CN116879936B - INS-assisted Beidou three-frequency ambiguity initialization method and system between dynamic targets - Google Patents
INS-assisted Beidou three-frequency ambiguity initialization method and system between dynamic targets Download PDFInfo
- Publication number
- CN116879936B CN116879936B CN202311150130.9A CN202311150130A CN116879936B CN 116879936 B CN116879936 B CN 116879936B CN 202311150130 A CN202311150130 A CN 202311150130A CN 116879936 B CN116879936 B CN 116879936B
- Authority
- CN
- China
- Prior art keywords
- dynamic
- ambiguity
- express
- beidou
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000011423 initialization method Methods 0.000 title claims abstract description 13
- 239000013598 vector Substances 0.000 claims abstract description 108
- 238000000034 method Methods 0.000 claims abstract description 21
- 238000004364 calculation method Methods 0.000 claims abstract description 19
- 230000004927 fusion Effects 0.000 claims abstract description 9
- 239000011159 matrix material Substances 0.000 claims description 21
- 230000007613 environmental effect Effects 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000007792 addition Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/43—Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
- G01S19/44—Carrier phase ambiguity resolution; Floating ambiguity; LAMBDA [Least-squares AMBiguity Decorrelation Adjustment] method
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/48—Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
- G01S19/49—Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an inertial position system, e.g. loosely-coupled
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
为解决在复杂时变的遮挡环境下,北斗观测信号出现观测中断,三频模糊度无法快速初始化,无法保证目标间相对定位可靠性和连续性的问题,本发明公开了一种INS辅助动态目标间北斗三频模糊度初始化方法和系统,本发明方法首先利用载波相位历元间差分和INS融合解算实时高频动态基准位置;在动态基准位置差和北斗RTK定位的基础上,解算基线向量偏差;利用基线向量偏差对动态基准位置差进行改正,进行虚拟基线向量观测值构建及定权;联合伪距和载波相位观测值,辅助三频模糊度解算和固定;利用双差相位观测值进行基线解算,获得相对位置结果。提出的北斗三频模糊度快速初始化方法,在精度、时效性和适用性上均有较大优势。
In order to solve the problem that in a complex time-varying occlusion environment, the Beidou observation signal is interrupted, the three-frequency ambiguity cannot be quickly initialized, and the relative positioning reliability and continuity between targets cannot be guaranteed, the present invention discloses an INS-assisted dynamic target. Inter-Beidou three-frequency ambiguity initialization method and system. The method of the present invention first uses the inter-carrier phase epoch difference and INS fusion to solve the real-time high-frequency dynamic reference position; on the basis of the dynamic reference position difference and Beidou RTK positioning, the baseline is solved Vector deviation; use baseline vector deviation to correct the dynamic reference position difference, construct and weight virtual baseline vector observations; combine pseudo-range and carrier phase observations to assist in three-frequency ambiguity resolution and fixation; use double-difference phase observations Perform baseline calculation using the value to obtain relative position results. The proposed Beidou three-frequency ambiguity rapid initialization method has great advantages in accuracy, timeliness and applicability.
Description
技术领域Technical field
本发明属于全球卫星导航系统领域,特别涉及关于复杂时变环境下,北斗信号受到干扰和遮挡,目标间相对定位出现中断和跳跃,模糊度重新快速初始化问题,实现北斗三频模糊度快速初始化的技术。The invention belongs to the field of global satellite navigation systems, and particularly relates to the problem of rapid re-initialization of Beidou three-frequency ambiguities in complex time-varying environments where Beidou signals are interfered and blocked, relative positioning between targets is interrupted and jumped, and ambiguities are quickly re-initialized. technology.
背景技术Background technique
北斗卫星导航系统具有全球、全天候、高精度等优点,对于目标间高精度动态定位解算具有天然优势。动动相对定位技术选择一个特定的动态目标作为基站,一旦正确固定模糊度,获得相对于基站间厘米级定位结果。因此,动动相对定位技术更适用于动态目标间的定位场景,实时精确的相对位置关系是安全有效协同作业的前提。The Beidou satellite navigation system has the advantages of global, all-weather, and high accuracy, and has natural advantages for high-precision dynamic positioning between targets. Dongdong relative positioning technology selects a specific dynamic target as the base station. Once the ambiguity is correctly fixed, centimeter-level positioning results relative to the base stations are obtained. Therefore, Dongdong relative positioning technology is more suitable for positioning scenarios between dynamic targets. Real-time and accurate relative position relationships are the prerequisite for safe and effective collaborative operations.
三频模糊度固定是获得稳定厘米级北斗动动相对定位精度的关键,在观测环境较好的情况下,动动相对定位能够在数秒内完成模糊度固定。但是对于复杂时变的观测环境,如城市峡谷、高架天桥以及隧道等,北斗卫星信号容易遮挡,出现观测中断,三频模糊度需要重新初始化,无法保证目标间相对定位的可靠性和连续性。因此,北斗三频模糊度的快速初始化对提高相对定位性能具有重要意义。INS短时间内递推的高精度位置信息不受信号遮挡和中断的影响,可用来辅助模糊度固定,尽可能地实现连续地高精度定位。Three-frequency ambiguity fixation is the key to obtaining stable centimeter-level Beidou motion relative positioning accuracy. When the observation environment is good, motion relative positioning can complete ambiguity fixation within a few seconds. However, for complex time-varying observation environments, such as urban canyons, viaducts, and tunnels, Beidou satellite signals are easily blocked, causing observation interruptions. The three-frequency ambiguity needs to be re-initialized, and the reliability and continuity of relative positioning between targets cannot be guaranteed. Therefore, the rapid initialization of Beidou three-frequency ambiguity is of great significance to improving relative positioning performance. The high-precision position information recursively generated by INS in a short period of time is not affected by signal obstruction and interruption, and can be used to assist in ambiguity fixation and achieve continuous high-precision positioning as much as possible.
Grejner-Brzezinska等利用INS预测的位置提高了候选模糊度的准确性,缩短了模糊度搜索时间,在GPS卫星信号中断50秒后仍然可以瞬时固定。韩厚增提出了惯性辅助的部分模糊度固定方法,对于GPS/BDS双系统中断19s的数据,固定成功率超过90%,重新固定时间小于5s。利用了INS在短时间内递推的高精度位置信息,代替伪距单点定位,改善浮点模糊度的解算精度,从而减小模糊度的搜索空间,加快模糊度固定,以提升后续历元模糊度固定的效果。目前,INS辅助RTK模糊度固定的研究和分析较多,基本成熟,然而要实现INS辅助的动态目标间北斗三频模糊度快速初始化,整体难度较大,尤其在复杂时变的遮挡环境下,面临更大的挑战,是一个亟待解决的问题。Grejner-Brzezinska et al. used the position predicted by INS to improve the accuracy of candidate ambiguities, shorten the ambiguity search time, and can still be instantly fixed after the GPS satellite signal is interrupted for 50 seconds. Han Houzeng proposed an inertial-assisted partial ambiguity fixing method. For data with a 19-second interruption in the GPS/BDS dual system, the fixing success rate exceeded 90% and the re-fixing time was less than 5 seconds. The high-precision position information recursively generated by INS in a short time is used to replace pseudo-range single-point positioning to improve the floating-point ambiguity resolution accuracy, thereby reducing the ambiguity search space and accelerating ambiguity fixation to improve subsequent history. Meta-blur fixed effect. At present, there are many studies and analyzes on INS-assisted RTK ambiguity fixation, which is basically mature. However, it is difficult to achieve rapid initialization of Beidou three-frequency ambiguity between dynamic targets assisted by INS, especially in complex time-varying occlusion environments. Facing greater challenges is an urgent problem that needs to be solved.
发明内容Contents of the invention
针对在复杂时变的遮挡环境下,北斗观测信号出现观测中断,三频模糊度无法快速初始化,无法保证目标间相对定位可靠性和连续性的问题,本发明提出一种INS辅助动态目标间北斗三频模糊度初始化方法,包括以下步骤:In order to solve the problem that in a complex time-varying occlusion environment, Beidou observation signals are interrupted, the three-frequency ambiguity cannot be quickly initialized, and the relative positioning reliability and continuity between targets cannot be guaranteed, the present invention proposes an INS-assisted dynamic target Beidou The three-frequency ambiguity initialization method includes the following steps:
步骤1,利用北斗/INS融合解算实时高频动态基准位置,包括动态基准目标和动态流动目标的动态基准位;Step 1: Use Beidou/INS fusion to calculate real-time high-frequency dynamic reference positions, including dynamic reference positions of dynamic reference targets and dynamic flow targets;
步骤2,根据步骤1中的动态基准位置结果,确定基线向量偏差及构建虚拟基线向量观测值;Step 2: Determine the baseline vector deviation and construct a virtual baseline vector observation value based on the dynamic reference position result in step 1;
步骤3,利用北斗伪距和载波相位双差观测值,结合步骤2的虚拟基线向量观测值及其方差,通过最小二乘估计得到北斗三频原始模糊度浮点解,并进行搜索固定;Step 3: Use the Beidou pseudorange and carrier phase double-difference observations, combined with the virtual baseline vector observations and their variances in step 2, to obtain the Beidou three-frequency original ambiguity floating-point solution through least squares estimation, and search and fix it;
步骤4,利用步骤3的模糊度固定结果进行基线解算,确定动态目标间实时相对位置结果。Step 4: Use the ambiguity fixed result of Step 3 to perform baseline calculation to determine the real-time relative position results between dynamic targets.
进一步,步骤1的具体实现方法如下:Further, the specific implementation method of step 1 is as follows:
步骤1.1,动态基准目标和流动目标分别利用载波相位观测值进行历元间差分,通过最小二乘解算得到当前时刻到下一时刻自身的位置变化量,根据当前时刻位置递推下一时刻自身的动态位置;Step 1.1, the dynamic reference target and the mobile target respectively use the carrier phase observation value to perform inter-epoch differences, obtain the position change from the current moment to the next moment through the least squares solution, and recursively deduce the next moment itself based on the current moment position. dynamic position;
步骤1.2,动态基准目标和流动目标分别将步骤1.1的下一时刻动态位置与惯性导航预测位置结果进行松组合解算,分别通过扩展卡尔曼滤波得到下一时刻动态基准目标A和动态流动目标B自身的动态基准位置结果。Step 1.2, the dynamic reference target and the flowing target respectively loosely combine the dynamic position at the next moment and the predicted position result of the inertial navigation in step 1.1, and obtain the dynamic benchmark target A and the dynamic flowing target B at the next moment through the extended Kalman filter. own dynamic reference position result.
进一步,步骤1.1中递推下一时刻动态基准目标的动态位置,具体如下:Further, in step 1.1, the dynamic position of the dynamic reference target at the next moment is recursed, as follows:
其中,A表示动态基准目标,表示/>时刻动态基准目标的动态位置,/>表示/>时刻动态基准目标递推的动态位置,表示/>时刻到/>时刻间的位置变化量,/>时刻表示当前时刻,/>时刻表示/>的下一时刻,/>表示北斗数据观测间隔;Among them, A represents the dynamic benchmark target, Express/> The dynamic position of the dynamic reference target at all times,/> Express/> The dynamic position of the dynamic reference target recursion at time, Express/> Time's up/> The amount of position change between times,/> Time represents the current moment,/> Time indication/> The next moment of,/> Represents the Beidou data observation interval;
步骤1.1中递推下一时刻动态流动目标的动态位置,具体如下:In step 1.1, the dynamic position of the dynamic flow target at the next moment is recursed, as follows:
其中,B表示动态流动目标,表示/>时刻动态流动目标的动态位置,/>表示/>时刻动态流动目标递推的动态位置,表示/>时刻到/>时刻间的位置变化量。Among them, B represents the dynamic flow target, Express/> The dynamic position of the dynamically flowing target at all times,/> Express/> The dynamic position of the dynamic flow target recursion at all times, Express/> Time's up/> The amount of position change between moments.
进一步,步骤2的具体实现方法如下:Further, the specific implementation method of step 2 is as follows:
步骤2.1,在下一时刻,根据北斗实时动态定位解算得到动态基准目标A和动态流动目标B间相对位置结果,联合步骤1目标A和B的动态基准位置结果,确定目标间的基线向量偏差为:Step 2.1. At the next moment, the relative position results between the dynamic reference target A and the dynamic flowing target B are obtained according to Beidou's real-time dynamic positioning solution. Combined with the dynamic reference position results of targets A and B in step 1, the baseline vector deviation between the targets is determined as :
其中,表示/>时刻目标A和B间相对位置结果,表示/>时刻动态基准目标A的动态基准位置,/>表示/>时刻动态流动目标B的动态基准位置,/>表示/>时刻基线向量偏差,/>时刻表示/>的下一时刻;in, Express/> The relative position result between target A and B at the moment, Express/> The dynamic reference position of the dynamic reference target A at time,/> Express/> The dynamic reference position of the dynamic flow target B at all times,/> Express/> Time baseline vector deviation,/> Time indication/> the next moment;
根据基线向量偏差,对目标间动态基准位置差值进行改正,构建得到下一时刻的虚拟基线向量结果:According to the baseline vector deviation, the dynamic reference position difference between the targets is corrected to construct the virtual baseline vector result at the next moment:
其中,表示/>时刻虚拟基线向量,表示/>时刻动态基准目标的动态基准位置,/>表示/>时刻动态流动目标的动态基准位置,/>时刻表示/>的下一时刻;in, Express/> time virtual baseline vector, Express/> The dynamic reference position of the dynamic reference target at all times,/> Express/> The dynamic reference position of the dynamic flow target at all times,/> Time indication/> the next moment;
步骤2.2,根据步骤1中目标A和B动态基准位置结果的协方差和北斗实时动态定位中相对位置方差,确定下一时刻虚拟基线向量的方差:Step 2.2, based on the covariance of the dynamic reference position results of targets A and B in step 1 and the relative position variance in Beidou real-time dynamic positioning, determine the variance of the virtual baseline vector at the next moment:
其中,表示/>时刻基准目标A的动态基准位置结果的协方差值,表示/>时刻流动目标B的动态基准位置结果的协方差值,/>表示/>时刻相对位置方差值,/>表示/>时刻虚拟基线向量的方差值。in, Express/> The covariance value of the dynamic reference position result of reference target A at time, Express/> The covariance value of the dynamic reference position result of the mobile target B at any time,/> Express/> Relative position variance value at time,/> Express/> The variance value of the virtual baseline vector at time.
进一步的,步骤3的具体实现方式如下;Further, the specific implementation of step 3 is as follows;
步骤3.1,利用步骤2构造的虚拟基线向量观测值作为附加约束,观测方程表达式为:Step 3.1, use the virtual baseline vector observation value constructed in step 2 as an additional constraint. The expression of the observation equation is:
其中,表示/>时刻的基线向量,/>时刻表示下一时刻;in, Express/> Baseline vector at time,/> A moment represents the next moment;
联合北斗伪距和载波相位双差观测方程,得到三频动态模糊度解算方程如下,通过最小二乘解算,得到三频原始模糊度浮点解:Combining the Beidou pseudorange and carrier phase double-difference observation equations, the three-frequency dynamic ambiguity solution equation is obtained as follows. Through least squares solution, the three-frequency original ambiguity floating point solution is obtained:
其中,和/>表示双差伪距观测值和双差载波相位观测值,/>表示双差卫地距,/>、I和/>分别表示系数矩阵、单位矩阵和零矩阵,/>和/>分别表示原始观测值的波长和双差原始模糊度,/>和/>分别表示双差伪距和载波观测噪声及误差,表示/>时刻的基线向量;in, and/> Represents the double-differenced pseudo-range observation value and the double-differenced carrier phase observation value,/> Indicates double difference between guard and ground distance,/> , I and/> Represents the coefficient matrix, identity matrix and zero matrix respectively,/> and/> Represents the wavelength and double-difference original ambiguity of the original observation value respectively,/> and/> represent the double-difference pseudorange and carrier observation noise and error respectively, Express/> Baseline vector at time;
步骤3.2,对步骤3.1的北斗三频原始模糊度浮点解进行搜索固定:首先确定超宽巷模糊度固定解,然后联立该观测值与宽巷观测值解算出宽巷模糊度,最后用模糊度正确固定的宽巷观测值联合原始观测值解算原始模糊度。Step 3.2: Search and fix the floating point solution of the Beidou three-frequency original ambiguity in step 3.1: first determine the fixed solution of ultra-wide lane ambiguity, then combine the observation value and the wide lane observation value to calculate the wide lane ambiguity, and finally use The wide lane observation value with correct fixed ambiguity is combined with the original observation value to solve the original ambiguity.
进一步的,步骤3.2的具体实现方式如下;Further, the specific implementation of step 3.2 is as follows;
步骤3.2.1,北斗2及北斗3系统内各自选取参考卫星,确定各系统的双差超宽巷模糊度,对于北斗2系统,利用B3I与B2I确定双差超宽巷模糊度;对于北斗3系统,分别利用B1C与B1I及B3I与B2a确定双差超宽巷模糊度,通过直接取整确定超宽巷模糊度,计算表达式为:Step 3.2.1: Select reference satellites in the Beidou 2 and Beidou 3 systems to determine the double-difference ultra-wide lane ambiguity of each system. For the Beidou 2 system, use B3I and B2I to determine the double-difference ultra-wide lane ambiguity; for Beidou 3 The system uses B1C and B1I and B3I and B2a to determine the double-difference ultra-wide lane ambiguity, and determines the ultra-wide lane ambiguity through direct rounding. The calculation expression is:
式中,表示超宽巷模糊度,/>和/>分别表示频段m和频段n对应的频率(Hz),/>和/>表示频段m和频段n对应的双差伪距观测值(m),/>和/>分别表示频段m和频段n对应的双差载波相位观测值(m),/>和/>分别表示线性组合观测值的波长(m)和载波相位双差观测值的模糊度(周),/>表示环境因素造成的线性组合观测值的观测噪声(m);In the formula, Represents ultra-wide lane ambiguity,/> and/> Represents the frequency (Hz) corresponding to frequency band m and frequency band n respectively,/> and/> Represents the double-difference pseudorange observation value (m) corresponding to frequency band m and frequency band n ,/> and/> Represents the double-difference carrier phase observation values (m) corresponding to frequency band m and frequency band n respectively,/> and/> Respectively represent the wavelength (m) of the linear combination observation value and the ambiguity (week) of the carrier phase double difference observation value,/> Represents the observation noise (m) of linear combination observations caused by environmental factors;
步骤3.2.2,联立步骤3.2.1的超宽巷模糊度整数值和B1I-B3I宽巷载波相位观测方程,使用最小二乘估计宽巷模糊度浮点解,通过LAMBDA方法对浮点模糊度进行搜索固定,得到宽巷模糊度固定解,误差方程为:Step 3.2.2, combine the ultra-wide lane ambiguity integer value in step 3.2.1 and the B1I-B3I wide lane carrier phase observation equation, use least squares to estimate the floating point solution of the wide lane ambiguity, and use the LAMBDA method to calculate the floating point ambiguity The degree is searched and fixed, and a fixed solution of wide lane ambiguity is obtained. The error equation is:
式中,和/>分别表示超宽巷模糊度固定值和宽巷载波相位观测值的残差向量,/>和I分别表示系数矩阵和单位矩阵,/>表示流动目标坐标的改正数,/>表示超宽巷模糊度固定值的改正数向量,/>表示宽巷载波相位观测值的改正数向量,/>和/>分别表示宽巷载波相位观测值的波长和模糊度。In the formula, and/> represent the residual vectors of the ultra-wide lane ambiguity fixed value and the wide lane carrier phase observation value respectively,/> and I represent the coefficient matrix and identity matrix respectively,/> Indicates the correction number of the flowing target coordinates,/> Correction number vector representing the fixed value of ultra-wide lane ambiguity,/> Represents the correction vector of wide-lane carrier phase observations,/> and/> represent the wavelength and ambiguity of the wide-lane carrier phase observations respectively.
步骤3.2.3,联立步骤3.2.2的宽巷模糊度的相位观测方程和步骤3.1解算的双差原始模糊度浮点解,通过LAMBDA方法搜索固定,误差方程为:Step 3.2.3, combine the phase observation equation of the wide lane ambiguity in step 3.2.2 and the double-difference original ambiguity floating point solution solved in step 3.1, and search and fix it through the LAMBDA method. The error equation is:
式中,和/>分别表示精确的宽巷和原始双差载波相位观测值的残差向量,表示宽巷载波相位观测值的改正数向量,/>表示原始双差载波相位观测值/>的改正数向量,/>和/>分别表示原始双差载波相位观测值/>的波长和模糊度。In the formula, and/> represent the residual vectors of the exact wide-lane and original double-differenced carrier phase observations, respectively, Represents the correction vector of wide-lane carrier phase observations,/> Represents the original double difference carrier phase observation value/> correction number vector,/> and/> Represents the original double-difference carrier phase observation values/> wavelength and fuzziness.
当的模糊度固定值确定后,/>和/>的整数模糊度根据已知的超宽巷、宽巷模糊度固定值与/>模糊度的线性关系进行确定,具体计算公式如下:when After the fixed value of ambiguity is determined,/> and/> The integer ambiguity of is based on the known fixed values of ultra-wide lane and wide lane ambiguity and/> The linear relationship of ambiguity is determined, and the specific calculation formula is as follows:
其中,、/>和/>分别表示双差载波相位原始观测值/>、/>和/>对应的原始整数模糊度;in, ,/> and/> Represents the original observation value of the double-difference carrier phase/> ,/> and/> The corresponding raw integer ambiguity;
最后利用N 1、N 2和N 3模糊度间的线性关系和Ratio检验,验证模糊度固定的可靠性:Finally, the linear relationship and Ratio test between N 1 , N 2 and N 3 ambiguities are used to verify the reliability of the ambiguity fixation:
式中δ表示限差阀值,范围是0.1~0.5,k和b为常数,M表示Ratio检验阀值。In the formula , δ represents the tolerance threshold, ranging from 0.1 to 0.5, k and b are constants, and M represents the Ratio test threshold.
进一步的,步骤4的具体实现方式如下;Further, the specific implementation of step 4 is as follows;
利用步骤3.2.3模糊度固定后的双差载波相位观测值进行基线解算得到目标间的基线向量,根据基线向量结果确定流动目标相对基准目标的位置;Use the ambiguity fixed in step 3.2.3 The double-difference carrier phase observation value is used for baseline calculation to obtain the baseline vector between targets, and the position of the flowing target relative to the reference target is determined based on the baseline vector result;
其中,表示/>时刻动态基准目标A和动态流动目标B间的基线向量结果,/>表示/>时刻动态基准目标的动态基准位置,表示/>时刻动态流动目标的相对位置。in, Express/> The baseline vector result between the dynamic baseline target A and the dynamic flow target B at any time,/> Express/> The dynamic reference position of the dynamic reference target at all times, Express/> The relative position of dynamically flowing targets at all times.
本发明还提供一种INS辅助动态目标间北斗三频模糊度快速初始化系统,包括以下模块:The invention also provides an INS-assisted Beidou three-frequency ambiguity rapid initialization system between dynamic targets, including the following modules:
基准位置解算模块,利用北斗/INS融合解算实时高频动态基准位置,包括动态基准目标和动态流动目标的动态基准位;The reference position calculation module uses Beidou/INS fusion to calculate real-time high-frequency dynamic reference positions, including dynamic reference positions of dynamic reference targets and dynamic flow targets;
基线向量确定模块,根据动态基准位置结果,确定基线向量偏差及构建虚拟基线向量观测;The baseline vector determination module determines the baseline vector deviation and constructs a virtual baseline vector observation based on the dynamic reference position results;
模糊度获取模块,用北斗伪距和载波相位双差观测值,结合虚拟基线向量观测值及其方差,通过最小二乘估计得到北斗三频原始模糊度浮点解,并进行搜索固定;The ambiguity acquisition module uses the Beidou pseudo-range and carrier phase double-difference observations, combined with the virtual baseline vector observations and their variances, to obtain the Beidou three-frequency original ambiguity floating-point solution through least squares estimation, and performs search and fixation;
相对位置确定模块,利用模糊度固定结果进行基线解算,确定动态目标间实时相对位置结果。The relative position determination module uses the ambiguity fixed results to perform baseline calculations and determines the real-time relative position results between dynamic targets.
进一步的,基线向量确定模块的具体实现方法如下:Further, the specific implementation method of the baseline vector determination module is as follows:
步骤2.1,在下一时刻,根据北斗实时动态定位解算得到动态基准目标A和动态流动目标B间相对位置结果,联合目标A和B的动态基准位置结果,确定目标间的基线向量偏差为:Step 2.1. At the next moment, the relative position results between the dynamic reference target A and the dynamic flowing target B are obtained according to Beidou's real-time dynamic positioning solution. Combined with the dynamic reference position results of targets A and B, the baseline vector deviation between the targets is determined as:
其中,表示/>时刻目标A和B间相对位置结果,表示/>时刻动态基准目标A的动态基准位置,/>表示/>时刻动态流动目标B的动态基准位置,/>表示/>时刻基线向量偏差,/>时刻表示/>的下一时刻;in, Express/> The relative position result between target A and B at the moment, Express/> The dynamic reference position of the dynamic reference target A at time,/> Express/> The dynamic reference position of the dynamic flow target B at all times,/> Express/> Time baseline vector deviation,/> Time indication/> the next moment;
根据基线向量偏差,对目标间动态基准位置差值进行改正,构建得到下一时刻的虚拟基线向量结果:According to the baseline vector deviation, the dynamic reference position difference between the targets is corrected to construct the virtual baseline vector result at the next moment:
其中,表示/>时刻虚拟基线向量,表示/>时刻动态基准目标的动态基准位置,/>表示/>时刻动态流动目标的动态基准位置,/>时刻表示/>的下一时刻;in, Express/> time virtual baseline vector, Express/> The dynamic reference position of the dynamic reference target at all times,/> Express/> The dynamic reference position of the dynamic flow target at all times,/> Time indication/> the next moment;
步骤2.2,根据目标A和B动态基准位置结果的协方差和北斗实时动态定位中相对位置方差,确定下一时刻虚拟基线向量的方差:Step 2.2, determine the variance of the virtual baseline vector at the next moment based on the covariance of the dynamic reference position results of targets A and B and the relative position variance in Beidou real-time dynamic positioning:
其中,表示/>时刻基准目标A的动态基准位置结果的协方差值,表示/>时刻流动目标B的动态基准位置结果的协方差值,/>表示/>时刻相对位置方差值,/>表示/>时刻虚拟基线向量的方差值。in, Express/> The covariance value of the dynamic reference position result of reference target A at time, Express/> The covariance value of the dynamic reference position result of the mobile target B at any time,/> Express/> Relative position variance value at time,/> Express/> The variance value of the virtual baseline vector at time.
进一步的,模糊度获取模块的具体实现方式如下;Further, the specific implementation of the fuzziness acquisition module is as follows;
步骤3.1,利用构造的虚拟基线向量观测值作为附加约束,观测方程表达式为:Step 3.1, use the constructed virtual baseline vector observation value as an additional constraint, and the expression of the observation equation is:
其中,表示/>时刻的基线向量,/>时刻表示下一时刻;in, Express/> Baseline vector at time,/> A moment represents the next moment;
联合北斗伪距和载波相位双差观测方程,得到三频动态模糊度解算方程如下,通过最小二乘解算,得到三频原始模糊度浮点解:Combining the Beidou pseudorange and carrier phase double-difference observation equations, the three-frequency dynamic ambiguity solution equation is obtained as follows. Through least squares solution, the three-frequency original ambiguity floating point solution is obtained:
其中,和/>表示双差伪距观测值和双差载波相位观测值,/>表示双差卫地距,/>、I和/>分别表示系数矩阵、单位矩阵和零矩阵,/>和/>分别表示原始观测值的波长和双差原始模糊度,/>和/>分别表示双差伪距和载波观测噪声及误差,表示/>时刻的基线向量;in, and/> Represents the double-differenced pseudo-range observation value and the double-differenced carrier phase observation value,/> Indicates double difference between guard and ground distance,/> , I and/> Represents the coefficient matrix, identity matrix and zero matrix respectively,/> and/> Represents the wavelength and double-difference original ambiguity of the original observation value respectively,/> and/> represent the double-difference pseudorange and carrier observation noise and error respectively, Express/> Baseline vector at time;
步骤3.2,对步骤3.1的北斗三频原始模糊度浮点解进行搜索固定:首先确定超宽巷模糊度固定解,然后联立该观测值与宽巷观测值解算出宽巷模糊度,最后用模糊度正确固定的宽巷观测值联合原始观测值解算原始模糊度。Step 3.2: Search and fix the floating point solution of the Beidou three-frequency original ambiguity in step 3.1: first determine the fixed solution of ultra-wide lane ambiguity, then combine the observation value and the wide lane observation value to calculate the wide lane ambiguity, and finally use The wide lane observation value with correct fixed ambiguity is combined with the original observation value to solve the original ambiguity.
本发明产生的有益效果是:The beneficial effects produced by the present invention are:
1. 本发明提出了一种INS辅助动态目标间北斗三频模糊度初始化方法和系统,通过北斗和INS数据融合实现优势互补,适用于复杂时变的遮挡环境。1. The present invention proposes a Beidou three-frequency ambiguity initialization method and system between INS-assisted dynamic targets, which realizes complementary advantages through the fusion of Beidou and INS data, and is suitable for complex time-varying occlusion environments.
2. 本发明通过INS构造虚拟基线观测值,提高三频模糊度浮点解精度,从而减小模糊度的搜索空间,加快三频模糊度固定。2. The present invention constructs a virtual baseline observation value through INS to improve the floating-point solution accuracy of three-frequency ambiguity, thereby reducing the search space of ambiguity and accelerating the fixation of three-frequency ambiguity.
附图说明Description of the drawings
图1是本发明实施例的方法流程图。Figure 1 is a method flow chart of an embodiment of the present invention.
图2是本发明实施例的北斗三频模糊度固定方法流程图。Figure 2 is a flow chart of the Beidou three-frequency ambiguity fixing method according to the embodiment of the present invention.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。In order to make the purpose, technical solutions and advantages of the present invention more clear, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention and are not intended to limit the present invention.
本发明提供一种INS辅助动态目标间北斗三频模糊度初始化方法和系统,利用北斗/INS融合解算实时高频动态基准位置(步骤1);确定基线向量偏差及构建虚拟基线向量观测值(步骤2);估计北斗三频模糊度浮点解,并进行搜索固定(步骤3);最后通过最小二乘解算基线,确定动态目标间实时相对位置结果(步骤4)。参见图1和图2,本发明实施例中提供的一种INS辅助动态目标间北斗三频模糊度初始化方法和系统具体包括以下步骤:The present invention provides a Beidou three-frequency ambiguity initialization method and system between INS-assisted dynamic targets, using Beidou/INS fusion to solve the real-time high-frequency dynamic reference position (step 1); determine the baseline vector deviation and construct a virtual baseline vector observation value (step 1) Step 2); estimate the Beidou three-frequency ambiguity floating-point solution and search for fixation (step 3); finally solve the baseline through least squares and determine the real-time relative position results between dynamic targets (step 4). Referring to Figures 1 and 2, an INS-assisted inter-dynamic target Beidou three-frequency ambiguity initialization method and system provided in the embodiment of the present invention specifically includes the following steps:
步骤1、动态基准目标和流动目标分别通过北斗/INS融合解算动态基准位置,得到自身实时高频的动态基准位置信息,具体包括:·Step 1. Dynamic reference targets and mobile targets are respectively calculated through Beidou/INS fusion to calculate the dynamic reference position, and obtain their own real-time and high-frequency dynamic reference position information, including:·
步骤1.1、动态基准目标和流动目标分别利用载波相位观测值进行历元间差分,通过最小二乘解算得到当前时刻到下一时刻自身的位置变化量,根据当前时刻位置递推下一时刻自身的动态位置;Step 1.1. The dynamic reference target and the flowing target respectively use the carrier phase observation value to perform inter-epoch differences, obtain the position change from the current moment to the next moment through the least square solution, and recursively deduce the next moment itself based on the current moment position. dynamic position;
步骤1.1所述递推下一时刻动态基准目标的动态位置,具体如下:As described in step 1.1, recurse the dynamic position of the dynamic reference target at the next moment, as follows:
其中,A表示动态基准目标,表示/>时刻动态基准目标的动态位置,/>表示/>时刻动态基准目标递推的动态位置,表示/>时刻到/>时刻间的位置变化量,/>时刻表示当前时刻,/>时刻表示下一时刻,/>表示北斗数据观测间隔。Among them, A represents the dynamic benchmark target, Express/> The dynamic position of the dynamic reference target at all times,/> Express/> The dynamic position of the dynamic reference target recursion at time, Express/> Time's up/> The amount of position change between times,/> Time represents the current moment,/> Time represents the next moment,/> Indicates the Beidou data observation interval.
步骤1.1所述递推下一时刻动态流动目标的动态位置,具体如下:As described in step 1.1, recurse the dynamic position of the dynamic flow target at the next moment, as follows:
其中,B表示动态流动目标,表示/>时刻动态流动目标的动态位置,/>表示/>时刻动态流动目标递推的动态位置,表示/>时刻到/>时刻间的位置变化量。Among them, B represents the dynamic flow target, Express/> The dynamic position of the dynamically flowing target at all times,/> Express/> The dynamic position of the dynamic flow target recursion at all times, Express/> Time's up/> The amount of position change between moments.
步骤1.2、动态基准目标和流动目标分别将步骤1.1的下一时刻动态位置与惯性导航预测位置结果进行松组合解算,分别通过扩展卡尔曼滤波得到下一时刻目标A和目标B自身的动态基准位置结果。Step 1.2. Dynamic reference targets and flowing targets respectively loosely combine the dynamic position at the next moment in step 1.1 with the predicted position results of inertial navigation, and obtain the dynamic benchmarks of target A and target B at the next moment through extended Kalman filtering. Location results.
步骤1.2所述下一时刻动态基准目标的动态基准位置,具体如下:The dynamic reference position of the dynamic reference target at the next moment as described in step 1.2 is as follows:
其中,A表示动态基准目标,表示/>时刻动态基准目标的动态基准位置,/>时刻表示下一时刻。Among them, A represents the dynamic benchmark target, Express/> The dynamic reference position of the dynamic reference target at all times,/> Moment represents the next moment.
步骤1所述下一时刻动态流动目标的动态基准位置,具体如下:The dynamic reference position of the dynamic flow target at the next moment as described in step 1 is as follows:
其中,B表示动态流动目标,表示/>时刻动态流动目标的动态基准位置,/>时刻表示下一时刻。Among them, B represents the dynamic flow target, Express/> The dynamic reference position of the dynamic flow target at all times,/> Moment represents the next moment.
步骤2、解算基线向量偏差,构建虚拟基线向量观测值,具体包括:Step 2: Calculate the baseline vector deviation and construct virtual baseline vector observations, including:
步骤2.1、在下一时刻,根据北斗实时动态定位解算得到目标A和B间相对位置结果,联合步骤1目标A和B的动态基准位置结果,确定目标间的基线向量偏差为:Step 2.1. At the next moment, obtain the relative position results between targets A and B based on Beidou's real-time dynamic positioning solution. Combined with the dynamic reference position results of targets A and B in step 1, determine the baseline vector deviation between the targets as:
其中,表示/>时刻目标A和B间相对位置结果,表示/>时刻基线向量偏差,/>时刻表示下一时刻。in, Express/> The relative position result between target A and B at the moment, Express/> Time baseline vector deviation,/> Moment represents the next moment.
根据基线向量偏差,对目标间动态基准位置差值进行改正,构建得到下一时刻的虚拟基线向量结果:According to the baseline vector deviation, the dynamic reference position difference between the targets is corrected to construct the virtual baseline vector result at the next moment:
其中,表示/>时刻虚拟基线向量,表示/>时刻动态基准目标的动态基准位置,/>表示/>时刻动态流动目标的动态基准位置,/>时刻表示下一时刻。in, Express/> time virtual baseline vector, Express/> The dynamic reference position of the dynamic reference target at all times,/> Express/> The dynamic reference position of the dynamic flow target at all times,/> Moment represents the next moment.
步骤2.2、根据步骤1中目标A和B动态基准位置结果的协方差和北斗实时动态定位中相对位置方差,确定下一时刻虚拟基线向量的方差:Step 2.2. Based on the covariance of the dynamic reference position results of targets A and B in step 1 and the relative position variance in Beidou real-time dynamic positioning, determine the variance of the virtual baseline vector at the next moment:
其中,表示/>时刻基准目标A的动态基准位置结果的协方差值,表示/>时刻流动目标B的动态基准位置结果的协方差值,/>表示/>时刻相对位置方差值,/>表示/>时刻虚拟基线向量的方差值,/>时刻表示下一时刻。in, Express/> The covariance value of the dynamic reference position result of reference target A at time, Express/> The covariance value of the dynamic reference position result of the mobile target B at any time,/> Express/> Relative position variance value at time,/> Express/> The variance value of the virtual baseline vector at time,/> Moment represents the next moment.
步骤3、利用北斗伪距和载波相位双差观测值,结合步骤2的虚拟基线向量观测值及其方差,通过最小二乘估计得到北斗三频原始模糊度浮点解,并进行搜索固定,具体包括:Step 3. Use the Beidou pseudorange and carrier phase double-difference observations, combined with the virtual baseline vector observations and their variances in step 2, to obtain the Beidou three-frequency original ambiguity floating point solution through least squares estimation, and search and fix it. Specifically include:
步骤3.1、利用步骤2构造的虚拟基线向量观测值作为附加约束,观测方程表达式为:Step 3.1. Use the virtual baseline vector observation value constructed in step 2 as an additional constraint. The expression of the observation equation is:
其中,表示/>时刻的基线向量,/>时刻表示下一时刻。in, Express/> Baseline vector at time,/> Moment represents the next moment.
联合北斗伪距和载波相位双差观测方程,得到三频动态模糊度解算方程如下,通过最小二乘解算,得到三频原始模糊度浮点解:Combining the Beidou pseudorange and carrier phase double-difference observation equations, the three-frequency dynamic ambiguity solution equation is obtained as follows. Through least squares solution, the three-frequency original ambiguity floating point solution is obtained:
其中,和/>表示双差伪距观测值(m)和双差载波相位观测值(m),/>表示双差卫地距(m),/>、I和/>分别表示系数矩阵、单位矩阵和零矩阵,/>和/>分别表示原始观测值的波长(m)和双差原始模糊度(周),/>和/>分别表示双差伪距和载波观测噪声及误差,/>表示/>时刻的基线向量。in, and/> Represents the double-difference pseudo-range observation value (m) and the double-difference carrier phase observation value (m),/> Represents the double-difference guard-to-ground distance (m),/> , I and/> Represents the coefficient matrix, identity matrix and zero matrix respectively,/> and/> Represents the wavelength (m) and double-difference original ambiguity (week) of the original observation value respectively,/> and/> Represents the double-difference pseudorange and carrier observation noise and error respectively,/> Express/> baseline vector at time.
步骤3.2、对步骤3.1的北斗三频原始模糊度浮点解进行搜索固定。参见图2,首先确定超宽巷模糊度固定解,然后联立该观测值与宽巷观测值解算出宽巷模糊度,最后用模糊度正确固定的宽巷观测值联合原始观测值解算原始模糊度,包括以下子步骤,Step 3.2: Search and fix the Beidou three-frequency original ambiguity floating point solution of Step 3.1. Referring to Figure 2, first determine the fixed solution of ultra-wide lane ambiguity, then combine the observation value with the wide lane observation value to calculate the wide lane ambiguity, and finally use the wide lane observation value with the ambiguity correctly fixed and the original observation value to solve the original ambiguity, including the following sub-steps,
步骤3.2.1、北斗2及北斗3系统内各自选取参考卫星,确定各系统的双差超宽巷模糊度。对于北斗2系统,利用B3I与B2I确定双差超宽巷模糊度;对于北斗3系统,分别利用B1C与B1I及B3I与B2a确定双差超宽巷模糊度,通过直接取整确定超宽巷模糊度,计算表达式为:Step 3.2.1. Select reference satellites in each Beidou 2 and Beidou 3 system to determine the double-difference ultra-wide lane ambiguity of each system. For the Beidou 2 system, B3I and B2I are used to determine the double-difference ultra-wide lane ambiguity; for the Beidou 3 system, B1C and B1I and B3I and B2a are used to determine the double-difference ultra-wide lane ambiguity, and the ultra-wide lane ambiguity is determined by direct rounding. degree, the calculation expression is:
式中,和/>分别表示超宽巷模糊度(周)及其波长(m),/>和/>分别表示频段m和频段n对应的频率(Hz),/>和/>表示频段m和频段n对应的双差伪距观测值(m),/>和/>分别表示频段m和频段n对应的双差载波相位观测值(m),/>表示环境因素造成的线性组合观测值的观测噪声(m)。In the formula, and/> Represents the ultra-wide lane ambiguity (week) and its wavelength (m) respectively,/> and/> Represents the frequency (Hz) corresponding to frequency band m and frequency band n respectively,/> and/> Represents the double-difference pseudorange observation value (m) corresponding to frequency band m and frequency band n ,/> and/> Represents the double-difference carrier phase observation values (m) corresponding to frequency band m and frequency band n respectively,/> Represents the observation noise (m) of the linear combination of observations caused by environmental factors.
步骤3.2.2、联立步骤3.2.1的超宽巷模糊度整数值和B1I-B3I宽巷载波相位观测方程,使用最小二乘估计宽巷模糊度浮点解,通过LAMBDA方法对浮点模糊度进行搜索固定,得到宽巷模糊度固定解,误差方程为:Step 3.2.2, combine the ultra-wide lane ambiguity integer value of step 3.2.1 and the B1I-B3I wide lane carrier phase observation equation, use least squares to estimate the floating point solution of wide lane ambiguity, and use the LAMBDA method to calculate the floating point ambiguity The degree is searched and fixed, and a fixed solution of wide lane ambiguity is obtained. The error equation is:
式中,和/>分别表示超宽巷模糊度固定值和宽巷载波相位观测值的残差向量,/>和I分别表示系数矩阵和单位矩阵,/>表示流动目标坐标的改正数,/>表示超宽巷模糊度固定值的改正数向量,/>表示宽巷载波相位观测值的改正数向量,/>和/>分别表示宽巷载波相位观测值的波长和模糊度。In the formula, and/> represent the residual vectors of the ultra-wide lane ambiguity fixed value and the wide lane carrier phase observation value respectively,/> and I represent the coefficient matrix and identity matrix respectively,/> Indicates the correction number of the flowing target coordinates,/> Correction number vector representing the fixed value of ultra-wide lane ambiguity,/> Represents the correction vector of wide-lane carrier phase observations,/> and/> represent the wavelength and ambiguity of the wide-lane carrier phase observations respectively.
步骤3.2.3、联立步骤3.2.2的宽巷模糊度的相位观测方程和步骤3.1解算的双差原始模糊度浮点解,通过LAMBDA方法搜索固定,误差方程为:Step 3.2.3, combine the phase observation equation of the wide lane ambiguity in step 3.2.2 and the double-difference original ambiguity floating point solution solved in step 3.1, and search and fix it through the LAMBDA method. The error equation is:
式中,和/>分别表示精确的宽巷和原始双差载波相位观测值的残差向量,表示宽巷载波相位观测值的改正数向量,/>表示原始双差载波相位观测值/>的改正数向量,/>和/>分别表示原始双差载波相位观测值/>的波长(m)和模糊度(周)。In the formula, and/> represent the residual vectors of the exact wide-lane and original double-differenced carrier phase observations, respectively, Represents the correction vector of wide-lane carrier phase observations,/> Represents the original double difference carrier phase observation value/> correction number vector,/> and/> Represents the original double-difference carrier phase observation values/> wavelength (m) and ambiguity (cycle).
当的模糊度固定值确定后,/>和/>的整数模糊度根据已知的超宽巷、宽巷模糊度固定值与/>模糊度的线性关系进行确定,具体计算公式如下:when After the fixed value of ambiguity is determined,/> and/> The integer ambiguity of is based on the known fixed values of ultra-wide lane and wide lane ambiguity and/> The linear relationship of ambiguity is determined, and the specific calculation formula is as follows:
其中,、/>和/>分别表示双差载波相位原始观测值/>、/>和/>对应的原始整数模糊度。in, ,/> and/> Represents the original observation value of the double-difference carrier phase/> ,/> and/> The corresponding raw integer ambiguity.
最后利用N 1、N 2和N 3模糊度间的线性关系和Ratio检验,验证模糊度固定的可靠性:Finally, the linear relationship and Ratio test between N 1 , N 2 and N 3 ambiguities are used to verify the reliability of the ambiguity fixation:
式中δ表示限差阀值,范围是0.1~0.5,k和b为常数,M表示Ratio检验阀值。In the formula , δ represents the tolerance threshold, ranging from 0.1 to 0.5, k and b are constants, and M represents the Ratio test threshold.
步骤4、利用步骤3的模糊度固定结果进行基线解算,确定动态目标间相对位置,具体包括:Step 4. Use the ambiguity fixed results of Step 3 to perform baseline calculation and determine the relative positions between dynamic targets, including:
利用步骤3.2.3模糊度固定后的双差载波相位观测值进行基线解算得到目标间的基线向量,根据基线向量结果确定流动目标相对基准目标的位置:Use the ambiguity fixed in step 3.2.3 The double-difference carrier phase observation value is used for baseline calculation to obtain the baseline vector between targets. The position of the flowing target relative to the reference target is determined based on the baseline vector result:
其中,表示/>时刻目标利用北斗实时动态定位解算的A和B间基线向量结果,/>表示/>时刻动态流动目标的相对位置。in, Express/> The baseline vector result between A and B calculated using Beidou real-time dynamic positioning of the target at the moment,/> Express/> The relative position of dynamically flowing targets at all times.
具体实施时,以上流程可采用计算机软件技术实现自动运行流程,运行本发明方法流程的系统装置也应当在本发明的保护范围内。During specific implementation, the above process can use computer software technology to realize the automatic operation process, and the system device for running the method process of the present invention should also be within the protection scope of the present invention.
本发明提供的一种INS辅助动态目标间北斗三频模糊度快速初始化系统,包括以下模块:The invention provides an INS-assisted Beidou three-frequency ambiguity rapid initialization system between dynamic targets, including the following modules:
基准位置解算模块,利用北斗/INS融合解算实时高频动态基准位置,包括动态基准目标和动态流动目标的动态基准位;The reference position calculation module uses Beidou/INS fusion to calculate real-time high-frequency dynamic reference positions, including dynamic reference positions of dynamic reference targets and dynamic flow targets;
基线向量确定模块,根据动态基准位置结果,确定基线向量偏差及构建虚拟基线向量观测;The baseline vector determination module determines the baseline vector deviation and constructs a virtual baseline vector observation based on the dynamic reference position results;
模糊度获取模块,用北斗伪距和载波相位双差观测值,结合虚拟基线向量观测值及其方差,通过最小二乘估计得到北斗三频原始模糊度浮点解,并进行搜索固定;The ambiguity acquisition module uses the Beidou pseudo-range and carrier phase double-difference observations, combined with the virtual baseline vector observations and their variances, to obtain the Beidou three-frequency original ambiguity floating-point solution through least squares estimation, and performs search and fixation;
相对位置确定模块,利用模糊度固定结果进行基线解算,确定动态目标间实时相对位置结果。The relative position determination module uses the ambiguity fixed results to perform baseline calculations and determines the real-time relative position results between dynamic targets.
各模块的具体实现方式与各步骤相同,本发明不予撰述。The specific implementation manner of each module is the same as each step, and will not be described in the present invention.
根据本发明技术方案得出了表1中INS辅助北斗三频模糊度测试统计结果,其中MAX表示基线向量误差在E/N/U方向上的最大值。表1中的结果表明INS辅助北斗三频模糊度具有更高的基线向量精度和模糊度固定率,基线向量误差异常值更小。According to the technical solution of the present invention, the statistical results of the INS-assisted Beidou three-frequency ambiguity test in Table 1 are obtained, where MAX represents the maximum value of the baseline vector error in the E/N/U direction. The results in Table 1 show that INS-assisted Beidou three-frequency ambiguity has higher baseline vector accuracy and ambiguity fixation rate, and smaller baseline vector error outliers.
表1 INS辅助北斗三频模糊度测试统计结果Table 1 Statistical results of INS-assisted Beidou three-frequency ambiguity test
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。The specific embodiments described herein are merely illustrative of the spirit of the invention. Those skilled in the art to which the present invention belongs can make various modifications or additions to the described specific embodiments or substitute them in similar ways, but this will not deviate from the spirit of the present invention or exceed the definition of the appended claims. range.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311150130.9A CN116879936B (en) | 2023-09-07 | 2023-09-07 | INS-assisted Beidou three-frequency ambiguity initialization method and system between dynamic targets |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311150130.9A CN116879936B (en) | 2023-09-07 | 2023-09-07 | INS-assisted Beidou three-frequency ambiguity initialization method and system between dynamic targets |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116879936A CN116879936A (en) | 2023-10-13 |
CN116879936B true CN116879936B (en) | 2023-11-28 |
Family
ID=88272166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311150130.9A Active CN116879936B (en) | 2023-09-07 | 2023-09-07 | INS-assisted Beidou three-frequency ambiguity initialization method and system between dynamic targets |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116879936B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118706114B (en) * | 2024-08-29 | 2024-11-22 | 武汉大学 | Beidou/INS data step-by-step combined navigation method and device based on factor graph optimization |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014065664A1 (en) * | 2012-10-25 | 2014-05-01 | Fugro N.V. | Ppp-rtk method and system for gnss signal based position determination |
WO2019144528A1 (en) * | 2018-01-29 | 2019-08-01 | 东南大学 | Fast ambiguity resolving method among multi-constellation reference stations based on ambiguity tight constraint and application thereof |
CN112285745A (en) * | 2020-11-18 | 2021-01-29 | 青岛杰瑞自动化有限公司 | Three-frequency ambiguity fixing method and system based on Beidou third satellite navigation system |
CN112462397A (en) * | 2020-11-10 | 2021-03-09 | 武汉大学 | Real-time dynamic positioning method and system for full-constellation multi-frequency Beidou data |
CN112526569A (en) * | 2021-02-18 | 2021-03-19 | 中国人民解放军国防科技大学 | Multi-epoch step-by-step ambiguity solving method for inertial navigation auxiliary navigation relative positioning |
US10969497B1 (en) * | 2020-07-08 | 2021-04-06 | Beihang University | Dynamic baseline position domain monitoring system |
CN112731490A (en) * | 2020-12-18 | 2021-04-30 | 广州南方卫星导航仪器有限公司 | RTK positioning method and device |
CN113359170A (en) * | 2021-06-04 | 2021-09-07 | 南京航空航天大学 | Inertial navigation-assisted Beidou single-frequency-motion opposite-motion high-precision relative positioning method |
CN114167472A (en) * | 2021-11-24 | 2022-03-11 | 武汉大学 | INS assisted GNSS PPP precise dynamic navigation positioning method and system |
CN114740506A (en) * | 2022-03-16 | 2022-07-12 | 河北雄安京德高速公路有限公司 | Beidou four-frequency combined positioning resolving method under short baseline |
CN115127591A (en) * | 2022-06-28 | 2022-09-30 | 北京航空航天大学 | Airborne DPOS transfer alignment method based on statistical confidence distance measurement bootstrapping |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7432853B2 (en) * | 2003-10-28 | 2008-10-07 | Trimble Navigation Limited | Ambiguity estimation of GNSS signals for three or more carriers |
US8035552B2 (en) * | 2007-05-31 | 2011-10-11 | Navcom Technology, Inc. | Distance dependant error mitigation in real-time kinematic (RTK) positioning |
US12130369B2 (en) * | 2021-05-06 | 2024-10-29 | Qualcomm Incorporated | Ultra wide-lane (UWL) real-time kinematic (RTK) |
-
2023
- 2023-09-07 CN CN202311150130.9A patent/CN116879936B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014065664A1 (en) * | 2012-10-25 | 2014-05-01 | Fugro N.V. | Ppp-rtk method and system for gnss signal based position determination |
WO2019144528A1 (en) * | 2018-01-29 | 2019-08-01 | 东南大学 | Fast ambiguity resolving method among multi-constellation reference stations based on ambiguity tight constraint and application thereof |
US10969497B1 (en) * | 2020-07-08 | 2021-04-06 | Beihang University | Dynamic baseline position domain monitoring system |
CN112462397A (en) * | 2020-11-10 | 2021-03-09 | 武汉大学 | Real-time dynamic positioning method and system for full-constellation multi-frequency Beidou data |
CN112285745A (en) * | 2020-11-18 | 2021-01-29 | 青岛杰瑞自动化有限公司 | Three-frequency ambiguity fixing method and system based on Beidou third satellite navigation system |
CN112731490A (en) * | 2020-12-18 | 2021-04-30 | 广州南方卫星导航仪器有限公司 | RTK positioning method and device |
CN112526569A (en) * | 2021-02-18 | 2021-03-19 | 中国人民解放军国防科技大学 | Multi-epoch step-by-step ambiguity solving method for inertial navigation auxiliary navigation relative positioning |
CN113359170A (en) * | 2021-06-04 | 2021-09-07 | 南京航空航天大学 | Inertial navigation-assisted Beidou single-frequency-motion opposite-motion high-precision relative positioning method |
CN114167472A (en) * | 2021-11-24 | 2022-03-11 | 武汉大学 | INS assisted GNSS PPP precise dynamic navigation positioning method and system |
CN114740506A (en) * | 2022-03-16 | 2022-07-12 | 河北雄安京德高速公路有限公司 | Beidou four-frequency combined positioning resolving method under short baseline |
CN115127591A (en) * | 2022-06-28 | 2022-09-30 | 北京航空航天大学 | Airborne DPOS transfer alignment method based on statistical confidence distance measurement bootstrapping |
Non-Patent Citations (5)
Title |
---|
A Comparative Study of BDS Triple-Frequency Ambiguity Fixing Approaches for RTK Positioning;Huizhong Zhu et al.;sensors;1-19 * |
BDS/GPS卫星数据质量分析软件开发及应用研究;金蕾 等;大地测量与地球动力学;第36卷(第9期);第837-846页 * |
BDS/GPS非差多频实时动态定位算法研究;刘扬;程鹏飞;徐彦田;;测绘科学(12);1-6 * |
北斗三频约束的短基线模糊度单历元算法;吕伟才;高井祥;王坚;王文波;;中国矿业大学学报(06);第1090-1096页 * |
北斗短基线高精度相对定位软件实现及结果分析;应俊俊;张京奎;;现代导航(04);256-260 * |
Also Published As
Publication number | Publication date |
---|---|
CN116879936A (en) | 2023-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20210006954A (en) | Precision single positioning and real-time kinematic combination (PPP-RTK) positioning method and equipment | |
AU2007273193B2 (en) | A method for increasing the reliability of position information when transitioning from a regional, wide-area, or global carrier-phase differential navigation (WADGPS) to a local real-time kinematic (RTK) navigation system | |
CN101680944B (en) | Method and device for carrier-phase integer ambiguity resolution in global navigation satellite system | |
US8825397B2 (en) | Vehicle navigation system with dead reckoning | |
CN104297773B (en) | A kind of high accuracy Big Dipper three frequency SINS deep integrated navigation system | |
CN101750066B (en) | SINS dynamic base transfer alignment method based on satellite positioning | |
US20210215485A1 (en) | Positioning device and positioning method | |
CN110850447B (en) | Method for comprehensively evaluating positioning accuracy of train positioning unit | |
CN105891864B (en) | A kind of BDS is with mixing double difference fuzziness fixing means between GPS system | |
Carcanague | Real-time geometry-based cycle slip resolution technique for single-frequency PPP and RTK | |
CN112526569B (en) | A multi-epoch step-by-step ambiguity solution method for inertial navigation-aided satellite navigation relative positioning | |
CN106707322B (en) | High dynamic positioning and orientation system and method based on RTK/SINS | |
Yang et al. | Improved robust and adaptive filter based on non-holonomic constraints for RTK/INS integrated navigation | |
CN111856536A (en) | A GNSS/INS compact combined positioning method based on inter-system differential wide-lane observations | |
CN109061694A (en) | A kind of low rail navigation enhancing localization method and system fixed based on GNSS clock deviation | |
CN112526564A (en) | Precise single-point positioning re-convergence method | |
CN116879936B (en) | INS-assisted Beidou three-frequency ambiguity initialization method and system between dynamic targets | |
CN108345018A (en) | A kind of adaptive satellite navigation multi-mode relative positioning method | |
CN110208836A (en) | GNSS high-adaptability cycle-slip detection and repair method based on Kalman filtering | |
CN116755126B (en) | Beidou real-time accurate positioning method based on three-dimensional model mapping matching | |
CN111736183B (en) | A precision single-point positioning method and device combining BDS2/BDS3 | |
CN105510942A (en) | Kalman filtering-based GPS single-point positioning system | |
CN112444832A (en) | Cycle slip repairing method for one-machine multi-antenna receiver | |
CN106842242B (en) | A kind of vector tracking channel failure detection method based on support vector machines | |
CN115683094A (en) | A vehicle-mounted dual-antenna tight-coupling positioning method and system in a complex environment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |