CN116914283A - An aqueous organic hybrid secondary calcium ion battery based on electrochemically formed calcium alloy negative electrode and its application - Google Patents
An aqueous organic hybrid secondary calcium ion battery based on electrochemically formed calcium alloy negative electrode and its application Download PDFInfo
- Publication number
- CN116914283A CN116914283A CN202311039596.1A CN202311039596A CN116914283A CN 116914283 A CN116914283 A CN 116914283A CN 202311039596 A CN202311039596 A CN 202311039596A CN 116914283 A CN116914283 A CN 116914283A
- Authority
- CN
- China
- Prior art keywords
- calcium
- negative electrode
- calcium ion
- electrolyte
- ion battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical group [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 title claims abstract description 97
- 229910001424 calcium ion Inorganic materials 0.000 title claims abstract description 97
- 229910000882 Ca alloy Inorganic materials 0.000 title claims abstract description 35
- 239000003792 electrolyte Substances 0.000 claims abstract description 54
- 229910052751 metal Inorganic materials 0.000 claims abstract description 54
- 239000002184 metal Substances 0.000 claims abstract description 54
- 239000011575 calcium Substances 0.000 claims abstract description 41
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims abstract description 37
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 37
- DCYOBGZUOMKFPA-UHFFFAOYSA-N iron(2+);iron(3+);octadecacyanide Chemical group [Fe+2].[Fe+2].[Fe+2].[Fe+3].[Fe+3].[Fe+3].[Fe+3].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] DCYOBGZUOMKFPA-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000003960 organic solvent Substances 0.000 claims abstract description 21
- 239000013225 prussian blue Substances 0.000 claims abstract description 21
- 229960003351 prussian blue Drugs 0.000 claims abstract description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 19
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 16
- 239000011149 active material Substances 0.000 claims abstract description 14
- 239000008367 deionised water Substances 0.000 claims abstract description 13
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 13
- 238000011065 in-situ storage Methods 0.000 claims abstract description 11
- 159000000007 calcium salts Chemical class 0.000 claims abstract description 8
- 238000003756 stirring Methods 0.000 claims abstract description 7
- 239000011888 foil Substances 0.000 claims description 28
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 27
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 12
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 8
- 239000002253 acid Substances 0.000 claims description 6
- PUQLFUHLKNBKQQ-UHFFFAOYSA-L calcium;trifluoromethanesulfonate Chemical group [Ca+2].[O-]S(=O)(=O)C(F)(F)F.[O-]S(=O)(=O)C(F)(F)F PUQLFUHLKNBKQQ-UHFFFAOYSA-L 0.000 claims description 6
- 239000011572 manganese Substances 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- 239000002904 solvent Substances 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical group COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 claims description 4
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 4
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 claims description 4
- -1 calcium tetrafluoroborate Chemical compound 0.000 claims description 4
- 150000002148 esters Chemical class 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- ZAUUZASCMSWKGX-UHFFFAOYSA-N manganese nickel Chemical compound [Mn].[Ni] ZAUUZASCMSWKGX-UHFFFAOYSA-N 0.000 claims description 4
- 150000002825 nitriles Chemical group 0.000 claims description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 3
- 238000007599 discharging Methods 0.000 claims description 3
- WHQOKFZWSDOTQP-UHFFFAOYSA-N 2,3-dihydroxypropyl 4-aminobenzoate Chemical compound NC1=CC=C(C(=O)OCC(O)CO)C=C1 WHQOKFZWSDOTQP-UHFFFAOYSA-N 0.000 claims description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 claims description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 claims description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 claims description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 2
- BTGRAWJCKBQKAO-UHFFFAOYSA-N adiponitrile Chemical compound N#CCCCCC#N BTGRAWJCKBQKAO-UHFFFAOYSA-N 0.000 claims description 2
- 239000001110 calcium chloride Substances 0.000 claims description 2
- 229910001628 calcium chloride Inorganic materials 0.000 claims description 2
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 claims description 2
- 229910001634 calcium fluoride Inorganic materials 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 239000011889 copper foil Substances 0.000 claims description 2
- 238000004146 energy storage Methods 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 239000011733 molybdenum Substances 0.000 claims description 2
- 229910017604 nitric acid Inorganic materials 0.000 claims description 2
- 238000005498 polishing Methods 0.000 claims description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 claims description 2
- IAHFWCOBPZCAEA-UHFFFAOYSA-N succinonitrile Chemical compound N#CCCC#N IAHFWCOBPZCAEA-UHFFFAOYSA-N 0.000 claims description 2
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical compound COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 claims description 2
- 150000003949 imides Chemical class 0.000 claims 1
- 238000002360 preparation method Methods 0.000 abstract description 15
- 238000002161 passivation Methods 0.000 abstract description 9
- 238000006243 chemical reaction Methods 0.000 abstract description 6
- 230000008021 deposition Effects 0.000 abstract description 6
- 239000000463 material Substances 0.000 abstract description 6
- 239000002994 raw material Substances 0.000 abstract description 3
- 238000002156 mixing Methods 0.000 abstract description 2
- 229940003871 calcium ion Drugs 0.000 description 67
- 229910001297 Zn alloy Inorganic materials 0.000 description 22
- IHBCFWWEZXPPLG-UHFFFAOYSA-N [Ca].[Zn] Chemical compound [Ca].[Zn] IHBCFWWEZXPPLG-UHFFFAOYSA-N 0.000 description 22
- 230000000052 comparative effect Effects 0.000 description 22
- 238000000034 method Methods 0.000 description 11
- PBCJIPOGFJYBJE-UHFFFAOYSA-N acetonitrile;hydrate Chemical compound O.CC#N PBCJIPOGFJYBJE-UHFFFAOYSA-N 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 230000004888 barrier function Effects 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 239000010406 cathode material Substances 0.000 description 5
- 210000001787 dendrite Anatomy 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229940021013 electrolyte solution Drugs 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 239000007774 positive electrode material Substances 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 238000013112 stability test Methods 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000006182 cathode active material Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003487 electrochemical reaction Methods 0.000 description 2
- 230000005518 electrochemistry Effects 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 238000004098 selected area electron diffraction Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000006245 Carbon black Super-P Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- WFABOCFDABTAPE-UHFFFAOYSA-N calcium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Ca+2].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F.FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F WFABOCFDABTAPE-UHFFFAOYSA-N 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000012983 electrochemical energy storage Methods 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- PNGLEYLFMHGIQO-UHFFFAOYSA-M sodium;3-(n-ethyl-3-methoxyanilino)-2-hydroxypropane-1-sulfonate;dihydrate Chemical compound O.O.[Na+].[O-]S(=O)(=O)CC(O)CN(CC)C1=CC=CC(OC)=C1 PNGLEYLFMHGIQO-UHFFFAOYSA-M 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/36—Accumulators not provided for in groups H01M10/05-H01M10/34
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0088—Composites
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明属于钙离子电池技术领域,公开一种基于电化学形成钙合金负极的水系有机杂化二次钙离子电池及其应用。该水系有机杂化二次钙离子电池包括电池负极、电解液、隔膜以及电池正极,电池负极为钙合金负极;电解液为水系‑有机杂化钙离子电解液;正极的活性材料为普鲁士蓝活性材料;水系‑有机杂化钙离子电解液是将有机溶剂、钙盐和去离子水混溶,进行充分搅拌得到。本发明原位制得的钙离子电池钙合金负极,显著提高钙离子在电解液中的沉积剥离可逆性,减少钙金属钝化反应,制得的二次钙离子电池展现出更优异的高电压平台和长循环寿命优势。同时,电极和电解液原料廉价易得、制备成本低、时间短、安全环保,具有良好的应用前景。
The invention belongs to the technical field of calcium ion batteries and discloses an aqueous organic hybrid secondary calcium ion battery based on the electrochemical formation of a calcium alloy negative electrode and its application. The aqueous organic hybrid secondary calcium ion battery includes a battery negative electrode, an electrolyte, a separator, and a battery positive electrode. The battery negative electrode is a calcium alloy negative electrode; the electrolyte is an aqueous-organic hybrid calcium ion electrolyte; and the active material of the positive electrode is Prussian blue active material. Materials: Aqueous-organic hybrid calcium ion electrolyte is obtained by mixing organic solvent, calcium salt and deionized water and stirring thoroughly. The calcium alloy negative electrode of the calcium ion battery prepared in situ by the present invention significantly improves the reversibility of the deposition and stripping of calcium ions in the electrolyte, reduces the passivation reaction of calcium metal, and the prepared secondary calcium ion battery exhibits more excellent high voltage platform and long cycle life advantages. At the same time, the electrode and electrolyte raw materials are cheap and easy to obtain, the preparation cost is low, the time is short, safe and environmentally friendly, and it has good application prospects.
Description
技术领域Technical field
本发明属于钙离子电池技术领域,具体地,涉及一种基于电化学形成钙合金负极的水系有机杂化二次钙离子电池及其应用。The invention belongs to the technical field of calcium ion batteries, and specifically relates to an aqueous organic hybrid secondary calcium ion battery based on the electrochemical formation of a calcium alloy negative electrode and its application.
背景技术Background technique
能源是人类社会中永恒的话题。锂离子电池在过去几十年中在电动车和便携式电子产品提供动力方面取得了巨大成功。随着不断增长的智能电网和电气化交通应用对电化学储能系统的需求增加,原材料供应问题引起了关注。考虑到锂资源有限且分布不均,当前在探索具有可持续性和经济性的新型电池途中,多价离子电池被认为非常有前景。其中,钙离子电池因为钙金属的氧化还原电位低(-2.9V vs.SHE),钙元素丰度高(地壳中的4.1%),比锂丰富2500倍,绿色环保无毒,所以钙离子电池受到了广泛关注。Energy is an eternal topic in human society. Lithium-ion batteries have achieved great success over the past few decades in powering electric vehicles and portable electronics. As demand for electrochemical energy storage systems increases from growing smart grid and electrified transportation applications, raw material supply issues are a concern. Considering that lithium resources are limited and unevenly distributed, multivalent ion batteries are considered very promising in the search for new sustainable and economical batteries. Among them, calcium-ion batteries have low redox potential of calcium metal (-2.9V vs. SHE) and high abundance of calcium (4.1% in the earth's crust), which is 2500 times richer than lithium. They are green, environmentally friendly and non-toxic, so calcium-ion batteries received widespread attention.
目前,钙离子电池的发展仍处于初步阶段,不管是正极或负极材料种类还是电解液,都亟待开发出容量高、循环性能好以及电化学稳定性好的材料。尤其,钙离子电池中的钙金属负极存在着严重的钝化问题。与Li或Na金属相比,Ca金属负极不易形成枝晶,有望提高电池安全性。然而,二价钙离子和活性钙金属、正极材料、非水系电解质溶液会发生强烈的相互作用,导致电极-电解质界面处的电荷转移势垒高,从而导致电池电化学性能低下。因此,进一步研究界面化学并设计合适的电极-电解质界面,即设计能相互兼容的钙负极和钙盐电解液,以及与之高度适配的高性能正极,降低电极-电解质界面处的电荷转移势垒,对于实现高性能钙离子电池至关重要。At present, the development of calcium-ion batteries is still in its preliminary stages. Regardless of the type of cathode or anode material or electrolyte, there is an urgent need to develop materials with high capacity, good cycle performance and good electrochemical stability. In particular, the calcium metal anode in calcium-ion batteries suffers from serious passivation problems. Compared with Li or Na metal, Ca metal anode is less likely to form dendrites and is expected to improve battery safety. However, divalent calcium ions interact strongly with active calcium metal, cathode materials, and non-aqueous electrolyte solutions, resulting in high charge transfer barriers at the electrode-electrolyte interface, resulting in poor electrochemical performance of the battery. Therefore, it is necessary to further study the interface chemistry and design a suitable electrode-electrolyte interface, that is, to design a calcium anode and a calcium salt electrolyte that are compatible with each other, as well as a high-performance cathode that is highly compatible with them, and to reduce the charge transfer potential at the electrode-electrolyte interface. Barriers are crucial for realizing high-performance calcium-ion batteries.
发明内容Contents of the invention
本发明为了解决上述现有技术存在的不足和缺点,首要目的在于提供一种基于电化学形成钙合金负极的水系有机杂化二次钙离子电池,能有效改善电极-电解质界面处的电荷转移势垒高的问题,从而解决了现有技术中二次钙离子电池电压低、循环性能差、成本高的问题。In order to solve the deficiencies and shortcomings of the above-mentioned prior art, the primary purpose of the present invention is to provide an aqueous organic hybrid secondary calcium ion battery based on the electrochemical formation of a calcium alloy negative electrode, which can effectively improve the charge transfer potential at the electrode-electrolyte interface. The problem of high barrier is solved, thus solving the problems of low voltage, poor cycle performance and high cost of secondary calcium ion batteries in the existing technology.
本发明的另一目的在于提供上述二次钙离子电池的应用。Another object of the present invention is to provide the application of the above-mentioned secondary calcium ion battery.
本发明的目的通过下述技术方案来实现:The object of the present invention is achieved through the following technical solutions:
一种基于电化学形成钙合金负极的水系有机杂化二次钙离子电池,包括电池负极、电解液、隔膜以及电池正极,所述的电池负极为钙合金负极;所述电解液为水系-有机杂化钙离子电解液;所述的电池正极的活性材料为普鲁士蓝活性材料;所述的水系-有机杂化钙离子电解液是将有机溶剂、钙盐和去离子水混溶,进行充分搅拌得到。An aqueous organic hybrid secondary calcium ion battery based on the electrochemical formation of a calcium alloy negative electrode, including a battery negative electrode, an electrolyte, a separator and a battery positive electrode. The battery negative electrode is a calcium alloy negative electrode; the electrolyte is a water-organic Hybrid calcium ion electrolyte; the active material of the battery positive electrode is Prussian blue active material; the water-organic hybrid calcium ion electrolyte is made by mixing organic solvents, calcium salts and deionized water, and stirring them thoroughly get.
优选地,所述钙合金负极是将金属箔片进行打磨除去表面氧化层,随后用稀酸浸泡打磨后的金属箔片除去残留的氧化层,最后通过去离子水和无水乙醇进行清洗,得到去除表面氧化层的金属箔片;对去除氧化层的金属箔片进行裁片,并将金属箔片裁片作为对称电池的正负电极,以水系-有机杂化钙离子电解液为电解液,组装成CR2032型纽扣电池,对该电池进行充放电循环后拆解制得;或者直接使用与钙离子形成合金的金属箔片作为负极集流体,在电池组装后,金属箔片原位形成钙合金。Preferably, the calcium alloy negative electrode is obtained by polishing the metal foil to remove the surface oxide layer, then soaking the polished metal foil with dilute acid to remove the residual oxide layer, and finally cleaning it with deionized water and absolute ethanol. Metal foil with the surface oxide layer removed; cut the metal foil with the oxide layer removed, and use the metal foil pieces as the positive and negative electrodes of the symmetrical battery, using an aqueous-organic hybrid calcium ion electrolyte as the electrolyte, Assemble a CR2032 button battery, disassemble the battery after charge and discharge cycles; or directly use metal foil alloyed with calcium ions as the negative electrode current collector. After the battery is assembled, the metal foil forms a calcium alloy in situ. .
更为优选地,所述的金属箔片为锌箔、锡箔、镍箔、钼箔、铜箔、锰箔。More preferably, the metal foil is zinc foil, tin foil, nickel foil, molybdenum foil, copper foil, or manganese foil.
更为优选地,所述稀酸为稀盐酸、稀硫酸或稀硝酸,所述稀酸的浓度为0.5~2mol/L。More preferably, the dilute acid is dilute hydrochloric acid, dilute sulfuric acid or dilute nitric acid, and the concentration of the dilute acid is 0.5-2 mol/L.
优选地,所述的有机溶剂为腈类有机溶剂、醚类有机溶剂、酯类有机溶剂中的一种以上。Preferably, the organic solvent is at least one of nitrile organic solvents, ether organic solvents, and ester organic solvents.
更为优选地,所述腈类有机溶剂为乙腈、丁二腈或己二腈中的一种以上;所述醚类有机溶剂为乙二醇二甲醚或/和三乙二醇二甲醚;所述酯类有机溶剂为碳酸丙烯酯、碳酸乙烯酯、碳酸二乙酯中的一种以上。More preferably, the nitrile organic solvent is at least one of acetonitrile, succinonitrile or adiponitrile; the ether organic solvent is ethylene glycol dimethyl ether or/and triethylene glycol dimethyl ether. ; The ester organic solvent is at least one of propylene carbonate, ethylene carbonate, and diethyl carbonate.
优选地,所述的钙盐为三氟甲磺酸钙、双(三氟甲基磺酰基)亚胺钙、双氟磺酰亚胺钙、高氯酸钙、四氟硼酸钙、六氟磷酸钙、硝酸钙、氟化钙、氯化钙中的一种以上。Preferably, the calcium salt is calcium triflate, calcium bis(trifluoromethanesulfonyl)imide, calcium bisfluorosulfonimide, calcium perchlorate, calcium tetrafluoroborate, hexafluorophosphoric acid One or more of calcium, calcium nitrate, calcium fluoride, and calcium chloride.
优选地,所述普鲁士蓝活性材料为镍锰普鲁士蓝、锰普鲁士蓝、铜普鲁士蓝或钴普鲁士蓝。所述的普鲁士蓝正极活性材料均可采用行业内常用方法,如常见的共沉淀法、水热合成法、球磨法快速制得。Preferably, the Prussian blue active material is nickel manganese Prussian blue, manganese Prussian blue, copper Prussian blue or cobalt Prussian blue. The Prussian blue cathode active material can be quickly produced by methods commonly used in the industry, such as common co-precipitation methods, hydrothermal synthesis methods, and ball milling methods.
将普鲁士蓝活性材料、导电碳和粘结剂用溶剂溶解浆化得浆液,随后涂覆在集流体上,真空干燥,裁切得到所需尺寸即得电池正极。The Prussian blue active material, conductive carbon and binder are dissolved and slurried with a solvent to obtain a slurry, which is then coated on the current collector, dried in vacuum, and cut to the required size to obtain the battery positive electrode.
优选地,所述有机溶剂、钙盐和去离子水的摩尔比为1:(10~30):(10~30)。Preferably, the molar ratio of the organic solvent, calcium salt and deionized water is 1:(10~30):(10~30).
所述的二次钙离子电池在储能设备或用电设备中的应用。Application of the secondary calcium ion battery in energy storage equipment or electrical equipment.
本发明的二次钙离子电池包括制备钙合金负极的金属箔片负极、水系有机杂化电解液以及普鲁士蓝正极。所述的正极包括正极活性材料层和正极集流体,正极活性材料层包括导电碳、粘结剂以及所述的正极活性材料。导电碳和粘结剂可以为电池领域技术人员所能获知的任意具有导电性能的碳材料,以及活性材料粘附且复合在集流体上的任意物料,优选为聚偏氟乙烯、羧甲基纤维素、聚四氟乙烯、聚乙烯醇等。所述的集流体可以为电池领域技术人员所能认知的任意集流体,优选为石墨纸和不锈钢网。导电碳在正极材料中的含量优选为10~15%,粘结剂在正极材料中的含量优选为10~15%,而正极活性材料的优选含量为70~80%。所述的钙合金负极是在电化学充放电反应中直接生成,所以在制备二次钙离子电池的时候,可直接将上述金属箔直接充当负极集流体。The secondary calcium ion battery of the present invention includes a metal foil negative electrode prepared from a calcium alloy negative electrode, an aqueous organic hybrid electrolyte, and a Prussian blue positive electrode. The positive electrode includes a positive electrode active material layer and a positive electrode current collector. The positive electrode active material layer includes conductive carbon, a binder and the positive electrode active material. The conductive carbon and binder can be any carbon material with conductive properties known to those skilled in the battery field, as well as any material in which the active material is adhered and compounded on the current collector, preferably polyvinylidene fluoride and carboxymethyl fiber. Polytetrafluoroethylene, polyvinyl alcohol, etc. The current collector can be any current collector recognized by those skilled in the battery field, preferably graphite paper and stainless steel mesh. The content of conductive carbon in the cathode material is preferably 10-15%, the content of the binder in the cathode material is preferably 10-15%, and the preferred content of the cathode active material is 70-80%. The calcium alloy negative electrode is directly generated in the electrochemical charge-discharge reaction, so when preparing a secondary calcium ion battery, the above-mentioned metal foil can be directly used as a negative electrode current collector.
与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1.本发明原位制得的钙离子电池钙合金负极,显著提高钙离子在电解液中的沉积剥离可逆性,减少钙金属钝化反应,制得的二次钙离子电池展现出更优异的高电压平台和长循环寿命优势。制备的钙合金负极是以成本低、安全无害的金属箔作为电化学制备合金的衬底。制备的钙合金与价格昂贵、易氧化的钙金属相比,成本低、制备步骤简单、制备过程温和可控。同时,在电化学充放电中,该钙合金可以极大地缓解钙金属与电解液的剧烈钝化反应,提高钙离子在负极-电解质界面处沉积剥离的可逆性。1. The calcium alloy negative electrode of the calcium ion battery prepared in situ by the present invention significantly improves the reversibility of the deposition and stripping of calcium ions in the electrolyte, reduces the passivation reaction of calcium metal, and the prepared secondary calcium ion battery exhibits more excellent performance High voltage platform and long cycle life advantages. The prepared calcium alloy negative electrode uses low-cost, safe and harmless metal foil as the substrate for electrochemical preparation of alloys. Compared with the expensive and easily oxidized calcium metal, the prepared calcium alloy has low cost, simple preparation steps, and a mild and controllable preparation process. At the same time, during electrochemical charge and discharge, the calcium alloy can greatly alleviate the violent passivation reaction between calcium metal and electrolyte, and improve the reversibility of calcium ion deposition and stripping at the anode-electrolyte interface.
2.本发明制备的二次钙金属电池的循环次数可达400圈,电压平台最高达1.85V,此电化学稳定性和工作电压已远超直接使用昂贵的钙金属组装的钙金属电池,其原料廉价易得、制备成本低、时间短、安全环保,具有良好的应用前景。2. The number of cycles of the secondary calcium metal battery prepared by the present invention can reach 400 cycles, and the voltage platform is up to 1.85V. This electrochemical stability and working voltage have far exceeded that of calcium metal batteries directly assembled using expensive calcium metal. The raw materials are cheap and easy to obtain, the preparation cost is low, the time is short, it is safe and environmentally friendly, and it has good application prospects.
3.本发明的钙合金负极通过将金属箔片衬底直接作为负极集流体,通过电池充放电过程中原位电化学反应形成钙合金来作为二次钙离子电池的负极。此类合金负极可通过电化学法直接获得,不需要繁杂的制备过程。与昂贵且极易钝化的钙金属负极相比,直接使用金属箔片衬底来作为负极的集流体,具有绿色环保,成本低的优势。3. The calcium alloy negative electrode of the present invention uses the metal foil substrate directly as the negative electrode current collector, and forms a calcium alloy through an in-situ electrochemical reaction during the battery charging and discharging process to serve as the negative electrode of the secondary calcium ion battery. This type of alloy negative electrode can be obtained directly through electrochemical methods and does not require complicated preparation processes. Compared with the expensive and easily passivated calcium metal anode, directly using a metal foil substrate as the current collector of the anode has the advantages of being green, environmentally friendly, and low-cost.
4.本发明原位电化学形成的钙合金负极利用其合金界面层有效缓解钙金属钝化问题,并抑制枝晶生长,保证了超长期稳定的钙剥离/电镀;使用原位形成的钙合金负极的二次钙离子电池展现出优异的放电电压,优于其他诸多钙离子电池,较使用钙金属作为负极的二次钙离子电池在电池循环寿命上展现出了极其显著的优势。4. The calcium alloy negative electrode formed by in-situ electrochemistry of the present invention utilizes its alloy interface layer to effectively alleviate the calcium metal passivation problem and inhibit dendrite growth, ensuring ultra-long-term stable calcium stripping/electroplating; using the calcium alloy formed in-situ The secondary calcium-ion battery with the negative electrode exhibits excellent discharge voltage, which is better than many other calcium-ion batteries. Compared with the secondary calcium-ion battery using calcium metal as the negative electrode, it shows an extremely significant advantage in battery cycle life.
5.本发明的水系-有机杂化电解液中的水分子起到了强润滑和屏蔽作用,促使了大尺寸的Ca2+在普鲁士蓝活性材料中快速地嵌入脱出,提高了电池正极材料的扩散动力学;同时,杂化电解液中的有机组分,能有效抑制电解液中水分子的分解,拓宽电解液电化学窗口,并减缓负极上不可避免的钙金属钝化反应。本发明的水系-有机杂化钙离子电解液纯度高、化学稳定性好,与常规电极材料有着良好的相容性,有着高离子导电性和离子迁移率,且制备方法简易,条件温和可控。5. The water molecules in the aqueous-organic hybrid electrolyte of the present invention play a strong lubrication and shielding role, prompting large-sized Ca 2+ to be quickly embedded and extracted in the Prussian blue active material, and improving the diffusion of battery cathode materials. Kinetics; at the same time, the organic components in the hybrid electrolyte can effectively inhibit the decomposition of water molecules in the electrolyte, broaden the electrochemical window of the electrolyte, and slow down the inevitable calcium metal passivation reaction on the negative electrode. The aqueous-organic hybrid calcium ion electrolyte of the present invention has high purity, good chemical stability, good compatibility with conventional electrode materials, high ion conductivity and ion mobility, simple preparation method, and mild and controllable conditions. .
6.本发明制备的水系-有机杂化钙离子电解液中,水溶剂的强润滑和屏蔽作用,显著促进了大尺寸Ca2+的快速运输,从而促进Ca2+在普鲁士蓝正极中的大量储存。同时,有机溶剂的组分明显抑制了H2O的分解,并减少了不可避免的钙金属副产物生成。因此,普鲁士蓝正极在此水系-有机杂化电解液中展现出优良电化学稳定性和快速的钙离子扩散动力学,并与稳定的钙合金负极相互兼容,使得制备的二次钙离子电池最终呈现出优异的循环稳定性。6. In the aqueous-organic hybrid calcium ion electrolyte prepared by the present invention, the strong lubrication and shielding effect of the water solvent significantly promotes the rapid transportation of large-sized Ca 2+ , thereby promoting the large amount of Ca 2+ in the Prussian blue cathode. store. At the same time, the composition of the organic solvent significantly inhibits the decomposition of H 2 O and reduces the inevitable generation of calcium metal by-products. Therefore, the Prussian blue cathode exhibits excellent electrochemical stability and fast calcium ion diffusion kinetics in this aqueous-organic hybrid electrolyte, and is compatible with the stable calcium alloy anode, making the prepared secondary calcium ion battery ultimately Exhibits excellent cycling stability.
附图说明Description of the drawings
图1为实施例1电化学制备的钙锌合金负极的截面扫描电子显微镜形貌照片(SEM)。Figure 1 is a cross-sectional scanning electron microscope (SEM) photo of the calcium-zinc alloy negative electrode electrochemically prepared in Example 1.
图2为实施例1电化学制备的钙锌合金负极与锌箔的X射线衍射图谱(XRD)。Figure 2 is the X-ray diffraction pattern (XRD) of the calcium-zinc alloy negative electrode and zinc foil electrochemically prepared in Example 1.
图3为实施例1电化学制备的钙锌合金负极的选定区域电子衍射图(SAED)。Figure 3 is a selected area electron diffraction pattern (SAED) of the calcium-zinc alloy negative electrode electrochemically prepared in Example 1.
图4为实施例1的锌衬底对称电池在面电流密度为0.2mA cm-2和面容量密度为0.2mAh cm-2下的时间电压曲线图。Figure 4 is a time-voltage curve of the zinc substrate symmetrical battery of Example 1 when the areal current density is 0.2mA cm -2 and the areal capacity density is 0.2mAh cm -2 .
图5实施例1组装的二次钙离子电池在电流密度为0.1A/g下的充放电曲线Figure 5 Charging and discharging curves of the secondary calcium ion battery assembled in Example 1 at a current density of 0.1A/g
图6为实施例1组装的二次钙离子电池的倍率性能图。Figure 6 is a rate performance diagram of the secondary calcium ion battery assembled in Example 1.
图7为实施例1组装的二次钙离子电池在电流密度为1A/g下的循环稳定性图。Figure 7 is a graph showing the cycle stability of the secondary calcium ion battery assembled in Example 1 at a current density of 1A/g.
图8为对比例2的钙金属对称电池在面电流密度为0.2mA cm-2和面容量密度为0.2mAh cm-2下的时间电压曲线图。Figure 8 is a time-voltage curve of the calcium metal symmetrical battery of Comparative Example 2 when the areal current density is 0.2mA cm -2 and the areal capacity density is 0.2mAh cm -2 .
图9为对比例2组装的二次钙离子电池在电流密度为0.1A/g下的充放电曲线。Figure 9 is the charge and discharge curve of the secondary calcium ion battery assembled in Comparative Example 2 at a current density of 0.1A/g.
图10为对比例2组装的二次钙离子电池的倍率性能图。Figure 10 is a rate performance diagram of the secondary calcium ion battery assembled in Comparative Example 2.
具体实施方式Detailed ways
下面结合具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。The content of the present invention will be further described below with reference to specific examples, but should not be understood as limiting the present invention. Unless otherwise specified, the technical means used in the examples are conventional means well known to those skilled in the art. Unless otherwise specified, the reagents, methods and equipment used in the present invention are conventional reagents, methods and equipment in this technical field.
实施例1Example 1
1.制备水系-乙腈杂化电解液1. Preparation of water-acetonitrile hybrid electrolyte
将摩尔比1:20:20的三氟甲烷磺酸钙、有机溶剂乙腈和去离子水混溶,进行充分搅拌12h,得到分散性良好的水系-乙腈杂化钙离子电解液(1-20-20)。Mix calcium trifluoromethanesulfonate, organic solvent acetonitrile and deionized water at a molar ratio of 1:20:20, and stir thoroughly for 12 hours to obtain a well-dispersed water-acetonitrile hybrid calcium ion electrolyte (1-20- 20).
2.制备电化学形成的钙锌合金负极2. Preparation of electrochemically formed calcium-zinc alloy negative electrode
(1)取厚度为100μm锌箔进行表面氧化层去除,首先通过砂纸将锌箔表面大部分的ZnO氧化层磨去,随后将打磨后的锌箔浸泡在1mol/L的HCl中1min,去除残留的ZnO氧化层。(1) Take a zinc foil with a thickness of 100 μm to remove the surface oxide layer. First, use sandpaper to remove most of the ZnO oxide layer on the surface of the zinc foil. Then, soak the polished zinc foil in 1 mol/L HCl for 1 min to remove the residue. ZnO oxide layer.
(2)将步骤(1)得到的去除ZnO氧化层的锌箔作为电极、以水系-乙腈杂化钙离子电解液1-20-20为电解液、玻璃纤维为隔膜组装成CR2032型纽扣电池,制得对称电池。(2) Use the zinc foil with the ZnO oxide layer removed in step (1) as the electrode, use the aqueous-acetonitrile hybrid calcium ion electrolyte 1-20-20 as the electrolyte, and glass fiber as the separator to assemble a CR2032 button battery. A symmetrical battery was produced.
(3)将步骤(2)组装的对称电池在恒流充放电测试仪上以面电流密度为0.1~0.3mAcm-2和面容量密度为0.1~0.3mAh cm-2下进行充放电循环,循环时间为50~100h。(3) Charge and discharge the symmetrical battery assembled in step (2) on a constant current charge and discharge tester with an area current density of 0.1 to 0.3 mAcm -2 and an area capacity density of 0.1 to 0.3 mAh cm -2 . Cycle The time is 50~100h.
(4)将步骤(3)中电化学循环后的对称电池进行拆解,其电极则为钙锌合金负极。(4) Disassemble the symmetrical battery after the electrochemical cycle in step (3), and its electrode is a calcium-zinc alloy negative electrode.
所述的钙锌合金负极中的钙锌合金是在电化学充放电过程中原位形成,可快速制备并应用在各类器械材料制备中。The calcium-zinc alloy in the calcium-zinc alloy negative electrode is formed in situ during the electrochemical charge and discharge process, and can be quickly prepared and used in the preparation of various equipment materials.
3.制备镍锰普鲁士蓝活性材料3. Preparation of nickel manganese Prussian blue active material
(1)称取2g的二水合柠檬酸三钠、0.539g的NiCl2·6H2O和0.278g的Mn(CH3CO2)2·4H2O,溶解在100mL的去离子水中,得到溶液A。(1) Weigh 2g of trisodium citrate dihydrate, 0.539g of NiCl 2 ·6H 2 O and 0.278g of Mn(CH 3 CO 2 ) 2 ·4H 2 O, and dissolve them in 100 mL of deionized water to obtain a solution A.
(2)称取2.06g的Na4Fe(CN)6·10H2O溶解在100mL的去离子水中,得到溶液B。(2) Weigh 2.06g of Na 4 Fe(CN) 6 ·10H 2 O and dissolve it in 100 mL of deionized water to obtain solution B.
(3)将溶液A滴加入到溶液B中,并在常温常压下充分搅拌24h,搅拌完成后再老化24h。最后将老化完成溶液利用去离子水进行离心洗涤2次,在80℃的真空烘箱中烘干12h,得到镍锰普鲁士蓝活性材料(NiMnPB)。(3) Add solution A dropwise to solution B, and stir thoroughly for 24 hours at room temperature and pressure. After stirring is completed, it is aged for 24 hours. Finally, the aged solution was centrifuged and washed twice with deionized water, and dried in a vacuum oven at 80°C for 12 hours to obtain the nickel manganese Prussian blue active material (NiMnPB).
4.制备二次钙离子电池4. Preparation of secondary calcium ion batteries
取40mg上述制备的活性材料NiMnPB与5mg导电炭黑Super-P充分混合研磨30min后,加入250mg质量分数为2%的聚偏氟乙烯进行搅拌混合12h,得到均一的浆料,将浆料均匀涂敷在石墨纸集流体上,80℃下真空干燥24h,得到NiMnPB正极极片。Take 40 mg of the active material NiMnPB prepared above and 5 mg of conductive carbon black Super-P, thoroughly mix and grind for 30 minutes, then add 250 mg of polyvinylidene fluoride with a mass fraction of 2% and stir for 12 hours to obtain a uniform slurry. Apply the slurry evenly Apply it on the graphite paper current collector and vacuum dry it at 80°C for 24 hours to obtain the NiMnPB positive electrode piece.
以水系-乙腈杂化钙离子电解液1-20-20为电解液,以玻璃纤维为隔膜,以步骤2制得的钙锌合金为负极,NiMnPB正极极片为正极,组装成CR2032型纽扣电池,制得二次钙离子电池。Use the water-acetonitrile hybrid calcium ion electrolyte 1-20-20 as the electrolyte, glass fiber as the separator, the calcium zinc alloy prepared in step 2 as the negative electrode, and the NiMnPB positive electrode sheet as the positive electrode to assemble a CR2032 button battery. , to prepare secondary calcium ion batteries.
5.二次钙离子电池和对称电池的性能测试5. Performance testing of secondary calcium ion batteries and symmetrical batteries
对所制得的二次钙离子电池进行恒流充放电性能测试,充电截止电压为2.2V,放电截止电压为0.2V。The prepared secondary calcium ion battery was tested for constant current charge and discharge performance. The charge cut-off voltage was 2.2V and the discharge cut-off voltage was 0.2V.
图1为实施例1电化学制备的钙锌合金负极的截面扫描电子显微镜形貌照片(SEM)。由图1可以发现,钙锌合金负极的截面非常平整,说明钙锌合金在形成的过程中并无像锂离子电池中常见的枝晶生长问题,这确保了二次钙离子电池不会因为枝晶生长问题造成电池短路,引发严重的安全问题。图2为实施例1电化学制备的钙锌合金负极与锌箔的X射线衍射图谱(XRD)。通过图2分析显示,钙锌合金负极的衍射角较锌箔明显地向低衍射角度偏移,这是由于钙锌合金效应的影响,证明了钙锌合金的形成。图3为实施例1电化学制备的钙锌合金负极的选定区域电子衍射图(SAED)。图3分析进一步证明成功合成了钙锌合金负极。Figure 1 is a cross-sectional scanning electron microscope (SEM) photo of the calcium-zinc alloy negative electrode electrochemically prepared in Example 1. As can be seen from Figure 1, the cross-section of the calcium-zinc alloy negative electrode is very smooth, indicating that the calcium-zinc alloy does not have the common dendrite growth problem in lithium-ion batteries during the formation process. This ensures that the secondary calcium-ion battery will not suffer from dendrites. Crystal growth problems cause battery short circuits, causing serious safety issues. Figure 2 is the X-ray diffraction pattern (XRD) of the calcium-zinc alloy negative electrode and zinc foil electrochemically prepared in Example 1. The analysis in Figure 2 shows that the diffraction angle of the calcium-zinc alloy negative electrode is obviously shifted to a lower diffraction angle than that of the zinc foil. This is due to the influence of the calcium-zinc alloy effect, which proves the formation of the calcium-zinc alloy. Figure 3 is a selected area electron diffraction pattern (SAED) of the calcium-zinc alloy negative electrode electrochemically prepared in Example 1. The analysis in Figure 3 further proves that the calcium-zinc alloy negative electrode was successfully synthesized.
图4为实施例1的钙锌合金对称电池在面电流密度为0.2mA cm-2和面容量密度为0.2mAh cm-2下的时间电压曲线图。从图4中可知,锌衬底对称电池的滞后电压非常小(约0.044V),并且能稳定循环1600h以上,这说明原位形成的钙锌合金能有效降低电极-电解质界面处的电荷转移势垒,从而提高了钙离子在电极-电解质界面处沉积剥离的可逆性。图5为实施例1组装的二次钙离子电池在电流密度为0.1A/g下的充放电曲线。从图5中可知,实施例1组装的二次钙离子电池在电流密度为0.1A/g下也展现出了优异的高电压平台,电压平台最高达1.85V,平均放电电压为1.52V。图6为实施例1组装的二次钙离子电池的倍率性能图。从图6中可知,在大电流密度5A/g循环后,电流密度重返电流密度0.1A/g,仍然展现出144mAh/g的容量,可见实施例1组装的二次钙离子电池的倍率稳定性非常优异。图7为实施例1组装的二次钙离子电池在电流密度为1A/g下的循环稳定性图。从图7中可知,实施例1组装的二次钙离子电池在电流密度1A/g下能长期稳定400圈,此稳定性已远超大多数以昂贵钙金属为负极的二次钙离子电池循环稳定性。Figure 4 is a time-voltage curve of the calcium-zinc alloy symmetrical battery of Example 1 when the areal current density is 0.2mA cm -2 and the areal capacity density is 0.2mAh cm -2 . As can be seen from Figure 4, the hysteresis voltage of the zinc substrate symmetrical battery is very small (about 0.044V), and it can cycle stably for more than 1600 hours, which shows that the calcium zinc alloy formed in situ can effectively reduce the charge transfer potential at the electrode-electrolyte interface barrier, thus improving the reversibility of calcium ion deposition and stripping at the electrode-electrolyte interface. Figure 5 is the charge and discharge curve of the secondary calcium ion battery assembled in Example 1 at a current density of 0.1 A/g. As can be seen from Figure 5, the secondary calcium ion battery assembled in Example 1 also exhibits an excellent high voltage platform at a current density of 0.1A/g. The voltage platform is as high as 1.85V, and the average discharge voltage is 1.52V. Figure 6 is a rate performance diagram of the secondary calcium ion battery assembled in Example 1. It can be seen from Figure 6 that after cycling at a high current density of 5A/g, the current density returns to a current density of 0.1A/g, and still exhibits a capacity of 144mAh/g. It can be seen that the rate of the secondary calcium ion battery assembled in Example 1 is stable. The performance is very excellent. Figure 7 is a graph showing the cycle stability of the secondary calcium ion battery assembled in Example 1 at a current density of 1A/g. As can be seen from Figure 7, the secondary calcium ion battery assembled in Example 1 can be stable for 400 cycles at a current density of 1A/g for a long time. This stability far exceeds the cycle stability of most secondary calcium ion batteries using expensive calcium metal as the negative electrode. sex.
实施例2Example 2
与实施例1中的对称电池和二次钙离子电池制备过程中,除使用的水系-乙腈杂化钙离子电解液中的水溶剂和乙腈溶剂摩尔比不同,其他所有步骤及使用的材料都相同。实施例2使用的以1:10:30的摩尔比的三氟甲烷磺酸钙、乙腈、去离子水混溶的水系-乙腈杂化钙离子电解液(1-10-30);In the preparation process of the symmetrical battery and the secondary calcium ion battery in Example 1, except for the molar ratio of water solvent to acetonitrile solvent in the water-acetonitrile hybrid calcium ion electrolyte used, all other steps and materials used are the same. . The aqueous-acetonitrile hybrid calcium ion electrolyte (1-10-30) used in Example 2 is miscible with calcium trifluoromethanesulfonate, acetonitrile, and deionized water at a molar ratio of 1:10:30;
实施例3Example 3
实施例3使用的以1:30:10的摩尔比的三氟甲烷磺酸钙、乙腈、去离子水混溶的水系-乙腈杂化钙离子电解液(1-30-10);The aqueous-acetonitrile hybrid calcium ion electrolyte (1-30-10) used in Example 3 is miscible with calcium trifluoromethanesulfonate, acetonitrile, and deionized water at a molar ratio of 1:30:10;
实施例4Example 4
与实施例1不同的在于:所述的二次钙离子电池组装中的负极为去除氧化层的锌箔作为负极衬底(集流体),其可在电化学循环过程中生成钙锌合金负极。所制备的二次钙离子电池和对称电池电化学性能基本一致,且制备较实施例1更为方便快捷。The difference from Example 1 is that the negative electrode in the secondary calcium ion battery assembly is a zinc foil with the oxide layer removed as the negative electrode substrate (current collector), which can generate a calcium-zinc alloy negative electrode during the electrochemical cycle. The prepared secondary calcium ion battery has basically the same electrochemical properties as the symmetrical battery, and the preparation is more convenient and faster than in Example 1.
对比例1Comparative example 1
对比例1使用的以1:40的摩尔比的三氟甲烷磺酸钙和乙腈混溶的钙离子乙腈电解液(1-40)。Comparative Example 1 used a calcium ion acetonitrile electrolyte solution (1-40) miscible with calcium trifluoromethanesulfonate and acetonitrile at a molar ratio of 1:40.
对实施例1-3和对比例1的对称电池在面电流密度为0.5mAcm-2和面容量密度为0.5mAh cm-2下进行常规循环稳定性测试,其对称电池的稳定性见表1。The symmetrical batteries of Examples 1-3 and Comparative Example 1 were subjected to conventional cycle stability tests at an areal current density of 0.5mAcm -2 and an areal capacity density of 0.5mAh cm -2 . The stability of the symmetrical batteries is shown in Table 1.
表1实施例1-3和对比例1的对称电池的稳定性Table 1 Stability of symmetrical batteries of Examples 1-3 and Comparative Example 1
表1为实施例1-3和对比例1的对称电池的稳定性。从表1可知,实施例1-3和对比例1相比,电解液中引入了水分子,使实施例1-3较对比例1的对称电池的循环寿命得到了非常大的提升。这是由于水分子的引入,促进了电极表面钙锌合金的生成,使电极-电解液界面的的钙离子能稳定得沉积剥离,从而增加了对称电池的循环寿命。同时,实施例1与实施例2、3相比,对称电池的循环时间最长,说明其电极-电解液界面中的钙离子沉积剥离稳定性最好,水系-乙腈杂化电解液1-20-20是最优的杂化电解液,能有效降低电极-电解质界面处的电荷转移势垒,帮助钙离子实现可逆稳定的电化学沉积剥离。Table 1 shows the stability of the symmetrical batteries of Examples 1-3 and Comparative Example 1. As can be seen from Table 1, compared with Comparative Example 1, Examples 1-3 introduce water molecules into the electrolyte, which greatly improves the cycle life of the symmetrical battery of Examples 1-3 compared with Comparative Example 1. This is because the introduction of water molecules promotes the formation of calcium-zinc alloy on the electrode surface, allowing the calcium ions at the electrode-electrolyte interface to be stably deposited and peeled off, thereby increasing the cycle life of the symmetrical battery. At the same time, compared with Examples 2 and 3, Example 1 has the longest cycle time of the symmetrical battery, indicating that the calcium ion deposition and peeling stability in the electrode-electrolyte interface is the best. Water-acetonitrile hybrid electrolyte 1-20 -20 is the optimal hybrid electrolyte, which can effectively reduce the charge transfer barrier at the electrode-electrolyte interface and help achieve reversible and stable electrochemical deposition stripping of calcium ions.
对比例2Comparative example 2
对比例2与实施例1中的对称电池和二次钙离子电池制备过程中,除对称电和二次钙离子电池使用的负极均为钙金属,二次钙离子电池的充放电区间选区为0.4-2.2V外,其他所有步骤及使用的材料都相同。图8为对比例2的钙金属对称电池在面电流密度为0.2mAcm-2和面容量密度为0.2mAh cm-2下的时间电压曲线图。从图8中可知,对比例2中的钙金属对称电池在前5圈循环中电压滞后最大约为0.34V,但在第6圈后电压滞后急剧增加(约2.23V)。由此可知,以钙金属为电极的对称电池在循环过程中电压滞后变化非常大,说明钙离子在钙金属上的沉积剥离反应极其困难且不稳定。In the preparation process of the symmetrical battery and the secondary calcium-ion battery in Comparative Example 2 and Example 1, except for the negative electrode used in the symmetrical battery and the secondary calcium-ion battery, which is calcium metal, the charge-discharge interval selection of the secondary calcium-ion battery is 0.4 Except for -2.2V, all other steps and materials used are the same. Figure 8 is a time-voltage curve of the calcium metal symmetrical battery of Comparative Example 2 when the areal current density is 0.2mAcm -2 and the areal capacity density is 0.2mAh cm -2 . As can be seen from Figure 8, the maximum voltage hysteresis of the calcium metal symmetric battery in Comparative Example 2 is about 0.34V in the first 5 cycles, but the voltage hysteresis increases sharply (about 2.23V) after the 6th cycle. It can be seen that the voltage hysteresis of a symmetrical battery using calcium metal as an electrode changes greatly during the cycle, indicating that the deposition and stripping reaction of calcium ions on calcium metal is extremely difficult and unstable.
对实施例1和对比例2的对称电池在面电流密度为0.2mA cm-2和面容量密度为0.2mAh cm-2下的稳定性,如表2所示。The stability of the symmetrical batteries of Example 1 and Comparative Example 2 at an area current density of 0.2 mA cm -2 and an area capacity density of 0.2 mAh cm -2 is shown in Table 2.
表2实施例1和对比例2的对称电池的稳定性Table 2 Stability of symmetrical batteries of Example 1 and Comparative Example 2
表2为实施例1和对比例2的对称电池的稳定性。从表2可知,在水系-乙腈杂化钙离子电解液1-20-20下,活性钙金属和水系-乙腈杂化钙离子电解质溶液仍然发生强烈的相互作用,使得钙金属的钝化问题和产气问题非常严重。因此,钙金属-电解质界面处的电荷转移势垒非常高,最终导致对称电池电化学性能非常差,仅仅能运行7h。相反地,本发明中原位电化学形成的钙锌合金负极则通过合金化作用能有效缓解钙金属钝化,抑制枝晶生长,保证了超长稳定的钙剥离/电镀。在0.2mAcm-2和面容量密度为0.2mAh cm-2下进行常规循环稳定性测试,循环时间甚至超过了1600h。Table 2 shows the stability of the symmetrical batteries of Example 1 and Comparative Example 2. It can be seen from Table 2 that under the water-acetonitrile hybrid calcium ion electrolyte 1-20-20, the active calcium metal and the water-acetonitrile hybrid calcium ion electrolyte solution still interact strongly, causing the passivation problem of calcium metal and Gas production is a serious problem. Therefore, the charge transfer barrier at the calcium metal-electrolyte interface is very high, ultimately leading to very poor electrochemical performance of the symmetrical cell, which can only operate for 7 hours. On the contrary, the calcium-zinc alloy negative electrode formed by in-situ electrochemistry in the present invention can effectively alleviate calcium metal passivation through alloying, inhibit dendrite growth, and ensure ultra-long and stable calcium stripping/electroplating. Conventional cycle stability tests were conducted at 0.2mAcm -2 and areal capacity density 0.2mAh cm -2 , and the cycle time even exceeded 1600h.
图9为对比例2组装的二次钙离子电池在电流密度为0.1A/g下的充放电曲线。从图9可知,由于钙金属具有较低的氧化还原电位,故对比例2组装的二次钙离子电池在电流密度为0.1A/g下的电压平台最高达约1.93V。图10为对比例2组装的二次钙离子电池的倍率性能图。从图10可知,对比例2组装的二次钙离子电池在倍率稳定性测试循环6圈后,容量几乎为0,这是由于钙金属负极在电化学反应中发生了快速钝化,造成了钙金属负极的失效,最终制约了对比例2制得的二次钙离子电池的循环寿命。Figure 9 is the charge and discharge curve of the secondary calcium ion battery assembled in Comparative Example 2 at a current density of 0.1A/g. It can be seen from Figure 9 that since calcium metal has a low redox potential, the voltage platform of the secondary calcium ion battery assembled in Comparative Example 2 is as high as about 1.93V at a current density of 0.1A/g. Figure 10 is a rate performance diagram of the secondary calcium ion battery assembled in Comparative Example 2. It can be seen from Figure 10 that the secondary calcium ion battery assembled in Comparative Example 2 has a capacity of almost 0 after 6 cycles of the rate stability test. This is due to the rapid passivation of the calcium metal negative electrode during the electrochemical reaction, resulting in calcium loss. The failure of the metal negative electrode ultimately restricted the cycle life of the secondary calcium ion battery produced in Comparative Example 2.
综上所述,直接使用可与钙离子形成合金的金属箔作为负极集流体,在电池组装后,金属箔会原位形成钙合金,或直接使用电化学制备的钙合金作为电极,两者方式的电化学稳定性都优于钙金属。To sum up, directly use metal foil that can form an alloy with calcium ions as the negative electrode current collector. After the battery is assembled, the metal foil will form a calcium alloy in situ, or directly use electrochemically prepared calcium alloy as the electrode. Both methods The electrochemical stability is better than that of calcium metal.
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above embodiments are preferred embodiments of the present invention, but the embodiments of the present invention are not limited to the above embodiments. Any other changes, modifications, substitutions, combinations, etc. may be made without departing from the spirit and principles of the present invention. All simplifications should be equivalent substitutions, and are all included in the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311039596.1A CN116914283A (en) | 2023-08-17 | 2023-08-17 | An aqueous organic hybrid secondary calcium ion battery based on electrochemically formed calcium alloy negative electrode and its application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311039596.1A CN116914283A (en) | 2023-08-17 | 2023-08-17 | An aqueous organic hybrid secondary calcium ion battery based on electrochemically formed calcium alloy negative electrode and its application |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116914283A true CN116914283A (en) | 2023-10-20 |
Family
ID=88354919
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311039596.1A Pending CN116914283A (en) | 2023-08-17 | 2023-08-17 | An aqueous organic hybrid secondary calcium ion battery based on electrochemically formed calcium alloy negative electrode and its application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116914283A (en) |
-
2023
- 2023-08-17 CN CN202311039596.1A patent/CN116914283A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108461727B (en) | Graphene-doped transition metal oxalate lithium ion battery cathode material and preparation method thereof | |
CN108417786B (en) | Preparation method of rod-shaped multilayer microporous ferrous oxalate lithium ion battery cathode material | |
CN108615874A (en) | A kind of kalium ion battery positive electrode and preparation method thereof based on nickel manganese binary oxide | |
CN108306059A (en) | The preparation method of environmentally protective high power water system Zinc ion battery | |
CN111180709A (en) | Carbon nanotube and metal copper co-doped lithium ferrous oxalate battery composite negative electrode material and preparation method thereof | |
CN108767263A (en) | A kind of preparation method and application of modified metal cathode of lithium copper foil current collector | |
CN113097464B (en) | A kind of ZnS-SnS@3DC composite material and its preparation method and application | |
CN105609771B (en) | A kind of azepine multi-stage porous carbon negative material and its preparation method and application | |
CN105489949B (en) | A kind of mixed aqueous solution battery preparation method based on embedding sodium positive electrode | |
CN108123141A (en) | A kind of three-dimensional porous foams grapheme material and its application | |
CN115939369A (en) | A multi-metal co-regulated layered oxide sodium ion battery positive electrode material and its preparation method and application | |
CN107785559B (en) | Graphene-lithium titanate composite material, preparation method thereof, lithium-supplementing graphene-lithium titanate film and lithium battery | |
CN112186166B (en) | Molybdenum/cobalt oxide-carbon composite material and preparation method thereof, lithium ion battery negative electrode piece and lithium ion battery | |
CN110391415A (en) | A positive electrode active material and a zinc ion battery comprising the positive electrode active material | |
CN113851738A (en) | A kind of rechargeable manganese ion battery and preparation method thereof | |
CN108878876A (en) | Potassium titanyl phosphate negative electrode material for potassium ion secondary cell | |
CN112777611A (en) | Rhombohedral phase Prussian blue derivative and preparation method and application thereof | |
CN102820466A (en) | Cathode material of lithium ion battery based on hydroxyl cobalt oxide and preparation method of cathode material | |
CN114388903B (en) | An electrolyte containing organic additives for aqueous zinc-ion batteries and a preparation method thereof, aqueous zinc-ion batteries | |
CN115498183A (en) | A modified sodium vanadium manganese phosphate positive electrode material, its preparation and application | |
CN112670477B (en) | Vanadium nitride quantum dot in-situ implanted carbon sphere composite material, preparation method thereof and sodium storage application | |
CN115881969A (en) | Boron-nitrogen doped porous carbon-based negative electrode active material and preparation method and application thereof | |
CN115911593A (en) | Reversible dendrite-free battery for high pressure and preparation method and application thereof | |
CN116914283A (en) | An aqueous organic hybrid secondary calcium ion battery based on electrochemically formed calcium alloy negative electrode and its application | |
CN115275141A (en) | Nitrogen-fluorine doped silicon-carbon composite negative electrode material and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |