CN116919581A - 一种用于眼科治疗的系统和方法 - Google Patents

一种用于眼科治疗的系统和方法 Download PDF

Info

Publication number
CN116919581A
CN116919581A CN202210331733.8A CN202210331733A CN116919581A CN 116919581 A CN116919581 A CN 116919581A CN 202210331733 A CN202210331733 A CN 202210331733A CN 116919581 A CN116919581 A CN 116919581A
Authority
CN
China
Prior art keywords
laser
intensity
optical
pulse
pulses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210331733.8A
Other languages
English (en)
Inventor
伊兰·卡普兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Hongjian Medical Equipment Co ltd
Original Assignee
Beijing Hongjian Medical Equipment Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Hongjian Medical Equipment Co ltd filed Critical Beijing Hongjian Medical Equipment Co ltd
Priority to CN202210331733.8A priority Critical patent/CN116919581A/zh
Publication of CN116919581A publication Critical patent/CN116919581A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B2018/2035Beam shaping or redirecting; Optical components therefor

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Otolaryngology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Laser Surgery Devices (AREA)

Abstract

本发明提供一种眼科治疗设备,其包括激光源、耦合到一个激光源的光学治疗系统和工作工具,其既能保证激光能量稳定传输又能使激光能量均匀地烧蚀目标组织,降低热损伤。

Description

一种用于眼科治疗的系统和方法
技术领域
本发明涉及基于辐射的眼科治疗设备和方法,例如,基于激光用于提供点阵治疗的设备,或使用任何其他类型的辐射源来提供眼科治疗的设备。一些实施例包括用于将光束分配到眼睛上的多个或特定位置以进行眼科治疗的光学处理系统。例如激光自动扫描系统,通过预设扫描图案将激光分配到眼睛上的多个位置进行眼科治疗。
背景技术
基于光的组织治疗可用于多种领域,包括皮肤科和眼科。激光外科设备通过将激光束照射至治疗部位进行治疗。例如,发射具有红外波长的二氧化碳激光束的激光治疗设备已用于医学和外科治疗,例如皮肤整形外科治疗和眼部治疗。
发明内容
本发明的目的在于提供一种眼科治疗设备,既能保证激光能量稳定传输又能使激光能量均匀地烧蚀目标组织,降低热损伤。
在某些实施例中,提供一种用于眼科治疗的系统,包括:一个被配置为在波长2700nm 至3000nm范围内发射光能的激光源;一个与所述激光源耦合的光学治疗系统,将所述光学治疗系统配置为从所述激光源接收光能并传送聚焦光束,所述光学治疗系统可由用户操作以调整聚焦光束的至少一个参数,以及将所述光学治疗系统配置成以预定脉冲序列传送聚焦光束;和一个连接到所述光学治疗系统的工作工具,所述工作工具具有一个第一端、一个与所述第一端相对的第二端,以及一个从所述第一端延伸到所述第二端的光路,所述工作工具的所述第一端与所述光学治疗系统耦合,以便接收来自所述光学治疗系统的聚焦光束,将所述光路配置为将聚焦光束从所述第一端传送到所述第二端,将所述工作工具的所述第二端配置为与眼组织接触,以便将聚焦光束传送到眼组织。
进一步的,在某些实施例中,包括:一个与所述光学治疗系统和所述工作工具可操作地耦合的扫描仪,所述扫描仪将所述光学治疗系统耦合到所述工作工具,以及所述扫描仪包括至少一个扫描仪电机,该至少一个扫描仪电机可用于定位所述工作工具,从而控制聚焦光束传送到眼组织的位置。
进一步的,所述工作工具配置到眼组织的外表面上。
进一步的,将所述工作工具配置为位于眼睛内,以便接触内部眼组织。
在某些实施例中,所述工作工具包括一个纤维尖端。在某些实施例中,所述纤维尖端包括蓝宝石纤维、石英玻璃纤维或氧化硅纤维中的至少一种。
在某些实施例中,所述的用于眼科治疗的系统,所述预定脉冲序列是混合强度脉冲序列,所述混合强度脉冲序列包括在以第一强度传递的多个烧蚀脉冲和以第二强度传递的多个脉冲之间交替的多个脉冲,所述第一强度高于人体组织的烧蚀阈值,以及所述第二强度低于人体组织的烧蚀阈值
进一步的,在某些实施例中,提供一种用于眼科治疗的系统,所述烧蚀阈值的范围在 1.4焦耳/cm2至1.8焦耳/cm2之间。
在某些实施例中,所述的用于眼科治疗的系统,所述至少一个参数包括光束强度、脉冲持续时间或脉冲数中的至少一个。
在某些实施例中,用于眼科治疗的系统,所述预定脉冲序列是混合强度脉冲序列,其中所述混合强度脉冲序列包括在以第一强度传递的多个烧蚀脉冲和以第二强度传递的多个脉冲之间交替的多个脉冲,所述第一强度高于人体组织的烧蚀阈值,以及所述第二强度低于人体组织的烧蚀阈值。
在某些实施例中,提供一种用于眼科治疗的系统,包括:一个被配置为耦合到一个激光源的光学治疗系统,将所述光学治疗系统配置为从所述激光源接收光能并传送聚焦光束,所述光学治疗系统包括可由用户操作以调整聚焦光束的至少一个参数的一个调整机构,以及将所述光学治疗系统配置为以混合强度脉冲序列传送聚焦光束,其中所述混合强度脉冲序列包括在以第一强度传递的多个烧蚀脉冲和以第二强度传递的多个脉冲之间交替的多个脉冲,所述第一强度高于人体组织的烧蚀阈值,以及所述第二强度低于人类组织的烧蚀阈值;和多个工作工具,将所述多个工作工具中的每一个配置成选择性地耦合到所述光学治疗系统,所述多个工作工具中的每一个具有一个第一端、一个与所述第一端相对的第二端,以及一个从所述第一端延伸到所述第二端的光路,将所述多个工作工具中的每一个的所述第一端配置成使得所述多个工作工具中的选定一个的所述第一端可以耦合到所述光学治疗系统,以便接收来自所述光学治疗系统的聚焦光束,将所述多个工作工具中的每一个的所述光路配置为将聚焦光束从所述多个工作工具中的所述一个的所述第一端传送到所述多个工作工具中的所述一个的所述第二端,将所述多个工作工具中的每一个的所述第二端配置为与眼组织接触,以便将聚焦光束传送到眼组织。
附图说明
本发明的一些实施例在此仅作为示例,参考附图进行描述。需要强调的是,所示的细节是作为示例并用于本发明实施例的说明性讨论。在这方面,结合附图进行的描述使本领域技术人员清楚地知道如何实施本发明的实施例。
图1A为本发明激光系统的实施例。
图1B是红外光波长范围内水吸收系数的示意图。
图2A是根据本发明的激光扫描仪和工作工具实施例的示意图,所示的激光扫描仪和工作工具是从彼此拆下的。
图2B是图2A所示示例性工作工具的详细视图。
图2C是图2A所示的激光扫描仪和工作工具的示意图,所示的激光扫描仪和工作工具彼此组装在一起。
图2D显示了图2C所示的用于治疗眼组织的激光扫描仪和工作工具。
图3A-M是针对靶组织的点阵激光治疗图案实施例的示意图。
图4A-C是本发明激光脉冲序列的示意图。
图5是根据本发明用于切割和凝固人体组织的一种手术器械的示意图。
图6是根据本发明使用光纤切割凝固人体组织的另一种手术器械的示意图。
图7是根据实施例使用光纤执行眼科手术的一种手术器械的示意图。
图8A和8B是根据实施例使用光纤执行眼科手术的一种手术器械的示意图。
图9A是使用光纤执行眼科手术的手术器械的示意图。
图9B是图9A所示手术器械一部分的详细剖面图。
具体实施方式
本发明的一些实施例可以通过部分参考以下描述和附图来理解,其中相同的附图标记指的是相同或类似的部位。本发明实施例涉及用于执行基于辐射的眼科治疗的系统和方法。
本文结合附图公开了本发明的各种详细实施例;然而,应当理解,所公开的实施例仅仅是说明性的。此外,结合本发明的各种实施方式给出的每个实施例旨在说明而非限制性。
在整个说明书中,除非上下文另有明确规定,否则以下术语采用在此明确相关的含义。如本文中使用的短语“在一些实施例中”尽管其可以指代相同的实施例,但不一定指代相同的实施例。因此,如下文所述,在不脱离发明主旨的情况下,可以容易地组合各种实施例。
此外,除非上下文另有明确规定,术语“基于”不是排他性的,允许基于未描述的其他因素,除非上下文另有明确规定。此外,在整个说明书中,名词的含义包括复数。如本文所用,术语“约”指+/-10%。本说明书中使用的所有范围均是包含性的。
图1示例性地示出了基于辐射的治疗装置18的各种组件(为简洁起见,本文交替称为“装置18”)。在一些实施例中,基于辐射的治疗装置18包括辐射源1,其被配置为产生能量束。在一些实施例中,能量束的质量为M2≤1.5。在一些实施例中,能量束的质量为M2 ≤1.4。在一些实施例中,能量束的质量为M2≤1.3。在一些实施例中,能量束的质量为M2 ≤1.2。在一些实施例中,装置18包括激光装置。在一些实施例中,基于辐射的治疗装置18 包括光纤激光装置。在一些实施例中,装置18由电源2产生的直流电(DC)供电。在一些实施例中,电源2被配置为接受一个或多个国家使用的标准交流电(例如,110V和60Hz 的标准美国交流电、240V和50Hz的标准德国交流电等)。在一些实施例中,电源2用于将提供的交流电转换为直流电。在一些实施例中,电源2产生24V的工作直流电压。在一些实施例中,控制整个装置18所需的电能由直流配电设备3调节。在一些实施例中,直流配电设备3被安装在印制电路装置中。
在一些实施例中,直流配电设备3向装置18的所有组件供电。在一些实施例中,辐射源1由直流配电设备3提供的电能供电。在一些实施例中,基于辐射的治疗装置18包括光学治疗系统,所述光学治疗系统配置为从所述激光源接收光能并传送聚焦光束,在一些实施例中,光学治疗系统含有实时CPU 4和GUI计算机5,所述光学治疗系统可由用户操作以调整聚焦光束的至少一个参数,所述实时CPU 4向辐射源1提供命令信号,以预定脉冲序列传送聚焦光束。在一些实施例中,实时CPU 4经由GUI计算机5控制。在一些实施例中,GUI 计算机5包括用户界面6,操作员可使用该用户界面6输入所需命令,例如辐射源1的能量设置。在一些实施例中,用户界面6是触摸屏6。在一些实施例中,一旦操作员输入装置18 的所需的参数设置,GUI计算机5将设定的参数传送给实时CPU 4,然后实时CPU 4将设定的能量提供给辐射源1,从而使辐射源1产生操作员期望的能量束。在一些实施例中,在使用期间,辐射源1产生多余的热量,这些热量被散发到周围环境中使装置18冷却。在一些实施例中,装置18包括冷却装置7,其可从辐射源1提取热量并耗散到装置18的周围。在一些实施例中,冷却装置7包括冷却风扇。
在一些实施例中,辐射源1是中红外光纤激光器。在一些实施例中,中红外光纤激光器在2780nm到2940nm范围内的波长下工作。在一些实施例中,中红外光纤激光器在2780nm到2910nm范围内的波长下工作。在一些实施例中,中红外光纤激光器在2780nm到2825 nm范围内的波长下工作。在一些实施例中,中红外光纤激光器在2825nm到2940nm范围内的波长下工作。在一些实施例中,中红外光纤激光器在2825nm到2910nm范围内的波长下工作。在一些实施例中,中红外光纤激光器在2910nm到2940nm范围内的波长下工作。在一些实施例中,中红外光纤激光器在2780nm的波长下工作。在一些实施例中,中红外光纤激光器在2825nm的波长下工作。在一些实施例中,中红外光纤激光器在2910nm的波长下工作。在一些实施例中,中红外光纤激光器在2940nm的波长下工作。在一些实施例中,辐射源1是Er:YAG激光器。在一些实施例中,中红外光纤激光器在2780nm到2940nm范围内的波长下工作。在一些实施例中,Er:YAG激光器在2780nm到2910nm范围内的波长下工作。在一些实施例中,Er:YAG激光器在2780nm到2825nm范围内的波长下工作。在一些实施例中,Er:YAG激光器在2825nm到2940nm范围内的波长下工作。在一些实施例中,Er:YAG 激光器在2825nm到2910nm范围内的波长下工作。在一些实施例中,Er:YAG激光器在2910 nm到2940nm范围内的波长下工作。在一些实施例中,Er:YAG激光器在2780nm的波长下工作。在一些实施例中,Er:YAG激光器在2825nm的波长下工作。在一些实施例中,Er:YAG 激光器在2910nm的波长下工作。在一些实施例中,Er:YAG激光器在2940nm的波长下工作。在一些实施例中,辐射源1是Er:YSGG激光器。在一些实施例中,Er:YSGG激光器在2780nm 到2940nm范围内的波长下工作。在一些实施例中,Er:YSGG激光器在2780nm到2910nm 范围内的波长下工作。在一些实施例中,Er:YSGG激光器在2780nm到2825nm范围内的波长下工作。在一些实施例中,Er:YSGG激光器在2825nm到2940nm范围内的波长下工作。在一些实施例中,Er:YSGG激光器在2825nm到2910nm范围内的波长下工作。在一些实施例中,Er:YSGG激光器在2910nm到2940nm范围内的波长下工作。在一些实施例中,Er:YSGG 激光器在2780nm的波长下工作。在一些实施例中,Er:YSGG激光器在2825nm的波长下工作。在一些实施例中,Er:YSGG激光器在2910nm的波长下工作。在一些实施例中,Er:YSGG 激光器在2940nm的波长下工作。在一些实施例中,辐射源1操作在2000nm到4000nm范围内的波长。在一些实施例中,辐射源1工作在2600nm到3100nm范围内的波长。在一些实施例中,辐射源1工作在2700nm到3000nm范围内的波长。在一些实施例中,辐射源1 工作在2770nm到2950nm范围内的波长。
在一些实施例中,辐射源1(例如,中红外光纤激光器)发射辐射到激光光学模块8中。在一些实施例中,激光光学模块8用于准直激光束。在一些实施例中,激光光学模块8将激光束准直至3mm到10mm之间的直径。在一些实施例中,激光光学模块8将激光束准直至5mm到9mm之间的直径。在一些实施例中,激光光学模块8将激光束准直至约6mm的直径。在一些实施例中,激光光学模块8将激光束准直至约7mm的直径。在一些实施例中,激光光学模块8将准直激光束与可见光束(例如,瞄准光束)组合,以使操作员能够看到辐射源1产生的光束的位置和指向,因为辐射源1产生的光束是不可见的。在一些实施例中,可见光束是在约650nm处工作的红色激光器。在一些实施例中,可见光束是在约620-650nm 下工作的红色激光器。在一些实施例中,可见光束是在约530-540nm下工作的绿色激光器。
在一些实施例中,激光光学模块8连接到能量校准装置9。在一些实施例中,能量校准装置9是可测量2940nm激光辐射的热电堆探测器。在一些实施例中,能量校准装置9是可测量2780nm激光辐射热电堆探测器。在一些实施例中,能量校准装置9用于读取由辐射源 1产生的主激光束的样本,并校准激光束的能量,其方式如下:当操作员开机设置能量值后,将激光工作工具16插入能量校准装置9的插入口,启动辐射源1发射激光束,激光束经工作工具传输给能量校准装置9,由能量校准装置9读取并由辐射源1产生的主激光束能量,当检测值达到操作者所设定的能量时,向实时CPU 4发送“校准成功”命令,将检测值设定为校准值。操作者拔出激光工作工具16,并将激光工作工具16与治疗部位接触,启动辐射源1,照射治疗部位。在一些实施例中,激光光学模块8包括激光在线检测装置10,用于实时读取并由辐射源1产生的主激光束的样本,以便能够控制每个脉冲的能量,当操作员按下脚踏开关11时,辐射源1产生的主激光束,激光在线检测装置10将读取辐射源1所产生的主激光束的样本,当所检测的能量值与校准值的误差不超过20%时,将向实时CPU 4命令,打开激光光学模块8的快门,允许主激光束通过激光工作工具16照射治疗部位。当所检测的能量值与校准值的误差超过20%时,将向实时CPU 4命令,以切断辐射源1产生的激光脉冲能量。在一些实施例中,激光在线检测装置10包括实时伺服控制器,用于确保辐射源1输送的能量与校准值相同。在一些实施例中,激光在线检测装置10测量激光能量的样本,并闭环监控操作员选择的能量设置。
在一些实施例中,装置18包括一个扫描仪伺服控制器12,该控制器可用于驱动激光工作工具16中的X和Y扫描仪电机。在一些实施例中,扫描仪伺服控制器12由直流配电装置 3供电,其通过电源2调节从交流电压转换而来的直流电压。在一些实施例中,操作员输入移动X和Y扫描器电机的命令。在一些实施例中,此类命令经由GUI计算机5输入(例如,使用触摸屏6)。在一些实施例中,输入到GUI计算机5的命令被传输到实时CPU 4,实时 CPU 4向扫描仪伺服控制器12发送命令信号,以移动激光工作工具16中的扫描器电机。
在一些实施例中,辐射能量被引导到光束传输装置14。在一些实施例中,光束传输装置14是能够传输能量的光纤设备。在一些实施例中,光束传输装置14包括多个旋转镜(例如,7个旋转镜)的铰接臂。在一些实施例中,激光能量被引导至最终的能量调节装置,激光输出光学装置15。在一些实施例中,激光输出光学装置15包括用于准直激光束的准直光学装置。在一些实施例中,激光束被准直至固定直径。在一些实施例中,直径为7.0mm。在一些实施例中,激光输出光学装置15包括保护性和可更换窗口,以防止灰尘和污染物影响基于辐射的设备18的稳定工作。
在一些实施例中,激光输出光学装置15包括一个快速连接器151,允许操作员更换正在使用的激光工作工具16,以达到下文将公开的不同临床效果。在一些实施例中,为了操作基于辐射的设备18,操作员使用脚踏开关11来控制已经输入到GUI计算机5中的参数发射能量。在一些实施例中,为了停止能量发射,操作员离开脚踏开关11。在一些实施例中,在紧急情况下,操作员可以通过按下紧急开关17来停止装置18的操作。
图1B说明了水在红外辐射波长中的吸收系数。由于人体软组织中含有约70%的水,被水发色团高度吸收的红外激光是治疗人体软组织的非常有效的工具。基于辐射的装置的基本作用机制是选择性光热分解,即将辐射装置的波长与光吸收发色团匹配,以产生选定的效果。在一些实施例中,所选波长为2940nm。如图1B所示,峰104是11700cm-1的水吸收峰,波长为2940nm,是红外光谱中的最高水吸收率。为了将水吸收率与其他常用的用于治疗人体组织的基于辐射的装置进行比较,点101显示了在10600nm下工作的CO2激光器的吸收系数为850cm-1。将CO2激光器的水吸收值与在2940nm处工作的示例性的中红外光纤激光器的水吸收值进行比较,可以看出,在2940nm处工作的中红外光纤激光器的水烧蚀效率是前者的13.7倍,相当于光纤激光器与CO2激光器的吸收系数比11700/850=13.7。因此,在2940nm下运行的示例性装置将有13.7倍的效果烧蚀人体组织中的水,所需光能减少13.7倍,并且对治疗组织产生的潜在热损伤减少13.7倍。对于本领域技术人员来说,显而易见的是,上面讨论的特定值(例如,峰104的吸水率为11700cm-1;点101的吸水系数为850cm-1)仅仅只是示例,并且可能会有所不同。然而,无论考虑的具体值如何,以上比较示例证明,中红外光纤激光器的工作效率显著高于CO2激光器。
图1B还显示,在峰103处,工作波长为1927nm的激光的吸收系数为114cm-1,这是另一种常用于治疗人体组织的光纤激光器。可以看出,该吸收系数比在2940nm下操作的示例性实施例的吸收系数小100倍。可以看出,对应于峰103的装置具有非常低的烧蚀效率和巨大的潜在不必要的热损伤。作为另一个比较,图1B包括峰102,其代表在1550nm的波长下10cm-1的吸水值。基于此,在1550nm下工作的基于辐射的装置可被分类为非烧蚀装置,因为与示例性实施例的峰值吸水特性相比,吸水系数太低。
图2A-2D示出了一个实施例,该实施例包括扫描仪250和用于治疗眼组织和眼部及眼眶周围组织的工作工具270,其被配置用于治疗眼部组织以及眼部和眼眶周围的组织。图2A 示出了彼此拆卸开的扫描仪250和工作工具270。图2B示出了工作工具270的详细视图。图 2C显示了组装在一起的扫描仪250和工作工具270。图2D示出了用于治疗患者眼睛的组装好的扫描仪250和工作工具270。在一些实施例中,工作工具270被配置用于诸如切割、切除、烧蚀、汽化和凝固眼部组织以及眼部和眼眶周围的组织等应用。在一些实施例中,激光(或激光能量)可以脉冲方式或连续波长方式传输。在一些实施例中,脉冲能量将为0.1-100mJ/ 脉冲。在一些实施例中,脉冲能量将为0.1-50mJ/脉冲。在一些实施例中,脉冲能量将为0.1-15 mJ/脉冲。在一些实施例中,脉冲能量将为0.1-5mJ/脉冲。在一些实施例中,脉冲能量将为 0.2-5mJ/脉冲。在一些实施例中,脉冲能量将为0.2-1mJ/脉冲。
在一些实施例中,图2A所示的工作工具270可以使用快速连接器100连接到图1A所示的基于辐射的治疗装置18。在一些实施例中,治疗区域由X和Y轴(参见图2D)确定,以表示扫描方向。在一些实施例中,工作工具270使操作员能够通过工作工具270尖端的开口286(参见图2C)清楚地看到治疗区域。在一些实施例中,扫描器250包括激光聚焦透镜。
在一些实施例中,当正在使用时的聚焦透镜的焦距为150-300mm,在一些实施例中,当正在使用时的聚焦透镜的焦距为150-250mm,在一些实施例中,当正在使用时的聚焦透镜的焦距为150-200mm,在一些实施例中,当正在使用时的聚焦透镜的焦距为200-300mm,在一些实施例中,当正在使用时的聚焦透镜的焦距为200-250mm,在一些实施例中,当正在使用时的聚焦透镜的焦距为150-200mm,在一些实施例中,当正在使用时的聚焦透镜的焦距为200-220mm,在一些实施例中,当正在使用时的聚焦透镜的焦距约为210mm,在一些实施例中,当正在使用时的聚焦透镜的焦距为209mm。
在一些实施例中,当正在使用时的聚焦透镜的激光焦点尺寸为100-500μm。在一些实施例中,激光焦点尺寸为100-400μm。在一些实施例中,激光焦点尺寸为100-300μm。在一些实施例中,激光焦点尺寸为100-250μm。在一些实施例中,激光焦点尺寸为100-200μ m。在一些实施例中,激光焦点尺寸为100-150μm。在一些实施例中,激光焦点尺寸为200-500 μm。在一些实施例中,激光焦点尺寸为200-300μm。在一些实施例中,激光焦点尺寸为 300-500μm。在一些实施例中,激光焦点尺寸为300-400μm。在一些实施例中,激光焦点尺寸为250μm。在一些实施例中,激光焦点尺寸为200μm。在一些实施例中,激光焦点尺寸将为170μm。在一些实施例中,激光焦点尺寸为150μm。在一些实施例中,激光焦点尺寸将为120μm。在一些实施例中,激光焦点尺寸为100μm。
在一些实施例中,扫描器250包括第一锁定连接器252,该连接器可用于以可拆卸锁定的方式将扫描器250连接至安装轴260。在一些实施例中,安装轴260与上述安装轴201基本相似。在一些实施例中,扫描器250包括第二锁定连接器254,其可操作以以可拆卸的锁定方式将扫描器250连接到工作工具270。在一些实施例中,第二锁定连接器254是螺纹连接器。在一些实施例中,第二锁定连接器254是棘轮连接器。在一些实施例中,第二锁定连接器254是另一种类型的锁定连接,在扫描器250和作业工具270之间提供足够安全和稳定的连接。
在一些实施例中,扫描器250包括X轴和Y轴扫描电机,用于相对于目标眼组织在X和Y方向上移动光束。在一些实施例中,扫描器250包括孔径256,光通过该孔径从基于辐射的治疗装置18进入扫描器250。在一些实施例中,经由孔径256进入扫描器250的入射激光束被准直至固定直径。在一些实施例中,固定直径在3mm和10mm之间。在一些实施例中,固定直径在5mm到9mm之间。在一些实施例中,固定直径约为7mm。在一些实施例中,固定直径为7mm。在一些实施例中,通过孔径256进入扫描仪250的输入激光束被永久安装的反射镜垂直反射90°(例如,在图2D所示的Y轴方向)。在一些实施例中,扫描器 250包括X轴和Y轴扫描电机,其定位相应的可移动镜,以允许工作工具270发射的光束分别在X和Y方向定位在目标区域。因此,在一些实施例中,提供给扫描器250的电子控制信号(例如,根据用户经由GUI计算机5的指示)可以同时驱动X轴扫描电机和Y轴扫描电机,以在操作员选择使用图2所示的基于辐射的装置18时,在目标眼组织处形成二维复杂激光束运动图1A。
图2B显示了工作工具270的详细视图。在一些实施例中,工作工具270由医用级金属或其他适用于多种用途的可消毒医用级材料制成。在一些实施例中,工作工具270适于一次性使用,并由医用级塑料等材料制成。在一些实施例中,医用级塑料适合在使用后回收。在一些实施例中,工作工具270具有第一端272(例如,近端)和第二端274(例如,远端)。在一些实施例中,工作工具270在第一端272处具有锁定连接器276。在一些实施例中,锁定连接器276被配置成将工作工具270的第一端272锁定连接到扫描仪250的第二锁定连接器254。在图2B所示的实施例中,锁定连接器276是螺纹连接器,但对于本领域技术人员来说,其他锁定机械连接器是显而易见的。在一些实施例中,工作工具270具有从第一端272 延伸到第二端274的主体278。在一些实施例中,工作工具270被配置为在第一端272接收激光束,并使激光束沿着工作工具270沿着轴280从第一端272移动到第二端274。在一些实施例中,工作工具270在第二端274处具有尖端282。在一些实施例中,尖端282限定焦平面284。在一些实施例中,焦平面284相对于轴280成角度。在一些实施例中,焦平面284 相对于轴280成113度角(例如,偏离垂直方向23度)。在一些实施例中,焦平面284相对于轴280成90度(例如,垂直于轴280)到135度(例如,偏离垂直45度)范围内的角度。在一些实施例中,尖端282用作工作工具270用户的测距仪。在一些实施例中,尖端282用作引导,以帮助用户保持工作工具270相对于目标组织正确定位。
图3A是根据本发明在待治疗眼组织上实施的分段激光治疗图案的一个实施例的示意图。分段图案确定了将由激光脉冲能量治疗的多个眼部组织区域,以及保持健康的治疗区域和未治疗眼部组织之间的其他多个区域,以通过在眼部组织的治疗区域之间留下健康眼部组织来帮助恢复。图3A示出了与图2·208上的坐标一致的X和Y坐标。在图3A的实施例中,操作员可以从预先确定的多个图案和尺寸中选择,以使用直径为15mm的六边形图案300。红色瞄准光束将显示选定六边形治疗区域边界300的轮廓。在一些实施例中,当操作员按下脚踏开关11时,基于辐射的装置18将同步移动扫描器电机203和204至治疗部位301,将预设的激光脉冲放置在轮廓边界300内预设好的多个部位的每个部位。在一些实施例中,脉冲位置将从图案302的右下角开始,其中扫描器电机203和204将在302处保持,同时CPU 控制器4将命令发射由操作员选择的预设能量脉冲。一旦脉冲持续时间达到其终点,系统CPU控制器4将命令扫描仪电机203和204在与X轴方向上的移动一致的方向305上移动聚焦光束,从位置302移动到位置303,扫描仪电机203和204将保持,而不在位置303处移动, CPU控制器4将命令激光器以操作员设定的脉冲发射脉冲。在位置303处的脉冲持续时间结束时,CPU控制器4将命令扫描器电机203和204在与X轴方向上的移动一致的方向305处再次移动聚焦光束,从位置303移动到位置304,扫描器电机将保持位置,而不在位置304 处移动,CPU控制器4将命令激光器以操作员设定的脉冲发射脉冲。一旦激光脉冲持续时间达到终点,系统将自动沿着上述方向305前进到下一个位置,以重复相同的过程将聚焦的激光束移动到新位置,并保持在新位置,同时CPU控制器4将命令激光器提供一个预设的脉冲能量,重复该过程,直到位置306脉冲持续时间结束。在位置306处的脉冲结束时,系统将命令扫描器电机203和204沿307方向移动聚焦激光束,沿Y方向向上移动一行至308位置,扫描器电机203和204将保持在该位置,同时系统将提供一个预设脉冲。在位置308处的脉冲持续时间结束时,CPU控制器4将命令扫描器电机203和204沿x反方向310将聚焦激光束从位置308移动到位置309,重复相同过程,同时激光提供预设能量脉冲,并前进到下一个相邻位置,如上所述。在一些实施例中,将使用相同的步骤、保持位置和重复过程,将相同的预设激光脉冲能量传送到图案边界内的全部多个预设位置。在一些实施例中,一旦图案边界内的多个预设位置已经发送了预设激光脉冲,CPU控制器4将恢复呈现红色瞄准光束轮廓300,以向操作员指示所有预设脉冲的发射已经完成。在一些实施例中,操作员随后可以将工作工具207移动到需要进行处理以重复相同过程的眼部组织的下一个区域。
图3B是根据本发明将分段激光治疗图案放置在待治疗的眼部组织上的一个实施例的示意图。在图3B的实施例中,用于将激光脉冲传送到预设的多个位置的步骤、保持位置和重复过程可以通过使用随机模式而不是如上文参考图3A所解释的沿x和y轴的笛卡尔运动来实现。在图3B的实施例中,第一脉冲位置将是311,其中扫描仪电机203和204将保持在311 的位置,同时系统将产生由操作员预设的能量脉冲。一旦脉冲持续时间到达终点,系统CPU 控制器4将命令扫描器电机203和204在方向312上沿x轴和y轴同步移动聚焦光束,从位置311移动到位置313,扫描器电机203和204将保持在位置313,而不会在位置313移动,同时,系统将产生由操作员预设的能量脉冲。一旦脉冲持续时间到达终点,系统CPU控制器 4将命令扫描器电机203和204沿方向314同步移动聚焦光束,从位置313移动到位置315,扫描器电机203和204将在位置315保持而不移动,同时,系统将将产生由操作员预设的能量脉冲。一旦脉冲持续时间到达终点,系统CPU控制器4将命令扫描器电机203和204沿方向316同步移动聚焦光束,从位置315移动到位置317,扫描器电机203和204将在位置317 保持位置而不移动,同时,系统将产生由操作员预设的能量脉冲。一旦脉冲持续时间达到终点,系统CPU控制器4将继续该步骤,保持不动,发射脉冲激光,并重复将预设能量脉冲放置在图案边界内的所有位置,如上所述。要使用的随机扫描算法是一种算法,该算法最大化相邻的脉冲之间的物理距离,以减少任何不必要的热损伤累积的可能性,并用于所述减少患者不适的另一目的。
图3C示出了一个实施例,其中,作为示例,操作员可以从图案320或图案321可选用分段填充密度脉冲中进行选择。在一些实施例中,图案320和图案321具有相同的图案类型和尺寸。在一些实施例中,图案320和321之间的区别在于,图案320的密度更高,即,与具有更小数量的预定脉冲位置的图案321相比,图案320中有更多数量的预定脉冲位置,因此,图案321的密度更低。
图3D示出了一个示例性实施例,在该实施例中,操作员可以从具有相同脉冲密度的各种可用分段图案尺寸中进行选择。在一些实施例中,操作员可以选择具有相同脉冲密度的较大图案尺寸330或较小图案尺寸332。在一些实施例中,操作员使用触摸屏6从预先编程的可用大小和可用脉冲密度列表中进行选择。在一些实施例中,由于图案大小和脉冲密度可以很容易得改变,因此操作者能够灵活地选择特定激光脉冲以适合待治疗的特定眼部组织的特征。
图3E示出了一个示例性实施例,在该实施例中,操作员可以从具有相同脉冲密度的多个分段图案尺寸中进行选择。在一些实施例中,操作员可以选择具有如图3D所示的相同脉冲密度的较大图案尺寸330或较小图案尺寸332,其中图3D的每个脉冲333具有如图3E所示的高斯能量分布334,以间隔距离335隔开以形成图3D所示的预定形状。在一些实施例中,将以预定距离335间隔的预定高斯脉冲能量分布334应用于目标眼组织336。在一些实施例中,高斯脉冲能量分布334将烧蚀组织336。在一些实施例中,烧蚀眼部组织336产生组织空隙339,该组织空隙339看起来是被移除组织339的轴,其间隔与预定高斯激光能量脉冲间隔的距离335相同。对于本领域技术人员来说,显而易见的是,在眼组织336中显示的组织空隙339未显示在任何特定位置或任何特定比例,而是显示为示意图。
图3F示出了一个示例性实施例,其中操作员可以从预先确定的选择中选择具有相同脉冲密度的可用多个分段图案尺寸。在图3F所示的实施例中,操作员将选择具有预定能级的多个激光能量脉冲342,以烧蚀非常薄的组织层。在一些实施例中,由于激光脉冲能量342本质上是高斯的,因此它将烧蚀相对于光束轮廓的不同厚度的组织。在图3F所示的实施例中,系统将控制脉冲能量342在预定间隔处的放置,从而创建预定重叠341,该重叠341被选择用于产生具有规定厚度的组织层的均匀消融。在一些实施例中,预定的多个脉冲激光能量布置在环形340中,环形340将多个脉冲进一步隔开,以最小化可能导致副作用的任何热能累积。在一些实施例中,脉冲342和344被布置在具有预定能量重叠341的两个环中,以增加操作者可以选择的预定区域覆盖选择。在一些实施例中,多个脉冲342、344和345被布置在具有预定能量重叠341的三个环中,以增加操作员可以选择的预定区域覆盖选择。为了确保在眼组织中具有最小化的热能累积,重叠341的重叠率为50%-70%。
图3G显示了图3F中具有预定重叠341的预定激光脉冲342、344和345的替代视图。在一些实施例中,多个激光脉冲中的每一个具有高斯能量分布。图3G示出了高斯激光脉冲346的横截面图,高斯激光脉冲346被预定空间347隔开,形成能量重叠348。在一些实施例中,能量重叠348将产生应用于目标眼组织336的均匀能量分布,从而在目标眼组织336中产生均匀的烧蚀坑349。在一些实施例中,激光脉冲能量在水峰吸收处施加,该水峰吸收将以最小的热残余烧蚀目标眼组织336,包括在诸如图3F所示的环形实施例等实施例中,其将相邻脉冲之间的距离保持为最小距离以覆盖目标区域。在一些实施例中,以这种方式应用激光脉冲能量允许以最小残余热能烧蚀薄薄的眼部组织层,从而防止因过量残余热能而产生的副作用。对于本领域的技术人员来说,显而易见的是,在眼组织336中显示的烧蚀坑340未以任何特定位置或以任何特定比例示出,而是以示意图形式示出。
图3H为一个示例性实施例,例如,操作员可以从多种预设的可用分段填充密度选择中选择多个脉冲,这些脉冲排列成具有较高密度354的环形图案或具有较低密度358的图案。在一些实施例中,图案354和图案358具有相同的图案形状(例如六边形)和尺寸,区别在于图案354的激光能量密度更高,即,与具有较少数量的预定多个激光脉冲排列在环形位置的模式358相比,在模式354中排列在环形位置的预定多个脉冲的数量更多。
图3I为一个示例性实施例,在该实施例中,操作员可以从具有相同激光能量密度的可用分段图案大小中进行选择。在一些实施例中,在一些实施例中,操作员可以选择分布在单环中具有相同能量密度的较大的图案360或较小的图案362,但是较大的图案360将比较小的图案362具有更多的环形。在一些实施例中,操作者可以从预先编程的大小和激光能量脉冲密度列表中选择图案的大小。在一些实施例中,由于图案大小和脉冲密度可以很容易得改变,因此操作者能够灵活地选择特定激光脉冲以适合待治疗的特定眼部组织的特征。
图3J为一个示例性实施例,在该实施例中,用户可以从具有相同图案类型和大小的可用分级图案大小中选择,并用相同数量的环进行填充,其中,环具有不同的能量密度覆盖。例如,在一些实施例中,操作员可以选择图案大小350,并用多个预定数量的环351进行填充,每个环包括排列单环中的相同强度的多个激光脉冲,或者操作者可以改变对相同尺寸和类型的图案350的选择,并用多个预定数量的环352填充它,每个环包括以双环排列的多个相同强度的激光脉冲,或者操作者可以改变对相同尺寸和类型的图案350的选择,并用多个预定数量的环353填充它,每个环包括以三环排列的多个相同强度的激光脉冲。在一些实施例中,每个预定选择将具有相同的图案类型和尺寸,并且将具有相同数量、彼此之间间隔距离相同的环,但是每个环将具有不同数量的脉冲,因此将采用以下方式影响能量密度,即采用环351的图案具有最低密度,采用环352的图案具有较高密度,而采用环353的图案具有更高密度。在一些实施例中,由于图案大小和脉冲密度可以很容易得改变,因此操作者能够灵活地选择特定激光脉冲以适合待治疗的特定眼部组织的特征。
图3K为一个示例性实施例,操作员可以从具有相同能量密度的可用分段图案形状中进行选择。在一些实施例中,操作员可以选择具有多个预定数量的环的六边形图案364,每个环具有多个激光脉冲365,它们之间的距离为366,或者选择具有多个预定数量的环的方形图案367,每个环具有多个激光脉冲365,它们之间的距离为366,或者选择具有多个预定数量的环的三角形图案368,每个环具有多个激光脉冲365,它们之间的距离为366。在一些实施例中,操作员可以从预定的形状、尺寸和可用激光脉冲密度的列表中选择示范性图案364、 367或368。在一些实施例中,由于图案形状、大小和脉冲密度可以很容易得改变,因此操作者能够灵活地选择特定激光脉冲以适合待治疗的特定眼部组织的特征。对于本领域技术人员来说,显而易见的是,图案364、367和368的特定形状只是示例性的,并且任何其他形状(例如,钻石、八角形、五边形等)也可以不偏离本文描述的一般概念。
图3L为一个示例性实施例,在该实施例中,操作员可以从具有相同脉冲密度的分段图案尺寸中进行选择。在一些实施例中,操作员将选择多个激光能量脉冲370,使其具有预定的能量水平,以烧蚀非常薄的组织层,如上文示意图3E-3F所示。在一些实施例中,多个激光脉冲的环370与图3F所示的环340相同,但在环370的正中心添加了脉冲371,其中脉冲371具有不同的激光脉冲特性,以将组织烧蚀到更大的深度。图3M为图3L的示例性实施例,该实施例用于烧蚀如图3L所示环形的薄层眼组织336,以及位于环形370中心的具有预定能级的附加脉冲371,以烧蚀进入眼组织336的深轴,由此产生一个薄的烧蚀坑374,该坑是对称的,因为它是由多个脉冲环形成的,并且具有位于烧蚀坑374中心的深烧蚀轴375。在一些实施例中,环形山374和轴375的组合在烧蚀环形山374和深度烧蚀轴375之间的各个方向上产生健康和未经处理的眼组织,从而促进快速恢复。
图4A-4C示出了可应用于目标眼组织的各种示例性激光脉冲序列。本文讨论的任何激光脉冲序列可适用于本文讨论的任何示例性系统。这包括但不限于激光脉冲的位置由扫描仪控制的实施例(例如,如上文参考图2A-2D所述)以及脉冲应用于眼睛内、眼睛上或眼睛附近的单个位置的实施例(例如,如下文参考图7-8B所述)。
图4A是根据示例性实施例的多个激光脉冲序列的示意图。在图4A的图中,x轴表示时间403,而Y轴表示能量密度401。水平虚线显示了人体组织烧蚀的能量密度400,也称为“烧蚀阈值”或“e”。能量密度阈值400表示,任何输送到人体组织且能量密度高于e 400 的脉冲都将烧蚀人体组织。相反,任何能量密度低于e 400的脉冲都不会烧蚀组织,而是会导致能量被人体组织吸收,并在人体组织中加热,这可能会导致热损伤。e的计算理论值约为0.33焦耳/平方厘米,而许多科学论文报道了不同的实验测定值。注量和烧蚀深度之间的关系可用以下等式表示:
在上述等式中,Fl代表以焦耳/cm2为单位的激光能量密度,Z代表以微米为单位的激光烧蚀深度(深度大于100微米)。以下方程式用于定义每个脉冲的能量:
在上述等式中,E表示脉冲能量,单位为毫焦耳,Sz表示激光光斑尺寸,单位为微米。
在一些实施例中,激光器是在2940nm波长下工作的中红外光纤激光器,聚焦激光束直径为120μm。在这些实施例中,烧蚀阈值为0.23毫焦耳。在一些实施例中,脉冲402被预设为将人体组织烧蚀至操作员使用触摸屏6所选定的激光能量。在一些实施例中,每个预设激光脉冲402都被传送到所选图案300(如图3A所示)的不同位置,从脉冲位置302开始,到如上所述的下一个位置。在一些实施例中,每个脉冲的脉冲持续时间将由控制装置18的 CPU控制器4控制,以将操作者预先编程的准确能量传递给眼组织。在一些实施例中,CPU 控制器4控制相邻脉冲402之间的持续时间404,以便在将下一个脉冲传送到下一个位置之前,为扫描器电机203和204留出足够的时间,以便将反射激光束的反射镜从一个位置移动到下一个位置。在一些实施例中,多个脉冲的能量由操作员基于期望的烧蚀深度设置。在一些实施例中,对于400微米的烧蚀深度,操作员根据上述公式将多个激光脉冲的能量设置为每单个脉冲402为9毫焦耳。在包含中红外光纤激光器的一些实施例中,最大激光功率为10 瓦,因此,为了产生每脉冲9毫焦耳的脉冲能量,CPU控制器4将激光脉冲持续时间设置为 0.9毫秒,如公式t=E/P所计算,其中t表示以毫秒为单位的激光脉冲持续时间,E表示以毫焦耳为单位的激光脉冲能量,P表示以瓦特为单位的激光功率。
图4B为根据示例性实施例的多个激光脉冲序列的示意图。在一些实施例中,从302开始重复实施在图案300中的脉冲402(如图4A所示),将被分成多个子脉冲411,排列成脉冲串410。每个脉冲串410之间具有预设的时间延迟413。在一些实施例中,当系统在预定的图案边界内发射多个脉冲402至预定的位置上,延迟413与上文图4A讨论的延迟404相同。在一些实施例中,多个子脉冲411可以降低患者不适感,其方法是将每个脉冲的能量分散在更长的持续时间内,并减少不必要的热损伤的累积。在一些实施例中,脉冲串410将包括在子脉冲411之间具有预定持续时间412的四个子脉冲411。在一些实施例中,脉冲群410的各种参数由CPU控制器4设置。在一些实施例中,在激光图案300中从302开始的每个位置,系统将传送子脉冲411的脉冲串410,每个相邻子脉冲411之间存在时间延迟412,每个脉冲串410的总能量相同,对应于操作员根据上述公式选择的烧蚀深度。虽然图4B示出了使用四个子脉冲411的脉冲群410,但对于本领域技术人员来说,显然该数量只是示例性的,并且在其他实施例中,脉冲群410可以包括大于两个子脉冲411的任何数量,这取决于期望的临床结果。如本文所述,在一些实施例中,激光在2940nm的波长下工作,这提供了峰值吸水率,因此人体组织的消融非常有效,因为人体组织含有超过70%的水。
图4C为根据示例性实施例的激光脉冲序列的示意图。在图4C所示的实施例中,实施在图案300中的脉冲402(如图4A所示)从302开始重复过程,将被分成多个子脉冲,排列成脉冲串420。如将看到的,图4C中所示的脉冲群420不同于图4B中所示并在上文中讨论的脉冲群410。在图4C所示的实施例中,每个脉冲群420包括八个子脉冲。在一些实施例中,脉冲群420包括四个烧蚀子脉冲421,其通量由CPU控制器4控制为高于烧蚀阈值“e”400。在一些实施例中,脉冲群420还包括四个凝结子脉冲422,其能量密度由CPU控制器4配置为低于消融阈值“e”400。在一些实施例中,由于凝结子脉冲422具有低于消融阈值“e”400 的通量,凝结子脉冲422不消融任何组织,而是,通过加热周围组织来沉积子脉冲422的能量,以产生凝固效果并形成受控的局部热损伤。在一些实施例中,在每个烧蚀子脉冲421和随后的凝固子脉冲422之间存在预定的第一持续时间423。在一些实施例中,在每个凝固子脉冲422和随后的烧蚀子脉冲421之间存在预定的第二持续时间424,但每个脉冲群420内的最终凝固子脉冲422除外。在一些实施例中,在每个脉冲群420内的最终凝固子脉冲422 之后,在开始后续脉冲群420的烧蚀子脉冲421之前存在延迟425。在一些实施例中,下一个相同的脉冲群420将在延迟425之后被传送到图案中的下一个位置,延迟425将由CPU控制器4设置,以允许扫描器马达203和204有足够的时间完成同步运动,从而将聚焦激光能量引导到图案300中的下一个位置。虽然图4C示出了使用四个烧蚀子脉冲421和四个凝固子脉冲422的脉冲群420,但对于本领域技术人员来说,显然该数量只是示例性的,并且在其他实施例中,脉冲群420可以包括消融子脉冲421和凝固子脉冲422中的任意数量,每个数量大于两个,具体取决于期望的临床结果。
在根据图4C所示脉冲序列操作的一些实施例中,烧蚀阈值“e”小于1.8焦耳/cm2。在一些这样的实施例中,烧蚀阈值“e”在0.01焦耳/cm2到1.8焦耳/cm2的范围内。在一些这样的实施例中,烧蚀阈值“e”在0.1焦耳/cm2到1.8焦耳/cm2的范围内。在一些这样的实施例中,烧蚀阈值“e”在0.5焦耳/cm2到1.8焦耳/cm2的范围内。在一些这样的实施例中,烧蚀阈值“e”在1焦耳/cm2到1.8焦耳/cm2的范围内。在一些这样的实施例中,烧蚀阈值“e”在1.4焦耳/cm2到1.8焦耳/cm2的范围内。在一些这样的实施例中,烧蚀阈值“e”在1.5焦耳/cm2到1.8焦耳/cm2的范围内。在一些这样的实施例中,烧蚀阈值“e”在1.6焦耳/cm2 到1.8焦耳/cm2的范围内。在一些这样的实施例中,烧蚀阈值“e”在1.7焦耳/cm2到1.8焦耳/cm2的范围内。在一些这样的实施例中,烧蚀阈值“e”在1.4焦耳/cm2到1.7焦耳/cm2 的范围内。在一些这样的实施例中,烧蚀阈值“e”在1.5焦耳/cm2到1.7焦耳/cm2的范围内。在一些这样的实施例中,烧蚀阈值“e”在1.6焦耳/cm2到1.7焦耳/cm2的范围内。在一些这样的实施例中,烧蚀阈值“e”在1.4焦耳/cm2到1.6焦耳/cm2的范围内。在一些这样的实施例中,烧蚀阈值“e”在1.5焦耳/cm2到1.6焦耳/cm2的范围内。在一些这样的实施例中,烧蚀阈值“e”在1.4焦耳/cm2到1.5焦耳/cm2的范围内。在一些这样的实施例中,烧蚀阈值“e”在1.55焦耳/cm2到1.65焦耳/cm2的范围内。在一些这样的实施例中,烧蚀阈值“e”约为 1.6焦耳/cm2。在一些这样的实施例中,烧蚀阈值“e”为1.6焦耳/cm2。
在其他实施例中,脉冲群420包括相似组合的任意多个子脉冲,而不限于脉冲群中的脉冲数。在一些实施例中,脉冲群420包括以任何其他顺序排列的“n”个烧蚀脉冲和“n”个凝结脉冲。在一些实施例中,当示例性装置通过凝固切割的血管来切割组织时,混合脉冲群420中的消融脉冲421和凝固脉冲422具有防止出血的效果,从而防止污染并帮助伤口更快愈合。在一些实施例中,混合脉冲群420中的消融脉冲421和凝固脉冲422可以使烧蚀脉冲421被更深地输送到目标组织中,允许输送预先编程控制量的热损伤混合物,这将减少出血,并在治疗后产生最大的自然愈合,导致有效恢复,而不会因太多不想要的热损伤而出现并发症。
图5是用于切割和凝固眼组织的手术器械的示例性实施例的示意图。图5所示的实施例不使用扫描仪,而是包括一个工作工具500,操作员将其移动到目标组织54上。在图5所示的实施例中,工作工具500适用于切割和凝固等应用。在一些实施例中,安装轴50将组件连接到探头快速断开装置151,如图1A所示。在一些实施例中,激光束在孔径56处进入并通过聚焦透镜51传递。在一些实施例中,操作员可以使用工作工具轴52来固定设备。在一些实施例中,操作员将尖端55放置在与目标眼组织54接触的位置,以将聚焦的激光能量53 引导至目标眼组织54。在一些实施例中,操作员可以选择三种不同的预编程脉冲(例如,如上参考图4A、4B和4C所述)中的任何一种,以在手动移动工作工具500的同时切割和消融眼组织。在一些实施例中,图5所示的仪器使操作员能够有效地切割目标眼组织,而不会造成热损伤,从而允许治疗容易被任何不必要的热损伤损坏的敏感眼组织。
图6是使用光纤进行眼组织切割和凝固的工作工具600的示例性实施例的示意图。图6 所示的包括光纤的工作工具600,使操作员能够将激光能量传送到目标眼组织。在一些实施例中,图6所示的工作工具600包括安装轴61,用于连接装置24的快速断开装置100。在一些实施例中,激光束60通过聚焦光学器件67传播,激光能量聚焦在光纤66的表面上。在一些实施例中,光纤连接器63安装在壳体62上,并且可以与光纤中心线对齐,以与激光聚焦光束68同心。在一些实施例中,光纤66安装在不锈钢金属管64内,以保护光纤66在操作员治疗目标组织期间不会断裂。在一些实施例中,光纤66的纤芯直径为140μm,提供170 μm的光斑尺寸,将眼组织视为聚焦的扫描光束。在图6所示的一些实施例中,使用图6所示的该工作工具600,操作员可以接近目标眼组织,并将激光能量传送到目标眼组织的狭窄位置。在一些实施例中,使用上文图4C所述的混合脉冲可在具有紧密接触的区域中增加烧蚀组织治疗的有效性,而不会沉积不必要的热损伤,该装置可以提供预先设定的凝固量和热损伤,即使在物理接触非常困难的地方也能达到预期的临床效果。
图7是一个示例性光学工作工具700的示意图,该工具配置为与图1A的装置24一起使用,并适用于眼组织的消融。在一些实施例中,包括光纤702的光学工作工具700适用于通过烧蚀在眼组织中形成孔。在一些实施例中,光纤702包括蓝宝石。在一些实施例中,光纤702包括玻璃、石英玻璃、空心二氧化硅、空心光子晶体光纤、氟化物、ZBLAN(例如,含ZrF4、BaF2、LaF3、AlF3和NaF的氟化物玻璃)和/或锗。在一些实施例中,光纤702的直径为100μm至500μm。在一些实施例中,光纤702的直径为100μm至300μm。在一些实施例中,光纤702的直径为300μm至500μm。在一些实施例中,光纤702的直径为100μm 至400μm。在一些实施例中,光纤702的直径为100μm至200μm。在一些实施例中,光纤 702的直径为100μm至180μm。在一些实施例中,光纤702的直径为120μm至160μm。在一些实施例中,光纤702的直径约为140μm。在一些实施例中,光纤702的直径为140μm。在一些实施例中,光纤702具有远端704,该远端704经过抛光以便于与目标组织接触(例如,以便在不磨损目标组织的情况下为脉冲的传送提供良好的接触)。在一些实施例中,该远端704包括一个由与该光纤702的其余部分不同的材料制成的纤维尖端。在一些实施例中,该纤维尖端包括生物相容性材料。在一些实施例中,该纤维尖端是刚性的。在一些实施例中,该纤维尖端包括蓝宝石。在一些实施例中,该纤维尖端包括二氧化硅。在一些实施例中,该光纤702包括一个氧化锗玻璃芯、一个玻璃包层、一个聚合物涂层(例如,聚酰胺涂层)和一个热塑性外部涂层,并且包括一个包含熔融石英或蓝宝石的尖端。在一些实施例中,该光纤702包括一个具有被石英管和丙烯酸酯缓冲剂覆盖的内部反射器(例如,碘化银反射器) 的空芯波导管。在一些实施例中,该空心波导管在远端包括一个窗口(例如,由金刚石或硒化锌制成)以防止水进入。
在一些实施例中,光纤702封装在保护管706中。在一些实施例中,保护管706包括不锈钢。在一些实施例中,如使用美国线规(“AWG”)系统测量,保护管706的不锈钢为 30Ga(例如,内径为0.159mm)至20Ga(例如,内径为0.603mm)。例如,在一些实施例中,保护管706包括AWG 23不锈钢。在一些实施例中,保护管706包含另一种生物相容性材料,例如生物相容性聚合物。在一些实施例中,保护管706连接到管连接器708,光纤 702继续延伸进管连接器708。在一些实施例中,光纤702和保护管706从远端704至管连接器708之间具有总组合长度L。在一些实施例中,长度L被选择为为光学工作工具700提供足够的间隙,以便用于眼部治疗,同时允许用户控制光纤702的位置。在一些实施例中,长度L在30毫米到50毫米之间。在一些实施例中,长度L在39毫米和45毫米之间。在一些实施例中,长度L在40毫米和44毫米之间。在一些实施例中,长度L约为42毫米。在一些实施例中,长度L为42毫米。在一些实施例中,光纤702仅延伸至管连接器708的微型组件(“SMA”)905连接器710处。在一些实施例中,SMA905连接器710可用于将光学工作工具700连接至装置24的快速连接器151。在一些实施例中,光学工作工具700被设计为一次性使用。在一些实施例中,光学工作工具700放置在一次性无菌袋中。
图8A显示了一个示例性光学工作工具800的实施例,该工具配置为与图1A的装置24 一起使用,并适用于眼组织的消融。在一些实施例中,光学工作工具800包括光纤802,其适于通过烧蚀在眼组织中形成孔。在一些实施例中,光纤802可以具有上文讨论的光学工作工具700的光纤702的任何特性。在一些实施例中,光纤802具有远端804,该远端804经过抛光以便于与目标组织接触(例如,以便在不磨损目标组织的情况下为脉冲的传送提供良好的接触)。在一些实施例中,光纤802封装在保护管806中。在一些实施例中,保护管可具有上文讨论的保护管706的任何特性。
在一些实施例中,保护管806连接到外壳808,光纤802继续延伸进外壳808。在一些实施例中,外壳包括移动机构810,其被配置为控制光纤802的移动。在一些实施例中,光纤802仅延伸至连接外壳808的微型组件(“SMA”)905连接器812处。在一些实施例中, SMA905连接器812可用于将光学适配器800连接到装置24的快速断开装置151上。在一些实施例中,光学工作工具800被设计为一次性使用。在一些实施例中,光学工作工具800放置在一次性无菌袋中。图8B示出了耦合到装置24的快速连接器151的光学工作工具800。
图9A和9B示出了一种示例性光学工作工具900的实施例,该光学工作工具900配置为与图1A的装置18一起使用,并适用于眼组织的消融。图9A示出了完整的工作工具900,图9B示出了工作工具900的尖端区域的剖面图。在一些实施例中,光学工作工具900包括光纤902,其适于通过烧蚀在眼组织中形成孔。在一些实施例中,光纤902可以具有上文讨论的光学工作工具700中的光纤702的任何特性。在一些实施例中,光纤902具有远端904,该远端904经过抛光以便于与目标组织接触(例如,以便在不磨损目标组织的情况下提供良好的脉冲传递接触)。
在一些实施例中,光纤902封装在保护套906中。在一些实施例中,保护套906包含聚合物。在一些实施例中,聚合物包括UV固化的丙烯酸酯、聚四氟乙烯(“PTFE”)、聚醚醚酮(“PEEK”),或包括一种以上上述物质的组合。。在一些实施例中,保护套906的外径为OD1。在一些实施例中,外径OD1在1毫米和1.5毫米之间。在一些实施例中,外径 OD1在1.2毫米和1.3毫米之间。在一些实施例中,外径OD1约为1.25毫米。在一些实施例中,外径OD1约为1.27毫米。在一些实施例中,外径OD1为1.27毫米。在一些实施例中,保护套906连接到管连接器908,光纤902伸入管连接器908。在一些实施例中,光纤902和保护套906从远端904到管连接器908之间具有总组合长度L1。在一些实施例中,长度L1 被选择为为光学工作工具900提供足够的间隙,以便用于眼部治疗,同时允许用户控制光纤 902的位置。在一些实施例中,长度L1在500毫米和1500毫米之间。在一些实施例中,长度L1在750毫米和1250毫米之间。在一些实施例中,长度L1约为1000毫米。在一些实施例中,长度L1为1000毫米。在一些实施例中,光纤902仅延伸至管连接器908的SMA905 连接器910处。在一些实施例中,SMA905连接器910可用于将光学工作工具900连接至装置18的快速断开连接器151。
参考图9B,在一些实施例中,靠近远端904的光纤902的一部分从保护套906伸出。
在一些实施例中,从保护套906伸出的光纤902的一部分被刚性管912包住。在一些实施例中,刚性管912包括金属。在一些实施例中,刚性管912包括生物相容性金属。在一些实施例中,刚性管912包括不锈钢。在一些实施例中,刚性管912的一部分延伸到保护套906中。在一些实施例中,刚性管912的外径为OD2。在一些实施例中,外径OD2在0.5毫米和1毫米之间。在一些实施例中,外径OD2在0.6毫米和0.8毫米之间。在一些实施例中,外径OD2 在0.65毫米和0.75毫米之间。在一些实施例中,外径OD2约为0.7毫米。在一些实施例中,外径OD2为0.7毫米。在一些实施例中,刚性管912从保护套906伸出的部分具有长度L2。在一些实施例中,长度L2在10毫米到30毫米之间。在一些实施例中,长度L2在15毫米到25毫米之间。在一些实施例中,长度L2约为20毫米。在一些实施例中,长度L2为20 毫米。
继续参考图9B,在一些实施例中,光纤902的一部分(包括远端904)从保护套906伸出。在一些实施例中,光纤902从保护套906伸出的部分具有长度L3。在一些实施例中,长度L3在0.1毫米和2毫米之间。在一些实施例中,长度L3在0.5毫米和1.5毫米之间。在一些实施例中,长度L3约为1毫米。在一些实施例中,长度L3为1毫米。在一些实施例中,所述光学工作工具900包括一个弯月面914。在一些实施例中,该弯月面914位于所述保护管912的端部并且密封所述保护管912的内壁和所述光纤902之间的空间。在一些实施例中,该弯月面912防止在所述保护管912和所述光纤902之间存在任何空气空间,从而保护所述光纤902免受外部环境影响。在一些实施例中,该弯月面914包括环氧树脂。
在一些实施例中,光学工作工具900设计为一次性使用。在一些实施例中,光学工作工具900保存在一次性无菌袋中。
在一些实施例中,光学工作工具700、800或900可与装置18结合使用,用于执行基于辐射的眼科(例如,在眼睛上或眼睛内)治疗(例如,激光治疗)。在一些实施例中,为了将光学工作工具700连接至装置18,临床医生通过将SMA905连接器710、812或910耦合到快速断开装置151,从而将光学工作工具700耦合到装置18,配置装置18以提供所需辐射(例如,脉冲强度、持续时间等,如图4C中所示的脉冲群420),将光纤702、802或902 的远端704、804或904与目标组织(例如,小梁网或巩膜)接触,并激活装置18以发射所需辐射,从而烧蚀目标组织并在其中形成圆孔。
在一些实施例中,与装置18一起使用的工作工具270、500、600、700、800和900适合用于执行基于辐射(例如,基于激光)的眼科手术。在一些实施例中,此类眼科手术包括但不限于眼组织的切开、切除、汽化、消融和凝固。
在一些实施例中,包括装置18和本文所述任一工作工具在内的系统适合用于执行基于辐射(例如,基于激光)的眼科手术。
在一些实施例中,装置18和光学工作工具700、800或900适用于执行涉及在眼睛组织中形成孔的眼科手术。在一些实施例中,设备24和工作工具700、800或900适用于执行包括青光眼治疗程序在内的相关程序,包括通过小梁网或巩膜形成孔以产生排水通道。在一些实施例中,装置18和光学工作工具700、800或900适用于执行AB-interno(例如,将探针穿过眼睛并从眼睛内形成通道)或AB-externo(例如,从眼睛外形成通道)相关程序。在一些实施例中,装置18和光学工作工具700、800或900适于根据上述技术实施微创青光眼手术(“MIGS”)。在一些实施例中,装置18和光学工作工具700、800或900适合用于执行MIGS程序,而无需在眼睛中留下支架以保持排水通道的形状。在一些实施例中,装置18 和光学工作工具700、800或900使操作者能够创建具有一致尺寸的圆形排水通道,该路径将不需要植入物(例如支架)来维持,从而避免植入物移动或堵塞的风险。在一些实施例中,装置24以一种方式操作,以便在诸如MIGS的眼科手术的执行中应用上文参考图4C所述的脉冲群420,并且脉冲群420产生出出血最少和愈合增强的引流通道。
本文参考用户界面和通过触摸屏6和脚踏开关11等人机交互来描述各种示例性实施例。然而对于本领域技术人员来说,显而易见的是,任何其他类型的用户界面元素或界面元素的组合(例如,手持式控制器;包括键盘、鼠标、触摸板和/或其他指向元件的计算机接口;语音控制器;在平板电脑、移动电话或其他移动设备上运行的软件控制应用程序等)可允许操作者控制本文中的任何示例性实施例系统用于本文描述的任何示范性技术。
虽然已经描述了本发明的许多实施例,但是可以理解,这些实施例只是说明性的,而不是限制性的,并且许多修改对于本领域的普通技术人员来说可能是显而易见的。例如,本文讨论的所有尺寸仅作为示例提供,并且旨在说明而非限制性。

Claims (11)

1.一种用于眼科治疗的系统,包括:
一个被配置为在波长2700nm至3000nm范围内发射光能的激光源;
一个与所述激光源耦合的光学治疗系统,其特征在于,将所述光学治疗系统配置为从所述激光源接收光能并传送聚焦光束,所述光学治疗系统可由用户操作以调整聚焦光束的至少一个参数,以及将所述光学治疗系统配置成以预定脉冲序列传送聚焦光束;
和一个连接到所述光学治疗系统的工作工具,所述工作工具具有一个第一端、一个与所述第一端相对的第二端,以及一个从所述第一端延伸到所述第二端的光路,所述工作工具的所述第一端与所述光学治疗系统耦合,以便接收来自所述光学治疗系统的聚焦光束,将所述光路配置为将聚焦光束从所述第一端传送到所述第二端,将所述工作工具的所述第二端配置为与眼组织接触,以便将聚焦光束传送到眼组织。
2.根据权利要求1所述的用于眼科治疗的系统,进一步包括:
一个与所述光学治疗系统和所述工作工具可操作地耦合的扫描仪,其特征在于,所述扫描仪将所述光学治疗系统耦合到所述工作工具,以及所述扫描仪包括至少一个扫描仪电机,该至少一个扫描仪电机可用于定位所述工作工具,从而控制聚焦光束传送到眼组织的位置。
3.根据权利要求1所述的用于眼科治疗的系统,其特征在于将所述工作工具配置到眼组织的外表面上。
4.根据权利要求1所述的用于眼科治疗的系统,其特征在于将所述工作工具配置为位于眼睛内,以便接触内部眼组织。
5.根据权利要求4所述的用于眼科治疗的系统,其特征在于所述工作工具包括一个纤维尖端。
6.根据权利要求5所述的用于眼科治疗的系统,其特征在于所述纤维尖端包括蓝宝石纤维、石英玻璃纤维或氧化硅纤维中的至少一种。
7.根据权利要求1所述的用于眼科治疗的系统,其特征在于,所述预定脉冲序列是混合强度脉冲序列,所述混合强度脉冲序列包括在以第一强度传递的多个烧蚀脉冲和以第二强度传递的多个脉冲之间交替的多个脉冲,所述第一强度高于人体组织的烧蚀阈值,以及所述第二强度低于人体组织的烧蚀阈值。
8.根据权利要求7所述的用于眼科治疗的系统,,其特征在于所述烧蚀阈值的范围在1.4焦耳/cm2至1.8焦耳/cm2之间。
9.根据权利要求1所述的用于眼科治疗的系统,其特征在于所述至少一个参数包括光束强度、脉冲持续时间或脉冲数中的至少一个。
10.根据权利要求1所述的用于眼科治疗的系统,其特征在于所述预定脉冲序列是混合强度脉冲序列,其中所述混合强度脉冲序列包括在以第一强度传递的多个烧蚀脉冲和以第二强度传递的多个脉冲之间交替的多个脉冲,所述第一强度高于人体组织的烧蚀阈值,以及所述第二强度低于人体组织的烧蚀阈值。
11.一种用于眼科治疗的系统,包括:
一个被配置为耦合到一个激光源的光学治疗系统,
其特征在于,将所述光学治疗系统配置为从所述激光源接收光能并传送聚焦光束,所述光学治疗系统包括可由用户操作以调整聚焦光束的至少一个参数的一个调整机构,以及将所述光学治疗系统配置为以混合强度脉冲序列传送聚焦光束,其中所述混合强度脉冲序列包括在以第一强度传递的多个烧蚀脉冲和以第二强度传递的多个脉冲之间交替的多个脉冲,所述第一强度高于人体组织的烧蚀阈值,以及所述第二强度低于人类组织的烧蚀阈值;和多个工作工具,将所述多个工作工具中的每一个配置成选择性地耦合到所述光学治疗系统,所述多个工作工具中的每一个具有一个第一端、一个与所述第一端相对的第二端,以及一个从所述第一端延伸到所述第二端的光路,将所述多个工作工具中的每一个的所述第一端配置成使得所述多个工作工具中的选定一个的所述第一端可以耦合到所述光学治疗系统,以便接收来自所述光学治疗系统的聚焦光束,将所述多个工作工具中的每一个的所述光路配置为将聚焦光束从所述多个工作工具中的所述一个的所述第一端传送到所述多个工作工具中的所述一个的所述第二端,将所述多个工作工具中的每一个的所述第二端配置为与眼组织接触,以便将聚焦光束传送到眼组织。
CN202210331733.8A 2022-03-31 2022-03-31 一种用于眼科治疗的系统和方法 Pending CN116919581A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210331733.8A CN116919581A (zh) 2022-03-31 2022-03-31 一种用于眼科治疗的系统和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210331733.8A CN116919581A (zh) 2022-03-31 2022-03-31 一种用于眼科治疗的系统和方法

Publications (1)

Publication Number Publication Date
CN116919581A true CN116919581A (zh) 2023-10-24

Family

ID=88375956

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210331733.8A Pending CN116919581A (zh) 2022-03-31 2022-03-31 一种用于眼科治疗的系统和方法

Country Status (1)

Country Link
CN (1) CN116919581A (zh)

Similar Documents

Publication Publication Date Title
US9610125B2 (en) Laser system and method for the treatment of body tissue
EP1344288B1 (en) Apparatus for controlling laser penetration depth
US4784135A (en) Far ultraviolet surgical and dental procedures
US20090248004A1 (en) Systems and methods for treatment of soft tissue
JP6710210B2 (ja) 歯科レーザシステムにおける治療の深さを制御するためのシステムおよび方法
WO2008009005A2 (en) Apparatus and method for adjustable fractional optical dermatological treatment
WO2007038975A1 (en) Method for cutting a biological tissue, and installation for cutting a biological tissue
WO2021028473A1 (en) Tissue ablating laser device and method of ablating a tissue
CN116919581A (zh) 一种用于眼科治疗的系统和方法
Peavy et al. Laser surgery
JP2024500068A (ja) 可変パルスレーザビームを被処置ヒト皮膚に照射することによって処置を施す美容レーザ装置
US20220118277A1 (en) Laser surgical apparatus for performing treatment by irradiating a part to be treated by a variable pulsed laser beam
CN107920857B (zh) 骨切割处理
US11291504B1 (en) Method of incising and ablating living tissues and surgical laser devices
RU2632803C1 (ru) Способ рассечения биоткани лазерным излучением и устройство для его осуществления
WO2023192625A1 (en) Systems and methods for ophthalmic treatment
CN116407269A (zh) 用于通过由可变脉冲激光光束照射待治疗部分执行治疗的激光外科手术装置
Mnitentag et al. Diamond shaped optical fiber delivery system
WO2023146539A1 (en) Method of incising and ablating living tissues and surgical laser devices
KR20240076781A (ko) 레이저 펄스를 사용하여 조직에 절개를 형성하는 시스템, 장치 및 방법
Absten Quantification of Energy Delivery for
Absten Quantification of Energy Delivery for Arthroscopic Laser Surgery
Gobbi et al. New semiconductor diode laser emitting at 2 um for microsurgery applications
Eisel et al. Zeiss OPMILAS 144 Surgical Lasers for

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication