CN116861300B - Automatic auxiliary labeling method and device for complex maneuvering data set of military machine type - Google Patents
Automatic auxiliary labeling method and device for complex maneuvering data set of military machine type Download PDFInfo
- Publication number
- CN116861300B CN116861300B CN202311116892.7A CN202311116892A CN116861300B CN 116861300 B CN116861300 B CN 116861300B CN 202311116892 A CN202311116892 A CN 202311116892A CN 116861300 B CN116861300 B CN 116861300B
- Authority
- CN
- China
- Prior art keywords
- sequence
- maneuver
- flight parameter
- data
- action
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/22—Matching criteria, e.g. proximity measures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
Landscapes
- Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域Technical field
本发明属于飞行数据智能处理技术领域,具体涉及一种军用机型复杂机动动作数据集自动辅助标注方法及装置。The invention belongs to the technical field of intelligent processing of flight data, and specifically relates to an automatic auxiliary labeling method and device for complex maneuver data sets of military aircraft.
背景技术Background technique
科学评估飞行训练质量对于分析飞行员操纵习惯和提高飞行员的飞行驾驶技术以及确保飞行安全具有至关重要的意义。机动动作识别则是飞行训练质量评估的关键步骤,大量评估内容都是建立在获取特定类别动作序列的基础之上。机载飞参系统以多维时间序列数据形式记录和保存的飞参数据为机动动作识别提供了客观和科学的依据。Scientifically evaluating the quality of flight training is of vital significance for analyzing pilots' control habits, improving pilots' flight driving skills, and ensuring flight safety. Maneuvering action recognition is a key step in flight training quality assessment, and a large amount of assessment content is based on obtaining specific categories of action sequences. The flight parameter data recorded and saved by the airborne flight parameter system in the form of multi-dimensional time series data provides an objective and scientific basis for maneuver recognition.
目前,基于飞参数据的机动动作识别方法主要包含基于模式匹配的方法、基于专家系统的方法和基于深度学习的智能方法。传统基于模式匹配的方法需要手动调整阈值。基于专家系统的方法需要根据领域专家的先验知识建立人工规则知识库。这两类方法对于相似性较高的复杂机动动作识别精度有待进一步提升。近年来,人工智能得到了快速的发展和进步,基于深度学习的方法在机动动作识别领域表现出了显著的性能。然而,基于深度学习的方法需要大量带有标注的机动动作样本数据集用于模型训练。此外,陀螺仪或加速计等多模态机载传感器记录的飞参数据包含了数十至上百个参数,这远比如相机等其他模态传感器数据更难理解。传统的机动动作数据集标注方法是由人工对飞行数据进行观察和分析,识别出其中的机动动作片段,并进行标注。然而,这种手动标注的方法存在以下问题:(1)工作量大,对大量飞行数据进行手动标注需要耗费大量的时间和人力资源;(2)主观性强,不同的人员对于机动动作的识别和标注可能存在主观差异,导致结果不一致;(3)准确性低,机动动作序列片段的提取和类别标注需要专业人员,标注的准确性受到个体能力、经验和疲劳等因素的影响,可能存在标注错误的情况。因此,需要一种能够自动辅助标注飞行数据中机动动作的方法和装置,以提高标注效率和精度。At present, maneuver recognition methods based on flight parameter data mainly include methods based on pattern matching, methods based on expert systems, and intelligent methods based on deep learning. Traditional pattern matching-based methods require manual adjustment of thresholds. Expert system-based methods require the establishment of a manual rule knowledge base based on the prior knowledge of domain experts. The accuracy of these two types of methods for identifying complex maneuvers with high similarity needs to be further improved. In recent years, artificial intelligence has developed and progressed rapidly, and methods based on deep learning have shown remarkable performance in the field of motor action recognition. However, deep learning-based methods require large datasets of annotated maneuver samples for model training. In addition, flying parameter data recorded by multi-modal airborne sensors such as gyroscopes or accelerometers contains dozens to hundreds of parameters, which is far more difficult to understand than data from other modal sensors such as cameras. The traditional method of labeling maneuver data sets is to manually observe and analyze the flight data, identify the maneuver segments, and label them. However, this manual labeling method has the following problems: (1) The workload is large, and manual labeling of a large amount of flight data requires a lot of time and human resources; (2) It is highly subjective, and different personnel can identify maneuvers There may be subjective differences in labeling and labeling, resulting in inconsistent results; (3) The accuracy is low. The extraction and category labeling of maneuver sequence segments require professionals. The accuracy of labeling is affected by factors such as individual ability, experience, fatigue, etc. There may be labeling errors. Wrong situation. Therefore, there is a need for a method and device that can automatically assist in labeling maneuvers in flight data to improve labeling efficiency and accuracy.
发明内容Contents of the invention
本发明所要解决的技术问题在于针对上述现有技术的不足,提供了一种军用机型复杂机动动作数据集自动辅助标注技术方案,用以解决海量飞行参数数据下目标机动动作类别标注精度和效率低的技术问题。The technical problem to be solved by this invention is to address the deficiencies of the above-mentioned existing technologies and provide a technical solution for automatic auxiliary labeling of complex maneuver data sets for military aircraft to solve the problem of labeling accuracy and efficiency of target maneuver categories under massive flight parameter data. Low technical issues.
为了达到上述发明目的,本发明采用以下技术方案:In order to achieve the above-mentioned object of the invention, the present invention adopts the following technical solutions:
S1、采集飞行员飞行训练的历史飞行参数序列数据,并选取标准机动动作样本序列作为目标机动动作模板;S1. Collect the historical flight parameter sequence data of pilot flight training, and select the standard maneuver sample sequence as the target maneuver template;
S2、对采集到的历史飞行参数序列数据和选取的目标机动动作模板序列进行数据预处理;S2. Perform data preprocessing on the collected historical flight parameter sequence data and the selected target maneuver template sequence;
S3、基于Matrix Profile数据结构,使用目标机动动作模板序列在经过数据预处理的历史飞行参数序列中初步匹配并提取待识别飞行参数子序列;S3. Based on the Matrix Profile data structure, use the target maneuver template sequence to initially match and extract the flight parameter subsequence to be identified in the historical flight parameter sequence that has undergone data preprocessing;
S4、通过明显特征将S3中提取的待识别子序列进行预分类处理,即进行机动动作类别的预匹配;S4. Pre-classify the subsequences to be identified extracted in S3 through obvious features, that is, perform pre-matching of maneuver categories;
S5、采用MDTW算法,在预分类后动作序列中将待识别飞行参数子序列和目标机动动作模板序列进行相似性匹配,完成机动动作的细分类;S5. Use the MDTW algorithm to perform similarity matching between the flight parameter subsequence to be identified and the target maneuver template sequence in the pre-classified action sequence to complete the subdivision of maneuvers;
S6、将经过细分类的飞行参数子序列进行三维可视化,并对自动标注的机动类别标签进行人工精确复核,得到最终标注的机动动作数据集。S6. Perform three-dimensional visualization of the subdivided flight parameter subsequences, and conduct manual and accurate review of the automatically labeled maneuver category labels to obtain the final labeled maneuver data set.
优选地,S1中所述采集飞行员飞行训练的历史飞行参数序列数据,并选取标准机动动作样本序列作为目标机动动作模板;具体包括:Preferably, the historical flight parameter sequence data of pilot flight training as described in S1 is collected, and the standard maneuver sample sequence is selected as the target maneuver template; specifically including:
S1-1、采集飞行员飞行训练的历史飞行参数序列数据,将历史飞行参数据解码为计算机可直接读取的表格数据;S1-1. Collect the historical flight parameter sequence data of pilot flight training, and decode the historical flight parameter data into table data that can be directly read by the computer;
S1-2、依据飞行训练大纲和实际需求,确定拟标注的目标机动动作类型,并选取满足飞行训练手册中机动动作操作规范要求的飞行参数子序列作为标准目标机动动作模板序列。S1-2. Based on the flight training syllabus and actual needs, determine the type of target maneuver to be marked, and select the flight parameter subsequence that meets the requirements of the maneuver operation specifications in the flight training manual as the standard target maneuver template sequence.
优选地,S2中对采集到的历史飞行参数序列和选取的目标机动动作模板序列进行数据预处理;具体包括:Preferably, S2 performs data preprocessing on the collected historical flight parameter sequence and the selected target maneuver template sequence; specifically including:
S2-1、取能够判断出不同动作类别的俯仰角、倾斜角、气压高度、X轴角速度、Y轴角速度、Z轴角速度、水平加速度和垂直加速度参数,对历史飞行参数序列和目标机动动作模板序列中的缺失值进行填补,然后对原始数据中每一维进行标准化预处理。S2-1. Get the pitch angle, tilt angle, air pressure height, X-axis angular velocity, Y-axis angular velocity, Z-axis angular velocity, horizontal acceleration and vertical acceleration parameters that can determine different action categories, and compare the historical flight parameter sequence and target maneuver template Missing values in the sequence are filled, and then standardized preprocessing is performed on each dimension of the original data.
所述数据标准化处理公式为:其中,/>表示飞参数据中每一维数据的均值,/>表示飞参数据中每一维数据的标准差。经过预处理后每一维数据的平均值为0,标准差为1。The data standardization processing formula is: Among them,/> Represents the mean value of each dimension of data in the flying parameter data,/> Represents the standard deviation of each dimension of data in the flying parameter data. After preprocessing, the average value of each dimension of data is 0 and the standard deviation is 1.
优选地,S3中基于Matrix Profile数据结构,使用目标机动动作模板序列在经过数据预处理的历史飞行参数序列中初步匹配并提取待识别飞行参数子序列;具体包括:给定经过数据预处理的历史飞行参数时间序列,用于查询的目标机动动作模板序列/>。使用目标机动动作模板序列/>长度的滑动窗口从经过数据预处理的历史飞行参数时间序列/>的起始位置开始滑动,每次计算窗口内子序列与目标机动动作模板序列/>的距离,生成长度为/>的MatrixProfile,在Matrix Profile中查询小于阈值/>的值,该值所在的位置即为从/>中匹配并提取的待识别飞行参数子序列/>。Preferably, based on the Matrix Profile data structure, S3 uses the target maneuver template sequence to initially match and extract the flight parameter subsequence to be identified in the historical flight parameter sequence that has been preprocessed by the data; specifically including: given the historical flight parameter sequence that has been preprocessed by the data. Flight parameter time series , the target maneuver template sequence used for query/> . Use Target Maneuver Template Sequence/> A sliding window of length from a data preprocessed historical flight parameter time series/> The starting position starts to slide, and each time the subsequence within the calculation window is the same as the target maneuver template sequence/> distance, the generated length is/> MatrixProfile, query in Matrix Profile is less than the threshold/> The value of , the position of this value is from/> Match and extract the flight parameter subsequence to be identified/> .
其中,表示参数的数量,/>表示历史飞行参数时间序列的长度,/>表示目标机动动作模板序列的长度,通常/>远远小于/>。in, Indicates the number of parameters,/> Represents the length of historical flight parameter time series, /> Represents the length of the target maneuver template sequence, usually/> Far smaller than/> .
优选地,S4中通过明显特征将S3中提取的待识别子序列进行预分类处理,即进行机动动作类别的预匹配;具体包括:Preferably, in S4, the subsequences to be identified extracted in S3 are pre-classified through obvious features, that is, pre-matching of maneuver categories is performed; specifically including:
S4-1、所述明显特征为高度和俯仰角,预分类的类别包括类斤斗,类俯冲跃升、类升降转弯,类急转弯、类横滚,类盘旋四大类;S4-1. The above-mentioned obvious features are height and pitch angle. The pre-classified categories include four categories: quasi-double, quasi-dive and jump, quasi-lift and turn, quasi-sharp turn, quasi-roll, and quasi-circling;
S4-2、所述机动动作类别的预匹配具体为:首先,设定阈值和阈值/>,/>取每个标准目标机动动作模板序列中最大高度和最小高度差值的平均值,/>取每个标准目标机动动作模板序列中最大俯仰角和最小俯仰角差值的平均值,然后,根据待识别子序列高度一阶差分绝对值的均值,将均值大于阈值/>的序列分为升降类动作,小于阈值/>的序列分为非升降类动作。在升降类动作中,根据待识别子序列俯仰角一阶差分绝对值的均值,将均值大于阈值/>的序列分为类斤斗、类俯冲跃升,小于阈值/>的序列分为类升降转弯;在非升降类动作中,根据待识别子序列俯仰角一阶差分绝对值的均值,将均值大于阈值/>的序列分为类盘旋,将均值小于阈值/>的序列分为类急转弯和类横滚;S4-2. The specific pre-matching of the maneuver category is: first, set the threshold and threshold/> ,/> Take the average of the maximum height and minimum height differences in each standard target maneuver template sequence, /> Take the average value of the difference between the maximum pitch angle and the minimum pitch angle in each standard target maneuver template sequence, and then, based on the mean of the absolute value of the first-order difference in height of the subsequence to be identified, set the mean value greater than the threshold/> The sequence is divided into lifting actions, which are less than the threshold/> The sequence is divided into non-lifting actions. In lifting movements, according to the mean value of the first-order difference absolute value of the pitch angle of the sub-sequence to be identified, the mean value is greater than the threshold/> The sequence is divided into bucket-like and dive-like jumps, which are smaller than the threshold/> The sequence is divided into lift and turn types; in non-lift actions, according to the mean of the first-order difference absolute value of the pitch angle of the sub-sequence to be identified, the mean is greater than the threshold/> The sequence is divided into classes of circles, and the mean is smaller than the threshold/> The sequence is divided into quasi-sharp turn and quasi-roll;
优选地,S5中机动动作识别阶段,利用MDTW算法对待识别飞行参数子序列和目标机动动作模板序列进行相似性匹配,完成机动动作的细分类;具体包括:Preferably, in the maneuver recognition stage in S5, the MDTW algorithm is used to perform similarity matching between the flight parameter subsequence to be identified and the target maneuver template sequence to complete the subdivision of maneuvers; specifically including:
S5-1、所述机动动作识别阶段是对S4预分类后所得的待识别飞行参数子序列和现有目标机动动作模板序列进行相似性匹配,通过分别计算待识别飞行参数子序列与 C个目标机动动作模板序列的MDTW距离,得到相似度值序列,/>值小于阈值,则将待识别的动作判定为/>对应的标准动作类别。其中/>根据实际机动序列与所对应目标机动动作模板序列的MDTW距离值设定。S5-1. The maneuver recognition stage is to perform similarity matching between the flight parameter sub-sequence to be identified obtained after S4 pre-classification and the existing target maneuver template sequence, and calculate the flight parameter sub-sequence to be identified and C targets respectively. MDTW distance of maneuver template sequence to obtain similarity value sequence ,/> Value is less than threshold , then the action to be recognized is determined as/> Corresponding standard action category. Among them/> Set based on the MDTW distance value between the actual maneuver sequence and the corresponding target maneuver template sequence.
S5-2、两个动作序列相似度值的计算采用MDTW距离的计算原理。假定动作序列1为,动作序列2为/>,MDTW路径矩阵为/>,/>表示动作序列的维数,和/>分别表示动作序列1和动作序列2的长度,/>表示相应维度的权重;S5-2. The calculation principle of MDTW distance is used to calculate the similarity value of two action sequences. Assume that action sequence 1 is , action sequence 2 is/> ,MDTW path matrix is/> ,/> Represents the dimension of the action sequence, and/> Represents the length of action sequence 1 and action sequence 2 respectively,/> Represents the weight of the corresponding dimension;
所述动作序列1和动作序列2定义为: 其中,/>为动作序列1的第/>维度特征在第/>个点的取值,/>为动作序列2的第/>维度特征在第/>个点的取值。The action sequence 1 and action sequence 2 are defined as: Among them,/> It is the fifth step of action sequence 1/> Dimensional features are in Chapter/> The value of a point,/> For the second step of action sequence 2/> Dimensional features are in Chapter/> value of a point.
所述MDTW路径矩阵定义为: ,/>,其中,为动作序列1的/>维度特征在第/>个点的取值,/>为动作序列2的/>维度特征在第/>个点的取值。/>表示/>维度的权重,/>表示动作序列1第/>个点的所有维度特征的取值向量与动作序列2第/>个点的所有维度特征的取值向量的帧加权匹配距离;The MDTW path matrix is defined as: ,/> ,in, For action sequence 1/> Dimensional features are in Chapter/> The value of a point,/> For action sequence 2/> Dimensional features are in Chapter/> value of a point. /> Express/> The weight of the dimension,/> Indicates action sequence 1/> Value vectors of all dimensional features of points and action sequence 2/> The frame-weighted matching distance of the value vectors of all dimensional features of a point;
S5-3、动作序列1和动作序列2的多维动态时间规划距离定义为为最优规整路径累计距离/>之和,规整路径应满足边界性、连续性和单调性三个约束条件,公式定义为:S5-3, multi-dimensional dynamic time planning distance between action sequence 1 and action sequence 2 Defined as the cumulative distance for the optimal regular path/> The regular path should satisfy the three constraints of boundary, continuity and monotonicity. The formula is defined as:
其中,边界性条件为规整路径的起始点必须是/>,终止点必须是/>;连续性条件为规整路径应该是连续的,即从一个点跳转到下一个点,可以是向右、向上或者向右上的;单调性条件为规整路径的移动方向应该是单调的,即不会反向移动。根据以上三个约束条件构建最优规整路径,并计算最优规整路径累计距离得到/>。 Among them, the boundary condition is that the starting point of the regular path must be/> , the end point must be/> ; The continuity condition is that the regular path should be continuous, that is, jumping from one point to the next point, which can be to the right, upward, or up-right; the monotonicity condition is that the moving direction of the regular path should be monotonic, that is, not will move in the opposite direction. Construct the optimal regular path according to the above three constraints, and calculate the cumulative distance of the optimal regular path to obtain/> .
优选地,S6中将经过细分类的飞行参数子序列进行三维可视化,并对自动标注的机动类别标签进行复核,得到最终标注的机动动作数据集;具体包括:Preferably, S6 performs three-dimensional visualization of the subdivided flight parameter subsequences, and reviews the automatically labeled maneuver category labels to obtain the final labeled maneuver data set; specifically including:
S6-1、利用俯仰角、滚转角和偏航角信息将经过MDTW算法自动细分类的飞行参数子序列进行飞行姿态三维可视化,利用高度、经度和纬度信息将经过MDTW算法自动细分类的飞行参数子序列进行飞行轨迹的三维可视化,根据飞行姿态和轨迹三维可视化结果,对自动标注的机动类别标签进行复核,当所述MDTW算法的分类结果与人工分类结果一致时,存储飞行参数子序列及对应标签类别,当所述MDTW算法的分类结果与人工分类结果不一致时,将人工分类结果作为类别标签,并存储对应飞行参数子序列,这样得到带标签的机动动作数据集。S6-1. Use the pitch angle, roll angle and yaw angle information to visualize the flight attitude in a three-dimensional manner using the flight parameter sub-sequences that have been automatically subdivided by the MDTW algorithm. Use altitude, longitude and latitude information to use the altitude, longitude and latitude information to perform the three-dimensional visualization of the flight parameters that have been automatically subdivided by the MDTW algorithm. The sub-sequence performs three-dimensional visualization of the flight trajectory. Based on the three-dimensional visualization results of the flight attitude and trajectory, the automatically labeled maneuver category labels are reviewed. When the classification result of the MDTW algorithm is consistent with the manual classification result, the flight parameter sub-sequence and the corresponding are stored. Label category. When the classification result of the MDTW algorithm is inconsistent with the manual classification result, the manual classification result is used as the category label, and the corresponding flight parameter subsequence is stored, thus obtaining a labeled maneuver data set.
本发明还提供一种军用机型复杂机动动作数据集辅助标注装置。The invention also provides an auxiliary annotation device for military aircraft complex maneuver data sets.
具体的,一种军用机型复杂机动动作数据集辅助标注装置,包括:Specifically, an auxiliary annotation device for military aircraft complex maneuver data sets, including:
数据获取模块,用于获取飞行参数序列数据;Data acquisition module, used to obtain flight parameter sequence data;
预处理模块,用于对所述飞行参数序列数据进行数据预处理生成预处理后的飞行参数序列数据;A preprocessing module, configured to perform data preprocessing on the flight parameter sequence data to generate preprocessed flight parameter sequence data;
预匹配模块,用于将目标动作模板和历史飞行参数序列进行初步匹配,获取待识别飞行参数子序列The pre-matching module is used to initially match the target action template with the historical flight parameter sequence to obtain the flight parameter sub-sequence to be identified.
机动动作分类模块,用于将所述待识别飞行参数子序列和目标机动动作模板序列进行相似性匹配计算,得到机动动作的细分类结果。The maneuver classification module is used to perform similarity matching calculations on the flight parameter sub-sequence to be identified and the target maneuver template sequence to obtain a detailed classification result of the maneuver.
机动动作三维可视化模块,用于对经过细分类的机动动作序列进行飞行姿态和轨迹的三维可视化,进而对自动标注的机动类型进行人工精确复核。The maneuvering action three-dimensional visualization module is used to perform three-dimensional visualization of flight postures and trajectories of subdivided maneuvering action sequences, and then perform manual and accurate review of automatically labeled maneuver types.
本发明提供的技术方案,至少具有如下有益效果:The technical solution provided by the present invention has at least the following beneficial effects:
1、本发明利用Matrix Profile数据结构,使用机动动作模板在海量飞行参数数据中自动化匹配并提取目标机动动作子序列,极大地提高了海量历史飞行参数中目标机动动作所在时间段的定位和子序列片段的提取效率,较少了标注人员的工作量。1. The present invention utilizes the Matrix Profile data structure and uses maneuver templates to automatically match and extract target maneuver sub-sequences from massive flight parameter data, greatly improving the positioning and sub-sequence fragments of the time period of the target maneuver in massive historical flight parameters. The extraction efficiency reduces the workload of annotators.
2.本发明在待识别飞行参数子序列预分类后,采用MDTW算法计算多维度、不等长的机动动作序列间的相似度,从而实现了待识别飞行参数子序列机动类型的精细化自动识别,减少了MDTW的计算量,提高了识别精度和效率。2. After pre-classifying the flight parameter sub-sequences to be identified, the present invention uses the MDTW algorithm to calculate the similarity between multi-dimensional and unequal-length maneuver sequences, thereby achieving refined automatic identification of the maneuver types of the flight parameter sub-sequences to be identified. , reducing the calculation amount of MDTW and improving the recognition accuracy and efficiency.
3.本发明提出的军用机型机动动作自动辅助标注方法是一种通用的方法,能够显著提高复杂机动动作数据集的标注效率,并且适用于多种不同的军用机型,具有广泛的工程应用前景。3. The automatic auxiliary labeling method for military aircraft maneuvers proposed by the present invention is a universal method, which can significantly improve the labeling efficiency of complex maneuver data sets, is suitable for a variety of different military aircraft models, and has a wide range of engineering applications. prospect.
综上所述,本发明提供的机动动作数据集自动辅助标注方法及装置通过结合Matrix Profile数据结构和MDTW算法,实现了飞行数据中机动动作片段的自动辅助标注,具有自动化、准确性、高效性和通用性的优点,可广泛应用于军事航空领域飞行动作分析和质量评估中。In summary, the method and device for automatic auxiliary annotation of maneuver data sets provided by the present invention realize automatic auxiliary annotation of maneuver segments in flight data by combining the Matrix Profile data structure and the MDTW algorithm, and are automated, accurate and efficient. With the advantages of versatility, it can be widely used in flight action analysis and quality assessment in the military aviation field.
附图说明Description of the drawings
图1为本发明一个实施例的一种军用机型复杂机动动作数据集自动辅助标注方法的总体流程图。Figure 1 is an overall flow chart of an automatic auxiliary annotation method for military aircraft complex maneuver data sets according to one embodiment of the present invention.
图2为本发明一个实施例的机动动作预分类处理流程图。Figure 2 is a flow chart of maneuver pre-classification processing according to one embodiment of the present invention.
图3为本发明一个实施例的MDTW规整路径示意图。Figure 3 is a schematic diagram of the MDTW regular path according to an embodiment of the present invention.
图4为本发明一个实施例的机动动作数据集自动辅助标注详细实施流程图。Figure 4 is a detailed implementation flow chart of automatic auxiliary annotation of maneuver data sets according to one embodiment of the present invention.
图5为本发明一个实施例的一种军用机型复杂机动动作数据集自动辅助标注装置的结构示意图。Figure 5 is a schematic structural diagram of an automatic auxiliary annotation device for military aircraft complex maneuver data sets according to an embodiment of the present invention.
具体实施方式Detailed ways
实施例Example
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。In order to make the purpose, technical solutions and advantages of the present application clearer, the technical solutions of the present application will be clearly and completely described below in conjunction with specific embodiments of the present application and corresponding drawings. Obviously, the described embodiments are only some of the embodiments of the present application, but not all of the embodiments. Based on the embodiments in this application, all other embodiments obtained by those of ordinary skill in the art without creative efforts fall within the scope of protection of this application.
如图1所示,本发明实施例提供的一种军用机型复杂机动动作数据集自动辅助标注方法,该方法包括:As shown in Figure 1, an embodiment of the present invention provides an automatic auxiliary labeling method for military aircraft complex maneuver data sets. The method includes:
S1、采集飞行员飞行训练的历史飞行参数序列数据,并选取标准机动动作样本序列作为目标机动动作模板。S1. Collect the historical flight parameter sequence data of pilot flight training, and select the standard maneuver sample sequence as the target maneuver template.
军用机型飞行过程中,机载多传感器会监测一系列与飞行状态相关参数。这些飞行状态相关参数包括俯仰角、滚转角、航向角、迎角和侧滑角、飞行高度、飞行速度、角速度、加速度等。因此,在对机动动作标注的过程中,可以通过深入分析机动动作的飞行参数变化特征来描述不同的机动动作。需要强调的是,这些具体指标参数并不限制本申请的保护范围。此外,可以获取从军用机型启动到飞行结束的完整飞行时间段内的所有机动动作数据,也可以选择性地获取军用机型完整飞行时间段内的部分时间段的飞行参数序列数据。需要明确的是,飞行参数序列数据的获取时间段并不限制本申请的保护范围。During the flight of a military aircraft, the multi-sensors on the aircraft will monitor a series of parameters related to the flight status. These flight state-related parameters include pitch angle, roll angle, heading angle, angle of attack and sideslip angle, flight altitude, flight speed, angular velocity, acceleration, etc. Therefore, in the process of labeling maneuvers, different maneuvers can be described by in-depth analysis of the change characteristics of the flight parameters of the maneuvers. It should be emphasized that these specific index parameters do not limit the scope of protection of this application. In addition, all maneuver data within the complete flight time period from the start of the military aircraft to the end of the flight can be obtained, and flight parameter sequence data for part of the complete flight time period of the military aircraft can also be selectively obtained. It should be noted that the acquisition time period of flight parameter sequence data does not limit the scope of protection of this application.
进一步的,根据飞行训练手册中目标机动动作的操作规范选取标准飞行参数子序列作为目标机动动作模板。需要强调的是,在本申请提供的一种优选的实施方式中,获取的历史飞行参数序列和标准机动动作样本序列数据包括俯仰角、滚转角、航向角、迎角和侧滑角、飞行高度、飞行速度、角速度、加速度等飞行状态相关参数。此外,目标机动动作模板的数量等于机动动作的标注类别数量,该数量并不限制本申请的保护范围。Further, the standard flight parameter subsequence is selected as the target maneuver template according to the operating specifications of the target maneuver in the flight training manual. It should be emphasized that in a preferred implementation provided by this application, the acquired historical flight parameter sequence and standard maneuver sample sequence data include pitch angle, roll angle, heading angle, angle of attack and sideslip angle, and flight altitude. , flight speed, angular velocity, acceleration and other flight status related parameters. In addition, the number of target maneuver templates is equal to the number of labeled categories of maneuvers, and this number does not limit the scope of protection of this application.
S2、对采集到的历史飞行参数序列和选取的目标机动动作模板序列进行数据预处理。S2. Perform data preprocessing on the collected historical flight parameter sequence and the selected target maneuver template sequence.
获取的原始历史飞行参数序列和目标机动动作模板序列包括的飞行状态参数存在冗余信息,在进行机动动作判断时为了减小数据维度,提高计算效率,选取部分具有动作区分度的关键参数即可。There is redundant information in the flight status parameters included in the acquired original historical flight parameter sequence and the target maneuver template sequence. In order to reduce the data dimension and improve calculation efficiency when making maneuver judgments, some key parameters with action distinction can be selected. .
进一步的,在本申请提供的一种优选的实施方式中,取能够判断出不同动作类别的俯仰角、倾斜角、气压高度、X轴角速度、Y轴角速度、Z轴角速度、水平加速度和垂直加速度参数,对历史飞行参数序列和目标机动动作模板序列中的缺失值进行填补,然后对原始数据中每一维进行标准化预处理。Furthermore, in a preferred embodiment provided by this application, the pitch angle, tilt angle, air pressure height, X-axis angular velocity, Y-axis angular velocity, Z-axis angular velocity, horizontal acceleration and vertical acceleration that can determine different action categories are taken. Parameters, fill in the missing values in the historical flight parameter sequence and target maneuver template sequence, and then perform standardized preprocessing on each dimension in the original data.
所述数据标准化处理公式为: The data standardization processing formula is:
其中,表示飞参数据中每一维数据的均值,/>表示飞参数据中每一维数据的标准差。经过预处理后每一维数据的平均值为0,标准差为1。in, Represents the mean value of each dimension of data in the flying parameter data,/> Represents the standard deviation of each dimension of data in the flying parameter data. After preprocessing, the average value of each dimension of data is 0 and the standard deviation is 1.
S3、基于Matrix Profile数据结构,使用目标机动动作模板序列在经过数据预处理的历史飞行参数序列中初步匹配并提取待识别飞行参数子序列。S3. Based on the Matrix Profile data structure, use the target maneuver template sequence to initially match and extract the flight parameter subsequence to be identified in the historical flight parameter sequence that has undergone data preprocessing.
给定经过数据预处理的历史飞行参数时间序列,用于查询的目标机动动作模板序列/>。使用目标机动动作模板序列长度的滑动窗口从经过数据预处理的历史飞行参数时间序列/>的起始位置开始滑动,每次计算窗口内子序列与目标机动动作模板序列/>的距离,生成长度为/>的Matrix Profile,在Matrix Profile中查询小于阈值/>的值,该值所在的位置即为从/>中匹配并提取的待识别飞行参数子序列/>。Given a data preprocessed historical flight parameter time series , the target maneuver template sequence used for query/> . Using Target Maneuver Template Sequences A sliding window of length from a data preprocessed historical flight parameter time series/> The starting position starts to slide, and each time the subsequence within the calculation window is the same as the target maneuver template sequence/> distance, the generated length is/> Matrix Profile, query in Matrix Profile is less than the threshold/> The value of , the position of this value is from/> Match and extract the flight parameter subsequence to be identified/> .
其中,表示参数的数量,/>表示历史飞行参数时间序列的长度,/>表示目标机动动作模板序列的长度,通常/>远远小于/>,阈值/>由人工设置。in, Indicates the number of parameters,/> Represents the length of historical flight parameter time series, /> Represents the length of the target maneuver template sequence, usually/> Far smaller than/> ,threshold/> Set manually.
S4、通过明显特征将S3中提取的待识别子序列进行预分类处理,即进行机动动作类别的预匹配。S4. Pre-classify the subsequences to be identified extracted in S3 through obvious features, that is, perform pre-matching of maneuver categories.
所述明显特征为高度和俯仰角,预分类的类别包括类斤斗,类俯冲跃升、类升降转弯,类急转弯、类横滚,类盘旋四大类。可以理解的是,这里所述的预分类的类别,显然不构成对本申请具体保护范围的限制。The obvious features are height and pitch angle, and the pre-classified categories include four categories: similar to a dolly, similar to a dive and jump, similar to a lift and turn, similar to a sharp turn, similar to a roll, and similar to a hover. It can be understood that the pre-classified categories described here obviously do not constitute a limitation on the specific protection scope of the present application.
进一步,如图2,在本申请提供的一种优选的实施方式中,所述机动动作预匹配具体为:首先,确定阈值和阈值/>。然后,根据待识别子序列高度一阶差分绝对值的均值,将均值大于阈值/>的序列分为升降类动作,小于阈值的/>序列分为非升降类动作。在升降类动作中,根据待识别子序列俯仰角一阶差分绝对值的均值,将均值大于阈值的序列分为类斤斗、类俯冲跃升,小于阈值/>的序列分为类升降转弯;类似地,在非升降类动作中,根据待识别子序列俯仰角一阶差分绝对值的均值,将均值大于阈值/>的序列分为类盘旋,将均值小于阈值/>的序列分为类急转弯和类横滚。通过机动动作预匹配剔除明显与待识别子序列类别不符的机动动作模板,从而减少匹配动作模板的数量,简化计算量,提高工作效率。Further, as shown in Figure 2, in a preferred implementation provided by this application, the maneuver pre-matching is specifically: first, determine the threshold and threshold/> . Then, according to the mean of the first-order difference absolute value of the height of the subsequence to be identified, the mean is greater than the threshold/> The sequence is divided into lifting and lowering actions, and those that are smaller than the threshold/> Sequences are divided into non-lifting actions. In lifting movements, according to the mean of the first-order difference absolute value of the pitch angle of the sub-sequence to be identified, the mean is greater than the threshold. The sequence is divided into bucket-like and dive-like jumps, which are smaller than the threshold/> The sequence is divided into lifting and turning types; similarly, in non-lifting and descending actions, according to the mean of the absolute value of the first-order difference of the pitch angle of the sub-sequence to be identified, the mean is greater than the threshold/> The sequence is divided into classes of circles, and the mean is smaller than the threshold/> The sequences are divided into quasi-sharp turns and quasi-rolls. Through maneuver pre-matching, maneuver templates that are obviously inconsistent with the subsequence category to be identified are eliminated, thereby reducing the number of matching motion templates, simplifying calculations, and improving work efficiency.
S5、机动动作识别阶段,利用多维动态时间规划方法对待识别飞行参数子序列和目标机动动作模板序列进行相似性匹配,完成机动动作的细分类。S5. In the maneuver recognition stage, the multi-dimensional dynamic time planning method is used to perform similarity matching between the flight parameter sub-sequence to be identified and the target maneuver template sequence to complete the subdivision of maneuvers.
具体的,所述机动动作识别阶段是对S4预分类后所得的待识别飞行参数子序列和现有目标机动动作模板序列进行相似性匹配,通过分别计算待识别飞行参数子序列与C个目标机动动作模板序列的多维动态时间规划距离,得到相似度值序列,值小于阈值/>,则将待识别的动作判定为/>对应的标准动作类别。其中/>根据经验人为给定。Specifically, the maneuver recognition stage is to perform similarity matching between the flight parameter subsequence to be identified obtained after S4 pre-classification and the existing target maneuver template sequence, and calculate the flight parameter subsequence to be identified and C target maneuvers by respectively calculating Multidimensional dynamic time planning distance of action template sequence to obtain similarity value sequence , Value is less than threshold/> , then the action to be recognized is determined as/> Corresponding standard action category. Among them/> It is artificially given based on experience.
所述两个动作序列相似度值的计算采用多维动态时间规划距离的计算原理。假定动作序列1为,动作序列2为/>,MDTW路径矩阵为/>。/>表示动作序列的维数,/>和/>分别表示动作序列1和动作序列2的长度,/>表示相应维度的权重。The calculation of the similarity value of the two action sequences adopts the calculation principle of multi-dimensional dynamic time planning distance. Assume that action sequence 1 is , action sequence 2 is/> ,MDTW path matrix is/> . /> Represents the dimension of the action sequence, /> and/> Represents the length of action sequence 1 and action sequence 2 respectively,/> Represents the weight of the corresponding dimension.
所述动作序列1和动作序列2定义为:The action sequence 1 and action sequence 2 are defined as:
其中,/>为动作序列1的第/>维度特征在第/>个点的取值,/>为动作序列2的第/>维度特征在第/>个点的取值。 Among them,/> It is the fifth step of action sequence 1/> Dimensional features are in Chapter/> The value of a point,/> For the second step of action sequence 2/> Dimensional features are in Chapter/> value of a point.
所述MDTW路径矩阵定义为: ,/>,其中,/>为动作序列1的/>维度特征在第/>个点的取值,/>为动作序列2的/>维度特征在第/>个点的取值,/>表示/>维度的权重,/>表示动作序列1第/>个点的所有维度特征的取值向量与动作序列2第/>个点的所有维度特征的取值向量的帧加权匹配距离;The MDTW path matrix is defined as: ,/> , where,/> For action sequence 1/> Dimensional features are in Chapter/> The value of a point,/> For action sequence 2/> Dimensional features are in Chapter/> The value of a point,/> Express/> The weight of the dimension,/> Indicates action sequence 1/> Value vectors of all dimensional features of points and action sequence 2/> The frame-weighted matching distance of the value vectors of all dimensional features of a point;
S5-3、动作序列1和动作序列2的多维动态时间规划距离定义为最优规整路径累计距离/>之和,规整路径应满足边界性、连续性和单调性三个约束条件,公式定义为:S5-3, multi-dimensional dynamic time planning distance between action sequence 1 and action sequence 2 Defined as the cumulative distance of the optimal regular path/> The regular path should satisfy the three constraints of boundary, continuity and monotonicity. The formula is defined as:
其中,边界性条件为规整路径的起始点必须是/>,终止点必须是/>;连续性条件为规整路径应该是连续的,即从一个点跳转到下一个点,可以是向右、向上或者向右上的;单调性条件为规整路径的移动方向应该是单调的,即不会反向移动。根据以上三个约束条件构建最优规整路径,并计算最优规整路径累计距离得到/>。 Among them, the boundary condition is that the starting point of the regular path must be/> , the end point must be/> ; The continuity condition is that the regular path should be continuous, that is, jumping from one point to the next point, which can be to the right, upward, or up-right; the monotonicity condition is that the moving direction of the regular path should be monotonic, that is, not will move in the opposite direction. Construct the optimal regular path according to the above three constraints, and calculate the cumulative distance of the optimal regular path to obtain/> .
S6、将经过细分类的飞行参数子序列进行三维可视化,并对自动标注的机动类别标签进行人工精确复核,得到最终标注的机动动作数据集。S6. Perform three-dimensional visualization of the subdivided flight parameter subsequences, and conduct manual and accurate review of the automatically labeled maneuver category labels to obtain the final labeled maneuver data set.
具体的,将经过多维动态时间规划方法自动细分类的飞行参数子序列进行飞行姿态和轨迹的三维可视化,并对自动标注的机动类别标签进行人工精确复核。当所述多维动态时间规划方法的分类结果与人工分类结果一致时,存储飞行参数子序列及对应标签类别,当所述多维动态时间规划方法的分类结果与人工分类结果不一致时,将人工分类结果作为类别标签,并存储对应飞行参数子序列,这样得到带标签的机动动作数据集。综上,本申请提供的一种优选的实施方式中,机动动作数据集自动辅助标注详细实施流程图如图4所示。Specifically, the flight parameter sub-sequences that have been automatically subdivided by the multi-dimensional dynamic time planning method are used to visualize the flight attitude and trajectory in three dimensions, and the automatically labeled maneuver category labels are manually and accurately reviewed. When the classification result of the multi-dimensional dynamic time planning method is consistent with the manual classification result, the flight parameter subsequence and the corresponding label category are stored. When the classification result of the multi-dimensional dynamic time planning method is inconsistent with the manual classification result, the manual classification result is stored. As a category label, and store the corresponding flight parameter subsequence, thus obtaining a labeled maneuver data set. In summary, in a preferred implementation provided by this application, the detailed implementation flow chart of automatic auxiliary annotation of maneuver data sets is shown in Figure 4.
请参照图5,为本申请实施例提供的一种军用机型复杂机动动作数据集自动辅助标注装置100,包括:Please refer to Figure 5, which is an automatic auxiliary labeling device 100 for military aircraft complex maneuver data sets provided by an embodiment of the present application, including:
数据获取模块11,用于获取飞行参数序列数据;Data acquisition module 11, used to acquire flight parameter sequence data;
预处理模块12,用于对所述飞行参数序列数据进行数据预处理生成预处理后的飞行参数序列数据;The preprocessing module 12 is used to perform data preprocessing on the flight parameter sequence data to generate preprocessed flight parameter sequence data;
预匹配模块13,用于将目标动作模板和历史飞行参数序列进行初步匹配,获取待识别飞行参数子序列The pre-matching module 13 is used to initially match the target action template with the historical flight parameter sequence to obtain the flight parameter sub-sequence to be identified.
机动动作分类模块14,用于将所述待识别飞行参数子序列和目标机动动作模板序列进行相似性匹配计算,得到机动动作的细分类结果。The maneuver classification module 14 is used to perform similarity matching calculations on the flight parameter sub-sequence to be identified and the target maneuver template sequence to obtain a detailed classification result of the maneuver.
机动动作三维可视化模块15,用于对经过细分类的机动动作序列进行飞行姿态和轨迹的三维可视化,进而对自动标注的机动类型进行人工精确复核。The maneuver three-dimensional visualization module 15 is used to perform three-dimensional visualization of flight postures and trajectories of subdivided maneuver sequences, and then perform manual and accurate review of automatically labeled maneuver types.
本发明借鉴多维时间子序列匹配查询的思想,提出了一种军用机型复杂机动动作数据集自动辅助标注方法,旨在从历史飞行数据中自动检测并标注目标机动动作。首先采用Matrix Profile数据结构,在海量数据中使用机动动作模板初步匹配并提取目标机动动作子序列;其次采用多维动态时间规划(MultidimensionalDynamic Time Warping,MDTW)方法,确定分割后的机动动作子序列的机动类型;最后对机动动作序列进行飞行姿态和轨迹的三维可视化,以便对自动标注的机动类型进行人工精确复核。该自动辅助标注方法可以显著提高复杂机动动作数据集的标注效率,并适用于多种不同军用机型,具有广泛的工程应用前景。The present invention draws on the idea of multi-dimensional time subsequence matching query and proposes an automatic auxiliary labeling method for military aircraft complex maneuver data sets, aiming to automatically detect and label target maneuvers from historical flight data. First, the Matrix Profile data structure is used to initially match and extract the target maneuver subsequence using maneuver templates in massive data; secondly, the Multidimensional Dynamic Time Warping (MDTW) method is used to determine the maneuvers of the segmented maneuver subsequences. type; finally, three-dimensional visualization of the flight attitude and trajectory of the maneuver sequence is performed to facilitate manual and accurate review of the automatically labeled maneuver types. This automatic auxiliary annotation method can significantly improve the annotation efficiency of complex maneuver data sets, is suitable for a variety of different military aircraft models, and has broad engineering application prospects.
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。The above descriptions are only examples of the present application and are not intended to limit the present application. To those skilled in the art, various modifications and variations may be made to this application. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and principles of this application shall be included in the scope of the claims of this application.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311116892.7A CN116861300B (en) | 2023-09-01 | 2023-09-01 | Automatic auxiliary labeling method and device for complex maneuvering data set of military machine type |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311116892.7A CN116861300B (en) | 2023-09-01 | 2023-09-01 | Automatic auxiliary labeling method and device for complex maneuvering data set of military machine type |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116861300A CN116861300A (en) | 2023-10-10 |
CN116861300B true CN116861300B (en) | 2024-01-09 |
Family
ID=88221860
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311116892.7A Active CN116861300B (en) | 2023-09-01 | 2023-09-01 | Automatic auxiliary labeling method and device for complex maneuvering data set of military machine type |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116861300B (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106092093A (en) * | 2016-05-26 | 2016-11-09 | 浙江工业大学 | A kind of indoor orientation method based on earth magnetism fingerprint matching algorithm |
CN109241077A (en) * | 2018-08-30 | 2019-01-18 | 东北大学 | Production target variation tendency visual query system and method based on similitude |
CN111390921A (en) * | 2020-03-16 | 2020-07-10 | 华东师范大学 | Library uses multi-functional robot |
WO2022068142A1 (en) * | 2020-09-30 | 2022-04-07 | 华人运通(上海)云计算科技有限公司 | Road surface terrain recognition method and apparatus based on suspension vibration signal, and storage medium |
CN114299422A (en) * | 2021-12-20 | 2022-04-08 | 中国人民解放军海军航空大学 | Adaptive Evaluation Method of Flight Quality |
CN115169403A (en) * | 2022-07-11 | 2022-10-11 | 中联重科股份有限公司 | Method and device for identifying operation mode of mechanical equipment |
CN115561575A (en) * | 2022-09-09 | 2023-01-03 | 国网上海市电力公司 | Discrimination method for electrical abnormal state of offshore wind farm based on multidimensional matrix profile |
CN116010889A (en) * | 2022-12-30 | 2023-04-25 | 中国人民解放军海军航空大学 | An intelligent identification method for abnormal flight status of aviation aircraft |
-
2023
- 2023-09-01 CN CN202311116892.7A patent/CN116861300B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106092093A (en) * | 2016-05-26 | 2016-11-09 | 浙江工业大学 | A kind of indoor orientation method based on earth magnetism fingerprint matching algorithm |
CN109241077A (en) * | 2018-08-30 | 2019-01-18 | 东北大学 | Production target variation tendency visual query system and method based on similitude |
CN111390921A (en) * | 2020-03-16 | 2020-07-10 | 华东师范大学 | Library uses multi-functional robot |
WO2022068142A1 (en) * | 2020-09-30 | 2022-04-07 | 华人运通(上海)云计算科技有限公司 | Road surface terrain recognition method and apparatus based on suspension vibration signal, and storage medium |
CN114299422A (en) * | 2021-12-20 | 2022-04-08 | 中国人民解放军海军航空大学 | Adaptive Evaluation Method of Flight Quality |
CN115169403A (en) * | 2022-07-11 | 2022-10-11 | 中联重科股份有限公司 | Method and device for identifying operation mode of mechanical equipment |
CN115561575A (en) * | 2022-09-09 | 2023-01-03 | 国网上海市电力公司 | Discrimination method for electrical abnormal state of offshore wind farm based on multidimensional matrix profile |
CN116010889A (en) * | 2022-12-30 | 2023-04-25 | 中国人民解放军海军航空大学 | An intelligent identification method for abnormal flight status of aviation aircraft |
Non-Patent Citations (6)
Title |
---|
Time series motifs discovery under DTW allows more robust discovery of conserved structure;Sara Alaee等;Data Mining and Knowledge Discovery;第35卷;863–910 * |
军用机型复杂飞行动作提取与识别的方法研究;李超等;航空兵器;第30卷(第1期);第2节 * |
基于MDTW的飞行动作识别算法;李鸿利等;计算机工程与应用;第51卷(第9期);第2.2节 * |
基于多元时间序列融合的飞行动作识别方法;周超等;空军工程大学学报(自然科学版);第18卷(第4期);摘要,第2节,图3 * |
快速时间序列模体发现算法;朱晓晓;;国外电子测量技术(09);31-35 * |
时间序列可变尺度的时频特征求解及其分类;魏池璇等;软件学报;第33卷(第12期);4411-4428 * |
Also Published As
Publication number | Publication date |
---|---|
CN116861300A (en) | 2023-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111062282B (en) | Substation pointer instrument identification method based on improved YOLOV3 model | |
US10929649B2 (en) | Multi-pose face feature point detection method based on cascade regression | |
Khan et al. | Comparative study of hand gesture recognition system | |
CN114298183B (en) | Intelligent recognition method for flight actions | |
CN105159452B (en) | A kind of control method and system based on human face modeling | |
CN109191922A (en) | A kind of extensive four-dimensional dynamic track prediction method and device | |
CN110798805B (en) | Data processing method, device and storage medium based on GPS track | |
CN110610165A (en) | A Ship Behavior Analysis Method Based on YOLO Model | |
CN107609590B (en) | Multi-scale mouse track feature extraction method, device and system | |
CN111985325A (en) | Aerial small target rapid identification method in extra-high voltage environment evaluation | |
CN107798691A (en) | A kind of unmanned plane independent landing terrestrial reference real-time detecting and tracking method of view-based access control model | |
CN117237620B (en) | Single-target positioning method based on lightweight improved Unet semantic segmentation network | |
CN112784487B (en) | Flight action recognition method and device | |
CN101276370A (en) | 3D Human Motion Data Retrieval Method Based on Key Frame | |
CN118094213A (en) | Deep learning-based aircraft maneuver identification system | |
CN117574283A (en) | Complex flight action segmentation and detection method and device based on flight parameters | |
CN113920302A (en) | Multi-head Weakly Supervised Object Detection Method Based on Cross-Attention Mechanism | |
CN117197676A (en) | Target detection and identification method based on feature fusion | |
CN116861300B (en) | Automatic auxiliary labeling method and device for complex maneuvering data set of military machine type | |
CN110033038B (en) | Intelligent Selection Algorithm of Aero-thermal Test Data | |
Nath et al. | Deep learning models for content-based retrieval of construction visual data | |
CN109753922A (en) | Humanoid robot facial expression recognition method based on dense convolutional neural network | |
CN114943904A (en) | Operation monitoring method based on unmanned aerial vehicle inspection | |
CN116844240B (en) | Helicopter flight action recognition method based on flight parameters | |
CN116665079B (en) | Rock mass structural feature identification method and system considering spatial relationship under complex scene |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |