CN116992067A - A digital display system and method for intangible cultural heritage - Google Patents
A digital display system and method for intangible cultural heritage Download PDFInfo
- Publication number
- CN116992067A CN116992067A CN202311000108.6A CN202311000108A CN116992067A CN 116992067 A CN116992067 A CN 116992067A CN 202311000108 A CN202311000108 A CN 202311000108A CN 116992067 A CN116992067 A CN 116992067A
- Authority
- CN
- China
- Prior art keywords
- heritage
- module
- heritable
- data
- information
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000012937 correction Methods 0.000 claims abstract description 25
- 238000001514 detection method Methods 0.000 claims abstract description 24
- 238000000605 extraction Methods 0.000 claims abstract description 13
- 238000013480 data collection Methods 0.000 claims abstract description 7
- 238000003860 storage Methods 0.000 claims abstract description 7
- 230000002452 interceptive effect Effects 0.000 claims abstract description 6
- 238000012549 training Methods 0.000 claims abstract description 6
- 238000004891 communication Methods 0.000 claims abstract description 3
- 230000006835 compression Effects 0.000 claims description 11
- 238000007906 compression Methods 0.000 claims description 11
- 230000006870 function Effects 0.000 claims description 11
- 238000012545 processing Methods 0.000 claims description 9
- 230000002159 abnormal effect Effects 0.000 claims description 8
- 238000013527 convolutional neural network Methods 0.000 claims description 8
- 238000011176 pooling Methods 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 8
- 230000009466 transformation Effects 0.000 claims description 7
- 239000000284 extract Substances 0.000 claims description 5
- 238000004458 analytical method Methods 0.000 claims description 4
- 238000009499 grossing Methods 0.000 claims description 4
- 239000003814 drug Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 238000005457 optimization Methods 0.000 claims description 3
- 230000002068 genetic effect Effects 0.000 claims 3
- 230000000903 blocking effect Effects 0.000 claims 1
- 239000000969 carrier Substances 0.000 claims 1
- 238000010224 classification analysis Methods 0.000 claims 1
- 238000013507 mapping Methods 0.000 claims 1
- 238000010606 normalization Methods 0.000 claims 1
- 230000002618 waking effect Effects 0.000 claims 1
- 238000002372 labelling Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 238000011161 development Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000008447 perception Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/50—Information retrieval; Database structures therefor; File system structures therefor of still image data
- G06F16/54—Browsing; Visualisation therefor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/50—Information retrieval; Database structures therefor; File system structures therefor of still image data
- G06F16/53—Querying
- G06F16/535—Filtering based on additional data, e.g. user or group profiles
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/50—Information retrieval; Database structures therefor; File system structures therefor of still image data
- G06F16/58—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
- G06F16/583—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Library & Information Science (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域Technical field
本发明涉及文化保护技术领域,尤其涉及一种非遗文化遗产数字化展示系统及方法。The present invention relates to the technical field of cultural protection, and in particular to a digital display system and method for intangible cultural heritage.
背景技术Background technique
非物质文化遗产,简称“非遗”,与“物质文化遗产”相对。在中国,非物质文化遗产是指各族人民世代相传,并视为其文化遗产组成部分的各种传统文化表现形式,以及与传统文化表现形式相关的实物和场所。非物质文化遗产是文化多样性中最富活力的重要组成部分,是人类文明的结晶和最宝贵的共同财富,承载着人类的智慧、人类历史的文明与辉煌。在全球化和世界高速发展的现代化进程中,非物质文化遗产概念的提出是历史的必然,也是时代的要求,顺应了历史发展的需要,对有效保护非物质文化遗产有着现实意义。Intangible cultural heritage, referred to as "intangible cultural heritage", is opposite to "material cultural heritage". In China, intangible cultural heritage refers to various traditional cultural expressions that are passed down from generation to generation by people of all ethnic groups and regarded as part of their cultural heritage, as well as physical objects and places related to traditional cultural expressions. Intangible cultural heritage is the most dynamic and important part of cultural diversity. It is the crystallization of human civilization and the most precious common wealth. It carries human wisdom, civilization and glory of human history. In the process of globalization and the rapid development of modernization in the world, the introduction of the concept of intangible cultural heritage is a historical necessity and a requirement of the times. It complies with the needs of historical development and has practical significance for the effective protection of intangible cultural heritage.
经检索,中国专利号CN109144275A公开了一种非物质文化遗产数字化展示系统及其方法,该发明虽然与参观者进行深入的交流,并使其感同身受,加深对非物质文化遗产的震撼以及印象,但是仅能人工对存在错误的3D模型进行修正,增加工作人员工作量,需要花费工作人员大量时间,无法准确地为用户展示非遗文化遗产,降低用户观感;为此,我们提出一种非遗文化遗产数字化展示系统及方法。After searching, Chinese patent number CN109144275A discloses a digital display system and method for intangible cultural heritage. Although this invention enables in-depth communication with visitors and makes them empathize with each other, deepening the shock and impression of intangible cultural heritage, it Only erroneous 3D models can be corrected manually, which increases the workload of the staff and takes a lot of time. It cannot accurately display the intangible cultural heritage to users and reduces the user's perception. To this end, we propose an intangible cultural heritage Heritage digital display system and method.
发明内容Contents of the invention
本发明的目的是为了解决现有技术中存在的缺陷,而提出的一种非遗文化遗产数字化展示系统及方法。The purpose of the present invention is to propose a digital display system and method for intangible cultural heritage in order to solve the defects existing in the existing technology.
为了实现上述目的,本发明采用了如下技术方案:In order to achieve the above objects, the present invention adopts the following technical solutions:
一种非遗文化遗产数字化展示系统,包括用户终端、展示平台、非遗数据收集模块、分类标记模块、特征提取模块、3D重建模块、智能修正模块、语音播报模块以及区块存储模块;A digital display system for intangible cultural heritage, including a user terminal, a display platform, an intangible cultural heritage data collection module, a classification labeling module, a feature extraction module, a 3D reconstruction module, an intelligent correction module, a voice broadcast module and a block storage module;
所述用户终端用于与展示平台通信连接,并展示3D场景动画,同时提供交互式浏览功能;The user terminal is used to communicate with the display platform, display 3D scene animation, and provide interactive browsing functions;
所述展示平台用于3D重现非遗文化遗产,并将生成的3D模型反馈至用户终端;The display platform is used to reproduce intangible cultural heritage in 3D and feed back the generated 3D model to the user terminal;
所述非遗数据收集模块用于收集已知非遗文化遗产数据;The intangible cultural heritage data collection module is used to collect known intangible cultural heritage data;
所述分类标记模块用于将收集到的非遗文化遗产数据进行类别分析并标记;The classification and labeling module is used to perform category analysis and label the collected intangible cultural heritage data;
所述特征提取模块用于提取非遗文化遗产数据中的特征信息;The feature extraction module is used to extract feature information from intangible cultural heritage data;
所述3D重建模块用于依据特征信息重现对应3D场景以及非遗文化制作过程;The 3D reconstruction module is used to reproduce the corresponding 3D scene and the intangible cultural heritage production process based on the characteristic information;
所述智能修正模块用于解析非遗文化遗产数据,并对3D重建模块建立的3D模型进行检测调整;The intelligent correction module is used to analyze intangible cultural heritage data and detect and adjust the 3D model established by the 3D reconstruction module;
所述语音播报模块用于向参观者介绍相关非遗文化遗产各项信息;The voice broadcast module is used to introduce relevant intangible cultural heritage information to visitors;
所述区块存储模块用于对收集的各项非遗文化遗产数据进行存储。The block storage module is used to store various collected intangible cultural heritage data.
作为本发明的进一步方案,所述用户终端具体包括智能收集、平板电脑、台式电脑以及笔记本电脑。As a further solution of the present invention, the user terminal specifically includes a smart network, a tablet computer, a desktop computer and a notebook computer.
作为本发明的进一步方案,所述分类标记模块类别分析具体步骤如下:As a further solution of the present invention, the specific steps of category analysis of the classification marking module are as follows:
步骤一:分类标记模块接收各组非遗文化遗产数据后,将各组遗产数据按照规定的非物质文化遗产名录体系进行分类,同时将分类完成的遗产数据按照其具体类别进行分类;Step 1: After receiving each group of intangible cultural heritage data, the classification marking module will classify each group of heritage data according to the prescribed intangible cultural heritage list system, and at the same time classify the classified heritage data according to its specific category;
步骤二:将各组遗产数据按照各非遗文化遗产名称首字母A至Z的顺序进行排序,同时将排序完成的各组遗产数据信息按照文字信息、图片信息以及视频信息进行分类。Step 2: Sort each group of heritage data in the order of the initial letters A to Z of the name of each intangible cultural heritage. At the same time, classify each group of heritage data information that has been sorted according to text information, picture information, and video information.
作为本发明的进一步方案,步骤一所述非物质文化遗产名录体系分类标准具体为国家、省、市以及县;As a further solution of the present invention, the classification standards of the intangible cultural heritage list system described in step one are specifically countries, provinces, cities and counties;
所述非遗文化遗产类别具体包括传统口头文学以及作为其载体的语言、传统美术、书法、音乐、舞蹈、戏剧、曲艺和杂技、传统技艺、医药和历法、传统礼仪、节庆民俗、传统体育和游艺以及其他非物质文化遗产。The category of intangible cultural heritage specifically includes traditional oral literature and the language as its carrier, traditional art, calligraphy, music, dance, drama, folk arts and acrobatics, traditional skills, medicine and calendar, traditional etiquette, festival folk customs, traditional sports and Entertainment and other intangible cultural heritage.
作为本发明的进一步方案,所述特征提取模块特征信息具体提取步骤如下:As a further solution of the present invention, the specific extraction steps of feature information of the feature extraction module are as follows:
步骤①:特征提取模块收集各遗产数据中的视频信息以及图片信息,之后逐帧处理视频信息以获取多组图片信息,再依据各组图片信息的显示比例进行分块处理,再对分块后的图片信息通过傅里叶变换去除其中高频成分;Step ①: The feature extraction module collects the video information and picture information in each heritage data, and then processes the video information frame by frame to obtain multiple groups of picture information, and then performs block processing according to the display ratio of each group of picture information, and then performs block processing The high-frequency components of the image information are removed through Fourier transform;
步骤②:设定高斯平滑滤波器参数,并计算各滤波器所占权值,再通过每个加权的各组异性滤波器对图片信息做平滑处理,将处理后的图像进行非线性变换,对非线性变换得到的结果之和进行加权处理以获取最终图片信息;Step ②: Set the parameters of the Gaussian smoothing filter, and calculate the weight of each filter, and then smooth the image information through each weighted heterogeneous filter, and perform nonlinear transformation on the processed image. The sum of the results obtained by nonlinear transformation is weighted to obtain the final picture information;
步骤③:选取满足条件的窗口在各组图片信息中移动,每移动一次计算此时窗口下的灰度共生矩阵,并从灰度共生矩阵中计算相关图片信息中的纹理特征,之后依据计算出的纹理特征将目标与背景进行分离,并对目标图像进行归一化处理,同时提取该目标图像特征数据;Step ③: Select a window that meets the conditions and move it in each group of picture information. Calculate the gray-level co-occurrence matrix under the window each time it moves, and calculate the texture features in the relevant picture information from the gray-level co-occurrence matrix. Then, based on the calculated Texture features separate the target from the background, normalize the target image, and extract feature data of the target image;
步骤④:通过采集网络多次ShuffleBlock以得到各组图片信息的全局姿态特征,再由反卷积操作使全局姿态特征回归至关键点特征图上,再对关键点特征图进行解码处理,并收集解码后生成的人体二维关键点。Step 4: ShuffleBlock multiple times through the collection network to obtain the global posture features of each group of image information, and then use the deconvolution operation to return the global posture features to the key point feature map, and then decode the key point feature map and collect The two-dimensional key points of the human body generated after decoding.
作为本发明的进一步方案,所述智能修正模块检测调整具体步骤如下:As a further solution of the present invention, the specific steps for detection and adjustment of the intelligent correction module are as follows:
步骤Ⅰ:智能修正模块接收各组特征数据以及关键点信息以构建检测数据集,之后计算该检测数据集标准偏差,并依据计算出的标准偏差筛除检测数据集中的异常数据;Step Ⅰ: The intelligent correction module receives each set of feature data and key point information to construct a detection data set, then calculates the standard deviation of the detection data set, and filters out abnormal data in the detection data set based on the calculated standard deviation;
步骤Ⅱ:将检测数据集输入至卷积神经网络中先进行卷积操作以获取符合要求的特征图,重复采用两组卷积层和一组最大池化层的结构处理特征图,再在扩展通道中进行反卷积操作使特征图的维数减半,再重新组成2倍维数的特征图,再采用两组卷积层,并重复该结构,然后在最后的输出层将上一层获取的特征图映射成6维输出特征图,收集经过前向传播得到的输出特征图,然后通过softmax函数将其中所有目标的线性预测值转换为概率值;Step Ⅱ: Input the detection data set into the convolutional neural network. First perform a convolution operation to obtain a feature map that meets the requirements. Repeat the structure of two sets of convolution layers and a set of max pooling layers to process the feature map, and then expand it. The deconvolution operation is performed in the channel to halve the dimension of the feature map, and then the feature map is reorganized into a feature map with 2 times the dimension, and then two sets of convolution layers are used, and the structure is repeated, and then the previous layer is added to the final output layer. The obtained feature map is mapped into a 6-dimensional output feature map, the output feature map obtained through forward propagation is collected, and then the linear prediction values of all targets are converted into probability values through the softmax function;
步骤Ⅲ:使用损失函数计算真实数据与检测概率之间的损失值,之后逐层更新卷积神经网络中的参数,并计算对应损失值,当损失值达到一定阈值后停止训练,同时将该参数作为最优参数并输出修正模型;Step III: Use the loss function to calculate the loss value between the real data and the detection probability, then update the parameters in the convolutional neural network layer by layer, and calculate the corresponding loss value. When the loss value reaches a certain threshold, stop training and change the parameter as optimal parameters and output the modified model;
步骤Ⅳ:将3D模型输入修正模型中,修正模型设置检测标签,再对3D模型进行卷积、池化以及全连接处理后确认异常模型关键点位置,并对其进行修正。Step IV: Input the 3D model into the correction model, set the detection label on the correction model, and then perform convolution, pooling and full connection processing on the 3D model to confirm the location of the key points of the abnormal model and correct it.
一种非遗文化遗产数字化展示方法,该展示方法具体如下:A digital display method of intangible cultural heritage. The display method is as follows:
(1)收集非遗文化遗产数据并按照规定进行分类;(1) Collect intangible cultural heritage data and classify it in accordance with regulations;
(2)提取各类非遗文化遗产特征信息并构建3D模型;(2) Extract characteristic information of various types of intangible cultural heritage and build 3D models;
(3)生成各类非遗文化遗产文字说明并与3D模型进行匹配;(3) Generate text descriptions of various types of intangible cultural heritage and match them with 3D models;
(4)修正3D模型并向反馈工作人员模型修正结果;(4) Correct the 3D model and provide feedback to the staff on the model correction results;
(5)用户登录展示平台并选择相关3D模型进行查看;(5) The user logs in to the display platform and selects the relevant 3D model to view;
(6)存储各组非遗文化遗产3D模型并优化展示平台性能。(6) Store 3D models of each group of intangible cultural heritage and optimize the performance of the display platform.
作为本发明的进一步方案,步骤(6)所述展示平台性能优化具体步骤如下:As a further solution of the present invention, the specific steps for optimizing the performance of the display platform described in step (6) are as follows:
第Ⅰ步:为展示平台的各组功能界面生成一个启动链表,并依据LRU链表顺序,将各组启动链表按照各被访问次数由少到多进行进一步链接;Step Ⅰ: Generate a startup linked list for each group of functional interfaces of the display platform, and according to the order of the LRU linked list, further link each group of startup linked lists according to the number of visits from least to most;
第Ⅱ步:依据各组功能界面的交互信息实时对各组启动链表中的各组页面进行数据更新,并从LRU链表的头部依次选择被访问次数最少的功能界面启动链表进行受害页面选择,直至回收足够的受害页面后停止;Step Ⅱ: Update the data of each group of pages in each group of startup link lists in real time based on the interaction information of each group of functional interfaces, and select the functional interface startup link list with the least number of visits from the head of the LRU chain list to select the victim page. Stop until enough victim pages are recovered;
第Ⅲ步:将选择的受害页面合并为一个块并进行标记,之后唤醒一个压缩驱动程序以解析被标记的块,并获得属于该块的物理页,再将该物理页复制到缓冲区中,然后调用压缩算法将缓冲区中的该物理页压缩到压缩块中,并将压缩块存储至平台优化模块的压缩区域中。Step III: Combine the selected victim pages into a block and mark it, then wake up a compression driver to parse the marked block, obtain the physical page belonging to the block, and then copy the physical page to the buffer. Then the compression algorithm is called to compress the physical page in the buffer into a compressed block, and the compressed block is stored in the compression area of the platform optimization module.
相比于现有技术,本发明的有益效果在于:Compared with the existing technology, the beneficial effects of the present invention are:
1、本发明通过智能修正模块接收各组特征数据以及关键点信息以构建检测数据集,之后对该检测数据集进行预处理后,将其输入至卷积神经网络中进行卷积、池化以及反卷积处理后输出特征图,收集经过前向传播得到的输出特征图,然后通过softmax函数将其中所有目标的线性预测值转换为概率值,使用损失函数计算真实数据与检测概率之间的损失值,之后逐层更新卷积神经网络中的参数,并计算对应损失值,当损失值达到一定阈值后停止训练,同时将该参数作为最优参数并输出修正模型,将3D模型输入修正模型中,修正模型设置检测标签,再对3D模型进行卷积、池化以及全连接处理后确认异常模型关键点位置,并对其进行修正,能够提高训练样本的随机性,有效提升异常检测的准确性,同时能够自行对存在错误的3D模型进行修正,节省人工修正时间,减少工作人员工作量,提高工作人员使用体验,能够准确地为用户展示非遗文化遗产,增加用户观感。1. The present invention receives each set of feature data and key point information through the intelligent correction module to construct a detection data set. After preprocessing the detection data set, it is input into the convolutional neural network for convolution, pooling and After deconvolution, the feature map is output, and the output feature map obtained by forward propagation is collected, and then the linear prediction values of all targets are converted into probability values through the softmax function, and the loss function is used to calculate the loss between the real data and the detection probability. value, then update the parameters in the convolutional neural network layer by layer, and calculate the corresponding loss value. When the loss value reaches a certain threshold, the training will stop. At the same time, the parameter will be regarded as the optimal parameter and the correction model will be output. The 3D model will be input into the correction model. , correct the model to set the detection label, and then perform convolution, pooling and full connection processing on the 3D model to confirm the location of the key points of the abnormal model and correct it, which can improve the randomness of the training samples and effectively improve the accuracy of anomaly detection. , and at the same time, it can correct 3D models with errors by itself, saving manual correction time, reducing staff workload, improving staff experience, accurately displaying intangible cultural heritage to users, and increasing user perception.
附图说明Description of drawings
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。The drawings are used to provide a further understanding of the present invention and constitute a part of the specification. They are used to explain the present invention together with the embodiments of the present invention and do not constitute a limitation of the present invention.
图1为本发明提出的一种非遗文化遗产数字化展示系统的系统框图;Figure 1 is a system block diagram of a digital display system for intangible cultural heritage proposed by the present invention;
图2为本发明提出的一种非遗文化遗产数字化展示方法的流程框图。Figure 2 is a flow chart of a digital display method for intangible cultural heritage proposed by the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some of the embodiments of the present invention, rather than all the embodiments.
实施例1Example 1
参照图1,一种非遗文化遗产数字化展示系统,包括用户终端、展示平台、非遗数据收集模块、分类标记模块、特征提取模块、3D重建模块、智能修正模块、语音播报模块以及区块存储模块。Referring to Figure 1, a digital display system for intangible cultural heritage includes a user terminal, a display platform, an intangible cultural heritage data collection module, a classification labeling module, a feature extraction module, a 3D reconstruction module, an intelligent correction module, a voice broadcast module and a block storage module.
用户终端用于与展示平台通信连接,并展示3D场景动画,同时提供交互式浏览功能;展示平台用于3D重现非遗文化遗产,并将生成的3D模型反馈至用户终端。The user terminal is used to communicate with the display platform, display 3D scene animations, and provide interactive browsing functions; the display platform is used to reproduce intangible cultural heritage in 3D and feed back the generated 3D model to the user terminal.
需要进一步说明的是,用户终端具体包括智能收集、平板电脑、台式电脑以及笔记本电脑。It should be further explained that user terminals specifically include smart networks, tablet computers, desktop computers and laptop computers.
非遗数据收集模块用于收集已知非遗文化遗产数据;分类标记模块用于将收集到的非遗文化遗产数据进行类别分析并标记。The intangible cultural heritage data collection module is used to collect known intangible cultural heritage data; the classification labeling module is used to perform category analysis and label the collected intangible cultural heritage data.
具体的,分类标记模块接收各组非遗文化遗产数据后,将各组遗产数据按照规定的非物质文化遗产名录体系进行分类,同时将分类完成的遗产数据按照其具体类别进行分类,将各组遗产数据按照各非遗文化遗产名称首字母A至Z的顺序进行排序,同时将排序完成的各组遗产数据信息按照文字信息、图片信息以及视频信息进行分类。Specifically, after receiving each group of intangible cultural heritage data, the classification marking module classifies each group of heritage data according to the prescribed intangible cultural heritage list system. At the same time, it classifies the classified heritage data according to its specific category, and classifies each group of heritage data according to its specific category. The heritage data is sorted according to the order of the first letters of each intangible cultural heritage name, A to Z, and at the same time, each group of heritage data information that has been sorted is classified according to text information, picture information, and video information.
本实施例中,非物质文化遗产名录体系分类标准具体为国家、省、市以及县;非遗文化遗产类别具体包括传统口头文学以及作为其载体的语言、传统美术、书法、音乐、舞蹈、戏剧、曲艺和杂技、传统技艺、医药和历法、传统礼仪、节庆民俗、传统体育和游艺以及其他非物质文化遗产。In this embodiment, the classification standards of the intangible cultural heritage list system are specifically countries, provinces, cities, and counties; the categories of intangible cultural heritage specifically include traditional oral literature and its carrier language, traditional art, calligraphy, music, dance, and drama , folk arts and acrobatics, traditional skills, medicine and calendar, traditional etiquette, festival folk customs, traditional sports and entertainment and other intangible cultural heritage.
特征提取模块用于提取非遗文化遗产数据中的特征信息。The feature extraction module is used to extract feature information from intangible cultural heritage data.
具体的,特征提取模块收集各遗产数据中的视频信息以及图片信息,之后逐帧处理视频信息以获取多组图片信息,再依据各组图片信息的显示比例进行分块处理,再对分块后的图片信息通过傅里叶变换去除其中高频成分,设定高斯平滑滤波器参数,并计算各滤波器所占权值,再通过每个加权的各组异性滤波器对图片信息做平滑处理,将处理后的图像进行非线性变换,对非线性变换得到的结果之和进行加权处理以获取最终图片信息,选取满足条件的窗口在各组图片信息中移动,每移动一次计算此时窗口下的灰度共生矩阵,并从灰度共生矩阵中计算相关图片信息中的纹理特征,之后依据计算出的纹理特征将目标与背景进行分离,并对目标图像进行归一化处理,同时提取该目标图像特征数据,通过采集网络多次ShuffleBlock以得到各组图片信息的全局姿态特征,再由反卷积操作使全局姿态特征回归至关键点特征图上,再对关键点特征图进行解码处理,并收集解码后生成的人体二维关键点。Specifically, the feature extraction module collects video information and picture information in each heritage data, and then processes the video information frame by frame to obtain multiple groups of picture information, and then performs block processing according to the display ratio of each group of picture information, and then performs block processing on The high-frequency components of the picture information are removed through Fourier transform, the Gaussian smoothing filter parameters are set, and the weights of each filter are calculated, and then the picture information is smoothed through each weighted heterogeneous filter. The processed image is subjected to non-linear transformation, and the sum of the results obtained by the non-linear transformation is weighted to obtain the final picture information. A window that meets the conditions is selected to move in each group of picture information, and the gray value under the window at this time is calculated each time it is moved. degree co-occurrence matrix, and calculate the texture features in the relevant image information from the gray-level co-occurrence matrix, and then separate the target and the background based on the calculated texture features, normalize the target image, and extract the target image features at the same time The data is collected through the network ShuffleBlock multiple times to obtain the global posture features of each group of picture information, and then the global posture features are returned to the key point feature map through the deconvolution operation, and then the key point feature map is decoded and collected. The two-dimensional key points of the human body are then generated.
3D重建模块用于依据特征信息重现对应3D场景以及非遗文化制作过程;智能修正模块用于解析非遗文化遗产数据,并对3D重建模块建立的3D模型进行检测调整。The 3D reconstruction module is used to reproduce the corresponding 3D scene and the intangible cultural heritage production process based on the characteristic information; the intelligent correction module is used to parse the intangible cultural heritage data and detect and adjust the 3D model established by the 3D reconstruction module.
具体的,智能修正模块接收各组特征数据以及关键点信息以构建检测数据集,之后计算该检测数据集标准偏差,并依据计算出的标准偏差筛除检测数据集中的异常数据,将检测数据集输入至卷积神经网络中先进行卷积操作以获取符合要求的特征图,重复采用两组卷积层和一组最大池化层的结构处理特征图,再在扩展通道中进行反卷积操作使特征图的维数减半,再重新组成2倍维数的特征图,再采用两组卷积层,并重复该结构,然后在最后的输出层将上一层获取的特征图映射成6维输出特征图,收集经过前向传播得到的输出特征图,然后通过softmax函数将其中所有目标的线性预测值转换为概率值,使用损失函数计算真实数据与检测概率之间的损失值,之后逐层更新卷积神经网络中的参数,并计算对应损失值,当损失值达到一定阈值后停止训练,同时将该参数作为最优参数并输出修正模型,将3D模型输入修正模型中,修正模型设置检测标签,再对3D模型进行卷积、池化以及全连接处理后确认异常模型关键点位置,并对其进行修正。Specifically, the intelligent correction module receives each set of feature data and key point information to construct a detection data set, and then calculates the standard deviation of the detection data set, and filters out abnormal data in the detection data set based on the calculated standard deviation, and converts the detection data set into When input into the convolutional neural network, a convolution operation is first performed to obtain a feature map that meets the requirements. The structure of two sets of convolutional layers and a set of maximum pooling layers is repeatedly used to process the feature map, and then a deconvolution operation is performed in the expansion channel. Halve the dimension of the feature map, then re-form the feature map with 2 times the dimension, then use two sets of convolutional layers, and repeat the structure, and then map the feature map obtained from the previous layer into 6 in the final output layer dimensional output feature map, collect the output feature map obtained through forward propagation, and then convert the linear prediction values of all targets into probability values through the softmax function, use the loss function to calculate the loss value between the real data and the detection probability, and then gradually The layer updates the parameters in the convolutional neural network and calculates the corresponding loss value. When the loss value reaches a certain threshold, the training stops. At the same time, the parameter is used as the optimal parameter and the corrected model is output. The 3D model is input into the corrected model and the model settings are corrected. Detect labels, then perform convolution, pooling and full connection processing on the 3D model to confirm the location of key points of the abnormal model and correct them.
语音播报模块用于向参观者介绍相关非遗文化遗产各项信息;区块存储模块用于对收集的各项非遗文化遗产数据进行存储。The voice broadcast module is used to introduce relevant intangible cultural heritage information to visitors; the block storage module is used to store the collected intangible cultural heritage data.
实施例2Example 2
参照图2,一种非遗文化遗产数字化展示方法,该展示方法具体如下:Referring to Figure 2, a digital display method of intangible cultural heritage is shown. The display method is as follows:
收集非遗文化遗产数据并按照规定进行分类。Collect intangible cultural heritage data and classify it in accordance with regulations.
提取各类非遗文化遗产特征信息并构建3D模型。Extract characteristic information of various types of intangible cultural heritage and build 3D models.
生成各类非遗文化遗产文字说明并与3D模型进行匹配。Generate various types of intangible cultural heritage text descriptions and match them with 3D models.
修正3D模型并向反馈工作人员模型修正结果。Correct the 3D model and report the model correction results to the staff.
用户登录展示平台并选择相关3D模型进行查看。Users log in to the display platform and select relevant 3D models to view.
存储各组非遗文化遗产3D模型并优化展示平台性能。Store 3D models of each group of intangible cultural heritage and optimize the performance of the display platform.
具体的,为展示平台的各组功能界面生成一个启动链表,并依据LRU链表顺序,将各组启动链表按照各被访问次数由少到多进行进一步链接,依据各组功能界面的交互信息实时对各组启动链表中的各组页面进行数据更新,并从LRU链表的头部依次选择被访问次数最少的功能界面启动链表进行受害页面选择,直至回收足够的受害页面后停止,将选择的受害页面合并为一个块并进行标记,之后唤醒一个压缩驱动程序以解析被标记的块,并获得属于该块的物理页,再将该物理页复制到缓冲区中,然后调用压缩算法将缓冲区中的该物理页压缩到压缩块中,并将压缩块存储至平台优化模块的压缩区域中。Specifically, a startup linked list is generated for each group of functional interfaces of the display platform, and according to the order of the LRU chain list, each group of startup linked lists is further linked according to the number of visits from least to most, and real-time matching is performed based on the interactive information of each group of functional interfaces. Each group starts each group of pages in the linked list to update data, and selects the functional interface with the least number of visits from the head of the LRU linked list to start the linked list to select victim pages. It stops after recycling enough victim pages, and the selected victim pages are Merge into a block and mark it, then wake up a compression driver to parse the marked block and obtain the physical page belonging to the block, copy the physical page to the buffer, and then call the compression algorithm to The physical page is compressed into compressed blocks, and the compressed blocks are stored in the compression area of the platform optimization module.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311000108.6A CN116992067A (en) | 2023-08-09 | 2023-08-09 | A digital display system and method for intangible cultural heritage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311000108.6A CN116992067A (en) | 2023-08-09 | 2023-08-09 | A digital display system and method for intangible cultural heritage |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116992067A true CN116992067A (en) | 2023-11-03 |
Family
ID=88526408
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311000108.6A Withdrawn CN116992067A (en) | 2023-08-09 | 2023-08-09 | A digital display system and method for intangible cultural heritage |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116992067A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117556065A (en) * | 2024-01-11 | 2024-02-13 | 江苏古卓科技有限公司 | Deep learning-based large model data management system and method |
-
2023
- 2023-08-09 CN CN202311000108.6A patent/CN116992067A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117556065A (en) * | 2024-01-11 | 2024-02-13 | 江苏古卓科技有限公司 | Deep learning-based large model data management system and method |
CN117556065B (en) * | 2024-01-11 | 2024-03-26 | 江苏古卓科技有限公司 | Deep learning-based large model data management system and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107748799B (en) | Method for aligning multiple data source movie and television data entities | |
CN101315663B (en) | A Natural Scene Image Classification Method Based on Regional Latent Semantic Features | |
CN113590850A (en) | Multimedia data searching method, device, equipment and storage medium | |
CN111832546B (en) | Lightweight natural scene text recognition method | |
CN110020437A (en) | The sentiment analysis and method for visualizing that a kind of video and barrage combine | |
CN103020034A (en) | Chinese words segmentation method and device | |
CN111368075A (en) | Article quality prediction method and device, electronic equipment and storage medium | |
CN112465596B (en) | Image information processing cloud computing platform based on electronic commerce live broadcast | |
CN109165273A (en) | General Chinese address matching method facing big data environment | |
CN112347284A (en) | Combined trademark image retrieval method | |
CN116992067A (en) | A digital display system and method for intangible cultural heritage | |
CN112883709A (en) | Method for automatically generating couplet by using natural language processing technology | |
CN116245102B (en) | Multi-mode emotion recognition method based on multi-head attention and graph neural network | |
CN113761242A (en) | A big data image recognition system and method based on artificial intelligence | |
CN112528738A (en) | A kind of artificial intelligence image recognition model optimization method and system | |
CN113505207B (en) | Machine reading understanding method and system for financial public opinion research report | |
CN111339757A (en) | Error correction method for voice recognition result in collection scene | |
CN110807108A (en) | Asian face data automatic collection and cleaning method and system | |
CN113704430A (en) | Intelligent auxiliary receiving method and device, electronic equipment and storage medium | |
CN111815358A (en) | Big data user mining method and system based on cross-border e-commerce platform | |
CN110765107A (en) | Question type identification method and system based on digital coding | |
CN115953800A (en) | Cross-modal-supported document pre-training model implementation method and device | |
CN111027329B (en) | A user sentiment analysis system and method for a logistics intelligent customer service system based on deep learning | |
CN110852359B (en) | Genealogy recognition method and system based on deep learning | |
CN115168543A (en) | Examination question automatic generation design method based on unstructured text |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20231103 |