CN116956642B - Threat assessment algorithm performance dynamic simulation verification method - Google Patents

Threat assessment algorithm performance dynamic simulation verification method Download PDF

Info

Publication number
CN116956642B
CN116956642B CN202311209126.5A CN202311209126A CN116956642B CN 116956642 B CN116956642 B CN 116956642B CN 202311209126 A CN202311209126 A CN 202311209126A CN 116956642 B CN116956642 B CN 116956642B
Authority
CN
China
Prior art keywords
threat assessment
value
assessment algorithm
algorithm
threat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311209126.5A
Other languages
Chinese (zh)
Other versions
CN116956642A (en
Inventor
陈俞舟
刘科
宋丹
戴礼灿
杨拓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 10 Research Institute
Original Assignee
CETC 10 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 10 Research Institute filed Critical CETC 10 Research Institute
Priority to CN202311209126.5A priority Critical patent/CN116956642B/en
Publication of CN116956642A publication Critical patent/CN116956642A/en
Application granted granted Critical
Publication of CN116956642B publication Critical patent/CN116956642B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models
    • G06N5/042Backward inferencing

Abstract

The invention provides a threat assessment algorithm performance dynamic simulation verification method, which comprises simulation and data acquisition, sampling error analysis, change error analysis and comprehensive evaluation and analysis, and realizes the threat assessment algorithm performance dynamic simulation verification based on real total element whole process complex disk deduction of an opposing game scene through sampling error analysis, change error analysis and comprehensive evaluation and analysis, thereby comprehensively measuring the accuracy and stability of the threat assessment algorithm. The method provides support for overall process data tracking and analysis, threat assessment optimization and improvement direction searching and threat assessment algorithm performance improvement searching, and further lays a technical foundation for accurate and stable assessment of high-value target threat degree in a future high-strength game environment.

Description

Threat assessment algorithm performance dynamic simulation verification method
Technical Field
The invention relates to the technical field of system simulation, in particular to a dynamic simulation verification method for threat assessment algorithm performance.
Background
Threat assessment in the wide-area sense is a means for assessing the threat level of a target according to current game scene information, and further defining the intention of an enemy. Threat assessment concepts are derived from data fusion models proposed by the united states military, are in the third level in the models, and are far more difficult to model than the first and second levels. The threat assessment algorithm is applied to game scenes, and has irreplaceable positions for supporting commanders to accurately judge danger, accurately decide and deploy global resources. The information space of the current game scene expands rapidly, the quantization mode of the information elements is increasingly complex, and the updating iteration of the threat assessment algorithm is accelerated.
The traditional threat assessment method comprises a multi-attribute decision method, fuzzy reasoning, gray correlation, bayesian reasoning and the like. Most of the methods construct threat assessment index systems in scene space, and quantitative and qualitative methods are adopted to quantify threat. The method generally requires a large amount of expert experience and experimental statistical data to form reasonable threat factor membership functions and weight coefficients, but the establishment of the threat factor membership functions still has difficulty in covering all scene elements, and the setting of the weight coefficients also has difficulty in verifying the data consistency. With the development of technology, researchers begin to apply new technologies such as neural networks and deep learning to threat assessment, hope to train to obtain reasonable network system weights through methods such as sample learning and the like, and aim to solve uncertain influences caused by human factor participation.
It is not difficult to find that both types of algorithms belong to the data-driven multi-attribute decision problem in the core problem, and in the process of algorithm verification, verification of data consistency and algorithm interpretability is considered. The traditional threat assessment algorithm checking method only uses a few samples to verify the correctness of the threat assessment algorithm in a static scene, but lacks a dynamic threat assessment process in a real game scene.
Disclosure of Invention
The invention aims to at least solve one of the technical problems that only a few samples are used for verifying the correctness of a threat assessment algorithm in a static scene in the prior art, but the dynamic threat assessment process in a real game scene is lacked.
Therefore, the invention provides a threat assessment algorithm performance dynamic simulation verification method aiming at the problems of poor interpretability and reliability of the current threat assessment algorithm, and realizes the threat assessment algorithm performance dynamic simulation verification based on the whole-process complex deduction of the real countermeasure game scene whole elements through sampling error analysis, change error analysis and comprehensive evaluation and analysis, thereby providing support for whole-process data tracking and analysis, threat assessment optimization and improvement direction searching and threat assessment algorithm performance promotion searching, and further laying a technical foundation for accurate and stable assessment of high-value target threat degree in a future high-strength game environment.
The invention provides a threat assessment algorithm performance dynamic simulation verification method, which comprises the following steps:
simulation and data acquisition: designing a simulation entity and a wanted scene based on real game countermeasure scene data, and summarizing threat assessment factors of a threat assessment algorithm in the wanted scene; carrying out complex disk deduction by using a simulation entity and a designed scene, and collecting deduction whole-process data in a fixed period to obtain a deduction whole-process data set, wherein the deduction whole-process data set comprises input data, a threat assessment element item calculation value, a threat assessment result output value and a threat assessment element item calculation value;
sampling error analysis: randomly extracting a plurality of sample data from the deduction whole process data set, comparing the calculated value of the threat assessment element in each sample data with a reference value, obtaining a reference comparison error by combining the weight value of the threat assessment element, and averaging the reference comparison errors of the plurality of sample data to obtain a reference comparison average error value, thereby measuring the accuracy of the threat assessment algorithm;
and (3) change error analysis: calculating the variation of the threat assessment algorithm result output values at two adjacent moments in the whole process data set to obtain a threat assessment algorithm result variation value, comparing and calculating the threat assessment algorithm result variation value with expert scoring results, and averaging the multiple comparison calculation results to obtain an average deviation value so as to measure the credibility of the threat assessment algorithm;
comprehensive evaluation and analysis: and comprehensively calculating the calculation results of the sampling error analysis and the variation error analysis to obtain the comprehensive evaluation value of the threat assessment algorithm, thereby comprehensively measuring the accuracy and the stability of the threat assessment algorithm.
According to the technical scheme, the threat assessment algorithm performance dynamic simulation verification method can also have the following additional technical characteristics:
in the above technical solution, the simulating and data collecting includes:
designing simulation entities and thinking scenes: designing a simulation entity and a wanted scene based on real game countermeasure scene data, and respectively storing design results into a target model library and an wanted scene library;
configuring a threat assessment index system: based on real game countermeasure scene data and designed simulation entities and a wanted scene, carrying out multi-level and multi-angle summarization on threat assessment essential items of a threat assessment algorithm under the wanted scene by using expert knowledge to form a layered threat assessment index system, and storing the result into a threat assessment essential item library;
and carrying out the multiple-disk deduction by using the simulation entity and the wanted scene, acquiring the deduction whole-process data according to the set data acquisition period to obtain a deduction whole-process data set, and storing the deduction whole-process data set into a database.
In the above technical solution, the simulating and data collecting further includes:
expert scoring is carried out on each element item of threat assessment according to real game countermeasure data, and a normal distribution method is adopted to determine the first step of expert scoring resultsLayer->Confidence intervals for the benchmark values of the threat assessment elements.
In the above technical solution, the sampling error analysis includes:
random extraction from a derived whole process datasetThe individual sample data form a sample data set +.>Calculating a deviation value of the threat assessment element calculation value from the confidence interval of the threat assessment element benchmark value, the deviation value +.>The calculation method comprises the following steps:
wherein,indicate->Layer->Infinitesimal of confidence interval of individual threat assessment element benchmark value,/->Indicate->Layer->Upper bound of confidence interval of reference value of each evaluation element,/->Indicate->Corresponding +.>Layer->A calculated value of the threat assessment element;
calculating the first according to the weight value of the threat assessment element and the deviation value of the threat assessment element calculation valueThe reference comparison error of the sample data is calculated as follows:
wherein,represent the firstkReference contrast error of individual sample data, +.>Layer number representing threat assessment element set, +.>Indicate->The number of threat assessment element items within a layer; />Indicate->Layer->Weights of the threat assessment elements;
the reference contrast errors of the plurality of sample data are averaged to obtain a reference contrast average error value, and the calculation method is as follows:
wherein,represents the reference contrast mean error value, +.>Representing the number of sample data extracted.
In the above technical solution, the reference contrast average error valueThe smaller the threat assessment algorithm, the higher the accuracy.
In the above technical solution, the simulating and data collecting further includes:
expert scoring is carried out on threat assessment algorithm results at all moments according to real game countermeasure data, the variable quantity of threat assessment algorithm results at two adjacent moments is determined based on expert scoring, and the confidence interval of the threat assessment algorithm result variable value is determined through a normal distribution method.
In the above technical solution, the change error analysis includes:
the variable quantity of threat assessment result output values of two adjacent moments in the whole deduction process data set is calculated, and the calculation method is as follows:
wherein,representation->Time and->Threat assessment algorithm result change value between moments, < +.>Representation->Output value of threat assessment algorithm result at moment, +.>Representation->Outputting a result output value of a threat assessment algorithm at the moment;
calculating the deviation value of the threat assessment algorithm result change value according to the confidence interval of the threat assessment result change valueThe calculation method comprises the following steps:
wherein,representation->Time and->The infinitesimal bounds of the confidence interval of the time threat assessment result variation value,representation->Time and->Time threat assessment result change value confidence interval upper bound +.>Representation ofTime and->A deviation value of threat assessment result change values between moments;
and averaging the deviation values of the threat assessment algorithm result change values obtained by multiple comparison to obtain an average deviation value:
wherein,representing the average deviation value>For counting the moments>Time indication->Time; />Representing the total number of data acquisition moments.
In the above technical solution, the average deviation valueThe smaller the threat assessment algorithm, the higher the stability.
In the above technical solution, the threat assessment algorithm synthesizes an evaluation valueThe calculation method of (2) is as follows:
wherein,representing a reference contrast average error value; />Representing the average deviation value; />And representing the evaluation coefficient for balancing the weight of the accuracy and the stability of the algorithm.
In the above technical solution, the threat assessment algorithm synthesizes an evaluation valueTakes on a value between 0 and 1,/for>The closer to 0 the value of (c) indicates the better performance of the threat assessment algorithm>The closer to 1 the value of (c) indicates the poorer the performance of the threat assessment algorithm.
In summary, due to the adoption of the technical characteristics, the invention has the beneficial effects that:
based on real game countermeasure data, by using complex disk deduction, a more abundant and large amount of process data can be obtained through periodic acquisition, and data support is provided for threat assessment algorithm performance verification;
through sampling error analysis, change error analysis, comprehensive evaluation and analysis, the accuracy and stability of the threat assessment algorithm under the real game countermeasure scene can be evaluated, and references and directions are provided for optimizing and improving the algorithm and improving the performance of the algorithm for users.
Additional aspects and advantages of the invention will be set forth in part in the description which follows, or may be learned by practice of the invention.
Drawings
The foregoing and/or additional aspects and advantages of the invention will become apparent and may be better understood from the following description of embodiments taken in conjunction with the accompanying drawings in which:
FIG. 1 is a flow chart of a method for dynamically simulating and verifying the performance of a threat assessment algorithm in accordance with one embodiment of the invention.
Detailed Description
In order that the above-recited objects, features and advantages of the present invention will be more clearly understood, a more particular description of the invention will be rendered by reference to the appended drawings and appended detailed description. It should be noted that, in the case of no conflict, the embodiments of the present application and the features in the embodiments may be combined with each other.
In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention, however, the present invention may be practiced otherwise than as described herein, and therefore the scope of the present invention is not limited to the specific embodiments disclosed below.
A method and system for dynamically simulating verification of threat assessment algorithm performance provided in accordance with some embodiments of the invention is described below with reference to fig. 1.
Some embodiments of the present application provide a threat assessment algorithm performance dynamic simulation verification method.
As shown in fig. 1, an embodiment of the present invention provides a method for dynamically simulating and verifying performance of a threat assessment algorithm, including:
simulation and data acquisition: designing a simulation entity and a wanted scene based on real game countermeasure scene data, and summarizing threat assessment factors of a threat assessment algorithm in the wanted scene; and carrying out complex disk deduction by using the simulation entity and the wanted scene, and collecting deduction whole-process data in a fixed period to obtain a deduction whole-process data set, wherein the deduction whole-process data set comprises input data, a threat assessment element item calculation value, a threat assessment result output value and a threat assessment element item calculation value.
In some embodiments, the simulating and data collecting includes the steps of:
designing simulation entities and thinking scenes: and designing the simulation entity and the wanted scene based on the real game countermeasure scene data, and respectively storing the design results into a target model library and an wanted scene library.
Configuring a threat assessment index system: based on real game countermeasure scene data and designed simulation entities and a wanted scene, carrying out multi-level and multi-angle summarization on threat assessment essential items of a threat assessment algorithm under the wanted scene by using expert knowledge to form a layered threat assessment index system, and storing the result into a threat assessment essential item library; it will be understood that, in this embodiment, summarizing by using expert knowledge, scoring by expert, etc. refer to objective evaluation of an application object according to industry standards, industry well-known, conventional experience summary, etc., which has relatively clear scoring criteria, even if performed by different experts, the same or similar results can be obtained, and such result errors do not affect the accuracy of the verification method of this embodiment.
And carrying out the multiple-disk deduction by using the simulation entity and the wanted scene, acquiring the deduction whole-process data according to the set data acquisition period to obtain a deduction whole-process data set, and storing the deduction whole-process data set into a database.
In some embodiments, the simulating and data collecting further comprises:
expert scoring is carried out on each element item of threat assessment according to real game countermeasure data, and a normal distribution method is adopted to determine the first step of expert scoring resultsLayer->Confidence interval of benchmark values of individual threat assessment elements +.>Wherein, the method comprises the steps of, wherein,indicate->Layer->Infinitesimal of confidence interval of reference value of individual threat assessment element,/->Indicate->Layer->Upper bounds of confidence intervals for individual threat assessment element benchmark values.
Expert scoring is carried out on threat assessment algorithm results at all moments according to real game countermeasure data, and based on the expert scoring, the variation of threat assessment algorithm results at two adjacent moments is determined,confidence interval for determining threat assessment algorithm result change value through normal distribution methodWherein->Representation->Time and->Infinitesimal bounds of confidence interval of time threat assessment algorithm result change value,/-for>Representation->Time and->The moment threat assessment algorithm results change the upper bound of the confidence interval.
And storing the obtained threat assessment element benchmark value confidence interval and threat assessment algorithm result change value confidence interval and the deduction whole process data set into a database.
Sampling error analysis: randomly extracting a plurality of sample data from the deduction whole process data set, comparing the calculated value of the threat assessment element in each sample data with a reference value, obtaining a reference comparison error by combining the weight value of the threat assessment element, and averaging the reference comparison errors of the plurality of sample data to obtain a reference comparison average error value, thereby measuring the accuracy of the threat assessment algorithm;
in some embodiments, the sampling error analysis includes:
random extraction from a derived whole process datasetThe individual sample data form a sample data set +.>Calculating a deviation value of the threat assessment element calculation value from the confidence interval of the threat assessment element benchmark value, the deviation value +.>The calculation method comprises the following steps:
wherein,indicate->Layer->Infinitesimal of confidence interval of individual threat assessment element benchmark value,/->Indicate->Layer->Upper bound of confidence interval of reference value of each evaluation element,/->Indicate->Corresponding +.>Layer->A calculated value of the threat assessment element;
based on the weight of threat assessment element and threatDeviation value calculation of evaluation element calculation valueThe reference comparison error of the sample data is calculated as follows:
wherein,represent the firstkReference contrast error of individual sample data, +.>Layer number representing threat assessment element set, +.>Indicate->The number of threat assessment element items within a layer; />Indicate->Layer->Weights of the threat assessment elements;
the reference contrast errors of the plurality of sample data are averaged to obtain a reference contrast average error value, and the calculation method is as follows:
wherein,representing the reference versus average error value. Specifically, the reference contrast mean error value +.>The smaller the threat assessment algorithm, the higher the accuracy.
And (3) change error analysis: calculating the variation of the threat assessment algorithm result output values at two adjacent moments in the whole process data set to obtain a threat assessment algorithm result variation value, comparing and calculating the threat assessment algorithm result variation value with expert scoring results, and averaging the multiple comparison calculation results to obtain an average deviation value so as to measure the credibility of the threat assessment algorithm;
in some embodiments, the variation error analysis includes:
the variable quantity of threat assessment result output values of two adjacent moments in the whole deduction process data set is calculated, and the calculation method is as follows:
wherein,representation->Time and->Threat assessment algorithm result change value between moments, < +.>Representation->Output value of threat assessment algorithm result at moment, +.>Representation->Outputting a result output value of a threat assessment algorithm at the moment;
calculating the deviation value of the threat assessment algorithm result change value according to the confidence interval of the threat assessment result change valueThe calculation method comprises the following steps:
wherein,representation->Time and->The infinitesimal bounds of the confidence interval of the time threat assessment result variation value,representation->Time and->Time threat assessment result change value confidence interval upper bound +.>Representation ofTime and->A deviation value of threat assessment result change values between moments;
and averaging the deviation values of the threat assessment algorithm result change values obtained by multiple comparison to obtain an average deviation value:
wherein,representing the average deviation value>For counting the moments>Time indication->Time; />The total number of data acquisition time is represented, and the total number of data in the whole process data set is correspondingly deduced. Specifically, the average deviation value +.>The smaller the threat assessment algorithm, the higher the stability.
Comprehensive evaluation and analysis: and comprehensively calculating the calculation results of the sampling error analysis and the variation error analysis to obtain the comprehensive evaluation value of the threat assessment algorithm, thereby comprehensively measuring the accuracy and the stability of the threat assessment algorithm. In some embodiments, the threat assessment algorithm comprehensive evaluation value can also be used for algorithm analysis, and the threat assessment comprehensive capability in the game countermeasure process is further improved through improvement and optimization.
Specifically, the threat assessment algorithm synthesizes an assessment valueThe calculation method of (2) is as follows:
wherein,representation of reference pairsA specific average error value; />Representing the average deviation value; />Representing the evaluation coefficient, weight for balancing the accuracy and stability of the algorithm, value +.>
In a specific embodiment, the threat assessment algorithm synthesizes an assessment valueTakes on a value between 0 and 1,/for>The closer to 0 the value of (c) indicates the better performance of the threat assessment algorithm>The closer to 1 the value of (c) indicates the poorer the performance of the threat assessment algorithm.
In this specification, schematic representations of the above terms do not necessarily refer to the same embodiment or example. Furthermore, the particular features, structures, materials, or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention should be included in the protection scope of the present invention.

Claims (7)

1. The threat assessment algorithm performance dynamic simulation verification method is characterized by comprising the following steps:
simulation and data acquisition: designing a simulation entity and a wanted scene based on real game countermeasure scene data, and summarizing threat assessment factors of a threat assessment algorithm in the wanted scene; carrying out complex disk deduction by using a simulation entity and a designed scene, and collecting deduction whole-process data in a fixed period to obtain a deduction whole-process data set, wherein the deduction whole-process data set comprises input data, a threat assessment element item calculation value, a threat assessment result output value and a threat assessment element item calculation value;
sampling error analysis: randomly extracting a plurality of sample data from the deduction whole process data set, comparing the calculated value of the threat assessment element in each sample data with a reference value, obtaining a reference comparison error by combining the weight value of the threat assessment element, and averaging the reference comparison errors of the plurality of sample data to obtain a reference comparison average error value, thereby measuring the accuracy of the threat assessment algorithm;
and (3) change error analysis: calculating the variation of the threat assessment algorithm result output values at two adjacent moments in the whole process data set to obtain a threat assessment algorithm result variation value, comparing and calculating the threat assessment algorithm result variation value with expert scoring results, and averaging the multiple comparison calculation results to obtain an average deviation value so as to measure the credibility of the threat assessment algorithm;
comprehensive evaluation and analysis: comprehensively calculating calculation results of the sampling error analysis and the change error analysis to obtain a comprehensive evaluation value of the threat assessment algorithm, thereby comprehensively measuring the accuracy and stability of the threat assessment algorithm;
wherein the simulating and data collecting comprises:
designing simulation entities and thinking scenes: designing a simulation entity and a wanted scene based on real game countermeasure scene data, and respectively storing design results into a target model library and an wanted scene library;
configuring a threat assessment index system: based on real game countermeasure scene data and designed simulation entities and a wanted scene, carrying out multi-level and multi-angle summarization on threat assessment essential items of a threat assessment algorithm under the wanted scene by using expert knowledge to form a layered threat assessment index system, and storing the result into a threat assessment essential item library;
carrying out multiple-disc deduction by using a simulation entity and a designed scene, acquiring deduction whole-process data according to a set data acquisition period to obtain a deduction whole-process data set, and storing the deduction whole-process data set into a database;
expert scoring is carried out on threat assessment algorithm results at all moments according to real game countermeasure data, the variable quantity of threat assessment algorithm results at two adjacent moments is determined based on expert scoring, and a confidence interval of a threat assessment algorithm result variable value is determined through a normal distribution method;
the variation error analysis includes:
the variable quantity of threat assessment result output values of two adjacent moments in the whole deduction process data set is calculated, and the calculation method is as follows:
wherein,representation->Time and->Threat assessment algorithm result change value between moments, < +.>Representation ofOutput value of threat assessment algorithm result at moment, +.>Representation->Outputting a result output value of a threat assessment algorithm at the moment;
calculating the deviation value of the threat assessment algorithm result change value according to the confidence interval of the threat assessment result change valueThe calculation method comprises the following steps:
wherein,representation->Time and->Infinitesimal of time threat assessment result change value confidence interval,/->Representation->Time and->Time threat assessment result change value confidence interval upper bound +.>Representation->Time and->A deviation value of threat assessment result change values between moments;
and averaging the deviation values of the threat assessment algorithm result change values obtained by multiple comparison to obtain an average deviation value:
wherein,representing the average deviation value>For counting the moments>Time indication->Time; />Representing the total number of data acquisition moments.
2. The method of claim 1, wherein the simulating and data collecting further comprises:
expert scoring is carried out on each element item of threat assessment according to real game countermeasure data, and a normal distribution method is adopted to determine the first step of expert scoring resultsLayer->Confidence intervals for the benchmark values of the threat assessment elements.
3. The threat assessment algorithm performance dynamic simulation verification method of claim 2, wherein the sampling error analysis comprises:
random extraction from a derived whole process datasetThe individual sample data form a sample data set +.>Calculating a deviation value of the threat assessment element calculation value from the confidence interval of the threat assessment element benchmark value, the deviation value +.>The calculation method comprises the following steps:
wherein,indicate->Layer->Infinitesimal of confidence interval of individual threat assessment element benchmark value,/->Indicate->Layer->Upper bound of confidence interval of reference value of each evaluation element,/->Indicate->Corresponding +.>Layer->A calculated value of the threat assessment element;
calculating the first according to the weight value of the threat assessment element and the deviation value of the threat assessment element calculation valueThe reference comparison error of the sample data is calculated as follows:
wherein,represent the firstkReference contrast error of individual sample data, +.>Layer number representing threat assessment element set, +.>Indicate->The number of threat assessment element items within a layer; />Indicate->Layer->Weights of the threat assessment elements;
the reference contrast errors of the plurality of sample data are averaged to obtain a reference contrast average error value, and the calculation method is as follows:
wherein,representing the reference versus average error value.
4. A threat assessment algorithm performance dynamic simulation verification method according to claim 3, wherein the reference-to-average error valueThe smaller the threat assessment algorithm, the higher the accuracy.
5. The threat assessment algorithm performance dynamic simulation verification method of claim 1, wherein the average deviation valueThe smaller the threat assessment algorithm, the higher the stability.
6. The method for dynamically simulating and verifying the performance of a threat assessment algorithm according to claim 1, wherein the threat assessment algorithm integrates the evaluation valuesThe calculation method of (2) is as follows:
wherein,representing a reference contrast average error value; />Representing the average deviation value; />And representing the evaluation coefficient for balancing the weight of the accuracy and the stability of the algorithm.
7. The method for dynamically simulating and verifying the performance of a threat assessment algorithm of claim 6, wherein the threat assessment algorithm integrates the evaluation valuesTakes on a value between 0 and 1,/for>The closer to 0 the value of (c) indicates the better performance of the threat assessment algorithm>The closer to 1 the value of (c) indicates the poorer the performance of the threat assessment algorithm.
CN202311209126.5A 2023-09-19 2023-09-19 Threat assessment algorithm performance dynamic simulation verification method Active CN116956642B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311209126.5A CN116956642B (en) 2023-09-19 2023-09-19 Threat assessment algorithm performance dynamic simulation verification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311209126.5A CN116956642B (en) 2023-09-19 2023-09-19 Threat assessment algorithm performance dynamic simulation verification method

Publications (2)

Publication Number Publication Date
CN116956642A CN116956642A (en) 2023-10-27
CN116956642B true CN116956642B (en) 2024-01-12

Family

ID=88447733

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311209126.5A Active CN116956642B (en) 2023-09-19 2023-09-19 Threat assessment algorithm performance dynamic simulation verification method

Country Status (1)

Country Link
CN (1) CN116956642B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114239728A (en) * 2021-12-17 2022-03-25 中国航空研究院 Multi-domain battlefield situation assessment and threat ranking method
CN114444389A (en) * 2022-01-25 2022-05-06 中国人民解放军空军工程大学 Air attack target dynamic threat assessment method based on combined empowerment and improved VIKOR
CN115544714A (en) * 2022-07-12 2022-12-30 中国航空工业集团公司沈阳飞机设计研究所 Time sequence dynamic countermeasure threat assessment method based on aircraft formation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8019712B2 (en) * 2008-01-30 2011-09-13 The Boeing Company Intelligent threat assessment module, method and system for space situational awareness system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114239728A (en) * 2021-12-17 2022-03-25 中国航空研究院 Multi-domain battlefield situation assessment and threat ranking method
CN114444389A (en) * 2022-01-25 2022-05-06 中国人民解放军空军工程大学 Air attack target dynamic threat assessment method based on combined empowerment and improved VIKOR
CN115544714A (en) * 2022-07-12 2022-12-30 中国航空工业集团公司沈阳飞机设计研究所 Time sequence dynamic countermeasure threat assessment method based on aircraft formation

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Evasive behavior-based method for threat assessment in different scenarios: A novel framework for intelligent vehicle";Huajian Zhou等;《Accident Analysis & Prevention》;第148卷;105798 *
"基于dynFWA-IFE的空中目标威胁评估方法";师维克 等;《火力与指挥控制》;第47卷(第12期);157-162 *
"基于PCTBTA的有人/无人协同作战交互任务建模";焦浩洋 等;《空军工程大学学报》;第28卷(第4期);85-91 *

Also Published As

Publication number Publication date
CN116956642A (en) 2023-10-27

Similar Documents

Publication Publication Date Title
CN107454105B (en) Multidimensional network security assessment method based on AHP and grey correlation
CN114297036B (en) Data processing method, device, electronic equipment and readable storage medium
CN108664690A (en) Long-life electron device reliability lifetime estimation method under more stress based on depth belief network
CN110427311A (en) Disk failure prediction technique and system based on temporal aspect processing and model optimization
CN109670714B (en) Ship gas turbine comprehensive state evaluation method based on membership degree analysis
CN108182500A (en) Ammunition Storage Reliability Forecasting Methodology based on accelerated life test
CN111143981B (en) Virtual test model verification system and method
CN105760649A (en) Big-data-oriented creditability measuring method
CN110909488A (en) High-efficiency slope reliability analysis method
CN116150897A (en) Machine tool spindle performance evaluation method and system based on digital twin
CN109981749A (en) A kind of cloud workflow task running time prediction method promoted based on limit gradient
CN109598052B (en) Intelligent ammeter life cycle prediction method and device based on correlation coefficient analysis
CN108879732A (en) Transient stability evaluation in power system method and device
CN113411821B (en) System reconfiguration capability evaluation method and system for complex network
CN114444910A (en) Electric power Internet of things-oriented edge network system health degree evaluation method
CN110889207A (en) System combination model credibility intelligent evaluation method based on deep learning
CN112632765B (en) Combat capability assessment method combining weighting method and SEM method
CN116956642B (en) Threat assessment algorithm performance dynamic simulation verification method
CN116842459A (en) Electric energy metering fault diagnosis method and diagnosis terminal based on small sample learning
CN116431346A (en) Compensation method for main memory capacity of electronic equipment
CN115184055A (en) Method and system for determining test set with optimized hierarchical testability
CN115165332A (en) Integrated design method and system for built-in test and comprehensive test of equipment
CN115598459A (en) Power failure prediction method for 10kV feeder line fault of power distribution network
CN111222736A (en) Ammunition storage reliability evaluation method based on mixed correlation vector machine model
CN115062551B (en) Wet physical process parameterization method based on time sequence neural network

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant