CN116752071A - 一种低导热、高反射率复合涂层及制备方法 - Google Patents

一种低导热、高反射率复合涂层及制备方法 Download PDF

Info

Publication number
CN116752071A
CN116752071A CN202310754035.3A CN202310754035A CN116752071A CN 116752071 A CN116752071 A CN 116752071A CN 202310754035 A CN202310754035 A CN 202310754035A CN 116752071 A CN116752071 A CN 116752071A
Authority
CN
China
Prior art keywords
spraying
composite coating
ceramic
preparing
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310754035.3A
Other languages
English (en)
Inventor
李成新
邓世杰
刘森辉
李长久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202310754035.3A priority Critical patent/CN116752071A/zh
Publication of CN116752071A publication Critical patent/CN116752071A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • C23C24/106Coating with metal alloys or metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • C23C26/02Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/073Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

本发明提供了一种低导热、高反射率复合涂层及制备方法,该复合涂层体系具有双层陶瓷层结构,底端陶瓷层为8YSZ陶瓷,顶层陶瓷层为对热辐射红外光谱具有较大反射率的陶瓷,主要有三种成分体系:(1)HfO2+Gd2Zr2O7+SCSZ体系;(2)LZO+LCO+GYbZ体系;(3)莫来石+堇青石+铝酸盐体系。由于最外侧陶瓷层具有较高的红外反射率,其能够大幅度提高热障涂层的隔热性能。同时制备陶瓷涂层时采用大气层流等离子喷枪,其能够制备具有较高密度贯穿垂直裂纹结构的陶瓷涂层,该结构能够显著提高热障涂层的热循环寿命。

Description

一种低导热、高反射率复合涂层及制备方法
技术领域
本发明涉及复合涂层技术领域,特别是涉及一种低导热、高反射率复合涂层及制备方法。
背景技术
高温合金以其优良的高温力学性能、抗氧化及耐腐蚀性能在燃气轮机、火力发电和原子能工业等领域有着广泛的应用。但随着航空、航天发动机和燃气轮机技术的发展,高温工作环境对工程结构材料的要求越来越苛刻。目前,燃气温度已接近2000K,明显高于高温合金的熔点(约1300℃)。因此,高温合金已经不能完全满足使用要求。为适应严酷的高温工作环境,高温合金表面改性成为必要。
热障涂层是一种隔热的功能涂层,通常将导热系数较低的高熔点材料涂覆于热端部件的表面,从而避免高温介质直接作用在金属基体表面,成为高温介质加热金属基体表面的屏障,以良好的隔热性能达到降低金属部件表面温度从而保护合金基体的作用。目前使用的热障涂层体系主要由待保护的金属基体、粘结层和陶瓷层组成三层结构。制备陶瓷层的方法主要三种,分别为等离子喷涂技术(APS)、电子束物理气相沉积技术(EB-PVD)和等离子喷涂物理气象沉积技术(PS-PVD)。粘结层的材料体系主要由Ni-Al基和MCrAlY基构成。通过在高温环境中形成连续的Al2O3层来保护金属基体,由于Al2O3层足够致密,因此能够形成保护膜防止氧向基体扩散而使基体材料氧化失效。最外侧陶瓷涂层主要起到隔热的功能,通常采用8YSZ材料来充当隔热涂层材料,150μm厚的陶瓷涂层能够将基体表面温度降低100-150℃。
采用APS方法制备的涂层具有典型的层状结构,尽管较大的孔隙率使得涂层具有较低的热导率,但涂层的热循环寿命却很低;EB-PVD和PS-PVD方法制备的涂层具有典型的柱状结构,其热循环寿命显著高于APS制备的涂层,然而这两种制备方法均需在真空下进行,具有较高的生产成本。同时,由于航空发动机燃烧室内部温度的不断提高,对热障涂层的隔热性能提出了更高的要求。
发明内容
针对现有技术中存在的上述问题,本发明提供一种低导热、高反射率复合涂层及制备方法,通过对低导热、高发射率双层低热导高发射率双层陶瓷防护涂层材料的设计和制备,提高热障涂层在1000℃以上的隔热能力和热服役寿命。具体发明内容如下:
第一方面,本发明提供一种低导热、高反射率复合涂层的制备方法,所述制备方法包括如下制备步骤:
S1、采用等离子喷涂、超音速火焰喷涂、激光熔覆设备或电弧熔覆设备将NiCoCrAlY合金粉体喷涂在合金基体表面,形成Ni基粘结层;
S2、采用大气层流等离子喷涂或电子束物理气相沉积技术将8YSZ粉体制备在所述Ni基粘结层表面,形成第一陶瓷涂层;
S3、进一步通过大气层流等离子喷涂或电子束物理气相沉积技术将HfO2+Gd2Zr2O7+SCSZ组合粉体、LZO+LCO+GybZ组合粉体或铝酸盐+莫来石+堇青石组合粉体制备在所述第一陶瓷涂层表面,形成第二陶瓷涂层。
可选地,步骤S1中,所述Ni基粘结层的厚度为1-150μm。
可选地,步骤S2中,所述8YSZ粉体的粒径为37-69μm。
可选地,步骤S2中,所述8YSZ粉体的送粉速率为3~4g/min。
可选地,所述第一陶瓷涂层的厚度为200-300μm;
所述第一陶瓷涂层的显微结构具有垂直裂纹结构,所述垂直裂纹的密度为2-4道每毫米。
可选地,所述第二陶瓷涂层的厚度为150-200μm;
所述第二陶瓷涂层的显微结构具有垂直裂纹结构,所述垂直裂纹的密度为2-4道每毫米。
可选地,所述大气层流等离子体喷涂技术的工作参数为:
氮气和氩气的体积比为7:3;
工作电流为120 -160A;
输出功率为15-30kW;
喷涂距离为200-300mm;
喷涂速度为0.4 -0.8m/s;
喷涂间隔为3-8mm。
可选地,所述大气层流等离子体喷涂技术的工作参数为:
氮气和氩气的体积比为7:3;
工作电流为160A;
输出功率为25-26kW;
喷涂距离为250mm;
喷涂速度为0.4m/s;
喷涂间隔为4mm。
可选地,所述合金基体包括:耐热不锈钢310S、高温合金K456、Incoloy M956或DZ640M。
可选地,所述合金基体表面为进行去油、喷砂处理后的合金基体表面。
第二方面,本发明提供一种上述第一方面所述的制备方法获得的低导热、高反射率复合涂层。该复合涂层材料包括:依次位于合金基体表面的粘结层、第一陶瓷涂层和第二陶瓷涂层。
与现有技术相比,本发明具有以下优点:
本发明提供了一种在大气条件下制备,且具有大的热循环寿命的低导热、高反射率热障涂层材料及制备方法,该热障涂层体系具有双层陶瓷层结构,底端陶瓷层为8YSZ陶瓷,顶层陶瓷层为对热辐射红外光谱具有较大反射率的陶瓷,主要有三种成分体系:(1)HfO2+Gd2Zr2O7+SCSZ体系;(2)LZO+LCO+GYbZ体系;(3)莫来石+堇青石+铝酸盐体系。由于最外侧陶瓷层具有较高的红外反射率,其能够大幅度提高热障涂层的隔热性能。同时制备陶瓷涂层时采用大气层流等离子喷枪,其能够制备具有较高密度贯穿垂直裂纹结构的陶瓷涂层,该结构能够显著提高热障涂层的热循环寿命。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本发明实施例提供的低导热、高反射率复合涂层的制备方法流程示意图;
图2示出了本发明实施例提供的低导热、高反射率复合涂层的结构示意图;
图3示出了本发明实施例提供的低导热、高反射率复合涂层的截面形貌图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,任何人在本发明的启示下或是将本发明与其他现有技术的特征进行组合而得出的任何与本发明相同或相近似的产品,均落在本发明的保护范围之内。以及,本领域普通技术人员在没有开展创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例中未注明具体实验步骤或者条件,按照本领域内的现有技术所描述的常规实验步骤的操作或条件即可进行。所用试剂以及其他仪器未注明生产厂商者,均为可以通过市购获得的常规试剂产品。此外,附图仅为本发明实施例的示意性图解,并非一定是按比例绘制。图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。附图中所示的一些方框图是功能实体,不一定必须与物理或逻辑上独立的实体相对应。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。
在本发明的描述中,需要理解的是,使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本发明保护范围的限制。
此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
第一方面,本发明提供一种低导热、高反射率复合涂层的制备方法,图1示出了本发明实施例提供的低导热、高反射率复合涂层的制备方法流程示意图,如图1所示,所述制备方法包括如下制备步骤:
S1、采用等离子喷涂、超音速火焰喷涂、激光熔覆设备或电弧熔覆设备将NiCoCrAlY合金粉体喷涂在合金基体表面,形成Ni基粘结层;
S2、采用大气层流等离子喷涂或电子束物理气相沉积技术将8YSZ粉体制备在所述Ni基粘结层表面,形成第一陶瓷涂层;
S3、进一步通过大气层流等离子喷涂或电子束物理气相沉积技术将HfO2+Gd2Zr2O7+SCSZ组合粉体、LZO+LCO+GybZ组合粉体或铝酸盐+莫来石+堇青石组合粉体制备在所述第一陶瓷涂层表面,形成第二陶瓷涂层。
具体实施时,本发明公开了一种低导热、高反射率复合涂层及制备方法。本发明提供的制备技术方案中,粘结层采用NiCoCrAlY合金粉末,陶瓷层采用双层复合结构,其中,底层陶瓷层为8YSZ,顶层陶瓷层为质量比为1:1:1的HfO2+Gd2Zr2O7+SCSZ体系、质量比为1:1:1的LZO+LCO+GYbZ体系或质量比为1:1:1的莫来石+堇青石+铝酸盐体系。具体制备步骤如下:
第一步:分别将组成HfO2+Gd2Zr2O7+SCSZ体系、LZO+LCO+GYbZ体系以及莫来石+堇青石+铝酸盐体系所涉及的粉体按照一定的质量比(1:1:1)配比好,采用机械混粉的方式将其混合均匀。
第二步:将高温合金进行去油、喷砂处理,获得具有一定粗糙度的高温合金表面。
第三步:采用等离子喷涂、超音速火焰喷涂或激光熔覆设电弧熔覆设备在高温合金基体上制备NiCoCrAlYNi基粘结层,粘结层的厚度为1-150μm;
第四步:在第三步制备的粘结层表面上,采用大气层流等离子喷涂的方式制备陶瓷层,这一层陶瓷层材料成分为8YSZ,控制喷涂参数在粘结层上制备厚度大约为200μm厚的8YSZ陶瓷层。
第五步:在第四步制得得8YSZ陶瓷涂层的基础上,利用大气层流等离子喷涂得方式制得最外层陶瓷涂层,涂层的种类为HfO2+Gd2Zr2O7+SCSZ体系、LZO+LCO+GYbZ体系和莫来石+堇青石+铝酸盐体系中的一种,涂层厚度大约为100μm。
图2示出了本发明实施例提供的低导热、高反射率复合涂层的结构示意图,如图2所示,该复合涂层材料包括:依次位于合金基体101表面的粘结层102、第一陶瓷涂层103和第二陶瓷涂层104。
本方法制备的热障涂层具有双层陶瓷层复合结构,最外层陶瓷层具有较高的反射率,使得涂层具有更好的隔热性能;同时采用大气层流等离子喷涂的方式制备的双陶瓷层具有密度较大的贯穿垂直裂纹,使得涂层具有较长的热循环寿命。综上,可以制备隔热性能更好同时热循环寿命更长的热障涂层。
为使本领域技术人员更加清楚地理解本申请,现通过以下实施例对本申请所述的一种低导热、高反射率复合涂层及制备方法进行详细说明。
实施例1:耐热不锈钢310S表面喷涂HfO2+Gd2Zr2O7+SCSZ涂层
耐热不锈钢310S是奥氏体不锈钢,具有很好的抗氧化性、耐腐蚀性,因为较高百分比的铬和镍,使得拥有较好的蠕变强度,在高温下能持续作业,具有良好的耐高温性。
1)准备基体材料,通过固定夹持装置固定好。
2)进过表面的喷砂处理,首先使用超音速火焰喷涂NiCoCrAlY粘结层,获得150μm厚度的涂层。
3)采用颗粒度37~69μm的8YSZ粉末,送粉率在3~4g/min。
4)开启大气层流等离子控制装置和等离子产生装置。
5)通过长射流控制装置,调整工作气体为氮气和氩气,体积比7:3,工作电流160A,输出功率25-26kW.
6)选择喷涂距离250mm,扫描速度0.4m/s,扫描间隔4mm。
7)控制机械手臂,循环喷涂20遍可以获得厚度200μm左右的第一陶瓷涂层。
8)首先关闭送粉控制单元,然后关闭等离子发生器生成单元,最后关闭等离子发生器循环水装置。
9)将送粉器中的8YSZ陶瓷粉末替换为HfO2+Gd2Zr2O7+SCSZ粉末,粉末粒度为50-80μm,重复(4)-(6)步骤。
10)控制机械手臂,循环喷涂10遍可以获得厚度100μm左右的第二陶瓷涂层。
11)首先关闭送粉控制单元,然后关闭等离子发生器生成单元,最后关闭等离子发生器循环水装置。
12)等待基体温度控制单元将试样温度降到室温,取下样品,得到低导热、高反射率复合涂层。
图3示出了本发明实施例提供的低导热、高反射率复合涂层的截面形貌图,如图3所示,该低导热、高反射率复合涂层具有垂直贯穿裂纹。
实施例2:高温合金K456表面喷涂LZO+LCO+GYbZ涂层
镍基高温合金K465合金具有较高的抗蠕变、疲劳的能力和较高的承温能力。
1)准备基体材料通过固定夹持装置固定在基体温度控制单元上。
2)进过表面的喷砂处理,首先使用等离子喷涂Ni-60%Ti-0.3%Hf涂层,获得150μm厚度的粘结层。
3)采用颗粒度37~69μm的8YSZ粉末,送粉率在3~4g/min。
4)开启等离子控制装置和等离子产生装置。
5)通过长射流控制装置,调整工作气体为氮气和氩气,体积比7比3,工作电流160A,输出功率25-26kW。
6)选择喷涂距离250mm,扫描速度0.4m/s,间隔4mm。
7)控制机械手臂,循环喷涂10遍可以获得厚度200μm以上的第一陶瓷涂层。
8)首先关闭送粉控制单元,然后关闭等离子发生器产生单元,最后关闭等离子发生器循环水装置。
9)将送粉器中的8YSZ陶瓷粉末替换为LZO+LCO+GYbZ粉末,粉末粒度为60-90μm,重复(4)-(6)步骤。
10)控制机械手臂,循环喷涂10遍可以获得厚度100μm左右的第二陶瓷涂层。
11)首先关闭送粉控制单元,然后关闭等离子发生器生成单元,最后关闭等离子发生器循环水装置。
12)等待基体温度控制单元将试样温度降到室温,取下样品,得到具有垂直贯穿裂纹的低导热、高反射率复合涂层。
本实施例制备得到的低导热、高反射率复合涂层具有与实施例1相似的截面形貌图,此处不再重复给出。
实施例3:Incoloy M956表面喷涂莫来石+堇青石+铝酸盐涂层
M956合金在高温下具有高的持久强度及优异的抗氧化和腐蚀能力,作为先进航空发动机工作温在1000~1200℃的热端部件和工业炉中超过1300℃的热防护部件,应用广泛。
1)准备基体材料,通过固定夹持装置固定在基体温度控制单元上。进过表面的喷砂处理,首先使用激光熔覆Ni-35%Ti-1%Zr涂层,获得100μm厚度的粘结层。
2)采用颗粒度37~69μm的8YSZ粉末,送粉率在3~4g/min。
3)开启等离子控制装置和等离子产生装置。
4)通过长射流控制装置,调整工作气体为氮气和氩气,体积比7比3,工作电流160A,输出功率25-26kW.
5)选择喷涂距离250mm,扫描速度0.4m/s,间隔4mm。
6)控制机械手臂,循环喷涂20遍可以获得厚度200μm以上的第一陶瓷涂层。
7)首先关闭送粉控制单元,然后关闭等离子发生器产生单元,最后关闭等离子发生器循环水装置。
8)将送粉器中的8YSZ陶瓷粉末替换为莫来石+堇青石+铝酸盐粉末,粉末粒度为60-90μm,重复(4)-(6)步骤。
9)控制机械手臂,循环喷涂10遍可以获得厚度100μm左右的第二陶瓷涂层。
10)首先关闭送粉控制单元,然后关闭等离子发生器生成单元,最后关闭等离子发生器循环水装置。
11)等待基体温度控制单元将试样温度降到室温,取下样品,得到具有垂直贯穿裂纹的低导热、高反射率复合涂层。
本实施例制备得到的低导热、高反射率复合涂层具有与实施例1相似的截面形貌图,此处不再重复给出。
实施例4:DZ640M表面喷涂HfO2+Gd2Zr2O7+SCSZ涂层
DZ640M(DZ40M)是钴基沉淀硬化型定向凝固柱晶高温合金,使用温度在1040℃以下。该合金,组织稳定,具有优良的抗冷热疲劳、抗氧化及耐热腐蚀性能,同时合金的抗蠕变、持久和抗疲劳等综合性能良好,主要产品有涡轮导向叶片等定向凝固铸件。
1)准备基体材料8×200×200mm,通过固定夹持装置固定在基体温度控制单元上,使用电弧熔覆设备,在基体表面熔覆100μm Ni-30%Ti-0.5%Y层。
2)采用颗粒度37~69μm的8YSZ粉末,送粉率在3~4g/min。
3)开启等离子控制装置和等离子产生装置。
4)通过长射流控制装置,调整工作气体为氮气和氩气,体积比7比3,工作电流160A,输出功率25-26kW.
5)选择喷涂距离250mm,扫描速度0.4m/s,间隔4mm。
6)控制机械手臂,循环喷涂20遍可以获得厚度200μm以上的涂层。
7)首先关闭送粉控制单元,然后关闭等离子发生器产生单元,最后关闭等离子发生器循环水装置。
8)将送粉器中的8YSZ陶瓷粉末替换为HfO2+Gd2Zr2O7+SCSZ粉末,粉末粒度为50-80μm,重复(4)-(6)步骤。
9)控制机械手臂,循环喷涂10遍可以获得厚度100μm左右的涂层。
10)首先关闭送粉控制单元,然后关闭等离子发生器生成单元,最后关闭等离子发生器循环水装置。
11)等待基体温度控制单元将试样温度降到室温,取下样品,得到具有垂直贯穿裂纹的低导热、高反射率复合涂层。
本实施例制备得到的低导热、高反射率复合涂层具有与实施例1相似的截面形貌图,此处不再重复给出。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。此外,本领域的技术人员可以将本说明书中描述的不同实施例或示例进行结合和组合。
对于方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和部件并不一定是本发明所必须的。
以上对本发明所提供的一种低导热、高反射率复合涂层及制备方法进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

1.一种低导热、高反射率复合涂层的制备方法,其特征在于,所述制备方法包括如下制备步骤:
S1、采用等离子喷涂、超音速火焰喷涂、激光熔覆设备或电弧熔覆设备将NiCoCrAlY合金粉体喷涂在合金基体表面,形成Ni基粘结层;
S2、采用大气层流等离子喷涂或电子束物理气相沉积技术将8YSZ粉体制备在所述Ni基粘结层表面,形成第一陶瓷涂层;
S3、进一步通过大气层流等离子喷涂或电子束物理气相沉积技术将HfO2+Gd2Zr2O7+SCSZ组合粉体、LZO+LCO+GybZ组合粉体或铝酸盐+莫来石+堇青石组合粉体制备在所述第一陶瓷涂层表面,形成第二陶瓷涂层。
2.根据权利要求1所述的低导热、高反射率复合涂层的制备方法,其特征在于,步骤S1中,所述Ni基粘结层的厚度为1-150μm。
3.根据权利要求1所述的低导热、高反射率复合涂层的制备方法,其特征在于,步骤S2中,所述8YSZ粉体的粒径为37-69μm;
所述8YSZ粉体的送粉速率为3~4g/min。
4.根据权利要求1所述的低导热、高反射率复合涂层的制备方法,其特征在于,步骤S2中,所述第一陶瓷涂层的厚度为200-300μm;
所述第一陶瓷涂层的显微结构具有垂直裂纹结构,所述垂直裂纹的密度为2-4道每毫米。
5.根据权利要求1所述的低导热、高反射率复合涂层的制备方法,其特征在于,所述第二陶瓷涂层的厚度为150-200μm;
所述第二陶瓷涂层的显微结构具有垂直裂纹结构,所述垂直裂纹的密度为2-4道每毫米。
6.根据权利要求1所述的低导热、高反射率复合涂层的制备方法,其特征在于,所述大气层流等离子体喷涂技术的工作参数为:
氮气和氩气的体积比为7:3;
工作电流为120-160A;
输出功率为15-30kW;
喷涂距离为200-300mm;
喷涂速度为0.4-0.8m/s;
喷涂间隔为3-8mm。
7.根据权利要求1所述的低导热、高反射率复合涂层的制备方法,其特征在于,所述大气层流等离子体喷涂技术的工作参数为:
氮气和氩气的体积比为7:3;
工作电流为160A;
输出功率为25-26kW;
喷涂距离为250mm;
喷涂速度为0.4m/s;
喷涂间隔为4mm。
8.根据权利要求1所述的低导热、高反射率复合涂层的制备方法,其特征在于,所述合金基体包括:耐热不锈钢310S、高温合金K456、Incoloy M956或DZ640M。
9.根据权利要求1所述的低导热、高反射率复合涂层的制备方法,其特征在于,所述合金基体表面为进行去油、喷砂处理后的合金基体表面。
10.一种上述权利要求1-8任一所述的制备方法获得的低导热、高反射率复合涂层。
CN202310754035.3A 2023-06-25 2023-06-25 一种低导热、高反射率复合涂层及制备方法 Pending CN116752071A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310754035.3A CN116752071A (zh) 2023-06-25 2023-06-25 一种低导热、高反射率复合涂层及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310754035.3A CN116752071A (zh) 2023-06-25 2023-06-25 一种低导热、高反射率复合涂层及制备方法

Publications (1)

Publication Number Publication Date
CN116752071A true CN116752071A (zh) 2023-09-15

Family

ID=87958757

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310754035.3A Pending CN116752071A (zh) 2023-06-25 2023-06-25 一种低导热、高反射率复合涂层及制备方法

Country Status (1)

Country Link
CN (1) CN116752071A (zh)

Similar Documents

Publication Publication Date Title
Xu et al. High-temperature oxidation behavior of CuAlNiCrFe high-entropy alloy bond coats deposited using high-speed laser cladding process
Meng et al. Highly oxidation resistant and cost effective MCrAlY bond coats prepared by controlled atmosphere heat treatment
EP1829984B1 (en) Process for making a high density thermal barrier coating
Sivakumar et al. High temperature coatings for gas turbine blades: a review
Feuerstein et al. Technical and economical aspects of current thermal barrier coating systems for gas turbine engines by thermal spray and EBPVD: a review
Wortman et al. Thermal barrier coatings for gas turbine use
EP2053141B1 (en) Alumina-based protective coating for thermal barrier coatings and process for depositing thereof
US6274201B1 (en) Protective coatings for metal-based substrates, and related processes
Wigren et al. Thermal barrier coatings–why, how, where and where to
US20120231211A1 (en) Method for the manufacture of a thermal barrier coating structure
JP2008163459A (ja) 遮熱コーティング系及び部品の被覆方法
US20110048017A1 (en) Method of depositing protective coatings on turbine combustion components
Smith Comparing cold spray with thermal spray coating technologies
US8722202B2 (en) Method and system for enhancing heat transfer of turbine engine components
Yugeswaran et al. Thermal conductivity and oxidation behavior of porous Inconel 625 coating interface prepared by dual-injection plasma spraying
CN111334797B (zh) 一种强化学吸附界面热障涂层粘结层材料及其制备方法
Bahamirian et al. Thermal durability of YSZ/nanostructured Gd2Zr2O7 TBC undergoing thermal cycling
Avci et al. Microstructure and oxidation behavior of atmospheric plasma-sprayed thermal barrier coatings
CA2569946A1 (en) Smooth outer coating for combustor components and coating method therefor
Igumenov et al. Thermal barrier coatings on gas turbine blades: Chemical vapor deposition
Rickerby et al. Coatings for gas turbines
Duvall et al. Ceramic thermal barrier coatings for turbine engine components
Najafizadeh et al. Thermal barrier ceramic coatings
Prashar et al. Thermal barrier coatings: recent developments, challenges, and probable solutions
WO2012029540A1 (ja) 熱遮蔽コーティング膜及びその製造方法、並びにそれを用いた耐熱合金部材

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination