CN116894406A - A fast prediction method for the temperature field of space thermionic reactor based on model order reduction - Google Patents
A fast prediction method for the temperature field of space thermionic reactor based on model order reduction Download PDFInfo
- Publication number
- CN116894406A CN116894406A CN202310905675.XA CN202310905675A CN116894406A CN 116894406 A CN116894406 A CN 116894406A CN 202310905675 A CN202310905675 A CN 202310905675A CN 116894406 A CN116894406 A CN 116894406A
- Authority
- CN
- China
- Prior art keywords
- matrix
- space
- temperature field
- power
- data snapshot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/28—Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/16—Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/27—Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2113/00—Details relating to the application field
- G06F2113/08—Fluids
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/08—Thermal analysis or thermal optimisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/14—Force analysis or force optimisation, e.g. static or dynamic forces
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Pure & Applied Mathematics (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Data Mining & Analysis (AREA)
- Computer Hardware Design (AREA)
- Computational Mathematics (AREA)
- Geometry (AREA)
- Algebra (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Fluid Mechanics (AREA)
- Databases & Information Systems (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
一种基于模型降阶的空间热离子堆温度场快速预测方法,1.指定空间热离子堆的运行功率区间,并随机生成功率样本空间;2.对功率样本空间内每个功率的温度场进行求解,得到整个功率样本空间的数据快照矩阵;3.对数据快照矩阵进行本征正交分解,得到正交基矩阵和模态系数矩阵,将整个空间热离子堆的温度场分解成样本温度场的平均值和若干正交基向量与模态系数的乘积相加的形式;4.基于广义能百分比,选取一定数量的正交基向量作为主模态建立降阶模型;5.基于反向传播算法,利用样本空间中每个功率值和对应的模态系数训练神经网络,得到代理模型;6.在训练好的代理模型中输入功率值得到模态系数,再结合降阶模型,即可获得全部网格节点的温度值。本发明方法计算快速且结果准确。
A method for quickly predicting the temperature field of space thermionic reactors based on model order reduction. 1. Specify the operating power range of the space thermionic reactors and randomly generate a power sample space; 2. Calculate the temperature field of each power in the power sample space. Solve to obtain the data snapshot matrix of the entire power sample space; 3. Perform intrinsic orthogonal decomposition of the data snapshot matrix to obtain the orthogonal basis matrix and modal coefficient matrix, and decompose the temperature field of the entire space thermionic reactor into the sample temperature field The form of adding the average value and the product of several orthogonal basis vectors and modal coefficients; 4. Based on the generalized energy percentage, select a certain number of orthogonal basis vectors as the main modes to establish a reduced-order model; 5. Based on back propagation Algorithm, use each power value and corresponding modal coefficient in the sample space to train the neural network to obtain the surrogate model; 6. Enter the power value into the trained surrogate model to obtain the modal coefficient, and then combine it with the reduced-order model to obtain Temperature values of all grid nodes. The method of the present invention is fast in calculation and has accurate results.
Description
技术领域Technical field
本发明涉及空间热离子堆运行分析技术领域,具体涉及一种基于模型降阶的空间热离子堆温度场快速预测方法。The invention relates to the technical field of space thermal ion reactor operation analysis, and specifically relates to a method for rapid prediction of the temperature field of the space thermal ion reactor based on model order reduction.
背景技术Background technique
空间热离子堆采用堆内热离子发电技术,热离子发电效率与温度密切相关,准确、快速的预测空间热离子堆温度场分布对空间热离子堆的在轨运行控制具有重要意义。目前采用计算流体力学(CFD)方法对全尺寸三维空间热离子堆进行温度场的计算,往往需要消耗大量的计算资源,计算耗时长。如果开展多种工况计算,计算时间也会随之倍增,不利于实现温度场的快速预测。模型降阶的本质是用低维数据信息表达高维数据信息。其优点为,在保留了问题的空间维度和物理属性的情况下,既降低了计算成本,又可以保证足够的精度要求。The space thermionic reactor uses in-reactor thermionic power generation technology. Thermionic power generation efficiency is closely related to temperature. Accurate and rapid prediction of the temperature field distribution of the space thermionic reactor is of great significance to the on-orbit operation control of the space thermionic reactor. Currently, computational fluid dynamics (CFD) methods are used to calculate the temperature field of a full-scale three-dimensional spatial thermal ion reactor, which often requires a large amount of computing resources and takes a long time to calculate. If calculations are carried out under multiple working conditions, the calculation time will also double, which is not conducive to rapid prediction of the temperature field. The essence of model reduction is to use low-dimensional data information to express high-dimensional data information. The advantage is that while retaining the spatial dimensions and physical properties of the problem, it not only reduces the computational cost, but also ensures sufficient accuracy requirements.
发明内容Contents of the invention
为了克服上述现有技术存在的问题,本发明的目的在于提供一种基于模型降阶的空间热离子堆温度场快速预测方法,解决CFD仿真方法求解空间热离子堆温度场的过程中计算用时长,计算量大,类似工况下需要重复计算的问题。In order to overcome the problems existing in the above-mentioned prior art, the purpose of the present invention is to provide a method for rapid prediction of the temperature field of the space thermionic reactor based on model reduction, and to solve the calculation time required in the process of solving the temperature field of the space thermionic reactor using the CFD simulation method. , the calculation amount is large, and it is a problem that requires repeated calculations under similar working conditions.
为了实现上述目的,本发明采取了以下技术方案:In order to achieve the above objects, the present invention adopts the following technical solutions:
一种基于模型降阶的空间热离子堆温度场快速预测方法,该方法包括以下步骤:A fast prediction method for the temperature field of space thermionic reactors based on model order reduction. The method includes the following steps:
步骤1:指定空间热离子堆的运行功率区间,在该运行功率区间内随机生成功率样本空间。Step 1: Specify the operating power interval of the space thermionic reactor, and randomly generate a power sample space within the operating power interval.
步骤2:利用CFD软件对功率样本空间内每个功率的温度场进行求解,从而得到整个功率样本空间的数据快照矩阵。Step 2: Use CFD software to solve the temperature field of each power in the power sample space, thereby obtaining the data snapshot matrix of the entire power sample space.
数据快照矩阵的具体形式如下:The specific form of the data snapshot matrix is as follows:
式中,M——网格节点数;In the formula, M——the number of grid nodes;
N——数值模拟数据样本的数量;N——the number of numerical simulation data samples;
A——数据快照矩阵;A——data snapshot matrix;
Xi——数据快照矩阵的第i个列向量,i=1,2,3…N;X i ——The i-th column vector of the data snapshot matrix, i=1,2,3...N;
x——网格节点温度,K。x——grid node temperature, K.
步骤3:对数据快照矩阵进行本征正交分解,得到正交基矩阵和模态系数矩阵,将整个空间热离子堆的温度场分解成样本温度场的平均值和若干特征模态与模态系数的乘积相加的形式。Step 3: Perform intrinsic orthogonal decomposition on the data snapshot matrix to obtain the orthogonal basis matrix and modal coefficient matrix, and decompose the temperature field of the entire space thermal ion reactor into the average value of the sample temperature field and several eigenmodes and modes. The form of adding the products of coefficients.
首先将数据快照矩阵转化成为方阵:First, convert the data snapshot matrix into a square matrix:
[B]N×N=[AT]N×M[A]M×N (2)[B] N×N =[A T ] N×M [A] M×N (2)
式中,B——数据快照矩阵的方阵;In the formula, B——the square matrix of data snapshot matrix;
[AT]——数据快照矩阵的转置。[A T ]——The transpose of the data snapshot matrix.
对方阵B的特征值分解:Eigenvalue decomposition of square matrix B:
式中,φ——特征向量矩阵;In the formula, φ - eigenvector matrix;
C——特征值矩阵;C——Eigenvalue matrix;
ψi——第i个特征向量,i=1,2,3…N;ψ i ——i-th eigenvector, i=1,2,3…N;
λi——第i个特征值,i=1,2,3…N。λ i ——i-th eigenvalue, i=1,2,3…N.
特征值矩阵C中的特征值根据其的大小按照降序的方式进行排列,得到正交基矩阵的形式为:The eigenvalues in the eigenvalue matrix C are arranged in descending order according to their size, and the form of the orthogonal basis matrix obtained is:
式中,β——为正交基矩阵;In the formula, β——is an orthogonal basis matrix;
θi——为第i阶正交基向量,i=1,2,3…N。θ i ——is the i-th order orthogonal basis vector, i=1,2,3…N.
由正交基矩阵β和数据快照矩阵的转置AT可以求出特征系数矩阵D,其具体形式为:The characteristic coefficient matrix D can be obtained from the orthogonal basis matrix β and the transpose A T of the data snapshot matrix. Its specific form is:
[D]N×N=[AT]N×M[β]M×N=[a1 a2 … aN] (5)[D] N×N =[A T ] N×M [β] M×N =[a 1 a 2 … a N ] (5)
式中,D——为特征系数矩阵;In the formula, D——is the characteristic coefficient matrix;
ai——为第i阶正交基向量的模态系数,i=1,2,3…N。a i ——is the modal coefficient of the i-th order orthogonal basis vector, i=1,2,3…N.
根据正交基向量和特征系数,数据快照矩阵中的每一个列向量均可表示成如下形式:According to the orthogonal basis vectors and characteristic coefficients, each column vector in the data snapshot matrix can be expressed in the following form:
在完成上述过程之后,将空间热离子堆的计算区域中所有网格节点上的温度分解为样本温度场的平均值和若干正交基向量与模态系数的乘积相加的形式:After completing the above process, the temperature on all grid nodes in the calculation area of the space thermionic pile is decomposed into the form of the average value of the sample temperature field and the sum of the products of several orthogonal basis vectors and modal coefficients:
式中,——为温度预测值,K;In the formula, ——is the temperature prediction value, K;
X0——为样本温度场的平均值,K;X 0 ——is the average value of the sample temperature field, K;
r——选取的特征模态数。r——The number of selected eigenmodes.
步骤4:基于广义能百分比,选取一定数量的正交基向量作为主模态建立降阶模型。Step 4: Based on the generalized energy percentage, select a certain number of orthogonal basis vectors as the main modes to establish a reduced-order model.
广义能百分比的形式为:The form of generalized energy percentage is:
式中,Er——广义能百分比;In the formula, E r - generalized energy percentage;
λj——第j个特征值;λ j ——The jth eigenvalue;
ε——能量比例。ε——Energy ratio.
步骤5:基于反向传播算法,利用样本空间中每个功率值和对应的模态系数训练神经网络,从而得到代理模型。Step 5: Based on the back propagation algorithm, use each power value and corresponding modal coefficient in the sample space to train the neural network to obtain the surrogate model.
步骤6:在训练好的代理模型中输入功率值得到模态系数,再结合降阶模型,即可获得全部网格节点的温度值。Step 6: Input the power value into the trained proxy model to obtain the modal coefficient, and then combine it with the reduced-order model to obtain the temperature values of all grid nodes.
与现有技术相比,本发明有如下突出特点:Compared with the prior art, the present invention has the following outstanding features:
本发明提供基于模型降阶的方法快速预测不同功率运行条件下的空间热离子堆温度场,通过一定数量的CFD软件计算结果数据建立降阶模型,并通过神经网络训练得到高精度代理模型,从而快速得到不同功率下的空间热离子堆的温度场,该方法能够实现在确保足够精度的情况下,大大缩短求解时间,减少重复成本,为空间热离子堆运行的快速数值模拟提供了一种有效的方法。The present invention provides a method based on model reduction to quickly predict the temperature field of the space thermionic reactor under different power operating conditions. It establishes a reduction model through a certain number of CFD software calculation result data, and obtains a high-precision proxy model through neural network training, thereby Quickly obtain the temperature field of the space thermionic reactor under different powers. This method can greatly shorten the solution time and reduce repeated costs while ensuring sufficient accuracy, and provides an effective method for rapid numerical simulation of the operation of the space thermionic reactor. Methods.
附图说明Description of the drawings
图1为本发明方法流程图。Figure 1 is a flow chart of the method of the present invention.
具体实施方式Detailed ways
下面结合附图和具体实施方式对本发明作进一步详细说明:The present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments:
本发明一种基于模型降阶的空间热离子堆温度场快速预测方法,如图1所示,该方法具体流程包括以下方面:The present invention is a method for rapid prediction of the temperature field of space thermal ion reactors based on model order reduction, as shown in Figure 1. The specific process of the method includes the following aspects:
步骤1:指定空间热离子堆的运行功率区间,在该运行功率区间内随机生成功率样本空间。本实施例指定50%~100%的功率运行范围。Step 1: Specify the operating power interval of the space thermionic reactor, and randomly generate a power sample space within the operating power interval. This embodiment specifies a power operating range of 50% to 100%.
步骤2:利用CFD软件对功率样本空间内每个功率的温度场进行求解,从而得到整个功率样本空间的数据快照矩阵。本实施例使用ANSYS Fluent进行空间热离子堆100%功率的温度场求解。Step 2: Use CFD software to solve the temperature field of each power in the power sample space, thereby obtaining the data snapshot matrix of the entire power sample space. This embodiment uses ANSYS Fluent to solve the temperature field of 100% power of the space thermionic reactor.
数据快照矩阵的具体形式如下:The specific form of the data snapshot matrix is as follows:
式中,M——网格节点数;In the formula, M——the number of grid nodes;
N——数值模拟数据样本的数量;N——the number of numerical simulation data samples;
A——数据快照矩阵;A——data snapshot matrix;
XN——数据快照矩阵的第N个列向量;X N ——The Nth column vector of the data snapshot matrix;
x——网格节点温度,K。x——grid node temperature, K.
步骤3:对数据快照矩阵进行本征正交分解,得到正交基矩阵和模态系数矩阵,将整个空间热离子堆的温度场分解成样本温度场的平均值和若干特征模态与模态系数的乘积相加的形式。Step 3: Perform intrinsic orthogonal decomposition on the data snapshot matrix to obtain the orthogonal basis matrix and modal coefficient matrix, and decompose the temperature field of the entire space thermal ion reactor into the average value of the sample temperature field and several eigenmodes and modes. The form of adding the products of coefficients.
首先将数据快照矩阵转化成为方阵:First, convert the data snapshot matrix into a square matrix:
[B]N×N=[AT]N×M[A]M×N (2)[B] N×N =[A T ] N×M [A] M×N (2)
式中,B——数据快照矩阵的方阵;In the formula, B——the square matrix of data snapshot matrix;
[AT]——数据快照矩阵的转置。[A T ]——The transpose of the data snapshot matrix.
对方阵B的特征值分解:Eigenvalue decomposition of square matrix B:
式中,φ——特征向量矩阵;In the formula, φ - eigenvector matrix;
C——特征值矩阵;C——Eigenvalue matrix;
ψN——第N个特征向量;ψ N ——The Nth eigenvector;
λN——第N个特征值。λ N ——The Nth eigenvalue.
特征值矩阵C中的特征值根据其的大小按照降序的方式进行排列,得到正交基矩阵的形式为:The eigenvalues in the eigenvalue matrix C are arranged in descending order according to their size, and the form of the orthogonal basis matrix obtained is:
式中,β——为正交基矩阵;In the formula, β——is an orthogonal basis matrix;
θi——为第i阶正交基向量,i=1,2,3…N。θ i ——is the i-th order orthogonal basis vector, i=1,2,3…N.
由正交基矩阵β和数据快照矩阵的转置AT可以求出特征系数矩阵D,其具体形式为:The characteristic coefficient matrix D can be obtained from the orthogonal basis matrix β and the transpose A T of the data snapshot matrix. Its specific form is:
[D]N×N=[AT]N×M[β]M×N=[a1 a2 … aN] (5)[D] N×N =[A T ] N×M [β] M×N =[a 1 a 2 … a N ] (5)
式中,D——为特征系数矩阵;In the formula, D——is the characteristic coefficient matrix;
ai——为第i阶正交基向量的模态系数,i=1,2,3…N。a i ——is the modal coefficient of the i-th order orthogonal basis vector, i=1,2,3…N.
根据正交基向量和特征系数,数据快照矩阵中的每一个列向量均可表示成如下形式:According to the orthogonal basis vectors and characteristic coefficients, each column vector in the data snapshot matrix can be expressed in the following form:
在完成上述过程之后,将空间热离子堆的计算区域中所有网格节点上的温度分解为样本温度场的平均值和若干特征模态与模态系数的乘积相加的形式:After completing the above process, the temperature on all grid nodes in the calculation area of the space thermionic pile is decomposed into the form of the average value of the sample temperature field and the sum of the products of several eigenmodes and modal coefficients:
式中,——为温度预测值,K;In the formula, ——is the temperature prediction value, K;
X0——为样本温度场的平均值,K;X 0 ——is the average value of the sample temperature field, K;
r——选取的特征模态数。r——The number of selected eigenmodes.
步骤4:基于广义能百分比,选取一定数量的特征模态作为主模态建立降阶模型。本实施例能量比例设定为0.99时,r=3(这里仅作举例,也可以是其他数字,由实际问题决定)。Step 4: Based on the generalized energy percentage, select a certain number of eigenmodes as main modes to establish a reduced-order model. In this embodiment, when the energy ratio is set to 0.99, r=3 (this is just an example, it can also be other numbers, determined by actual problems).
广义能百分比的形式为:The form of generalized energy percentage is:
式中,Er——广义能百分比;In the formula, E r - generalized energy percentage;
λj——第j个特征值;λ j ——The jth eigenvalue;
ε——能量比例。ε——Energy ratio.
步骤5:基于反向传播算法,利用样本空间中每个功率值和对应的模态系数训练神经网络,从而得到代理模型。Step 5: Based on the back propagation algorithm, use each power value and corresponding modal coefficient in the sample space to train the neural network to obtain the surrogate model.
步骤6:在训练好的代理模型中输入功率值得到模态系数,再结合降阶模型,即可获得全部网格节点的温度信息。Step 6: Input the power value into the trained proxy model to obtain the modal coefficient, and then combine it with the reduced-order model to obtain the temperature information of all grid nodes.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310905675.XA CN116894406B (en) | 2023-07-21 | 2023-07-21 | A fast prediction method for the temperature field of space thermionic reactor based on model order reduction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310905675.XA CN116894406B (en) | 2023-07-21 | 2023-07-21 | A fast prediction method for the temperature field of space thermionic reactor based on model order reduction |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116894406A true CN116894406A (en) | 2023-10-17 |
CN116894406B CN116894406B (en) | 2024-01-30 |
Family
ID=88314737
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310905675.XA Active CN116894406B (en) | 2023-07-21 | 2023-07-21 | A fast prediction method for the temperature field of space thermionic reactor based on model order reduction |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116894406B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117171934A (en) * | 2023-11-03 | 2023-12-05 | 成都大学 | POD-ANNS-based overhead transmission line galloping response prediction method |
CN118467979A (en) * | 2024-07-09 | 2024-08-09 | 西安航天动力研究所 | A method, device and equipment for predicting heat transfer of engine thermal components |
CN120120591A (en) * | 2025-05-12 | 2025-06-10 | 清华大学 | Flame stabilizing method for radial double-V-groove flow direction vortex regulation and control of jet propulsion device |
CN120120591B (en) * | 2025-05-12 | 2025-07-22 | 清华大学 | Method for determining flame stability of radial double-V-groove flow direction vortex of jet propulsion device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220100916A1 (en) * | 2019-11-25 | 2022-03-31 | Akselos S.A. | Methods and systems for component-based reduced order modeling for industrial-scale structural digital twins |
CN115270660A (en) * | 2022-08-04 | 2022-11-01 | 上海交通大学 | Multi-scale multi-physical field coupling analysis method for transient behavior of space thermionic reactor |
CN115793432A (en) * | 2022-11-11 | 2023-03-14 | 西安交通大学 | Space thermionic nuclear power supply control method based on model predictive control |
CN116070424A (en) * | 2022-12-30 | 2023-05-05 | 南华大学 | A thermal stratification reduction analysis method for lead pool in lead-bismuth fast reactor |
-
2023
- 2023-07-21 CN CN202310905675.XA patent/CN116894406B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220100916A1 (en) * | 2019-11-25 | 2022-03-31 | Akselos S.A. | Methods and systems for component-based reduced order modeling for industrial-scale structural digital twins |
CN115270660A (en) * | 2022-08-04 | 2022-11-01 | 上海交通大学 | Multi-scale multi-physical field coupling analysis method for transient behavior of space thermionic reactor |
CN115793432A (en) * | 2022-11-11 | 2023-03-14 | 西安交通大学 | Space thermionic nuclear power supply control method based on model predictive control |
CN116070424A (en) * | 2022-12-30 | 2023-05-05 | 南华大学 | A thermal stratification reduction analysis method for lead pool in lead-bismuth fast reactor |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117171934A (en) * | 2023-11-03 | 2023-12-05 | 成都大学 | POD-ANNS-based overhead transmission line galloping response prediction method |
CN117171934B (en) * | 2023-11-03 | 2024-01-26 | 成都大学 | A method for predicting the galloping response of overhead transmission lines based on POD-ANNS |
CN118467979A (en) * | 2024-07-09 | 2024-08-09 | 西安航天动力研究所 | A method, device and equipment for predicting heat transfer of engine thermal components |
CN118467979B (en) * | 2024-07-09 | 2024-11-19 | 西安航天动力研究所 | Engine thermal assembly heat transfer prediction method, device and equipment |
CN120120591A (en) * | 2025-05-12 | 2025-06-10 | 清华大学 | Flame stabilizing method for radial double-V-groove flow direction vortex regulation and control of jet propulsion device |
CN120120591B (en) * | 2025-05-12 | 2025-07-22 | 清华大学 | Method for determining flame stability of radial double-V-groove flow direction vortex of jet propulsion device |
Also Published As
Publication number | Publication date |
---|---|
CN116894406B (en) | 2024-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN116894406B (en) | A fast prediction method for the temperature field of space thermionic reactor based on model order reduction | |
Fei et al. | Enhanced network learning model with intelligent operator for the motion reliability evaluation of flexible mechanism | |
Smallbone et al. | Towards a genome-scale kinetic model of cellular metabolism | |
Li et al. | Support vector machine for structural reliability analysis | |
Zhang et al. | Global optimization of reliability design for large ball mill gear transmission based on the Kriging model and genetic algorithm | |
Ororbia et al. | Design synthesis through a Markov decision process and reinforcement learning framework | |
CN115048846B (en) | Model order reduction and stability judgment method and system for tube bundle fluid bullet system | |
Wang et al. | Deep-learning accelerating topology optimization of three-dimensional coolant channels for flow and heat transfer in a proton exchange membrane fuel cell | |
Zhang et al. | Taking the guess work out of the initial guess: A solution interval method for least-squares parameter estimation in nonlinear models | |
CN115774900A (en) | A Robust Optimization Design Method for Variable Configuration Aircraft Commands under Uncertain Conditions | |
Shao et al. | A simulation data-driven design approach for rapid product optimization | |
Liu et al. | Net-HDMR metamodeling method for high-dimensional problems | |
Zhang et al. | An efficient reliability analysis method based on the improved radial basis function neural network | |
Zhao et al. | Evaluating different CFD surrogate modelling approaches for fast and accurate indoor environment simulation | |
Xu et al. | Multi-task learning for design under uncertainty with multi-fidelity partially observed information | |
Son et al. | Probabilistic surrogate models for uncertainty analysis: Dimension reduction‐based polynomial chaos expansion | |
Bae et al. | Accelerated multifidelity emulator modeling for probabilistic rotor response study | |
Liu et al. | Cluster-based optimization of cellular materials and structures for crashworthiness | |
Xie et al. | Data-driven approaches for characterization of aerodynamics on super high-speed elevators | |
Zhu et al. | Feedback stabilization of quasi-integrable Hamiltonian systems | |
Kumar et al. | A Physics-Informed Autoencoder-NeuralODE Framework (Phy-ChemNODE) for Learning Complex Fuel Combustion Kinetics | |
Yu et al. | Adaptive first-crossing approach for life-cycle reliability analysis | |
Xu et al. | Sequential sampling framework for metamodeling uncertainty reduction in multilevel optimization of hierarchical systems | |
Xining et al. | Location layout design of aircraft parts assembly based on MSVR | |
Ma et al. | Research on temperature control of proton exchange membrane electrolysis cell based on MO‐TD3 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |