel is phase in natureMultiplying and weighting process, adjusting operator for convolution kernel in convolution layerThe method comprises the following steps:
wherein ,is the output of the upper layer.
In the CNN algorithm, weight optimization is performed based on an improved gray wolf optimization algorithm.
The improved gray wolf optimization algorithm is specifically as follows:
setting an output error of the CNN network as an fitness function, setting an optimal value of the fitness function when the error is minimum, and settingThe wolf is the head wolf,wolves are inheritors of the wolves, are of the second grade, are heard from the head wolves,wolf is of the third grade, willWolf is set as an optimal candidate solution; at the position ofWolves (wolves),Wolves (wolves),The behavior of the wolf in the process of predating the wolf searching for a game is as follows:
wherein ,for the distance of the prey object,is the firstThe position of the prey at the time of algorithm iteration,respectively the firstIterative of the secondary algorithm, the thThe position of the wolf at the time of the algorithm iteration,the number of algorithm iterations;is thatA random vector between the two,is a coefficient vector;
wherein ,is thatA random vector between the two,in order for the convergence factor to be a factor,the maximum iteration number;
when the position of the prey is found out,wolf and Chinese wolfWolf atThe wolves were led to gradually surround the prey, and for each wolf, the position update direction was calculated according to the following formula:
wherein ,respectively isWolves (wolves),Wolves (wolves),The distance between wolf and other individuals;as a result of the random variable,respectively isWolves (wolves),Wolves (wolves),The current position of the wolf is determined,is directed toThe amount of the product is calculated,respectively isWolves (wolves),Wolf and Chinese wolfCompensating and directing the forward motion of wolves;
dynamic update according to the aboveWolves (wolves),Wolves (wolves),Position scale weight of wolf and next position:
wherein ,respectively isWolves (wolves),Wolves (wolves),The position of wolves is weighted proportionally,to surround the prey in the processThe updated position of the individual gray wolves during the secondary algorithm iteration;
updating the positions of other wolves according to the above method, judging whether the termination condition is met, if not, continuing iteration until the termination condition is met, and outputting the optimal wolf individualAnd outputting the corresponding weight value.
In the improved CNN-BP neural network, the output of the CNN algorithm optimized by the improved gray-wolf optimization algorithm is input into the BP neural network, all layers of neurons form full interconnection connection through weights and thresholds, the weights and the thresholds are adjusted based on the improved gray-wolf optimization algorithm, so that the error between the output value and the expected value of the improved CNN-BP neural network is minimum, and the final result is output through a regression layer for correction.
Referring to fig. 2, a photovoltaic energy storage system simulation system based on a digital twin model is provided, and a photovoltaic energy storage system simulation method based on the digital twin model includes:
the data acquisition module 100: the system is used for collecting historical data of each energy device of the photovoltaic energy storage system;
model building module 200: the numerical twin model is used for building a photovoltaic energy storage system based on the improved CNN-BP neural network;
system simulation module 300: the simulation method comprises the steps of inputting updated data of each energy device of the photovoltaic energy storage system into a numerical twin model for simulation;
model modification module 400: and the numerical twin model is used for correcting the numerical twin model based on the simulation result.
In this embodiment, the data acquisition module 100 acquires historical data of each energy device of the photovoltaic energy storage system, including illumination intensity and temperature corresponding to the photovoltaic device, and energy storage state and energy storage capacity corresponding to the energy storage device. The model building module 200 maps the collected historical data entities to a built numerical twin model in the modified CNN-BP neural network. In the improved CNN-BP neural network, in a CNN algorithm, self-coding acquisition of historical data of each energy source device of the photovoltaic energy storage system is carried out based on a resampling algorithm with a self-adjusting function:
wherein ,in order to obtain the historical data weight value of each energy source device of the photovoltaic energy storage system,as the weight balance value of the weight,as a result of the final weight of the weight,as an index parameter of the weight factor,is the index number.
The CNN algorithm model is also added with a resampling algorithm with a self-adjusting function, so that the received historical data of each energy device of the photovoltaic energy storage system can be processed more accurately. By adding the self-coding neural model, different weighting values are given to different data packets, so that the historical data of each energy device of the photovoltaic energy storage system is more accurate, and the analysis capability of the historical data of each energy device of the photovoltaic energy storage system is improved. The self-adaptive system is used for detecting historical data of each energy device of the photovoltaic energy storage system, and when the self-adjusting sampling algorithm model is adopted, various data information can be balanced properly, and the requirements of each energy device of the photovoltaic energy storage system are balanced.
Since it is considered that the data is the history data of each energy device, if the time concept is not introduced, the change in the history data is difficult to update, and thus, the final weight of each data in the history data is calculated in the resampling algorithmIntroducing a time stepAnd updating to obtain the real-time weight of each data.
As a preferred technical scheme of the invention: the introduction time stepThe updating is specifically as follows:
calculating the gradient:
updating the first moment estimate and the second moment estimate:
calculating a bias corrected first moment estimate and second moment estimate:
updating weights:
wherein ,is a time stepIs used for the gradient of (a),is thatThe actual weight of the moment in time,is thatA weight gradient function of the moment in time,the exponential decay rate estimated for the first moment,the exponential decay rate estimated for the second moment,estimated at first momentThe value of the time of day,estimated at first momentThe value of the time of day,estimated at the second momentThe value of the time of day,estimated at the second momentThe value of the time of day,for after updatingThe weight of the moment in time is that,estimated for the first moment after bias correctionThe value of the time of day,estimated for the second moment after bias correctionThe value of the time of day,is the learning rate.
In this way, the actual weights can be dynamically adjusted according to the magnitude of the gradient and the noise level. This helps to improve the training speed and convergence performance of the CNN model. When the first moment estimation and the second moment estimation of the gradient are calculated, an exponential decay average method is adopted, so that the variance of the gradient estimation can be reduced, and the convergence rate of the model is increased.
The CNN algorithm is specifically as follows:
let the sample be at the loss function of the network output layerThe method comprises the following steps:
wherein ,for the number of neurons in the output layer of the network,is the firstThe output on the individual neurons is such that,ideal output for the objective function;
will lose the functionFor the firstIndividual neuron outputsDeviation guide is calculated:
the loss function is biased to the feature layer:
wherein ,for the last layer of features to be present,is a weight implicit to the input;
adjustment operatorThe method comprises the following steps:
wherein ,for the output of the corresponding layer,biased for the corresponding layer.
The calculation of the convolution kernel is essentially a process of multiplying and summing weights, and adjusts operators of the convolution kernel in the convolution layerThe method comprises the following steps:
wherein ,is the output of the upper layer.
Weight optimization is performed based on an improved gray wolf optimization algorithm:
setting an output error of the CNN network as an fitness function, setting an optimal value of the fitness function when the error is minimum, and settingThe wolf is the head wolf,wolves are inheritors of the wolves, are of the second grade, are heard from the head wolves,wolf is of the third grade, willWolf is set as an optimal candidate solution; at the position ofWolves (wolves),Wolves (wolves),The behavior of the wolf in the wolf's led to hunting around the prey, during predation, the wolf searching for the prey is shown below, taking the 3 rd iteration as an example:
wherein ,for the distance of the prey object,for the position of the prey at algorithm iteration 3,respectively the position of the gray wolf when the algorithm iterates for the 3 rd time and the 4 th time;is thatA random vector between the two,is a coefficient vector;
wherein ,is thatA random vector between the two,in order for the convergence factor to be a factor,the maximum iteration number;
when the position of the prey is found out,wolf and Chinese wolfWolf atThe wolves were led to gradually surround the prey, and for each wolf, the position update direction was calculated according to the following formula:
wherein ,respectively isWolves (wolves),Wolves (wolves),The distance between wolf and other individuals;as a result of the random variable,respectively isWolves (wolves),Wolves (wolves),The current position of the wolf is determined,as a vector of the position of the object,respectively isWolves (wolves),Wolf and Chinese wolfCompensating and directing the forward motion of wolves;
dynamic update according to the aboveWolves (wolves),Wolves (wolves),Position scale weight of wolf and next position:
wherein ,respectively isWolves (wolves),Wolves (wolves),The position of wolves is weighted proportionally,to surround the prey in the processThe updated position of the individual gray wolves during the secondary algorithm iteration;
updating the positions of other gray wolves according to the above method, judging whether the ending condition is met, if not, continuing iteration until the ending condition is met, and outputtingOptimal gray wolf individualsAnd outputting the corresponding weight value.
Improving the convergence factor of the gray wolf algorithmThe improvement is that the reduction is slower in the initial stage of iteration, so thatThe time for keeping a larger value is long, and the global searching capability of the algorithm is enhanced; and decreases rapidly in the later stage of iteration, so thatCan be reduced rapidly, enhancing the local development capability of the algorithm. By improving convergence factorsImproving the balance of global search and local development of the algorithm. And also toWolves (wolves),Wolves (wolves),The position of the wolf is dynamically adjusted based on the proportional weight, so that the high-dimensional and complex multi-modal problem of the photovoltaic energy storage system can be solved.
The system simulation module 300 inputs the output of the CNN algorithm optimized by the improved gray-wolf optimization algorithm into the BP neural network, the neurons of each layer form full interconnection connection through the weight and the threshold value, the weight and the threshold value are adjusted based on the improved gray-wolf optimization algorithm, so that the error between the output value and the expected value of the improved CNN-BP neural network is minimum, and the model correction module 400 corrects the output final result through the regression layer.
It will be evident to those skilled in the art that the invention is not limited to the details of the foregoing illustrative embodiments, and that the present invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein. Any reference sign in a claim should not be construed as limiting the claim concerned.
Furthermore, it should be understood that although the present disclosure describes embodiments, not every embodiment is provided with a separate embodiment, and that this description is provided for clarity only, and that the disclosure is not limited to the embodiments described in detail below, and that the embodiments described in the examples may be combined as appropriate to form other embodiments that will be apparent to those skilled in the art.

Claims (10)

1. The simulation method of the photovoltaic energy storage system based on the digital twin model is characterized by comprising the following steps of:
s1: collecting historical data of each energy source device of the photovoltaic energy storage system;
s2: building a numerical twin model of the photovoltaic energy storage system based on the improved CNN-BP neural network;
s3: inputting updated data of each energy device of the photovoltaic energy storage system into a numerical twin model for simulation;
s4: correcting the numerical twin model based on the simulation result;
mapping historical data entities to an improved CNN-BP neural network to build a numerical twin model; in the improved CNN-BP neural network, in a CNN algorithm, self-coding acquisition of historical data of each energy source device of the photovoltaic energy storage system is carried out based on a resampling algorithm with a self-adjusting function.
2. The digital twin model-based photovoltaic energy storage system simulation method as claimed in claim 1, wherein: the historical data comprise illumination intensity and temperature corresponding to the photovoltaic equipment, and energy storage state and energy storage capacity corresponding to the energy storage equipment.
3. The digital twin model-based photovoltaic energy storage system simulation method as claimed in claim 2, wherein: the resampling algorithm is specifically as follows:
wherein ,for obtaining historical data weight values of all energy devices of the photovoltaic energy storage system, the weight values are +.>For weight balance value, ++>For final weight, ++>Index parameter for weight factor, +.>Is the index number.
4. A method for simulating a photovoltaic energy storage system based on a digital twin model as defined in claim 3, wherein: in the resampling algorithm, final weights of all data in the historical data are obtainedIntroducing a time step->And updating to obtain the real-time weight of each data.
5. The method for simulating a photovoltaic energy storage system based on a digital twin model according to claim 4, wherein the method comprises the steps of: the introduction time stepThe updating is specifically as follows:
calculating the gradient:
updating the first moment estimate and the second moment estimate:
calculating a bias corrected first moment estimate and second moment estimate:
updating weights:
wherein ,for the time step->Gradient of->Is->Actual weight of moment +_>Is->Weight gradient function of time instant +_>An exponential decay rate estimated for the first moment, +.>Exponential decay rate estimated for second moment, +.>Estimate at +.>The value of the time of day,estimate at +.>Value of time of day->Estimate +.>Value of time of day->Estimate +.>Value of time of day->For updated->Weight of time of day->The first moment after correction for the deviation is estimated at +.>Value of time of day->The second moment after correction for the deviation is estimated at +.>Value of time of day->Is the learning rate.
6. The method for simulating a photovoltaic energy storage system based on a digital twin model according to claim 5, wherein the method comprises the steps of: in the S3, in the improved CNN-BP neural network, the CNN algorithm is specifically as follows:
let the sample be at the loss function of the network output layerThe method comprises the following steps:
wherein ,for the number of neurons of the network output layer, +.>Is->Output on individual neurons, +.>Ideal output for the objective function;
will lose the functionFor->Individual neuron outputs->Deviation guide is calculated:
the loss function is biased to the feature layer:
wherein ,for the last feature layer->Is a weight implicit to the input;
adjustment operatorThe method comprises the following steps:
wherein ,for outputting corresponding layer->Bias for the corresponding layer;
the computation of the convolution kernel is essentially a process of multiplying and summing weights, for example, in the convolution layerAdjustment operator of convolution kernelThe method comprises the following steps:
wherein ,is the output of the upper layer.
7. The method for simulating a photovoltaic energy storage system based on a digital twin model according to claim 6, wherein: in the CNN algorithm, weight optimization is performed based on an improved gray wolf optimization algorithm.
8. The digital twin model-based photovoltaic energy storage system simulation method as claimed in claim 7, wherein: the improved gray wolf optimization algorithm is specifically as follows:
setting an output error of the CNN network as an fitness function, setting an optimal value of the fitness function when the error is minimum, and settingWolf is the head wolf, the head wolf is the head wolf>Wolves are the successor of the wolf group, are of the second grade, and are heard from the head of the wolf, and are left and right>Wolf is of the third grade, will +.>Wolf is set as an optimal candidate solution; at->Wolf and jersey>Wolf and jersey>The behavior of the wolf in the process of predating the wolf searching for a game is as follows:
wherein ,distance of prey->Is->Position of prey at algorithm iteration +.>、/>Respectively +.>Minor algorithm iteration, th->Position of the wolf at algorithm iteration time, < ->The number of algorithm iterations; />Is->Random vector between->Is a coefficient vector;
wherein ,is->Random vector between->For astringing factor, ++>The maximum iteration number;
when the position of the prey is found out,wolf and->Wolf is at->The wolves were led to gradually surround the prey, and for each wolf, the position update direction was calculated according to the following formula:
wherein ,、/>、/>respectively->Wolf and jersey>Wolf and jersey>The distance between wolf and other individuals; />、/>、/>Is a random variable +.>、/>Respectively->Wolf and jersey>Wolf and jersey>Current position of wolf, < >>For the position vector +.>、/>、/>Respectively->Wolf and jersey>Wolf and->Compensating and directing the forward motion of wolves;
dynamic update according to the aboveWolf and jersey>Wolf and jersey>Position scale weight of wolf and next position:
wherein ,、/>、/>respectively->Wolf and jersey>Wolf and jersey>Position proportional weight of wolf, ++>To surround the prey in the processThe updated position of the individual gray wolves during the secondary algorithm iteration;
updating the positions of other wolves according to the above method, judging whether the termination condition is met, if not, continuing iteration until the termination condition is met, and outputting the optimal wolf individualAnd outputting the corresponding weight value.
9. The digital twin model-based photovoltaic energy storage system simulation method as claimed in claim 8, wherein: in the improved CNN-BP neural network, the output of the CNN algorithm optimized by the improved gray-wolf optimization algorithm is input into the BP neural network, all layers of neurons form full interconnection connection through weights and thresholds, the weights and the thresholds are adjusted based on the improved gray-wolf optimization algorithm, so that the error between the output value and the expected value of the improved CNN-BP neural network is minimum, and the final result is output through a regression layer for correction.
10. A photovoltaic energy storage system simulation system based on a digital twin model, and a photovoltaic energy storage system simulation method based on a digital twin model as claimed in any one of claims 1-9, comprising:
data acquisition module (100): the system is used for collecting historical data of each energy device of the photovoltaic energy storage system;
model building module (200): the numerical twin model is used for building a photovoltaic energy storage system based on the improved CNN-BP neural network;
system simulation module (300): the simulation method comprises the steps of inputting updated data of each energy device of the photovoltaic energy storage system into a numerical twin model for simulation;
model correction module (400): and the numerical twin model is used for correcting the numerical twin model based on the simulation result.
CN202311226758.2A 2023-09-22 2023-09-22 Simulation method and system of photovoltaic energy storage system based on digital twin model Active CN116992779B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311226758.2A CN116992779B (en) 2023-09-22 2023-09-22 Simulation method and system of photovoltaic energy storage system based on digital twin model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311226758.2A CN116992779B (en) 2023-09-22 2023-09-22 Simulation method and system of photovoltaic energy storage system based on digital twin model

Publications (2)

Publication Number Publication Date
CN116992779A true CN116992779A (en) 2023-11-03
CN116992779B CN116992779B (en) 2024-01-05

Family

ID=88525046

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311226758.2A Active CN116992779B (en) 2023-09-22 2023-09-22 Simulation method and system of photovoltaic energy storage system based on digital twin model

Country Status (1)

Country Link
CN (1) CN116992779B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117314128A (en) * 2023-11-29 2023-12-29 河北友蓝科技有限公司 Smart city energy management method and system based on digital twin technology
CN117852849A (en) * 2024-03-08 2024-04-09 华能山东发电有限公司众泰电厂 Large-scale agricultural light complementary photovoltaic park safety management system based on digital twin technology

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210144415A (en) * 2020-05-22 2021-11-30 라온프렌즈 주식회사 Method for making digital twin of solar cell
WO2022257243A1 (en) * 2021-06-07 2022-12-15 西安邮电大学 Water quality early-warning method and system
CN115587329A (en) * 2022-09-28 2023-01-10 山东大学 Power distribution network fault classification method and system based on convolutional neural network extraction features
CN115689008A (en) * 2022-10-27 2023-02-03 国网安徽省电力有限公司六安供电公司 CNN-BilSTM short-term photovoltaic power prediction method and system based on ensemble empirical mode decomposition
CN115693757A (en) * 2022-09-14 2023-02-03 国网浙江省电力有限公司嘉善县供电公司 Photovoltaic energy optimization regulation and control method based on digital twinning technology
CN116050628A (en) * 2023-02-07 2023-05-02 浙江大学 Reservoir flood control optimization scheduling method considering forecast uncertainty based on digital twinning
CN116128094A (en) * 2022-11-18 2023-05-16 国网辽宁省电力有限公司电力科学研究院 Industrial park energy management system and method based on digital twinning
CN116451826A (en) * 2023-01-20 2023-07-18 西北工业大学 Photovoltaic power generation prediction method based on improved long-term and short-term memory neural network
CN116506307A (en) * 2023-06-21 2023-07-28 大有期货有限公司 Network delay condition analysis system of full link
CN116522795A (en) * 2023-05-18 2023-08-01 国网山东综合能源服务有限公司 Comprehensive energy system simulation method and system based on digital twin model

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210144415A (en) * 2020-05-22 2021-11-30 라온프렌즈 주식회사 Method for making digital twin of solar cell
WO2022257243A1 (en) * 2021-06-07 2022-12-15 西安邮电大学 Water quality early-warning method and system
CN115693757A (en) * 2022-09-14 2023-02-03 国网浙江省电力有限公司嘉善县供电公司 Photovoltaic energy optimization regulation and control method based on digital twinning technology
CN115587329A (en) * 2022-09-28 2023-01-10 山东大学 Power distribution network fault classification method and system based on convolutional neural network extraction features
CN115689008A (en) * 2022-10-27 2023-02-03 国网安徽省电力有限公司六安供电公司 CNN-BilSTM short-term photovoltaic power prediction method and system based on ensemble empirical mode decomposition
CN116128094A (en) * 2022-11-18 2023-05-16 国网辽宁省电力有限公司电力科学研究院 Industrial park energy management system and method based on digital twinning
CN116451826A (en) * 2023-01-20 2023-07-18 西北工业大学 Photovoltaic power generation prediction method based on improved long-term and short-term memory neural network
CN116050628A (en) * 2023-02-07 2023-05-02 浙江大学 Reservoir flood control optimization scheduling method considering forecast uncertainty based on digital twinning
CN116522795A (en) * 2023-05-18 2023-08-01 国网山东综合能源服务有限公司 Comprehensive energy system simulation method and system based on digital twin model
CN116506307A (en) * 2023-06-21 2023-07-28 大有期货有限公司 Network delay condition analysis system of full link

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
沈沉;贾孟硕;陈颖;黄少伟;向月;: "能源互联网数字孪生及其应用", 全球能源互联网, no. 01 *
王存华;王伟;: "基于模拟退火优化BP算法的指纹地图构建方法", 国外电子测量技术, no. 03 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117314128A (en) * 2023-11-29 2023-12-29 河北友蓝科技有限公司 Smart city energy management method and system based on digital twin technology
CN117314128B (en) * 2023-11-29 2024-02-02 河北友蓝科技有限公司 Smart city energy management method and system based on digital twin technology
CN117852849A (en) * 2024-03-08 2024-04-09 华能山东发电有限公司众泰电厂 Large-scale agricultural light complementary photovoltaic park safety management system based on digital twin technology

Also Published As

Publication number Publication date
CN116992779B (en) 2024-01-05

Similar Documents

Publication Publication Date Title
CN110751318B (en) Ultra-short-term power load prediction method based on IPSO-LSTM
CN106600059B (en) Intelligent power grid short-term load prediction method based on improved RBF neural network
CN116992779A (en) Simulation method and system of photovoltaic energy storage system based on digital twin model
CN111047085B (en) Hybrid vehicle working condition prediction method based on meta-learning
CN111563706A (en) Multivariable logistics freight volume prediction method based on LSTM network
CN111461457A (en) Foundation pit displacement prediction method based on particle swarm optimization BP neural network
CN114841257B (en) Small sample target detection method based on self-supervision comparison constraint
CN110276441B (en) Trapezoidal overlapped kernel pulse estimation method based on deep learning
CN107705556A (en) A kind of traffic flow forecasting method combined based on SVMs and BP neural network
CN113486578A (en) Method for predicting residual life of equipment in industrial process
CN109618288B (en) Wireless sensor network distance measuring system and method based on deep convolutional neural network
CN113657028B (en) Online aerosol optical thickness prediction method based on multi-source information
CN112686376A (en) Node representation method based on timing diagram neural network and incremental learning method
CN112130086A (en) Method and system for predicting residual life of power battery
CN110895772A (en) Electricity sales amount prediction method based on combination of grey correlation analysis and SA-PSO-Elman algorithm
CN112149883A (en) Photovoltaic power prediction method based on FWA-BP neural network
CN114964313A (en) RVM-based fiber optic gyroscope temperature compensation method
CN113221447A (en) Soil humidity prediction method for optimizing BP neural network based on improved genetic algorithm
CN111476402A (en) Wind power generation capacity prediction method coupling meteorological information and EMD technology
CN114821337B (en) Semi-supervised SAR image building area extraction method based on phase consistency pseudo tag
CN110826614A (en) Method for constructing inverse label and loss function thereof
CN111680741B (en) Automatic debugging method of computer-aided interferometer based on deep learning
Lu et al. Apso-based optimization algorithm of lstm neural network model
CN113807005A (en) Bearing residual life prediction method based on improved FPA-DBN
CN111626465A (en) New energy power short-term interval prediction method and system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant