CN116962225A - Network performance monitoring methods, devices, electronic equipment and computer program products - Google Patents
Network performance monitoring methods, devices, electronic equipment and computer program products Download PDFInfo
- Publication number
- CN116962225A CN116962225A CN202210379619.2A CN202210379619A CN116962225A CN 116962225 A CN116962225 A CN 116962225A CN 202210379619 A CN202210379619 A CN 202210379619A CN 116962225 A CN116962225 A CN 116962225A
- Authority
- CN
- China
- Prior art keywords
- network
- sample data
- target
- data set
- performance monitoring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 85
- 238000000034 method Methods 0.000 title claims abstract description 50
- 238000004590 computer program Methods 0.000 title claims abstract description 23
- 238000013528 artificial neural network Methods 0.000 claims abstract description 77
- 230000006870 function Effects 0.000 claims description 29
- 238000000605 extraction Methods 0.000 claims description 28
- 238000012549 training Methods 0.000 claims description 22
- 230000003321 amplification Effects 0.000 claims description 18
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 18
- 238000011176 pooling Methods 0.000 claims description 13
- 230000015654 memory Effects 0.000 claims description 11
- 238000012806 monitoring device Methods 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 6
- 238000007781 pre-processing Methods 0.000 claims description 5
- 238000013519 translation Methods 0.000 claims description 5
- 238000001514 detection method Methods 0.000 abstract description 13
- 230000000007 visual effect Effects 0.000 abstract description 6
- 238000005516 engineering process Methods 0.000 abstract description 4
- 238000013473 artificial intelligence Methods 0.000 abstract description 2
- 238000004891 communication Methods 0.000 description 14
- 238000007689 inspection Methods 0.000 description 9
- 230000004913 activation Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 description 1
- 241000219357 Cactaceae Species 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000013434 data augmentation Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000013079 data visualisation Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000003709 image segmentation Methods 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000013024 troubleshooting Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/08—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/04—Processing captured monitoring data, e.g. for logfile generation
- H04L43/045—Processing captured monitoring data, e.g. for logfile generation for graphical visualisation of monitoring data
Landscapes
- Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Computer Networks & Wireless Communication (AREA)
- Computational Linguistics (AREA)
- Evolutionary Computation (AREA)
- Signal Processing (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Environmental & Geological Engineering (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
本申请涉及人工智能技术领域,提供一种网络性能监测方法、装置、电子设备及计算机程序产品。所述方法包括:获取待监测网络的网络流量数据图;将所述待监测网络的网络流量数据图输入至目标神经网络,得到所述目标神经网络输出的网络性能监测结果,所述目标神经网络是基于各监测节点对应的网络流量样本数据图训练得到的。本申请实施例提供的网络性能监测方法、装置、电子设备及计算机程序产品可以通过可视化图像和目标神经网络进行网络性能检测,提高了网络性能检测的效率和准确率。
This application relates to the field of artificial intelligence technology and provides a network performance monitoring method, device, electronic equipment and computer program products. The method includes: obtaining a network traffic data graph of the network to be monitored; inputting the network traffic data graph of the network to be monitored into a target neural network to obtain a network performance monitoring result output by the target neural network, where the target neural network It is trained based on the network traffic sample data graph corresponding to each monitoring node. The network performance monitoring methods, devices, electronic equipment and computer program products provided by the embodiments of the present application can perform network performance detection through visual images and target neural networks, improving the efficiency and accuracy of network performance detection.
Description
技术领域Technical field
本申请涉及人工智能技术领域,具体涉及一种网络性能监测方法、装置、电子设备及计算机程序产品。This application relates to the field of artificial intelligence technology, specifically to a network performance monitoring method, device, electronic equipment and computer program product.
背景技术Background technique
近年来,通讯网络规模不断扩大,网络结构日趋复杂,导致网络流量的组成和网络流量特性的复杂度日益提高,为了监测通讯网络的运行质量,及时发现各种异常,国内运营商以及通讯管理部门都部署了通讯监测系统。In recent years, the scale of communication networks has continued to expand and the network structure has become increasingly complex, resulting in the increasing complexity of network traffic composition and network traffic characteristics. In order to monitor the operating quality of communication networks and discover various abnormalities in a timely manner, domestic operators and communication management departments Communication monitoring systems have been deployed.
通讯监测系统的接口模块承担着从各种类型的物理链路采集数据并完成预处理的功能,通信基础设施正是基于接口模块设立。现阶段传输线路的带宽可以达到几十兆、上百兆,以至于上千兆,接口模块需要针对带宽进行适配。而针对接口模块的网络性能监测,首先需要对局域网内部进行监测。当网络出现故障时,缺少一种故障判断、初步分析的分析机制,就无法对网络状态进行整体的分析,也不能为网络维护管理人员提供可靠、便利的决策支持。The interface module of the communication monitoring system is responsible for collecting data from various types of physical links and completing preprocessing. The communication infrastructure is established based on the interface module. At present, the bandwidth of transmission lines can reach tens of megabits, hundreds of megabits, or even gigabit. The interface module needs to be adapted to the bandwidth. For network performance monitoring of interface modules, it is first necessary to monitor the inside of the LAN. When a network failure occurs, the lack of an analysis mechanism for fault judgment and preliminary analysis makes it impossible to conduct an overall analysis of the network status, and it cannot provide reliable and convenient decision support for network maintenance managers.
目前局域网内的网络性能监测主要采用人工巡检的方式,人工巡检会存在巡检效率低、巡检准确率低等问题。At present, network performance monitoring in LAN mainly adopts manual inspection. Manual inspection has problems such as low inspection efficiency and low inspection accuracy.
发明内容Contents of the invention
本申请实施例提供一种网络性能监测方法、装置、电子设备及计算机程序产品,用以解决网络性能人工监测效率低和巡检准确率低的技术问题。Embodiments of the present application provide a network performance monitoring method, device, electronic equipment and computer program products to solve the technical problems of low manual monitoring efficiency and low inspection accuracy of network performance.
第一方面,本申请实施例提供一种网络性能监测方法,包括:In the first aspect, embodiments of the present application provide a network performance monitoring method, including:
获取待监测网络的网络流量数据图;Obtain the network traffic data graph of the network to be monitored;
将所述待监测网络的网络流量数据图输入至目标神经网络,得到所述目标神经网络输出的网络性能监测结果,所述目标神经网络是基于各监测节点对应的网络流量样本数据图训练得到的。Input the network traffic data graph of the network to be monitored into the target neural network to obtain the network performance monitoring results output by the target neural network. The target neural network is trained based on the network traffic sample data graph corresponding to each monitoring node. .
在一些实施例中,所述目标神经网络通过如下步骤训练:In some embodiments, the target neural network is trained through the following steps:
预处理所述网络流量样本数据图,得到目标样本数据集,所述网络流量样本数据图是基于所述各监测节点对应的网络数据包转换得到的图像;Preprocess the network traffic sample data graph to obtain a target sample data set, where the network traffic sample data graph is an image converted based on the network data packets corresponding to each monitoring node;
将所述目标样本数据集输入至初始神经网络中进行特征提取,得到特征数据集;Input the target sample data set into the initial neural network for feature extraction to obtain a feature data set;
基于所述特征数据集和预设损失函数,训练所述初始神经网络,得到训练完成的目标神经网络。Based on the feature data set and the preset loss function, the initial neural network is trained to obtain a trained target neural network.
在一些实施例中,所述目标样本数据集包括标记信息集;所述预处理所述网络流量样本数据图,得到目标样本数据集,包括:In some embodiments, the target sample data set includes a mark information set; the preprocessing of the network traffic sample data graph to obtain the target sample data set includes:
对所述网络流量样本数据图中的第一目标区域进行粗定位,得到粗定位样本数据集;Perform rough positioning on the first target area in the network traffic sample data map to obtain a rough positioning sample data set;
在所述粗定位样本数据集中标记第二目标区域,生成所述标记信息集。Mark the second target area in the coarse positioning sample data set to generate the marking information set.
在一些实施例中,所述目标样本数据集包括扩增样本数据集,所述对所述网络流量样本数据图中的第一目标区域进行粗定位,得到粗定位样本数据集之后,还包括:In some embodiments, the target sample data set includes an amplified sample data set, and rough positioning of the first target area in the network traffic sample data map to obtain the rough positioning sample data set further includes:
利用数据扩增操作对所述粗定位样本数据集进行处理,得到扩增样本数据集;Use a data amplification operation to process the rough positioning sample data set to obtain an amplified sample data set;
所述数据扩增操作包括以下至少一项:The data amplification operation includes at least one of the following:
图像旋转、图像平移、图像缩放、调整图像对比度、调节图像光照和增加图像噪声。Image rotation, image translation, image scaling, adjusting image contrast, adjusting image lighting and adding image noise.
在一些实施例中,所述特征数据集包括:第一特征图、第二特征图、第三特征图和第四特征图,所述将所述目标样本数据集输入至初始神经网络中进行特征提取,得到特征数据集,包括:In some embodiments, the feature data set includes: a first feature map, a second feature map, a third feature map and a fourth feature map, and the target sample data set is input into an initial neural network for feature processing. Extract and obtain feature data sets, including:
将所述目标样本数据集输入至第一卷积层进行特征提取,得到所述第一特征图;Input the target sample data set to the first convolution layer for feature extraction to obtain the first feature map;
将所述目标样本数据集输入至第二卷积层进行特征提取,得到所述第二特征图;Input the target sample data set to the second convolution layer for feature extraction to obtain the second feature map;
将所述目标样本数据集输入至池化层进行池化,并将池化后的数据输入至第三卷积层进行特征提取,得到所述第三特征图;Input the target sample data set to the pooling layer for pooling, and input the pooled data to the third convolution layer for feature extraction to obtain the third feature map;
将所述目标样本数据集输入至第四卷积层进行特征提取,得到所述第四特征图。The target sample data set is input to the fourth convolution layer for feature extraction to obtain the fourth feature map.
在一些实施例中,所述将所述待监测网络的网络流量数据图输入至目标神经网络,得到所述目标神经网络输出的网络性能监测结果之后,还包括:In some embodiments, after inputting the network traffic data graph of the network to be monitored to the target neural network and obtaining the network performance monitoring results output by the target neural network, the method further includes:
基于所述网络性能监测结果,确定所述待监测网络的网络性能是否故障;Based on the network performance monitoring results, determine whether the network performance of the network to be monitored is faulty;
在确定所述待监测网络的网络性能故障的情况下,确定所述待监测网络的网络故障类型和所述网络故障类型对应的故障处理措施。When a network performance failure of the network to be monitored is determined, a network failure type of the network to be monitored and a fault handling measure corresponding to the network failure type are determined.
在一些实施例中,所述预设损失函数为:In some embodiments, the preset loss function is:
其中,pi为预测样本数据属于类别i的概率,为真实样本数据属于类别i的概率,ti表示RPN训练阶段的预测偏移量,/>表示RPN 训练阶段的实际偏移量,Ncls为特征图的大小,Nreg为目标区域的大小,λ为目标数据,Lcls为分类损失函数,Lreg为回归损失函数。Among them, p i is the probability that the predicted sample data belongs to category i, is the probability that the real sample data belongs to category i, t i represents the prediction offset in the RPN training stage,/> Represents the actual offset of the RPN training phase, N cls is the size of the feature map, N reg is the size of the target area, λ is the target data, L cls is the classification loss function, and L reg is the regression loss function.
第二方面,本申请实施例提供一种网络性能监测装置,包括:In a second aspect, embodiments of the present application provide a network performance monitoring device, including:
获取模块,用于获取待监测网络的网络流量数据图;The acquisition module is used to obtain the network traffic data graph of the network to be monitored;
输出模块,用于将所述待监测网络的网络流量数据图输入至目标神经网络,得到所述目标神经网络输出的网络性能监测结果,所述目标神经网络是基于各监测节点对应的网络流量样本数据图训练得到的。The output module is used to input the network traffic data graph of the network to be monitored to the target neural network to obtain the network performance monitoring results output by the target neural network. The target neural network is based on the network traffic samples corresponding to each monitoring node. Data graph training.
第三方面,本申请实施例提供一种电子设备,包括处理器和存储有计算机程序的存储器,所述处理器执行所述程序时实现第一方面所述的网络性能监测方法。In a third aspect, embodiments of the present application provide an electronic device, including a processor and a memory storing a computer program. When the processor executes the program, the network performance monitoring method described in the first aspect is implemented.
第四方面,本申请实施例提供一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现第一方面或第二方面所述的网络性能监测方法。In a fourth aspect, embodiments of the present application provide a computer program product, including a computer program that implements the network performance monitoring method described in the first aspect or the second aspect when the computer program is executed by a processor.
本申请实施例提供的网络性能监测方法、装置、电子设备及计算机程序产品,通过将待监测网络的网络流量数据图输入至目标神经网络,得到网络性能检测结果,从而实现基于可视化图像来进行网络性能检测,同时提高了网络性能检测的效率和准确率,还可以降低人工巡检成本,实现智能化网络性能监控。The network performance monitoring methods, devices, electronic equipment and computer program products provided by the embodiments of the present application obtain network performance detection results by inputting the network traffic data graph of the network to be monitored into the target neural network, thereby realizing network performance based on visual images. Performance testing simultaneously improves the efficiency and accuracy of network performance testing, reduces manual inspection costs, and enables intelligent network performance monitoring.
附图说明Description of the drawings
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to explain the technical solutions in this application or the prior art more clearly, the drawings needed to be used in the description of the embodiments or the prior art will be briefly introduced below. Obviously, the drawings in the following description are of the present invention. For some embodiments of the application, those of ordinary skill in the art can also obtain other drawings based on these drawings without exerting creative efforts.
图1是本申请实施例提供的网络性能监测方法的流程示意图;Figure 1 is a schematic flowchart of a network performance monitoring method provided by an embodiment of the present application;
图2是应用本申请实施例提供的网络性能监测方法的神经网络结构示意图;Figure 2 is a schematic structural diagram of a neural network using the network performance monitoring method provided by the embodiment of the present application;
图3是本申请实施例提供的网络性能监测装置的结构示意图;Figure 3 is a schematic structural diagram of a network performance monitoring device provided by an embodiment of the present application;
图4是本申请实施例提供的电子设备的实体结构示意图;Figure 4 is a schematic diagram of the physical structure of an electronic device provided by an embodiment of the present application;
具体实施方式Detailed ways
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。In order to make the purpose, technical solutions and advantages of this application clearer, the technical solutions in this application will be clearly and completely described below in conjunction with the accompanying drawings in the embodiments of this application. Obviously, the described embodiments are part of this application. Examples, not all examples. Based on the embodiments in this application, all other embodiments obtained by those of ordinary skill in the art without creative efforts fall within the scope of protection of this application.
本申请提供的网络性能监测方法的执行主体可以是电子设备、电子设备中的部件、集成电路、或芯片。该电子设备可以是移动电子设备,也可以为非移动电子设备。示例性的,移动电子设备可以为手机、平板电脑、笔记本电脑、掌上电脑、车载电子设备、可穿戴设备、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本或者个人数字助理(personal digital assistant,PDA)等,非移动电子设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、柜员机或者自助机等,本申请不作具体限定。The execution subject of the network performance monitoring method provided by this application may be an electronic device, a component in an electronic device, an integrated circuit, or a chip. The electronic device may be a mobile electronic device or a non-mobile electronic device. For example, the mobile electronic device may be a mobile phone, a tablet computer, a notebook computer, a handheld computer, a vehicle-mounted electronic device, a wearable device, an ultra-mobile personal computer (UMPC), a netbook or a personal digital assistant (personal digital assistant). assistant, PDA), etc. The non-mobile electronic device can be a server, Network Attached Storage (NAS), personal computer (PC), teller machine or self-service machine, etc. This application does not make specific limitations.
下面以计算机执行本申请实施例提供的网络性能监测方法为例,详细说明本申请的技术方案。The technical solution of the present application will be described in detail below by taking a computer to execute the network performance monitoring method provided by the embodiment of the present application as an example.
图1为本申请实施例提供的网络性能监测方法的流程示意图。参照图1,本申请实施例提供一种网络性能监测方法,可以包括:步骤 110和步骤120。Figure 1 is a schematic flowchart of a network performance monitoring method provided by an embodiment of the present application. Referring to Figure 1, an embodiment of the present application provides a network performance monitoring method, which may include: step 110 and step 120.
步骤110、获取待监测网络的网络流量数据图。Step 110: Obtain the network traffic data graph of the network to be monitored.
需要说明的是,待检测网络可以对应局域网内对应的待监测节点所监测的网络。可以采集目标时段内待监测节点对应的网络线路上的网络流量,其中,网络流量包括待监测网络的输入流量数据、输出流量和流量数据成分。It should be noted that the network to be detected may correspond to the network monitored by the corresponding node to be monitored in the local area network. The network traffic on the network line corresponding to the node to be monitored during the target period can be collected, where the network traffic includes input traffic data, output traffic and traffic data components of the network to be monitored.
根据实时采集到的待监测网络的网络流量数据,生成网络流量数据图。在实际执行中,数据可视化可以通过VC++6.0网络曲线图控件或Cacti网络流量监控图形分析工具实现。可以根据需求调用上述工具获取网络流量数据图,也可以利用后台直接自动抓取网络流量数据图,在此不作具体限定。Generate network traffic data graphs based on the real-time collected network traffic data of the network to be monitored. In actual implementation, data visualization can be achieved through the VC++6.0 network graph control or the Cacti network traffic monitoring graphical analysis tool. You can call the above tools to obtain the network traffic data graph according to your needs, or you can use the background to directly and automatically capture the network traffic data graph, which is not specifically limited here.
网络流量数据图的表示方法可以基于统计方法,针对网络流量的各类特征属性进行分门别类的统计显示,如采用仪表盘,统计数据表,直方图,饼状图,点图,瀑布图等方式。The representation method of the network traffic data graph can be based on statistical methods, and statistical display can be carried out according to various characteristics and attributes of the network traffic, such as using dashboards, statistical data tables, histograms, pie charts, dot plots, waterfall charts, etc.
步骤120、将待监测网络的网络流量数据图输入至目标神经网络,得到目标神经网络输出的网络性能监测结果,目标神经网络是基于各监测节点对应的网络流量样本数据图训练得到的。Step 120: Input the network traffic data graph of the network to be monitored into the target neural network to obtain the network performance monitoring results output by the target neural network. The target neural network is trained based on the network traffic sample data graph corresponding to each monitoring node.
在本步骤,先获取训练完成的目标神经网络,再将待监测网络的网络流量数据图输入至目标神经网络,目标神经网络可以直接输出的网络性能监测结果。In this step, the trained target neural network is first obtained, and then the network traffic data graph of the network to be monitored is input to the target neural network. The target neural network can directly output the network performance monitoring results.
根据网络性能监测结果,可以对待监测网络进行网络性能评价。具体的,若网络性能监测结果指示待监测网络中未出现故障,则判定待监测网络的网络性能为优;若网络性能监测结果指示待监测网络中出现3次以上故障,则判定待监测网络的网络性能为差。Based on the network performance monitoring results, network performance evaluation of the network to be monitored can be performed. Specifically, if the network performance monitoring results indicate that there are no faults in the network to be monitored, the network performance of the network to be monitored is determined to be excellent; if the network performance monitoring results indicate that there are more than 3 faults in the network to be monitored, the network performance to be monitored is determined to be excellent. Network performance is poor.
可以理解的是,判断网络性能为差时,可以预先设定待检测网络中出现故障的次数阈值。例如:次数阈值可以设为5次,则有在待监测网络中出现5次以上故障,则判定待监测网络的网络性能为差。It can be understood that when the network performance is judged to be poor, a threshold for the number of faults in the network to be detected can be set in advance. For example, the frequency threshold can be set to 5 times. If more than 5 faults occur in the network to be monitored, the network performance of the network to be monitored is judged to be poor.
本申请实施例提供的网络性能监测方法,通过将待监测网络的网络流量数据图输入至目标神经网络,得到网络性能检测结果,从而实现基于可视化图像来进行网络性能检测,同时提高了网络性能检测的效率和准确率,还可以降低人工巡检成本,实现智能化网络性能监控。The network performance monitoring method provided by the embodiments of this application obtains network performance detection results by inputting the network traffic data graph of the network to be monitored into the target neural network, thereby realizing network performance detection based on visual images and improving network performance detection at the same time. The efficiency and accuracy can also reduce the cost of manual inspection and realize intelligent network performance monitoring.
在一些实施例中,目标神经网络通过如下步骤训练:In some embodiments, the target neural network is trained by the following steps:
预处理网络流量样本数据图,得到目标样本数据集,网络流量样本数据图是基于各监测节点对应的网络数据包转换得到的图像;Preprocess the network traffic sample data graph to obtain the target sample data set. The network traffic sample data graph is an image converted based on the network data packets corresponding to each monitoring node;
将目标样本数据集输入至初始神经网络中进行特征提取,得到特征数据集;Input the target sample data set into the initial neural network for feature extraction to obtain a feature data set;
基于特征数据集和预设损失函数,训练初始神经网络,得到训练完成的目标神经网络。Based on the feature data set and the preset loss function, the initial neural network is trained to obtain the trained target neural network.
在实际执行中,先获取各个监测节点在预设历史时段内的网络数据包。历史时段可以根据实际需求确定,在此不作具体限定。In actual execution, the network data packets of each monitoring node within the preset historical period are first obtained. The historical period can be determined according to actual needs and is not specifically limited here.
需要说明的是,数据包是TCP/IP协议通信传输中的数据单位, TCP/IP协议是工作在开放系统互连(Open System Interconnection, OSI)模型的第三层(网络层)、第四层(传输层)上的,帧工作在第二层 (数据链路层)。数据包包含在帧里,网络数据包包含数据链路层、网络层、传输层、应用层四层协议数据包。It should be noted that data packets are data units in TCP/IP protocol communication and transmission. TCP/IP protocol works on the third layer (network layer) and fourth layer of the Open System Interconnection (OSI) model. (Transport layer), frames work on the second layer (Data Link layer). Data packets are included in frames, and network data packets include four-layer protocol data packets: data link layer, network layer, transport layer, and application layer.
OSI模型是由国际标准化组织定义的标准,它定义了一种分层体系结构,在其中的每一层定义了针对不同通信级别的协议。OSI模型有7层,1到7层分别是:物理层、数据链路层、网络层、传输层、会话层、表示层、应用层。The OSI model is a standard defined by the International Organization for Standardization. It defines a layered architecture in which each layer defines protocols for different communication levels. The OSI model has 7 layers. Layers 1 to 7 are: physical layer, data link layer, network layer, transport layer, session layer, presentation layer and application layer.
网络数据包的特征属性不是人工配制的,是来自于网络线路上的网络流量,特征属性可以包括:在各个时间窗口内的网络数据包数量、网络数据包尺寸数量分布、数据报发送间隔分布等特征属性信息。The characteristic attributes of network data packets are not manually prepared, but come from the network traffic on the network line. Characteristic attributes can include: the number of network data packets in each time window, the size distribution of network data packets, the distribution of datagram sending intervals, etc. Feature attribute information.
获取各监测节点在预设历史时段内的网络数据包之后,可以将网络数据包转换为可视化图像,即网络流量样本数据图。After obtaining the network data packets of each monitoring node within the preset historical period, the network data packets can be converted into visual images, that is, network traffic sample data graphs.
对网络流量样本数据图进行预处理,可以得到目标样本数据集。并将目标样本数据集作为初始神经网络的输入,以对初始神经网络进行训练。Preprocess the network traffic sample data graph to obtain the target sample data set. And use the target sample data set as the input of the initial neural network to train the initial neural network.
初始神经网络先对目标样本数据集进行特征提取,获取特征数据集,然后基于预设损失函数对初始神经网络进行训练,在训练过程中使用损失函数进行误差计算,并使用反向传播算法,不断更新模型的权重参数,直至神经网络收敛达到预期目标,最终完成训练。The initial neural network first performs feature extraction on the target sample data set to obtain the feature data set, and then trains the initial neural network based on the preset loss function. During the training process, the loss function is used to calculate the error, and the back propagation algorithm is used to continuously Update the weight parameters of the model until the neural network converges to reach the expected goal, and finally completes the training.
可以理解的是,初始神经网络可以是Inception系列网络,例如可以是InceptionV1、Inception V2、Inception V3、Inception V4与 Inception-ResNet-V2,在此不作具体限定。It can be understood that the initial neural network may be an Inception series network, such as InceptionV1, Inception V2, Inception V3, Inception V4, and Inception-ResNet-V2, which are not specifically limited here.
本申请实施例提供的网络性能监测方法,通过预处理网络流量样本数据图,得到目标样本数据集,进而根据目标样本训练数据集训练初始神经网络,并得到目标神经网络,从而便于对待检测网络的网络流量数据图进行监测,可以快速获取监测结果,相较于直接采用人工巡检的方式,可以提高网络性能监测的效率和准确率。The network performance monitoring method provided by the embodiment of the present application obtains the target sample data set by preprocessing the network traffic sample data graph, and then trains the initial neural network based on the target sample training data set and obtains the target neural network, thereby facilitating the detection of the network to be detected. Monitoring network traffic data graphs can quickly obtain monitoring results. Compared with direct manual inspection, it can improve the efficiency and accuracy of network performance monitoring.
在一些实施例中,特征数据集包括:第一特征图、第二特征图、第三特征图和第四特征图,将目标样本数据集输入至初始神经网络中进行特征提取,得到特征数据集,包括:In some embodiments, the feature data set includes: a first feature map, a second feature map, a third feature map and a fourth feature map. The target sample data set is input into the initial neural network for feature extraction to obtain the feature data set. ,include:
将目标样本数据集输入至第一卷积层进行特征提取,得到第一特征图;Input the target sample data set to the first convolution layer for feature extraction to obtain the first feature map;
将目标样本数据集输入至第二卷积层进行特征提取,得到第二特征图;Input the target sample data set to the second convolution layer for feature extraction to obtain the second feature map;
将目标样本数据集输入至池化层进行池化,并将池化后的数据输入至第三卷积层进行特征提取,得到第三特征图;Input the target sample data set to the pooling layer for pooling, and input the pooled data to the third convolution layer for feature extraction to obtain the third feature map;
将目标样本数据集输入至第四卷积层进行特征提取,得到第四特征图。The target sample data set is input to the fourth convolution layer for feature extraction to obtain the fourth feature map.
在实际执行中,初始神经网络可以为Inception V2网络,Inception V2网络的结构如图2所示。In actual execution, the initial neural network can be the Inception V2 network. The structure of the Inception V2 network is shown in Figure 2.
Inception V2网络包括Base层,Base层用于导入相关数据。从 Base层可以引出四个分支:第一层、第二层、第三层和第四层。The Inception V2 network includes a Base layer, which is used to import related data. Four branches can be derived from the Base layer: the first layer, the second layer, the third layer and the fourth layer.
第一层可以为第一卷积层,包含大小为1*1的卷积核,后接ReLU 激活函数。可以将目标样本数据集输入至第一卷积层进行特征提取,得到第一特征图。The first layer can be the first convolution layer, including a convolution kernel of size 1*1, followed by a ReLU activation function. The target sample data set can be input to the first convolution layer for feature extraction to obtain the first feature map.
其中,1*1卷积核实现了降维,同时使用ReLU激活函数,也可以增强网络的非线性能力。Among them, the 1*1 convolution kernel achieves dimensionality reduction, and the use of ReLU activation function can also enhance the nonlinear capability of the network.
第二层可以为第二卷积层,包含大小为1*1的卷积核,后接ReLU 激活函数,然后接大小为3*3的卷积核,后再接ReLU激活函数。可以将目标样本数据集输入至第二卷积层进行特征提取,得到第二特征图。The second layer can be the second convolution layer, including a convolution kernel of size 1*1, followed by a ReLU activation function, then a convolution kernel of size 3*3, and then a ReLU activation function. The target sample data set can be input to the second convolution layer for feature extraction to obtain the second feature map.
相较于第二层,由于因为增加了一层卷积操作,则对应多了一次 ReLU,即增加一层非线性映射,使特征信息更加具有判别性。Compared with the second layer, because a layer of convolution operation is added, there is one more ReLU, that is, a layer of nonlinear mapping is added to make the feature information more discriminative.
第三层可以为池化层和第三卷积层,包含池化层,池化层后接大小为1*1的卷积核,后再接ReLU激活函数。可以将目标样本数据集输入至池化层进行池化,并将池化后的数据输入至第三卷积层进行特征提取,得到第三特征图。The third layer can be a pooling layer and a third convolution layer, including a pooling layer. The pooling layer is followed by a convolution kernel of size 1*1, and then followed by a ReLU activation function. The target sample data set can be input to the pooling layer for pooling, and the pooled data can be input to the third convolution layer for feature extraction to obtain a third feature map.
第四层可以为第四卷积层:大小为1*1的卷积核,后接ReLU激活函数,然后接大小为3*3的卷积核,之后接ReLU激活函数,再接大小为3*3的卷积核,最后接ReLU激活函数。可以将目标样本数据集输入至第四卷积层进行特征提取,得到第四特征图。The fourth layer can be the fourth convolution layer: a convolution kernel of size 1*1, followed by a ReLU activation function, then a convolution kernel of size 3*3, followed by a ReLU activation function, and then a convolution kernel of size 3 *3 convolution kernel, finally connected to the ReLU activation function. The target sample data set can be input to the fourth convolution layer for feature extraction to obtain the fourth feature map.
因为两个3*3的卷积与一个5*5的卷积具体相同的感受野,但是参数量却少于5*5的卷积。并且因为增加了一层卷积操作,则对应多了一次ReLU,即增加一层非线性映射,使特征信息更加具有判别性Because two 3*3 convolutions have the same receptive field as a 5*5 convolution, but the number of parameters is less than that of a 5*5 convolution. And because a layer of convolution operation is added, it corresponds to one more ReLU, that is, a layer of nonlinear mapping is added to make the feature information more discriminative.
最后可以将第一层至第四层输出的第一特征图、第二特征图、第三特征图和第四特征图通过滤波器进行合并。Finally, the first feature map, the second feature map, the third feature map and the fourth feature map output from the first layer to the fourth layer can be combined through filters.
本申请实施例提供的网络性能监测方法,通过不同的卷积核进行特征提取,可以降低识别误差率。The network performance monitoring method provided by the embodiments of this application can reduce the recognition error rate by performing feature extraction through different convolution kernels.
在一些实施例中,目标样本数据集包括标记信息集;预处理网络流量样本数据图,得到目标样本数据集,包括:In some embodiments, the target sample data set includes a mark information set; preprocessing the network traffic sample data graph to obtain the target sample data set includes:
对网络流量样本数据图中的第一目标区域进行粗定位,得到粗定位样本数据集;Perform rough positioning on the first target area in the network traffic sample data map to obtain a rough positioning sample data set;
在粗定位样本数据集中标记第二目标区域,生成标记信息集。Mark the second target area in the coarse positioning sample data set to generate a marking information set.
需要说明的是,图像粗定位能够在目标位置不确定的情况下,粗略的定位目标。因此该方法多使用于背景复杂、目标位置不固定、但检测目标清晰的情况下。It should be noted that image coarse positioning can roughly locate the target when the target position is uncertain. Therefore, this method is mostly used when the background is complex, the target position is not fixed, but the detection target is clear.
可以是根据需求确定网络流量的特征属性确定需要进行识别和定位大致区域,则可以对所有网络流量样本数据图中的第一目标区域进行粗定位,以获得粗定位样本数据集。The characteristic attributes of the network traffic may be determined based on the requirements to determine the rough area that needs to be identified and located. Then the first target area in all network traffic sample data maps may be roughly positioned to obtain a rough positioning sample data set.
例如:网络流量数据图中包括输入流量数据和输出流量数据,而第一目标区域为输入流量数据对应的图像区域。因此,粗定位数据集即为输入流量数据对应的图像区域被定位的数据集。For example: the network traffic data graph includes input traffic data and output traffic data, and the first target area is the image area corresponding to the input traffic data. Therefore, the coarse positioning data set is the data set in which the image area corresponding to the input traffic data is located.
在获取粗定位样本数据集之后,对粗定位样本数据集中的第二目标区域进行标记,生成标记信息集。例如:对粗定位后的可视化图像中的感兴趣数据区域进行矩形框标记,并组成标记信息集,感兴趣数据区域即为第二目标区域。其中,矩形框标记仅用作示例,在此不作具体限定。After the coarse positioning sample data set is obtained, the second target area in the coarse positioning sample data set is marked to generate a marking information set. For example: mark the data area of interest in the visual image after rough positioning with a rectangular frame and form a mark information set. The data area of interest is the second target area. Among them, the rectangular frame mark is only used as an example and is not specifically limited here.
标记信息集中可以明确的标记网络流量特征属性对应的图像区域,并指示对应的网络流量特征属性信息。例如:第二目标区域可以是某天某个时段输入流量数据的图像区域,可以通过矩形框标记出来,并指示详细的输入流量数据信息。The mark information set can clearly mark the image area corresponding to the network traffic characteristic attribute, and indicate the corresponding network traffic characteristic attribute information. For example, the second target area can be an image area where traffic data is input during a certain period of a certain day. It can be marked by a rectangular frame and indicate detailed input traffic data information.
本申请实施例提供的网络性能监测方法,通过先对网络流量样本数据图进行粗定位,再对粗定位数据集进行标记,实现图像的精细定位,提高图像识别准确性。The network performance monitoring method provided by the embodiment of the present application first performs rough positioning on the network traffic sample data map, and then marks the rough positioning data set to achieve fine positioning of the image and improve the accuracy of image recognition.
在一些实施例中,目标样本数据集包括扩增样本数据集,对网络流量样本数据图中的第一目标区域进行粗定位,得到粗定位样本数据集之后,还包括:In some embodiments, the target sample data set includes an amplified sample data set, and rough positioning is performed on the first target area in the network traffic sample data graph. After obtaining the rough positioning sample data set, it also includes:
利用数据扩增操作对粗定位样本数据集进行处理,得到扩增样本数据集;Use the data amplification operation to process the coarse positioning sample data set to obtain the amplified sample data set;
数据扩增操作包括以下至少一项:Data amplification operations include at least one of the following:
图像旋转、图像平移、图像缩放、调整图像对比度、调节图像光照和增加图像噪声。Image rotation, image translation, image scaling, adjusting image contrast, adjusting image lighting and adding image noise.
可以理解的是,在神经网络的训练过程中,数据扩增是对读取进行数据增强的操作,所以需要在数据读取的时候完成。It is understandable that during the training process of neural network, data amplification is a data enhancement operation for reading, so it needs to be completed when the data is read.
数据扩增有一定的随机性,相同的图片经过数据扩增可能得到不同的图片。Data amplification has a certain degree of randomness, and the same picture may obtain different pictures after data amplification.
数据扩增可以从颜色空间、尺度空间到样本空间来扩展,同时根据不同任务数据扩增都有相应的区别。例如:对于图像分类,数据扩增一般不会改变标签;对于物体检测,数据扩增会改变物体坐标位置;对于图像分割,数据扩增会像素标签。Data amplification can be expanded from color space, scale space to sample space. At the same time, data amplification has corresponding differences according to different tasks. For example: for image classification, data amplification generally does not change the label; for object detection, data amplification will change the object coordinate position; for image segmentation, data amplification will change the pixel label.
在实际执行中,数据扩增操作可以为:In actual implementation, the data augmentation operation can be:
图像平移、图像缩放、对图像颜色的对比度、饱和度和零度进行调整或变换、对图像中心进行裁剪、对图像四个角和中心进行裁剪得到五分图像、对图像进行灰度变换、使用固定值进行像素填充、随机仿射变换、随机区域裁剪、图像旋转(例如:随机水平翻转、随机旋转或随机垂直翻转)、调节图像光照和增加图像噪声等Image translation, image scaling, adjusting or transforming the contrast, saturation and zero degree of the image color, cropping the image center, cropping the four corners and center of the image to obtain a five-point image, grayscale transformation of the image, using fixed Values can be used to perform pixel filling, random affine transformation, random area cropping, image rotation (for example: random horizontal flip, random rotation or random vertical flip), adjust image lighting and increase image noise, etc.
本申请实施例提供的网络性能监测方法,通过数据扩增可以增加训练集的样本,同时也可以有效缓解模型过拟合的情况,也可以给模型带来的更强的泛化能力。The network performance monitoring method provided by the embodiments of the present application can increase the number of samples in the training set through data amplification, and can also effectively alleviate the over-fitting of the model, and can also bring stronger generalization capabilities to the model.
在一些实施例中,将待监测网络的网络流量数据图输入至目标神经网络,得到目标神经网络输出的网络性能监测结果之后,还包括:In some embodiments, after inputting the network traffic data graph of the network to be monitored to the target neural network and obtaining the network performance monitoring results output by the target neural network, the method further includes:
基于网络性能监测结果,确定待监测网络的网络性能是否故障;Based on the network performance monitoring results, determine whether the network performance of the network to be monitored is faulty;
在确定待监测网络的网络性能故障的情况下,确定待监测网络的网络故障类型和网络故障类型对应的故障处理措施。When a network performance fault of the network to be monitored is determined, the network fault type of the network to be monitored and the fault handling measures corresponding to the network fault type are determined.
可以理解的是,通过目标神经网络输出的网络性能监测结果,可以直接确定待监测网络的网络性能是否故障,若待监测网络的网络性能是否故障,还可以确定待监测网络的故障次数、网络故障类型和网络故障类型对应的故障处理措施。It can be understood that through the network performance monitoring results output by the target neural network, it can be directly determined whether the network performance of the network to be monitored is faulty. If the network performance of the network to be monitored is faulty, the number of faults of the network to be monitored and the number of network faults can also be determined. Type and troubleshooting measures corresponding to the network fault type.
网络故障类型主要有:物理接口状态异常导致的设备连通性故障;网络交换设备的路由配置错误导致的网络链路故障;业务数据流量突发导致的网络堵塞故障等。The main types of network failures include: device connectivity failures caused by abnormal physical interface status; network link failures caused by routing configuration errors of network switching equipment; network congestion failures caused by sudden business data traffic, etc.
在确定网络故障类型之后,可以利用网络故障处理模型确定对应的故障处理措施对当前的网络故障类型进行处理。After the network fault type is determined, the network fault processing model can be used to determine the corresponding fault processing measures to handle the current network fault type.
本申请实施例提供的网络性能监测方法,可以根据网络故障类型确定对应的故障处理措施,从而可以自动及快速的进行网络故障处理,完成网络故障自动化智能处理。The network performance monitoring method provided by the embodiments of this application can determine corresponding fault handling measures according to the type of network fault, thereby automatically and quickly handling network faults and completing automated and intelligent processing of network faults.
在一些实施例中,预设损失函数为:In some embodiments, the preset loss function is:
其中,pi为预测样本数据属于类别i的概率,为真实样本数据属于类别i的概率,ti表示RPN训练阶段的预测偏移量,/>表示RPN 训练阶段的实际偏移量,Ncls为特征图的大小,Nreg为目标区域的大小,λ为目标数据,Lcls为分类损失函数,Lreg为回归损失函数。Among them, p i is the probability that the predicted sample data belongs to category i, is the probability that the real sample data belongs to category i, t i represents the prediction offset in the RPN training stage,/> Represents the actual offset of the RPN training phase, N cls is the size of the feature map, N reg is the size of the target area, λ is the target data, L cls is the classification loss function, and L reg is the regression loss function.
需要说明的是,λ可以为预先设置的常数,在此不作具体限定。区域生成网络(Region Proposal Network,RPN)的输入是卷积后的特征图,输出是候选框图,即标有目标区域的图像。It should be noted that λ can be a preset constant and is not specifically limited here. The input of the Region Proposal Network (RPN) is the convolved feature map, and the output is the candidate box map, that is, the image marked with the target area.
在实际执行中,将待监测网络的网络流量数据图输入至目标神经网络中进行网络性能监测,通过目标神经网络可以得到图像中目标区域对应的网络流量的特征属性,这里主要是通过分类损失函数和检测框回归损失函数进行训练或学习的,最终可以保留标记目标区域对应的网络流量的矩形框和矩形框的位置。In actual execution, the network traffic data graph of the network to be monitored is input into the target neural network for network performance monitoring. Through the target neural network, the characteristic attributes of the network traffic corresponding to the target area in the image can be obtained. Here, the classification loss function is mainly used. Training or learning with the detection frame regression loss function can ultimately retain the rectangular frame and the position of the rectangular frame marking the network traffic corresponding to the target area.
本申请实施例提供的网络性能监测方法,可以根据预设损失函数对待监测网络的网络流量数据图进行识别,可以快速训练目标神经网络,提高目标神经网络的训练质量。The network performance monitoring method provided by the embodiments of the present application can identify the network traffic data graph of the network to be monitored based on the preset loss function, quickly train the target neural network, and improve the training quality of the target neural network.
下面对本申请实施例提供的网络性能监测装置进行描述,下文描述的网络性能监测装置与上文描述的网络性能监测方法可相互对应参照。The network performance monitoring device provided by the embodiment of the present application is described below. The network performance monitoring device described below and the network performance monitoring method described above can be mutually referenced.
图3为本申请实施例提供的网络性能监测装置的结构示意图。参照图3,本申请实施例提供一种网络性能监测装置,可以包括:获取模块310和输出模块320。Figure 3 is a schematic structural diagram of a network performance monitoring device provided by an embodiment of the present application. Referring to Figure 3, an embodiment of the present application provides a network performance monitoring device, which may include: an acquisition module 310 and an output module 320.
获取模块310,用于获取待监测网络的网络流量数据图;The acquisition module 310 is used to obtain the network traffic data graph of the network to be monitored;
输出模块320,用于将所述待监测网络的网络流量数据图输入至目标神经网络,得到所述目标神经网络输出的网络性能监测结果,所述目标神经网络是基于各监测节点对应的网络流量样本数据图训练得到的。The output module 320 is used to input the network traffic data graph of the network to be monitored to the target neural network to obtain the network performance monitoring results output by the target neural network. The target neural network is based on the network traffic corresponding to each monitoring node. Obtained by training on sample data graph.
本申请实施例提供的网络性能监测装置,通过将待监测网络的网络流量数据图输入至目标神经网络,得到网络性能检测结果,从而实现基于可视化图像来进行网络性能检测,同时提高了网络性能检测的效率和准确率,还可以降低人工巡检成本,实现智能化网络性能监控。The network performance monitoring device provided by the embodiment of the present application inputs the network traffic data graph of the network to be monitored into the target neural network to obtain network performance detection results, thereby realizing network performance detection based on visual images and improving network performance detection at the same time. The efficiency and accuracy can also reduce the cost of manual inspection and realize intelligent network performance monitoring.
在一些实施例中,所述装置还包括:In some embodiments, the device further includes:
训练模块,用于预处理所述网络流量样本数据图,得到目标样本数据集,所述网络流量样本数据图是基于所述各监测节点对应的网络数据包转换得到的图像;A training module, used to preprocess the network traffic sample data graph to obtain a target sample data set. The network traffic sample data graph is an image converted based on the network data packets corresponding to each monitoring node;
将所述目标样本数据集输入至初始神经网络中进行特征提取,得到特征数据集;Input the target sample data set into the initial neural network for feature extraction to obtain a feature data set;
基于所述特征数据集和预设损失函数,训练所述初始神经网络,得到训练完成的目标神经网络。Based on the feature data set and the preset loss function, the initial neural network is trained to obtain a trained target neural network.
在一些实施例中,所述目标样本数据集包括标记信息集;所述训练模块还用于:In some embodiments, the target sample data set includes a label information set; the training module is also used to:
对所述网络流量样本数据图中的第一目标区域进行粗定位,得到粗定位样本数据集;Perform rough positioning on the first target area in the network traffic sample data map to obtain a rough positioning sample data set;
在所述粗定位样本数据集中标记第二目标区域,生成所述标记信息集。Mark the second target area in the coarse positioning sample data set to generate the marking information set.
在一些实施例中,所述目标样本数据集包括扩增样本数据集,所述训练模块还用于:In some embodiments, the target sample data set includes an amplification sample data set, and the training module is also used to:
利用数据扩增操作对所述粗定位样本数据集进行处理,得到扩增样本数据集;Use a data amplification operation to process the rough positioning sample data set to obtain an amplified sample data set;
所述数据扩增操作包括以下至少一项:The data amplification operation includes at least one of the following:
图像旋转、图像平移、图像缩放、调整图像对比度、调节图像光照和增加图像噪声。Image rotation, image translation, image scaling, adjusting image contrast, adjusting image lighting and adding image noise.
在一些实施例中,所述特征数据集包括:第一特征图、第二特征图、第三特征图和第四特征图,所述训练模块还用于:In some embodiments, the feature data set includes: a first feature map, a second feature map, a third feature map and a fourth feature map, and the training module is also used to:
将所述目标样本数据集输入至第一卷积层进行特征提取,得到所述第一特征图;Input the target sample data set to the first convolution layer for feature extraction to obtain the first feature map;
将所述目标样本数据集输入至第二卷积层进行特征提取,得到所述第二特征图;Input the target sample data set to the second convolution layer for feature extraction to obtain the second feature map;
将所述目标样本数据集输入至池化层进行池化,并将池化后的数据输入至第三卷积层进行特征提取,得到所述第三特征图;Input the target sample data set to the pooling layer for pooling, and input the pooled data to the third convolution layer for feature extraction to obtain the third feature map;
将所述目标样本数据集输入至第四卷积层进行特征提取,得到所述第四特征图。The target sample data set is input to the fourth convolution layer for feature extraction to obtain the fourth feature map.
在一些实施例中,所述装置还包括:In some embodiments, the device further includes:
第一确定模块,用于基于所述网络性能监测结果,确定所述待监测网络的网络性能是否故障;A first determination module, configured to determine whether the network performance of the network to be monitored is faulty based on the network performance monitoring results;
第二确定模块,用于在确定所述待监测网络的网络性能故障的情况下,确定所述待监测网络的网络故障类型和所述网络故障类型对应的故障处理措施。The second determination module is configured to determine the network fault type of the network to be monitored and the fault handling measures corresponding to the network fault type when it is determined that the network performance fault of the network to be monitored is faulty.
在一些实施例中,所述预设损失函数为:In some embodiments, the preset loss function is:
其中,pi为预测样本数据属于类别i的概率,为真实样本数据属于类别i的概率,ti表示RPN训练阶段的预测偏移量,/>表示RPN 训练阶段的实际偏移量,Ncls为特征图的大小,Nreg为目标区域的大小,λ为目标数据,Lcls为分类损失函数,Lreg为回归损失函数。Among them, p i is the probability that the predicted sample data belongs to category i, is the probability that the real sample data belongs to category i, t i represents the prediction offset in the RPN training stage,/> Represents the actual offset of the RPN training phase, N cls is the size of the feature map, N reg is the size of the target area, λ is the target data, L cls is the classification loss function, and L reg is the regression loss function.
图4示例了一种电子设备的实体结构示意图,如图4所示,该电子设备可以包括:处理器(processor)410、通信接口(Communication Interface)420、存储器(memory)430和通信总线440,其中,处理器410,通信接口420,存储器430通过通信总线440完成相互间的通信。处理器410可以调用存储器430中的计算机程序,以执行网络性能监测方法的步骤,例如包括:Figure 4 illustrates a schematic diagram of the physical structure of an electronic device. As shown in Figure 4, the electronic device may include: a processor (processor) 410, a communication interface (Communication Interface) 420, a memory (memory) 430 and a communication bus 440. Among them, the processor 410, the communication interface 420, and the memory 430 complete communication with each other through the communication bus 440. The processor 410 can call the computer program in the memory 430 to perform the steps of the network performance monitoring method, for example, including:
获取待监测网络的网络流量数据图;Obtain the network traffic data graph of the network to be monitored;
将所述待监测网络的网络流量数据图输入至目标神经网络,得到所述目标神经网络输出的网络性能监测结果,所述目标神经网络是基于各监测节点对应的网络流量样本数据图训练得到的。Input the network traffic data graph of the network to be monitored into the target neural network to obtain the network performance monitoring results output by the target neural network. The target neural network is trained based on the network traffic sample data graph corresponding to each monitoring node. .
此外,上述的存储器430中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。In addition, the above-mentioned logical instructions in the memory 430 can be implemented in the form of software functional units and can be stored in a computer-readable storage medium when sold or used as an independent product. Based on this understanding, the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product. The computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application. The aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code. .
另一方面,本申请实施例还提供一种计算机程序产品,所述计算机程序产品包括计算机程序,所述计算机程序可存储在非暂态计算机可读存储介质上,所述计算机程序被处理器执行时,计算机能够执行上述各实施例所提供的网络性能监测方法的步骤,例如包括:On the other hand, embodiments of the present application also provide a computer program product. The computer program product includes a computer program. The computer program can be stored on a non-transitory computer-readable storage medium. The computer program is executed by a processor. When , the computer can perform the steps of the network performance monitoring method provided by the above embodiments, including, for example:
获取待监测网络的网络流量数据图;Obtain the network traffic data graph of the network to be monitored;
将所述待监测网络的网络流量数据图输入至目标神经网络,得到所述目标神经网络输出的网络性能监测结果,所述目标神经网络是基于各监测节点对应的网络流量样本数据图训练得到的。Input the network traffic data graph of the network to be monitored into the target neural network to obtain the network performance monitoring results output by the target neural network. The target neural network is trained based on the network traffic sample data graph corresponding to each monitoring node. .
另一方面,本申请实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使处理器执行上述各实施例提供的方法的步骤,例如包括:On the other hand, embodiments of the present application also provide a processor-readable storage medium. The processor-readable storage medium stores a computer program. The computer program is used to cause the processor to execute the methods provided in the above embodiments. Steps, for example include:
获取待监测网络的网络流量数据图;Obtain the network traffic data graph of the network to be monitored;
将所述待监测网络的网络流量数据图输入至目标神经网络,得到所述目标神经网络输出的网络性能监测结果,所述目标神经网络是基于各监测节点对应的网络流量样本数据图训练得到的。Input the network traffic data graph of the network to be monitored into the target neural network to obtain the network performance monitoring results output by the target neural network. The target neural network is trained based on the network traffic sample data graph corresponding to each monitoring node. .
所述处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD 等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NANDFLASH)、固态硬盘(SSD))等。The processor-readable storage medium may be any available media or data storage device that the processor can access, including but not limited to magnetic storage (such as floppy disks, hard disks, tapes, magneto-optical disks (MO), etc.), optical storage (such as CD, DVD, BD, HVD, etc.), and semiconductor memories (such as ROM, EPROM, EEPROM, non-volatile memory (NANDFLASH), solid state drive (SSD)), etc.
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。The device embodiments described above are only illustrative. The units described as separate components may or may not be physically separated. The components shown as units may or may not be physical units, that is, they may be located in One location, or it can be distributed across multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. Persons of ordinary skill in the art can understand and implement the method without any creative effort.
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。Through the above description of the embodiments, those skilled in the art can clearly understand that each embodiment can be implemented by software plus a necessary general hardware platform, and of course, it can also be implemented by hardware. Based on this understanding, the part of the above technical solution that essentially contributes to the existing technology can be embodied in the form of a software product. The computer software product can be stored in a computer-readable storage medium, such as ROM/RAM, magnetic disk, optical disk, etc., including a number of instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute the methods described in various embodiments or certain parts of the embodiments.
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solution of the present application, but not to limit it; although the present application has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that it can still be Modifications are made to the technical solutions described in the foregoing embodiments, or equivalent substitutions are made to some of the technical features; however, these modifications or substitutions do not cause the essence of the corresponding technical solutions to deviate from the spirit and scope of the technical solutions in the embodiments of the present application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210379619.2A CN116962225A (en) | 2022-04-12 | 2022-04-12 | Network performance monitoring methods, devices, electronic equipment and computer program products |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210379619.2A CN116962225A (en) | 2022-04-12 | 2022-04-12 | Network performance monitoring methods, devices, electronic equipment and computer program products |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116962225A true CN116962225A (en) | 2023-10-27 |
Family
ID=88442990
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210379619.2A Pending CN116962225A (en) | 2022-04-12 | 2022-04-12 | Network performance monitoring methods, devices, electronic equipment and computer program products |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116962225A (en) |
-
2022
- 2022-04-12 CN CN202210379619.2A patent/CN116962225A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xu et al. | Detecting tiny objects in aerial images: A normalized Wasserstein distance and a new benchmark | |
CN113160192B (en) | Visual sense-based snow pressing vehicle appearance defect detection method and device under complex background | |
CN111080693A (en) | Robot autonomous classification grabbing method based on YOLOv3 | |
WO2018108129A1 (en) | Method and apparatus for use in identifying object type, and electronic device | |
CN107480730A (en) | Power equipment identification model construction method and system, the recognition methods of power equipment | |
CN110059694A (en) | The intelligent identification Method of lteral data under power industry complex scene | |
CN112001903A (en) | Defect detection network construction method, abnormality detection method and system, and storage medium | |
CN110675368A (en) | Cell image semantic segmentation method integrating image segmentation and classification | |
CN106874926A (en) | Service exception detection method and device based on characteristics of image | |
CN109708658B (en) | A visual odometry method based on convolutional neural network | |
CN117156442B (en) | Cloud data security protection method and system based on 5G network | |
CN118196541B (en) | A porcelain insulator fault analysis method and system based on deep learning | |
CN111914720A (en) | Method and device for identifying insulator burst of power transmission line | |
CN111582654A (en) | Service quality evaluation method and device based on deep recurrent neural network | |
CN115496120A (en) | Internet of things equipment anomaly detection method, device, equipment and storage medium | |
CN116959099B (en) | Abnormal behavior identification method based on space-time diagram convolutional neural network | |
US11893773B2 (en) | Finger vein comparison method, computer equipment, and storage medium | |
CN114581419A (en) | Transformer insulating sleeve defect detection method, related equipment and readable storage medium | |
CN114444565A (en) | Image tampering detection method, terminal device and storage medium | |
CN114445615A (en) | Rotary insulator target detection method based on scale invariant feature pyramid structure | |
CN113192017A (en) | Package defect identification method, device, equipment and storage medium | |
CN112884721A (en) | Anomaly detection method and system and computer readable storage medium | |
CN117011216A (en) | Defect detection method and device, electronic equipment and storage medium | |
CN115761647A (en) | Method and system for detecting motion trajectory of objects in substation based on computer vision | |
CN114708247A (en) | Cigarette case packaging defect identification method and device based on deep learning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |